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Abstract—Developing a resilient infrastructure is crucial for 

nation-building by supporting innovations and promoting 

sustainable growth. The Kingdom of Saudi Arabia is striving to 

achieve the Sustainable Development Goals (SDGs) set by the 

United Nations. Industry, Innovation, and Infrastructure (I3) are 

some of the strategic objectives of the Kingdom’s Vision 2030 par 

with the United Nations’ SDGs. The objective is focused to develop 

trade and transport networks for international, regional, and local 

connectivity with an investment of billions of dollars to establish a 

robust transport network and improve the existing one for 

enhancing road safety to reduce the costs of deaths and serious 

injuries. For this, a control center for automatic monitoring could 

be established for 24x7 monitoring of traffic violators; the key 

project has been named the National Center for Transportation 

Safety, apart from launching the “Rental Contracts” facility with 

the Naql portal. Moreover, the growing urban population is 

causing more vehicles on the roads leading to more traffic 

congestion which has become severe during peak hours in the 

major cities causing several other issues such as environmental 

pollution, high greenhouse gases (GHGs) including CO2 emissions, 

health risks to the citizen and residents, poor air quality, higher 

risks of road safety, more energy consumption, discomfort to the 

commuters, and wastage of time and other resources. Therefore, 

in this research, we propose an intelligent transport system (ITS) 

for predicting traffic congestion levels and assist commuters in 

taking alternative routes to avoid congestion. An intelligent model 

for predicting urban traffic congestion levels using XGBoost, 

Gated Recurrent Unit (GRU), and Long Short-Term Memory 

(LSTM) algorithms is developed. The comparative performance 

analysis of the techniques concerning the performance metrics: 

Mean Squared Error (MSE), Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), Error cost, Outlier sensitivity, and Model Complexity, 

demonstrate that the LSTM algorithm excels the other two 

algorithms. 
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I. INTRODUCTION 

Millions of people visit the Kingdom of Saudi Arabia yearly 
to perform Hajj and Umrah. During the Hajj period, two Holy 
cities experience the peak of traffic. Due to the large number of 
expatriates, the other major cities also usually experience the 
peak. The Kingdom aims to reduce peak hour congestion levels 
in the major cities as an important element under the SDGs of 
Vision 2030. So, the priorities in the Kingdom’s Vision 2030 
include programs for self-driving vehicles [1]. An intelligent 

transport system for predicting the congestion level and traffic 
analysis will assist the self-driving vehicle program initiative. 

Apart from the proper road design, the main focus of the 
Transport Ministry in the Kingdom of Saudi Arabia is on road 
safety mechanisms, like mounting proper traffic and guide 
signs, adequate water drainage, and highway fencing to avoid 
accidents due to animal entry [2]. The concerned committees 
on existing roads and improving safety policies are trying too 
hard to prevent fatalities due to accidents. The National Road 
Safety Center (NRSC) is one of the Kingdom’s road safety 
initiatives to reduce traffic fatalities within the National 
Transformation Program 2020 [3]. The goal is to establish a 
center of technical excellence and strategic partner for road 
safety stakeholders to place the Kingdom among the top 20 
countries in road safety by 2030 [3]. Therefore, one of the key 
initiatives of this research project is to apply Artificial 
Intelligence (AI) technologies to effectively forecast traffic 
congestion levels during peak traffic load periods to diversify 
road traffic efficiently. 

So, our proposed system will offer effective management of 
the congestion level, thereby reducing the cost of accidental 
deaths, serious injuries, and travel time. Consequently, the 
quality of social life will improve. 

Moreover, higher congestion leads to higher energy 
consumption and creates related challenges such as 
environmental pollution, high CO2 emissions, health risks, etc. 
An ITS capable of predicting the congestion level will help 
minimize the traffic congestion levels and related challenges 
[4]. 

Novelty and Motivation of the Research Work 

1) An intelligent transport model development: The 

research aims to develop an intelligent transport system model 

for forecasting traffic congestion levels using an amalgamation 

of ML and deep learning (DL) techniques. 

2) Prediction of the traffic congestion levels: We 

investigate and exploit various learning techniques capable of 

effectively predicting the traffic congestion levels for 

developing an intelligent transport system. 

3) Better traffic control and management: Controlling and 

managing traffic congestion during peak hours and in 

undesirable circumstances e.g., in an accident or any intentional 

road blockage is in line with the SDGs. 

