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Abstract—In the current process of residential building layout 

design, there are problems such as low design efficiency, excessive 

manual intervention, and difficulty in meeting personalized needs. 

To address these issues, a residential building layout design 

method based on graph neural network model is proposed to 

improve the intelligence level of residential building layout design. 

Firstly, the residential building floor plan layout design data are 

transformed into graph data suitable for graph neural network 

model processing. Then, deep learning techniques are used to 

analyse and identify the spatial distribution characteristics of the 

main functional areas in the space. Finally, the trained graph 

neural network model is applied to the actual residential building 

floor plan layout design and compared with the traditional 

method. The experimental results show that compared with the 

traditional computer-aided design method, the residential 

building floor plan layout design and optimisation method 

improves the completeness of the design scheme by about 2.3%, 

the rationality by about 3.6%, the readability by about 1.9%, and 

the effectiveness by about 10.3%. The method improves the 

efficiency and accuracy of residential building floor plan layout 

design, helps to shorten the design cycle and reduce the design cost, 

and helps to promote technological progress and sustainable 

development in the field of architectural design. 
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I. INTRODUCTION 

With the rapid development of social economy and the 
acceleration of urbanisation, the demand for residential 
buildings is increasing, and the floor plan layout design, as an 
important part of residential building design, directly affects the 
comfort, functionality and aesthetics of the residence [1]. The 
traditional floor plan layout design of residential buildings 
mainly relies on the experience and professional knowledge of 
designers, which is limited by the personal ability and 
experience accumulation of designers, and the design efficiency 
and accuracy are relatively low, and it is difficult to ensure the 
innovation and uniqueness of the design scheme [2]. In recent 
years, the development of artificial intelligence technology has 
provided new possibilities for residential building plan layout 
design [3]. Among them, the graph neural network (GNN) 
model, as a kind of neural network that can effectively process 
graphical data, has achieved remarkable results in the fields of 
computer vision, natural language processing, and recommender 
systems [4, 5]. However, in the field of residential building 
layout design, the application of GNN model is still in its infancy. 
Most existing research focuses on simple spatial relationship 
modeling, and there are still shortcomings in comprehensively 

considering various factors such as complex functional 
requirements, user preferences, and diverse building codes in 
residential buildings. In addition, how to build an efficient and 
accurate GNN architecture that can fully adapt to the special 
requirements of residential building layout design and achieve 
automatic generation and optimization of design schemes is still 
an urgent problem to be solved. The research aims to fill these 
research gaps by exploring the application of graph neural 
network models in residential building layout design, 
constructing more comprehensive and practical design models, 
and improving the quality and efficiency of residential building 
layout design, bringing new vitality and innovation to the field 
of residential building design. The study is divided into four 
parts: the first part is a summary of related studies; the second 
part is the design of the GNN model for residential building floor 
plan layout design, which is validated in the third part; and the 
fourth part is a summary of the whole study. The innovativeness 
of the study is mainly reflected in the following aspects The 
study of applying GNN to residential building floor plan layout 
design provides a new intelligent method for residential building 
floor plan layout design. Secondly, the study constructed a GNN 
model applicable to residential building floor plan layout design 
and optimised it with a large amount of training data, which 
improved the design efficiency and accuracy; finally, the GNN 
model was applied to actual design cases, which achieved 
significant design results. 

II. RELATED WORKS 

GNN is a neural network that can efficiently process 
graphical data and automatically learn the structural and 
relational information in graphical data. Wang et al. proposed a 
quaternion-based social recommendation knowledge graph 
neural network, which reduces the parameters during training 
through the expressibility of quaternion and the weight sharing 
mechanism of the Hamilton product, and also employs explicit 
and implicit social relationship integration algorithms to solve 
the problem of users' social relationship data sparsity problem. 
Experimental results show that the model can achieve up to 85% 
recommendation accuracy in study [6]. Huang's group proposes 
a dynamic spatio-temporal graph neural network model 
(DSTGNN) to capture the dynamics and dependencies in traffic 
demand forecasting by constructing a spatial dependency graph. 
The results show that DSTGNN outperforms existing models in 
traffic demand prediction on two real datasets [7]. Rusek's group 
proposes a novel GNN-based network model to understand the 
complex relationships between topology, routing, and input 
flows, and to predict key performance indicators. The model was 
experimentally shown to be accurate up to 88% in predicting 
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delay distribution, jitter and loss [8]. Lee et al. proposed a new 
human activity recognition model that combines a pre-trained 
model and a GNN to effectively overcome the sparsity of radar 
data. The results showed that the method achieved 96% 
accuracy in five different human activity classifications [9]. A 
related study proposes a scalable network slice digital twin 
based on the GNN model to capture intertwining relationships 
between slices and monitor end-to-end metrics. Experiments 
demonstrate that the method accurately reflects network 
behaviour and predicts latency in various topologies and new 
environments [10]. 