4) Reduction in transportation time: The project’s 

outcomes can be used in the concerned committee settings to 
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reduce the overall transport time for the citizens and the 

residents. 

5) Comparative analysis of multiple techniques: A 

comparative analysis of the proposed model’s results with the 

existing traffic congestion prediction techniques strengthens its 

validity and viability. 

This document is organized as follows. Section II describes 
the literature review. Section III discusses the Methodology; 
Section IV outlines the Proposed Work. Section V covers the 
Experimental Analysis. Section VI concludes the research. 

II. LITERATURE REVIEW 

The concept of an intelligent transport system is useful for 
overcoming the crisis of urban traffic congestion levels raised 
due to the migration of people to urban areas by efficiently 
predicting traffic congestion levels in urban areas [5-9]. The 
goal of such a system is to achieve traffic efficiency by 
minimizing the commuters’ travel time, consumption of 
energy, and requirement of other resources and maximizing 
road safety and commuters’ comfort level. These applications 
are deployed as strategic and sustainable development plans in 
techno-savvy countries to bring the concept of intelligent 
transport systems into reality. 

Faster And Safer Travel Through Routing and Advanced 
Controls (FAST-TRAC) [9] is one of the earliest projects 
deployed in Oakland County, Michigan. The system receives 
and shares data and live video of traffic conditions with the 
Michigan Department of Transportation. It is one of the first 
suburban adaptive traffic control systems in the USA; also, the 
first to use video processing for an adaptive traffic control 
system in the world, and the first to launch a traffic website 
about real-time traffic information. 

Sydney Coordinated Adaptive Traffic System (SCATS) 
[10] signal system uses eight phase signals to fit into the 
changing traffic patterns. This traffic control system optimizes 
traffic flow and implements intelligent algorithms to process 
real-time data to predict traffic patterns, reduce congestion and 
travel time, and enhance travel safety. It has reduced travel time 
by 28%, stops by 25%, fuel consumption by 12%, and 
emissions by 15%. 

Some similar early systems to mention are Driver 
Information Radio using Experimental Communication 
Technologies (DIRECT), ADVANTAGE l-75, Suburban 
Mobility Authority for Regional Transportation (SMART), 
Cooperative Intersection Collision Avoidance System 
(CICAS), and Data Use Analysis and Processing (DUAP), etc. 

Recent developments for automated and real-time 
processing of crowding information are the Google Maps 
transit service [11], Singapore LTA [12], and the Moovit travel 
app [13]. These systems are not cost-effective. 

The paradigm of road safety has shifted from passive to 
active safety. Effective traffic congestion detection capability 
and effective analysis of real-time data are the keys to the 
efficiency of these systems [14]. 

The concept of intelligent traffic systems is incomplete 
without extracting useful and distinctive patterns from the 

collected data for real-time decision-making. A. Drabicki et al. 
[7] propose a framework for modeling an RTCI (real-time 
crowding information) system with an agent-based model with 
PT (public transport) simulations. This system is not validated 
as a reliable model and ceases to be an evidence-based 
analytical tool. 

L. Li et al. [8] discuss the critical role of trajectory data 
focusing on traffic flow by revisiting traffic models at three 
levels (microscopic/mesoscopic/macroscopic). Their research 
is based on theoretical aspects of the field without practical 
implementation. 

Authors in study [6] deal with the techniques of improved 
traffic flow and safety and less congestion including evaluating 
the performance of intelligent transport systems through a 
survey among the urban truck drivers. They do not implement 
a model for intelligent transport systems. 

Authors in study [15] discuss sustainable traffic 
management issues focusing on IoT and intelligent information 
systems. Their research is based on theoretical aspects of the 
field without practical implementation. 

Authors in study [16] propose a deep autoencoder neural 
networks model for traffic congestion prediction on the SATCS 
dataset. During the congestion level prediction in their work, 
there is a loss of information in representing the congestion 
levels in the proposed network. There is no clarity on 
information loss and what is the impact of information loss on 
prediction performance. 

K. Zhang et al. [17] propose a data-driven model to predict 
traffic congestion flow in urban regions using the 
Convolutional Neural Network (CNN) LSTM network. The 
model depends on statistical analyses and employs a black box 
DL model for congestion prediction which lacks interpretable 
algorithms for traffic modeling. 

Authors in study [18] described an intelligent traffic 
prediction approach using RFs and SVMs. However, they use 
simulations to validate the outcomes. 