Graphic layout design is a design method to achieve an 
efficient, aesthetically pleasing and comfortable spatial 
environment by rationally arranging spatial elements. Li et al. 
proposed an attribute-conditional layout method for solving the 
problem of design element position and size in graphic layout 
design while considering element attribute constraints. The 
method was experimentally demonstrated to be effective in 
synthesising graphic layouts under different element attribute 
conditions and supports layout adjustment and original reading 
order preservation [11]. Murchie's group proposes a graphic 
design methodology based on the science of communicating 
vision and provides a high-level overview of terms related to 
layout, images, fonts, and colours. The method was able to 
increase graphic design satisfaction by 13% and helped to 
facilitate research collaboration between scientists and designers 
[12]. Stephan et al. used a mathematical planning approach to 
achieve optimal use of urban space by optimising car park 
layouts. The trade-off between high resolution and 
computational effort was explored by comparing orthogonal 
parking mixed integer programs at different resolutions. 
Experimental results show that the application of the optimised 
car park design scheme improves the effectiveness by 10% [13]. 
Boysen's team optimises the layout design of moving walkways 
through dynamic planning, which effectively improves the total 
travel time under several relevant extended constraints. The 
results showed that the method could reduce the total pedestrian 
travel time by 13% [14]. Wan team members targeted to propose 
a web page layout aesthetic assessment by automatically 
predicting the aesthetics of web page layouts based on an 
improved Adaboost algorithm. Experiments proved the 
superiority of the model in predicting the aesthetics of web page 
layouts [15]. 

In summary, existing research on GNN has achieved 
significant results in various fields such as social 
recommendation, transportation demand prediction, network 
performance indicator prediction, and human activity 
recognition, demonstrating the powerful ability of GNN to 
process graphical data structures and relational information. In 
terms of graphic layout design, although there are various 
methods such as attribute conditional layout, design based on 
scientific communication vision, mathematical programming 
optimization of parking lot layout, dynamic programming of 

mobile sidewalk layout, and aesthetic evaluation of webpage 
layout, these studies mostly focus on specific types of layout 
design or specific optimization objectives. At present, there is a 
lack of an effective model that deeply applies the powerful 
graphic data processing capabilities of GNN to residential 
building layout design, and fails to fully utilize GNN to explore 
the complex structural and relational information between 
residential building spatial elements to achieve more 
comprehensive, intelligent, and universal optimization of 
residential building layout design. Therefore, the study proposes 
a GNN model for residential building layout design, aiming to 
provide intelligent methods for residential building layout 
design and promote technological progress in the field of 
architectural design. 

III. GNN MODEL FOR RESIDENTIAL BUILDING LAYOUT 

DESIGN 

This paper discusses the data acquisition, pre-processing and 
analysis of residential building floor plan layouts using BIM 
technology. A layout design method based on GNN and deep 
learning is proposed to improve space utilisation and occupant 
comfort. Finally, the quantum particle swarm algorithm is used 
to optimise the layout design and transform it into a composite 
model to further enhance the design. 

A. Spatial Data Processing of Residential Building Plan 

Layout 

Residential building floor plan layout data acquisition and 
pre-processing is an important part of the BIM field, which 
involves the digital modelling of building space and provides 
basic data for building design, construction and operation [16]. 
Before carrying out the residential building plan layout, the 
functional area spatial data need to be collected and processed 
in order to extract the distribution characteristics of the layout 
space. The spatial data processing process of residential building 
plan is shown in Fig. 1. 