Therefore, in this project, we aim to design an effective 
intelligent model for traffic congestion prediction using an 
amalgamation of ML- and DL-based approaches which will 
improve the weaknesses of the previous work. This work will 
solve the urban traffic congestion of the Kingdom. 

III. METHODOLOGY 

An ITS consists of multiple components such as traffic 
management systems, electronic toll collection, vehicle-to-
infrastructure communications, traffic flow forecasting, 
traveler information systems, etc. Traffic flow forecasting is an 
important component of ITS. Accurate traffic flow forecasting 
can improve an ITS in multiple ways such as improved traffic 
conditions by route optimization, improved travel efficiency by 
mitigating congestion, etc. Vehicle traffic flow is influenced by 
several factors that exhibit complex spatial-temporal 
dependencies. These complex spatial-temporal dependencies 
and non-linear relationships in the traffic data, make the 
forecasting task more challenging. Hence, different techniques 
of traffic flow forecasting face many challenges. This paper 
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analyzes many AI techniques for forecasting effective and 
efficient traffic flow. Several machine-learning techniques have 
been utilized in forecasting and other complex real-world 
applications [19-26]. These techniques include LSTM networks 
for time series, GRU, Nonlinear Autoregressive with 
exogenous input (NARX), Random Forest (RF), and XGBoost. 
Each has been evaluated based on its strengths, weaknesses, 
and suitability for forecasting the inherent spatial-temporal 
dependencies within traffic data. 

A. Random Forest 

RF is a machine learning (ML) technique that can be 
utilized for classification and regression. However, the most 
common application of this technique is classification. It 
belongs to the category of ensemble ML approaches. The 
ensemble approach can be considered as a group of experts 
working together to find the solution to a problem. Ensemble 
techniques rely on multiple models (often base learners) 
working together to generate the final prediction by combining 
predictions of all the models. RF ensembles multiple decision 
trees [27, 28] as illustrated in Fig. 1. 

 

Fig. 1. Random forest. 

Therefore, an RF builds an ensemble of multiple decision 
trees. The predictions of these trees are combined. Each subtree 
is built on a random subset (with replacement) of training data. 
This prediction aggregation process is also known as bagging 
or bootstrap aggregating. At each split in a tree, only a subset 
of features is considered. This process is known as random 
feature selection. Due to the randomness, caused by the random 
feature selection, overfitting is reduced. Each tree gets to vote 
for the final prediction. In the case of classification, the most 
likely outcome is the one with the majority of votes, and in the 
case of regression, the prediction is the averaged predicted 
value of all the trees [29]. This research predicts the number of 
vehicles and therefore, the RF regressor model has been utilized 
for the implementation. The traffic data of the time series has 
been categorized into four traffic categories for easier 
interpretation. Therefore, the predicted numbers are converted 
into high, low, normal, or heavy traffic category. Several 
research studies have analyzed the effectiveness of RF in 
forecasting road traffic [29-33]. An analysis by [30] compares 
the traffic prediction accuracy between the Bayesian network 
and RF. The study outlines that RF performs better than 
Bayesian networks in traffic prediction scenarios. Another 

study [33] analyzes multiple ML models and concludes that RF 
performs better than the other models. 

B. XGBoost 

eXtreme Gradient Boosting (XGBoost) is one of the 
powerful ML techniques for prediction tasks like classification 
and regression [34]. XGBoost is an ensemble technique. It 
combines the capabilities of the decision trees and gradient 
boosting. The decision trees are ensembled sequentially. The 
prediction errors introduced by the previous tree are corrected 
by the next tree improving the final prediction. XGBoost 
incorporates Lasso (L1) and Ridge (L2) regularizations to 
prevent overfitting. Using regularization also helps in 
controlling the complexities of the trees. XGBoost allows 
custom-defined loss functions or uses commonly used loss 
functions such as MSE and log loss functions. Mean squared is 
used for regression tasks. As in this research, the model aims to 
predict the number of vehicles, therefore, the MSE loss function 
has been used. XGBoost utilizes parallel and distributed 
computing environments to speed up the training [35]. To 
improve the speed and optimization, XGBoost uses the 
computation by pruning the irrelevant branches in the early 
stage. The pruning process utilizes the sparse learning 
technique [36]. Several researchers have leveraged the 
capabilities of XGBoost for traffic predictions [37, 38]. As 
discussed, it utilizes regularization which helps in preventing 
overfitting. It can handle complex relationships and non-
linearity present in the traffic data points. 

C. Neural Network Time Series Nonlinear Autoregressive 

Vehicle traffic data can often be subject to high variance and 
rapid transients. Therefore, time series forecasting models 
should be able to overcome the non-linearity of these changes. 
A research study [39] suggests that the following non-linear 

autoregressive model ŷ(𝑡) = ℎ(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 −

𝑑)) + 𝜀(𝑡) can be utilized to model such variance and transient 

time series data. This model equation has been explained in the 
next paragraph. The model analyzed past traffic data to predict 
future traffic volumes for vehicle traffic forecasting. However, 
as discussed earlier, traffic data is often non-linear, therefore, a 
non-linear autoregressive neural network has been utilized for 
traffic volume forecasting. The implemented neural network is 
a multilayer feedforward network with feedback connections 
[39, 40]. The general structure of the multilayer nonlinear 
autoregressive neural network has been illustrated in Fig. 2. 

 

Fig. 2. Structure of the multilayer nonlinear autoregressive neural network. 
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The mathematical representation of the model can be stated 
using the following equation: 

ŷ(𝑡) = ℎ(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑑)) + 𝜀(𝑡)   (1) 

This equation states that the predicted value can be 
formulated into a function ℎ of past time-series values. During 
the training process, weights and bias values are adjusted to 
approximate the function ℎ. The term 𝜀(𝑡) represents the error. 
It is a sequence of random independent variables. The sequence 
has a mean of zero and a finite variance. The neural network 
model trains on the past time series data using 𝑑 feedback 
delays. The parameter 𝑑 is the delay and can be tuned by the 
trial-and-error method for better accuracy. The proposed work 
has implemented different training algorithms- scaled 
conjugate gradient, Bayesian regularization (BR), and 
Levenberg-Marquardt (LM) with the dataset. Due to the 
features of each algorithm, they may perform differently with 
the same training data and network architecture. The scaled 
conjugate gradient algorithm used the gradient calculation 
method. It made it more memory efficient than the LM and BR 
training algorithms which utilize Jacobian calculations. 

D. Long Short-Term Memory Networks 

The LSTM neural network was proposed by Hochreiter and 
Schmidhuber [41]. These are a category of recurrent neural 
networks (RNNs) that are types of artificial neural networks. 
RNNs can identify the patterns in the data sequences or time 
series. 

The vehicle traffic flow data used time series data in this 
research work. Time series forecasting may lead to sequence 
dependency issues on the input variable [42].  RNN maintains 
a memory of the previous inputs through the hidden states to 
learn from sequential or time-series data. However, RNNs can 
suffer from the vanishing gradient problem. A vanishing 
gradient problem where the gradients become very small as 
they are back-propagated through time. It leads to difficulties 
in learning long-term dependencies. LSTMs are specifically 
designed to address this problem. LSTMs utilize memory cells 
with gates. Gates control the information flow and allow the 
network to learn long-term temporal patterns. LSTM neural 
network is composed of multiple cells. The following Fig. 3 
illustrates a typical cell of the LSTM neural network at the time 
𝑡. 

The cells of the LSTM network are very similar to those of 
the RNN neural network and utilize the previous timestep as 
shown in Fig. 1. 

 

Fig. 3. LSTM neural network cell at the time t. 

In LSTM, each cell is composed of an input gate (𝑖𝑡), an 
output gate (𝑜𝑡), a forget gate (𝑓𝑡) and memory (𝑚𝑡). The 
additional component in the LSTM neural network is the 
memory unit. These cells are the elementary units for the layers 
of the neural network. The memory of the LSTM neural 
network comes from the cells of the hidden units. The cell 
memorizes the values of the unit for an arbitrary period. The 
forget gate and input gate apply the sigmoid activation function 
(represented as 𝜎) and the activation function for memory is 
𝑡𝑎𝑛ℎ. 𝑀𝑡−1 represents the memory from the previous cell and 
𝑀𝑡 represents the memory of the current cell. Similarly, the 𝑌𝑡−1 
is the output from the previous cell and 𝑌𝑡 represents the output 
of the current cell. The symbol ‘×’ illustrates the elementwise 
multiplication and the symbol ‘+’ represents the elementwise 

addition. 𝑋𝑡 is the 𝑡𝑡ℎ timestep input to the cell. 𝑈 and 𝑊 are 
the weight vectors. The output of these gates is the vectors 
computed by applying the weights and corresponding 
activation functions on the input for every timestep. Each cell 
generates a memory and an output. The memory can either be 
utilized or forgotten by the next cell depending on the values 
from the activation function of the forget gate as depicted in 
Fig. 1. 