The data format of spatial layout information mainly 
includes the location, size, and shape of building floor plans and 
related functional areas. Specifically, the data will include 
information such as the coordinates, area, and shape of each 
functional area. The input of the model is raw spatial data, and 
the output is processed and analyzed spatial distribution feature 
information. During the processing, it may be necessary to 
replace the classification code to adapt to the new data structure 
and analysis requirements. Finally, the processed data will be 
verified to ensure its quality [17]. The information entropy of 
spatial distribution characteristics of the main functional area is 
shown in Eq. (1). 
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Fig. 1. The data processing process of residential building floor plan space. 

In Eq. (2), the measure of spatial functional area land is 


 

and the number of its types is N . The measure of spatial 
functional area land use can be realised by calculating the 
equilibrium degree, which takes the value range of [0, 1]. If the 
equilibrium degree is 0, it means that the use of land in the 
functional area is unbalanced; if the equilibrium degree is 1, it 
means that the use of land has reached the ideal equilibrium 
state. Through this metric, the development of land in the spatial 
functional area can be better understood and assessed [19]. The 
morphological characteristics of the main functional zone 
distribution of the building plan contain shape rate and 
compactness, and the shape rate of each functional zone is 
shown in Eq. (3). 
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In Eq. (3), the shape rate of each functional area is  , the 

area of the functional area region is 1S
, and the length of the 

region is L . Shape rate is an important indicator to describe the 
morphological characteristics of the distribution of the main 
functional area, if the value is small, it means that the area shows 

obvious belt-like characteristics; if the value is large, it indicates 
that the distribution of the main functional area in the area is 
block-like. The compactness of the main functional area is 
shown in Eq. (4). 



1

'

1

S

S
 

 

In Eq. (4), the compactness of each functional area is 
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and the minimum external circle area of functional area is 
'
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Subsequently, the study analyses and identifies the spatial 
distribution characteristics of the main functional zones in the 
space through the deep neural network technology, and the deep 
neural network of spatial distribution of the main functional 
zones in the building plan is shown in Fig. 2. 

The spatially relevant feature points of the residential 
building plan are extracted by deep neural network, and the 
functional area feature index parameters are calculated as shown 
in Eq. (5). 
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Fig. 2. Deep neural network for spatial distribution of main functional areas in architectural plans. 
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In Eq. (5), the feature indicator parameter is A , the upper 

limit value of feature is b , the optimisation coefficient of 

feature parameter is r , the distribution range is s , and the 

lower limit value of feature is w . The corresponding feature 
value index parameters are calculated and the results of the 
layout feature extraction of the functional area are evaluated. If 
the result exceeds the preset value range, it indicates that there 
is an abnormality in the feature extraction and it is necessary to 
carry out the extraction again. On the contrary, it can be 
considered that the layout feature extraction results are suitable 
for layout optimisation design, and the subsequent operations 
can be continued. 

In summary, the study successfully extracted the spatial 
distribution characteristics of the main functional area by 
processing and analyzing spatial data using deep neural network 
technology. Then, using information entropy and spatial 
functional area land measurement methods, evaluate the 
development status of land in each functional area. In addition, 
by calculating the shape ratio and compactness of the main 
functional area, we have gained a better understanding of the 
development of the spatial functional area land. The research 
method not only improves the accuracy of residential building 
layout design, but also provides effective basis for subsequent 
layout optimization design. 

B. Residential Building Layout Design and Optimisation 

Methods 

Unlike traditional deep learning models, GNN acquires 
information about graph data by learning the relationships 
between nodes [20]. The mathematical representation of the 
graph structure is shown in Eq. (6). 


,G V E

 

In Eq. (6), the graph structure is G , the set of nodes of the 

graph structure is 
1 2[ , , , ]iV v v v , and the set of all edges of 

the graph structure is 11 12[ , , , ]ijE e e e
. The radius subgraph 

of the nodes is shown in Eq. (7). 
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In Eq. (7), the subgraph of node iv
 within the radius r  is 

( )r

iv
. The radius subgraph of an edge is shown in Eq. (8). 
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In Eq. (8), the subgraph of edge ije
 within radius r  is 

( )r

ije

. After random initialisation by supervised learning, the node 
radius subgraphs and edge radius subgraphs are trained by 
backpropagation. The node embedding representation is 
updated as shown in Eq. (9). 
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In Eq. (9), the node embedding is denoted as 
( )t

iv , the 

Sigmoid function is  , and the set of neighbours of the node is 

( )N i
. The hidden neighbour vector is 

( )t

ijh
 and its calculation 

is shown in Eq. (10). 
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In Eq. (10), the nonlinear activation function of the neural 

network is 
f

, the hidden neighbour weight matrix is 
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the edge embedding vector of node 
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. The edge embedding vector is updated as shown in 