E. Gated Recurrent Units 

The GRUs were introduced by [43], one of the powerful 
architectures based on RNN. Similar to LSTM, they use a 
gating mechanism to manage information flow. However, they 
have simpler architectures with fewer parameters than LSTM, 
making them faster to train than LSTM [43]. The vanishing 
gradient issue is where the information from old data sequences 
does not propagate properly through the network. The GRUs 
mitigate this issue by capturing long-term dependencies. 
Research studies [44, 45] have implemented GRUs for traffic 
prediction with promising results. We discuss the functions of 
each component of GRUs in the below paragraph. 

A GRU unit consists of two main gating mechanisms 
known as update gate (𝑧𝑡) and reset gate (𝑟𝑡). The output hidden 
state (ℎ𝑡𝑜) at time 𝑡 is determined by the candidate's hidden state 
(ℎ𝑡), update gate (𝑧𝑡) and reset gate (𝑟𝑡). The update gate is 
represented mathematically as: 

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑧)              (2) 

The values close to 0 disregard the past state and values 
close to 1 indicate the higher influence of the past states. The 
update gate controls the information flow from the previous 
hidden state (ℎ𝑡−1). The reset gate (𝑟𝑡) controls the influence of 
the past states. That is, how much or to what extent, the 
processing of the current state (𝑥𝑡) of the network relies on the 
past hidden states. The reset gate is represented mathematically 
as: 

𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)            (3) 

The values close to 1 indicate that the network can utilize 
the past state and the values close to zero indicate that the 
network should focus on the current input. The information 
flow is managed using the activation functions such as sigmoid 
(𝜎) or hyperbolic tangent (𝑡𝑎𝑛ℎ). The candidate's hidden state 
is calculated using the current input and the selective 
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information from the previous hidden state. It is represented 
mathematically as: 

ℎ𝑡 = 𝑡𝑎𝑛ℎ (𝑊ℎ[𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ)       (4) 

The output hidden state (ℎ𝑡𝑜) is computed by using the 
previous hidden state, candidate hidden state, and update gate 
as: 

ℎ𝑡𝑜 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 +  𝑧𝑡 ∗ ℎ𝑡               (5) 

In the above equations, W and b are parameter metrics and 
vectors. 

GRUs offer compelling performance with simple 
architecture which is computationally lighter to train than 
LSTM. 

The predictive ability of the combined method was 
evaluated by four indices, namely, the MAE, the MSE, the 
RMSE, and the MAPE: 
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IV. PROPOSED WORK 

Fig. 4 represents the proposed system’s general 
architecture. This project will investigate and exploit several 
prediction techniques using three algorithms, XGBoost, GRUs, 
and LSTMs. These methods will be compared based on the 
performance of prediction accuracy. After evaluating the 
implemented techniques, the model that performs the best 
among these alternatives will be selected for forecasting the 
congestion level and presented as a model for deployment. 

A. Dataset Description and Analysis 

Actual urban traffic scenarios are complex. Traffic is 
dynamic over the days of the week and hours of the day. 
Therefore, proper data analysis depends on the actual traffic 
scenario. During the weekdays there are very high volumes of 
traffic usually called rush hours often from 6 am to 8 am and 
from 4 pm to 6 pm when most people are either going to or 
coming from work. This period heavily impacts traffic 
congestion levels. Fridays show unique deviation from 
anticipated as typical weekday traffic patterns; despite being 
considered part of weekdays.  Congestion is not experienced 
during normal working hours but there is still increased road 
usage though not as much as on other days of the week perhaps 
due to leisure activities and social gatherings. Monday is the 
only day commuters commute consistently, most likely because 
it is the first day after taking a weekend off. Therefore, temporal 
factors should be considered when designing effective 

management systems since they offer better insights into the 
potential intensity of bottlenecks at specific times if nothing is 
done to mitigate them. 

The dataset used in the research work is publicly available 
at Kaggle [46]. Table I summarizes the features of the dataset. 
The detailed dataset description is available in Table II. 

 
Fig. 4. The proposed ITS architecture. 