Eq. (11). 
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In Eq. (11), the edge vector update weight matrix is 
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 and the edge embedding vector offset vector is 

sideb
. The final output obtained is shown in Eq. (12). 
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In Eq. (12), the final output is buildy
 and the number of all 

nodes is 
V

. The loss function for residential building 
prediction is shown in Eq. (13). 
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In Eq. (13), the loss function is loss , the regression weight 

matrix is regW
, the actual score of the samples is iy

, and the 

number of samples is m . The Node2vec algorithm is an 
unsupervised machine learning model based on graph 
embedding, which represents similarity or proximity between 
nodes by sampling their neighbours in a random wandering 
manner and mapping the nodes to a high-dimensional space. The 
Node2vec algorithm borrows from the word2vec algorithm in 
natural language processing, considering each node in the graph 
as a word in the text and a sequence of nodes as a sentence in 
the text. The algorithm mainly solves the problem of how to 
generate a sequence of nodes starting from an initialised node. 
The optimisation objective of the Node2vec algorithm is shown 
in Eq. (14). 


max log Pr( ( ) ( ))f sv V

N u f u


 

In Eq. (14), the node mapping function is 
( )f u

 and the set 

of nearest neighbour points of a node is 
( )sN u

. The GNN-
based residential building plan layout design model is shown in 
Fig. 3. 
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Fig. 3. A residential building layout design model based on GNN.

The residential building floor plan layout design model uses 
a graph data structure to encode and analyse building floor plans. 
The graph neural networks involved include Graph 
Convolutional Neural Networks (GCN) and Graph Attention 
Networks (GAN). In this model, nodes represent rooms, and 
node attributes include type, etc.; edges represent connectivity 
relationships between rooms, such as door connections, open 
connections, or vertical connections (e.g., stairs, ramps, or lifts). 
Through supervised learning, the model uses GNN to embed 
nodes and subgraphs to obtain the corresponding vector 
representation and the vector representation of the whole graph. 
Then, the linear regression model assigns weights to the 
subgraphs to minimise the error between the predicted score and 
the true score. After training, the subgraphs that have a high 
impact on the scores are extracted as good design elements. The 
unsupervised learning part uses the node2vec algorithm to map 

the sample graph into a high-dimensional space and visualise it 
to show potential relationships between nodes. This approach 
provides useful suggestions for subgraph combination, i.e., 
which nodes should be connected together in the final design. In 
the structure combination phase, the model identifies the basic 
modules (subgraphs) and then combines them into a new graph. 
This process can be achieved by adding new edges and 
additional nodes. Finally, the validity of the generated design 
solution is manually evaluated. After obtaining a new diagram 
that conforms to the design, the model converts the diagram into 
a residential building plan layout. Overall, the GNN-based 
residential building floor plan layout design model effectively 
integrates supervised and unsupervised learning, which helps to 
generate innovative and design-compliant floor plan layout 
solutions. The GNN structure used for subgraph construction is 
shown in Fig. 4. 
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Fig. 4. GNN structure for subgraph construction. 

Each layer of the GNN structure used to discover constructed 
subgraphs consists of neurons that hold real-valued 
representations of node attributes. In each layer, a convolutional 
operation processes the node attributes, multiplying the result by 
the hidden weights and mapping it to a probability distribution 
via a non-linear function to obtain a potential representation 
vector. The probability of each layer is related to the objective 
function score, and subgraph patterns are discovered by 
accumulating and remembering the neighbourhood 
contributions of the nodes. The subgraph vector is updated as 
shown in Eq. (15). 
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In Eq. (15), the subplot vector at the time of t  is 
( )t

ix
 and 

the subplot vector at the time of 1t   after updating is 
( 1)t

ix 

. 
The initialisation process of the subplot vector of the residential 
building plan is shown in Fig. 5. 
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Fig. 5. The initialisation process of subgraph vectors in residential building plans. 