TABLE I. DATASET SUMMARY 

Total Records 5952 

No. of Attributes 9 

Attributes 
Time, Date, Day of the week, CarCount, BikeCount, 

BusCount, TruckCount, Total, Traffic Situation 

TABLE II. SUMMARY OF TEMPORAL TRAFFIC DATASET 

Day Period 
Traffic 

Volume 
Key Observations 

Weekdays 

06:00 - 08:00 High 
Morning rush hour due to 

work commutes 

16:00 - 18:00 High 
Evening rush hour due to 

work commutes 

Friday 

06:00 - 08:00 Lower 
Reduced morning congestion 

compared to other weekdays 

16:00 - 18:00 Moderate 
Evening traffic due to social 

and recreational activities 

Weekends Various Variable 
Much lesser uniformed traffic 

patterns contrast to weekdays 

The quantiles and distributions of the four vehicle types are 
illustrated in Fig. 5 with box plots and histograms respectively. 

The research considers four categories of traffic situations 
namely low, normal, high, and heavy to analyze the traffic 
congestion situations. The number of average total 
transportation for each category of traffic situations has been 
depicted in Fig. 6. 

Building an Intelligent Transport System 

Traffic Data Collection and Preparation 

Performance Evaluation 

Selection of the 

Optimal Model 

XGBoost GRU LSTM 
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Fig. 5. The box plots and distributions (histograms) of the four vehicle 

types. 

 
Fig. 6. The number of average total transportation for each category of 

traffic situations. 

A pie chart of total vehicles by traffic situation has been 
shown in Fig. 7. 

 
Fig. 7. Total vehicles by traffic situations. 

B. Proposed Models 

Temporal traffic pattern insights are useful for urban 
planners and decision-makers to reduce congestion and plan for 
infrastructural growth and transport system development 
toward building resilient cities that can withstand natural 
calamities and shocks such as heavy rains, floods, and 
earthquakes. Three algorithms are used for predicting future 
transportation states: XGBoost, GRUs, and LSTMs. The 
performance metrics used to evaluate the XGBoost model with 
100 estimators included MSE, RMSE, MAE, MAPE, Error 
cost, Outlier sensitivity, Model complexity, etc. We compare 
the forecast against actual data to visualize our models' 
performance. 

The GRU model, which consisted of a single GRU layer 
followed by two dense layers, underwent extensive training and 
evaluation. Performance measures were calculated, and 
predictions were compared to the real data. However, a type 
error occurred during the visualization step because the test set 
and predictions had different formats. This issue was resolved 
by transforming the forecasts into a NumPy array. 

The training, assessment, and presentation procedures for 
the LSTM model—which consists of one LSTM layer followed 
by two dense layers—should be mentioned, among other 
things. It's also important to note that Fig. 8 displays the 
graphical representation of error distribution for each model, 
providing insight into the distribution and concentration 
sections where such errors are in the prediction cluster. 

 

Fig. 8. Error distribution for each model. 

V. ANALYSIS OF THE EXPERIMENTS 

An experimental setup will be established, and its 
comprehensive experimental analysis will be performed in this 
section. 

We discuss traffic forecast techniques using three models: 
XGBoost, GRU, and LSTM. To enable the chosen models to 
use the dataset, we first do considerable pre-processing on it. 
These procedures include encoding categorical information like 
the day of the week and traffic conditions and standardizing 
time to a 24-hour format. The data set is split into train-test sets 
for model training and evaluation, following the pre-
processing. Our investigation begins with the RF model, well 
known for its ability to handle complex information. It offers 
insights into its predicted performance through an extensive 
evaluation process. Specifically, its ensemble learning 
approach exhibits competitive performance metrics, indicating 
strong performance in tasks such as traffic prediction where 
multiple factors influence the final result. The metrics 
employed by the models are summarized in Table III to give 
individual and comparative performance evaluations. 
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TABLE III. COMPARATIVE EVALUATION OF METRICS FOR MODEL 
PERFORMANCE 

Metrics 
Performance Values 

XGBoost GRU LSTM 

Mean Squared Error (MSE) 15.6 12.8 10.5 

Root Mean Squared Error 

(RMSE) 
3.95 3.58 3.24 

Mean Absolute Error (MAE) 2.75 2.45 2.15 

Mean Absolute Percentage 
Error (MAPE) 

5.3% 4.7% 3.9% 

Error Cost Moderate Moderate Low 

Outlier Sensitivity Low Moderate Low 

Model Complexity High Medium High 

The metrics employed by the XGBoos model are 
demonstrated in Fig. 9. The MSE for the XGBoos model 
between the actual and projected values is 15.6. RMSE 
provides a comprehensible metric of error magnitude and a 
small deviation from true values because it is the square root of 
MSE. This relatively low MSE suggests that the model's 
predictions are reliable. With an MAE of 2.75, the model 
demonstrates modest prediction errors, indicating its 
forecasting reliability. These figures are supported by a MAPE 
of 5.3%, which displays MAPE about actual values, presenting 
that on average the system's predictions should not deviate 
significantly (within a range of ±%) from reality. Such an 
accomplishment reflects an important degree of precision 
needed in real-world traffic forecasting applications, where it 
may not always be possible to obtain detailed or reliable 
historical data on past events to use as the foundation for future 
projections. In urban traffic management, moderate mistake 
costs imply manageable effects on flow control strategies 
intended to reduce congestion within cities; therefore, they can 
be effortlessly handled using suitable actions taken at strategic 
points along important paths serving various parts of the city. 
Mild mistake costs show operational/financial impacts related 
to incorrect predictions. The RF model's insensitivity to outliers 
is a crucial feature that makes it perfect for handling traffic data 
with irregular abnormalities like accidents or abrupt volume 
increases. This resistance against anomalous values guarantees 
smooth functioning and accurate predictions are made 
throughout, even in the face of random data points. 
Furthermore, the building of numerous decision trees combined 
is the cause of the high inherent complexity in the RF design. 
This complexity increases forecasting accuracy and makes it 
possible to represent intricate relationships within databases, 
such as those including multiple communicating variables, 
whose collective impact can either facilitate or obstruct flow 
depending on what is occurring at any given time. Yet, 
managing large amounts of input/output data can be 
challenging and require a higher level of interpretability, 
requiring more processing power than would typically be 
necessary under less demanding limitations. These examples 
show how effective an RF model can be in traffic prediction: 
Comparatively low MSE and RMSE readings, which indicate 
accuracy, corroborate its precision; MAE and MAPE exhibit 
reliability. Moderate error costs show applicability for usage in 
real-world scenarios where certain errors are expected but don't 
necessarily result in significant financial losses by striking a 

balance between accurate forecasts and controllable economic 
ramifications. When dealing with abnormal data points, 
XGboost is a good option because of its low sensitivity to 
outlying observations. This is especially true if the data points 
are frequently found along major highways with numerous 
entrances and exits close to one another over short distances, 
heavy traffic during peak hours, and sharp changes over time 
due to various factors like accidents, road works, etc. 

 

Fig. 9. XGBoost actual vs. predicted values. 

The Recurrent Neural Network (RNN) architectures begin 
with the GRU model. The GRU model is trained and assessed 
by leveraging its ability to capture sequential dependencies in 
data. Despite promising results, with significant improvements 
over traditional ML methods, it does not achieve optimal 
performance metrics compared to the XGBoost model. Fig. 10 
depicts the performance characteristics of the GRU model and 
provides valuable comparisons with the XGBoost model 
previously evaluated and shown in Fig. 9. The mean squared 
variance between the expected and actual values compared to 
XGBOOST is less than the MSE of 12.8, which indicates that 
the GRU model can capture temporal correlations in traffic 
data. The model's RMSE of 3.58, which places it higher in 
overall predictive performance than the XGBOOST model, 
further demonstrates its capacity to foresee with a smaller 
margin of inaccuracy. The MAE of the GRU model is 2.45, a 
lower value that highlights the model's accuracy in predicting 
traffic patterns. Furthermore, with a MAPE of 4.7% indicating 
that it is within 4.7% of the real values, the GRU model 
performs somewhat better than the XGBOOST model. Despite 
these promising metrics, the GRU model has moderate error 
costs, similar to the XGBOOST model, it represents that even 
though it makes generally accurate predictions, prediction 
errors can still have adverse operational and economic 
consequences that must be managed in real-world applications. 
While handling irregular data points better than many 
traditional ML models, the GRU model is not as robust as the 
XGBOOST model due to its moderate sensitivity to outliers. 
The model's performance in scenarios where anomalies occur 
frequently, such as traffic accidents or sudden volume 
increases, may be affected by this moderate sensitivity. In terms 
of model complexity, the GRU is classified as medium. Due to 
its gating mechanisms and sequential nature, it is more complex 
by nature than typical ML models, but not as complex as the 
ensemble-based XGBOOST model. The medium complexity is 
a suitable option for capturing temporal trends without unduly 
straining computational resources as it balances computational 
needs and predictive capabilities. 
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Fig. 10. GRU actual vs. predicted values. 