The objective of the residential building floor plan layout 
design optimisation method is to maximise the space utilisation 
of the residential building while improving the comfort of the 
occupants, subject to the constraints [21]. The residential 
building floor plan layout design optimisation method is based 
on the quantum particle swarm algorithm, which achieves the 
goal by optimising two factors: the coordination of the layout 
design and the design cost. The optimisation model transforms 
the complex layout problem into the form of a composite model, 
which takes into account a variety of factors such as land type, 
functional area type, and adjacency. In the solution process, the 
optimal solution is searched by continuously updating the 
particle velocity and position, and the preset convergence 
conditions are satisfied. The final optimal layout design results 
obtained can be used to guide the actual residential building plan 
layout design. 

IV. ANALYSIS OF THE APPLICATION OF RESIDENTIAL 

BUILDING LAYOUT DESIGN METHODS 

The content of this chapter focuses on the analysis of data 
processing, feature extraction and application of design 
optimisation methods to residential building plan layout images. 
Firstly, the images in the ScanNet dataset are processed and 
converted. Then, the frequency and distribution features of 
different spatial types are analysed. Then, the GNN model 
performance is evaluated by experimenting different parameters 
using neural networks and Adam optimiser for training. Finally, 

the public space layout is optimised by quantum particle swarm 
algorithm. 

A. Analysis of Data Collection and Pre-processing Effects 

The experimental environment of the residential building 
floor plan layout design method includes the following: first, in 
the software environment, BIM software is used for data 
acquisition and pre-processing, such as Revit and AutoCAD. 
This software can help to acquire the relevant information of the 
building and to organise and process the data. It is also necessary 
to use deep learning frameworks, such as TensorFlow, PyTorch, 
etc., for data processing and analysis for model training and 
prediction. In terms of the hardware environment, we need to 
use a high-performance computer or server for data processing 
and model training. Specific configurations include high-speed 
CPU, high-capacity memory and high-performance graphics 
card to ensure the efficiency and accuracy of data processing and 
model training. The programming language uses Python as the 
main programming language, combined with the corresponding 
deep learning libraries and APIs of building information 
modelling software for data processing and model training. The 
storage device uses high-speed hard discs or solid-state hard 
discs as the data storage device to improve the data reading and 
writing speed and model training efficiency. The study selects 
residential building plan layout images as the raw data for data 
processing on the ScanNet dataset, and the data conversion 
processing effect is shown in Fig. 6. 
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Fig. 6. Data conversion processing effect.
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The image grouping in Fig. 6(a) is the random division of 
the 150 residential building floor plan layout image samples 
obtained from the ScanNet dataset into five groups of 30 sample 
images each shows the accuracy of the data conversion, with an 
average accuracy of up to 96.4%. It indicates that there are very 
few errors and deviations in the data conversion process, and 
most of the image samples can maintain a high degree of 
consistency and accuracy in the conversion process. Fig. 6(b) 
shows the completeness of data conversion, and the average 
completeness can reach 84.4%. In the data conversion process, 

the important information and features of the overall sub-image 
samples can be retained and reproduced. Comprehensively, the 
effect of data conversion processing is quite remarkable, with 
excellent performance in both accuracy and completeness 
indicators, which lays a solid foundation for further data analysis 
and processing. The study will contain 24 of the 30 data samples 
for training and cross-validation, using grid search to adjust the 
combination of hyperparameters, and the other 6 samples as a 
test set. The results of feature extraction for residential building 
plan layout images are shown in Fig. 7. 
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Fig. 7. The effect of feature extraction on residential building layout images. 

Fig. 7(a) shows the variation of error values of residential 
building floor plan layout image feature extraction, and the error 
values of training and testing tend to be stable in the range of 0-
0.01. Fig. 7(b) shows the repeatability test results of residential 
building floor plan layout image feature extraction, and the 
repeatability averages of training and testing are 84% and 89%, 

respectively. The results show that the effect of residential 
building floor plan layout image feature extraction is more 
significant, and the accuracy and repeatability are excellent. The 
results of the sample room type frequency statistics are shown 
in Fig. 8. 
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Fig. 8. Sample room type frequency statistics results. 

In Fig. 8(a), types 1-8 represent bathroom, bedroom, 
corridor, kitchen, living room, dining room, parking room and 
laundry room, respectively. In Fig. 8(b), types 9-16 represent 
guest rooms, balconies, storage rooms, entrances, studies, 
master bedrooms, second bedrooms, and bathrooms, 
respectively. The frequency ranges of different types of spaces 
are not exactly the same, with bathrooms appearing most 

frequently, followed by corridors, and to a lesser extent, 
balconies. With regard to the information entropy of spatial 
distribution characteristics, the internal spatial distribution of 
residential buildings presents a high degree of randomness and 
diversity. In the spatial functional area land metric, functional 
areas such as bedrooms and living rooms occupy larger areas, 
while parking rooms and laundry rooms have smaller areas. 
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Regarding the shape rate of each functional area, kitchen and 
bathroom show a more regular shape, while bedrooms and living 
rooms are more irregularly shaped. The main functional areas 
such as bedrooms and living rooms are more compact, while 
dining rooms, laundry rooms, etc. are less compact. 

B. Analysis of the Application of Residential Building Layout 

Design and Optimisation Methods 

When evaluating the application effect of residential 
building layout design and optimization methods, a comparative 
evaluation method was used in the experiment to compare the 

proposed optimization method with computer-aided design 
(CAD) and poster tools. Nonprofessional and professional users 
were invited to evaluate the completeness, rationality, 
readability, and effectiveness of the three design tools. The study 
uses customised data and parameter settings to train neural 
networks to solve architectural design problems. Also, the Adam 
optimiser was used for training and different parameters such as 
subgraph radius and edge vector dimensions were chosen for the 
experiments. The effect of different parameters on the GNN 
model is shown in Fig. 9. 
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Fig. 9. The impact of different parameters on GNN models. 

Fig. 9(a) shows the results of the effect of subgraph radius 
on the model performance, and it can be seen that the root mean 
square error of the model can be minimised up to 18.3% when 
the subgraph radius is 2. Fig. 9(b) shows the results of the effect 
of vector dimension on the model performance, and it can be 
seen that the root-mean-square error of the model can be 
minimised up to 16.9% when the vector dimension is 40. Fig. 
9(c) shows the results of the effect of GNN depth on model 

performance, as can be seen that the model stabilises with a 
minimum root mean square error of 23.6% at a GNN depth of 3. 
With the current model setup, a subgraph radius of 2, a vector 
dimension of 40, and a GNN depth of 3, the smallest root-mean-
square error can be obtained, resulting in optimal model 
performance. The sample room type vector space projection is 
shown in Fig. 10.
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Fig. 10. Sample room type vector space projection. 
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Fig. 10(a) shows the space vector projections for types 1-8, 
i.e., bathroom, bedroom, corridor, kitchen, living room, dining 
room, parking room and laundry room. Fig. 10(b) shows the 
space vector projections for types 9-16, i.e. guest room, balcony, 
storage room, entrance, study, master bedroom, second bedroom 
and bathroom. It can be seen that clusters such as bedrooms and 
bathrooms are closer to each other, forming a larger category, 
while kitchens and dining rooms are closer to each other. In 
addition, clusters such as guest room, bathroom and second 
bedroom are very close to each other. The optimisation of the 
residential building floor plan layout design is shown in Fig. 11. 

In order to verify the effectiveness of the GNN based 
residential building layout design and optimization method 
proposed in the study (marked as Method A), the GCN and GAT 
models were used as baselines in the experiment, and the 
intelligent generative method based on genetic algorithm 
(marked as Method B) and the layout optimization method based 
on particle swarm optimization (marked as Method C) published 
in 2023-2024 were compared. The comparison results of 
different methods are shown in Table I. Table I shows that 
Method A outperforms the baseline models GCN and GAN in 

all indicators, and compares Method B with Method C. 
Compared to the baseline model, the performance of method A 
has significantly improved, with its root mean square error 
reduced by nearly half, accuracy increased by about 10%, and 
F1 value increased by about 6%. Compared with the methods 
proposed in 2023-2024, Method A leads by about 4% in 
accuracy and F1 score, demonstrating higher overall 
performance. This indicates that the GNN based method for 
residential building layout design and optimization has 
significant advantages and application potential. 

TABLE I.  COMPARIING RESULTS OF DIFFERENT METHODS 

Method 
Root mean 

square error/% 
Accuracy/% F1 value/% 

GCN 20.3% 83.1% 89.3% 

GAN 25.1% 80.3% 87.3% 

Method A 10.7% 93.2% 95.1% 

Method B 13.7% 90.2% 91.3% 

Method C 16.1% 89.3% 90.8% 
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Fig. 11. Optimization of residential building layout design. 