Next, we introduce the LSTM model known as the best for 
long-term dependency recognition in sequence data. In this 
light, traffic prediction tasks are conducted to see how well it 
can perform. However, there should be some more tests against 
an XGBOOST model, so we know what works better. Known 
for its depth and memory cells with specialized functions, the 
LSTM model has proved effective in traffic prediction. The 
training phase had several other models whose performance 
metrics were not as good as those of this one because during 
evaluation it achieved the lowest test loss among all considered 
models. This demonstrates that the only algorithm capable of 
making such complex predictions about traffic patterns would 
have been the LSTM model, which processes inputs over time 
and steps into outputs across variable sequence lengths until 
convergence on some fixed point. What more could you ask for 
from an LSTM model? Furthermore, the results obtained from 
examining the plots depicted in Fig. 11 indicate the potential 
success or failure of a certain predictive capability with other 
similar ones, such as the two displayed here, where they differ. 
The difference between the two models' accuracy in predicting 
all points examined so far throughout our research into each 
model's strengths and weaknesses is ΔY (Actual – Predicted), 
which is always within ΔX rather than zero. This indicates that 
both models perform equally poorly in predicting weak areas 
closer to either endpoint, possibly in part as none recognize 
features outside a certain range of values. As an illustration of 
the lack of consistency between anticipated forecasts made 
based solely on this type of proof, we can see that, between 
various points along the x-axis, the most faraway ones are more 
closely related than the two most adjacent indicated values 
themselves farther apart, but never precisely identical distance 
away from each other. This still fails to account for the least 
squares fits noticed. 

The experimental investigation showed that many traffic 
forecast models ranging from deep DL techniques like GRU 
and LSTM to conventional ones, like XGBoost, are effective. 
Each model in traffic congestion prediction has demonstrated 
pros and cons. However, the LSTM model outperformed the 
others, achieving the highest accurate rate in traffic trend 
prediction. These results are critical in transportation planning 
and management because they offer practical guidance to 
enhance system efficiency and traffic flow optimization. 

 

Fig. 11. LSTM actual vs. predicted values. 

VI. CONCLUSION AND FUTURE WORK 

Our research considers many traffic scenarios to predict 
traffic congestion levels using an amalgamation of ML- and 
DL-based algorithms. The research outcomes show that both 
traditional ML and DL algorithms are effective. Three models, 
namely XGBOOST, LSTM, and GRU have been implemented 
on the dataset and are found powerful. The LSTM model is 
better than others due to its ability to capture long-term 
relationships between traffic data points and various patterns 
embedded in them. The concerned committees will utilize the 
research outcomes for transportation planning and management 
settings to optimize the flow of vehicles through different 
traffic routes to maximize the transportation system’s 
efficiency. Citizens will save much of their precious time 
knowing the congestion level in advance; helping them plan 
their travel better. Business and industrial sectors can better 
plan the logistics and manage transport-related requirements. A 
high congestion level is the root of several environmental bad 
factors. Proper management of the congestion will improve the 
environment and will reduce pollution. A high level of 
congestion can waste commuters’ time putting adverse effects 
on several other economic factors and accounts for high energy 
consumption. An ITS will assist in mitigating these factors and 
hence will enhance economic benefits. 

The proposed model can be implemented as a mobile 
application in future work that can collect live data and aid the 
commuters in suggesting, in advance, the best route to travel 
based on the traffic congestion level. 

While the proposed system considers various traffic 
scenarios occurring on specific periods of the day of the week, 
it does not consider other factors like weather and road 
conditions. We will focus on improving DL models to a hybrid 
of LSTM with techniques to exploit their strengths in future 
studies to improve the prediction effectiveness of the traffic 
congestion levels in ITS. 

Moreover, to further increase the effectiveness of the ITS, 
accessing the real-time traffic data streams through 
comprehensive integration of vehicles’ speed, location, and 
weather conditions to the ITS can be plenty of achievements 
like better accuracy in forecasting, scalability, and 
interoperability. 
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