Fig. 11(a) shows the results of the comparison of the 
separation degree of the spatial layout before and after the 
optimised design. Before the optimal design, the separation 
degree of each functional area is low, and there are some areas 
that are not effectively utilised. The separation degree of the 
functional areas after the optimal design is significantly 
improved and always within the permitted fluctuation range, 
which indicates that our proposed design method can effectively 
optimise the layout of the public space, making the spatial 
distribution of the functional areas clearer and avoiding the 
waste of space. Fig. 11(b) shows the results of the objective 
function solution, which shows a decreasing trend with the 
increase of the number of iterations. This is because in the 
quantum particle swarm algorithm, the particles are able to 
adjust and update all the particle information through quantum 
mechanics, maintaining the original position and velocity while 
choosing the appropriate velocity direction based on historical 
experience. This process of constantly searching and updating 

position information makes the particles gradually approach the 
optimal solution, thus optimising the layout of the main 
functional area of the public space. The evaluation of the 
application effect of the residential building layout design and 
optimisation method is shown in Fig. 12. 

In Fig. 12, the study compares the proposed method for 
designing and optimising the floor plan layout of residential 
buildings with computer-aided design (CAD) and poster tools as 
a comparison in order to analyse the effectiveness of the 
application of the proposed method in the study. Fig. 12(a) 
shows the evaluation results for non-professional users and Fig. 
12(b) shows the evaluation results for professional users. 
Compared with CAD and poster tools, the completeness of the 
residential building floor plan layout design and optimisation 
method is improved by about 2.3%, rationality by about 3.6%, 
readability by about 1.9% and effectiveness by about 10.3%. 
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Fig. 12. Evaluation of the application effect of residential building layout design and optimisation methods. 

V. CONCLUSION 

In order to improve the space utilisation of residential 
buildings and the comfort of occupants, the study proposes a 
GNN-based method for designing and optimising the floor plan 
layout of residential buildings. The method analyses and 
identifies the spatial distribution characteristics of the main 
functional areas in the space through deep learning techniques. 
The study adopts the quantum particle swarm algorithm to 
optimise the layout of the public space, and transforms the 
complex layout problem into the form of a composite model to 
meet the preset convergence conditions and obtain the optimal 
layout design results. In the process of data conversion, the 
average accuracy can reach 96.4% and the average completeness 
can reach 84.4%, which lays the foundation for further data 
analysis and processing. The error value of the residential 
building floor plan layout image feature extraction is within the 
range of 0-0.01, and the repeatability averages for training and 
testing are 84% and 89%, respectively. Compared with the most 
advanced methods, the accuracy and F1 value of the GNN based 
residential building layout design and optimization method have 
been improved by about 4%, and its overall performance is 
better. Compared to CAD and poster tools, the effectiveness of 
the residential building floor plan layout design and optimisation 
method was improved by about 10.3%. The results indicate that 
the GNN-based residential building floor plan layout design and 
optimisation method has high applicability. This study has made 
multiple contributions in the field of residential building layout 
design. Firstly, the innovative application of Graph Neural 
Networks (GNNs) in residential building layout design provides 
a new intelligent design approach. Secondly, a GNN model 
adapted to the layout design of residential buildings was 
carefully constructed and optimized with a large amount of 
training data, significantly improving design efficiency and 
accuracy, effectively addressing the shortcomings of existing 
research in comprehensively considering multiple factors such 
as complex functional requirements, user preferences, and 
building standards of residential buildings. Thirdly, the 
successful application of the GNN model in practical design 
cases has improved the completeness, rationality, readability, 

and efficiency of the design scheme. It has shown outstanding 
performance in data conversion, image feature extraction, and 
other aspects. Compared with traditional CAD and poster tools, 
its efficiency has been significantly improved, effectively 
promoting technological progress and sustainable development 
in the field of architectural design. However, the study still has 
some limitations, such as the limited scope of data collection and 
the insufficiently fine setting of model parameters. Future 
research can collect data in a wider range and further optimise 
the model parameter settings to improve the performance and 
practicality of the layout design method. 
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