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Abstract—Different models have been developed for 

segmentation tasks, each with its uniqueness. Recently, the 

Segment Anything Model (SAM) was added to the pool of these 

models with expectations of addressing their weaknesses. SAM, 

although trained on a huge dataset for segmentation of anything, 

particularly images of natural source, produces suboptimal 

results when applied to segmentation of photovoltaic module 

image due to difference in semantic between photovoltaic module 

and natural images. In spite of the current suboptimal 

performance of SAM in segmentation of photovoltaic module 

images, it demonstrates detection and identification of thermal 

anomalies in photovoltaic module images that majorly contribute 

to power production loss. The implication of this is that, the task, 

the model, and the data corresponding to SAM are applicable to 

photovoltaic module image diagnosis. In this paper, we propose 

SAM-enabled photovoltaic-module image enhancement (SAM 

PIE) for fault inspection and analysis using ResNet50 and CNNs. 

SAM-PIE combines the strength of SAM for enhancement of the 

fault inspection and analysis procedure, for optimal performance 

of the proposed method. Experiments were performed on three 

thermal anomaly image datasets of photovoltaic modules to 

validate the performance of SAM-PIE for the classification tasks. 

The results obtained validates the potential capability of SAM-

PIE to perform photovoltaic module image classification. The 

dataset is publicly and freely available for scientific community 

use at https://doi.org/10.17632/5ssmfpgrpc.1 
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I. INTRODUCTION  

Recently, there was an emergence of a state-of-the-art 
foundational model called the Segment Anything Model 
(SAM) [1] in the field of Computer Vision (CV) for image 
segmentation tasks. The main components that make the leap 
possible for the SAM are: (a) Prompts for new segmentation 
task, (b) SAM’s model, and (c) SA-1B dataset. The prompt-
able segmentation task was proposed in order to return a valid 
segmentation mask provided any prompt for segmentation is 
given. The main task of the prompt is simply to specify the 
image’s object to segment, e.g., spatial or text information can 
be a prompt for object identification. For an output mask to be 
valid, there is a requirement that the output under any 
circumstances (for example, when there is an ambiguity in 

what object a prompt specifies in an image) should generate 
sensible mask at the least for one of the objects in the image. 

The innovative design of the SAM model satisfies all the 
constraints imposed on the model architecture due to prompt-
able task of segmentation and reality in real-world applications. 
In particular, prompts flexibility support masks computation in 
amortized real-time and ambiguity-aware [1-2]. Based on the 
abovementioned qualities attributed to SAM and its 
demonstration as a good model trained on a wide-ranging 
scalable data for flexibility, studies reveal the tendency of it 
facing challenges in tasks involving domain-specific 
segmentation solution [3], as noticed in some photovoltaic 
(PV) module image segmentation scenarios [4-6]. The rise of 
PV power has given a new dimension to renewable energy as 
evident in the global renewable energy, and this trend 
continues in gaining more acceptance as alternative to power 
generation [7-12]. 

The PV explosion requires an in-depth knowledge of its 
widespread, challenges, and prospect for concern individuals 
[13-15]; and this knowledge is essential for its proper 
monitoring, management, and maintenance across borders [16-
20]. The inspection, detection, identification, and analysis of 
faults in PV installations have greatly been enhanced by the 
progress made in CV [21-24]. However, the majority of 
research on PV installations concentrate on using conventional 
CV techniques for inspection and analysis of the anomalies in 
solar cells of PV modules, which performs below expectations 
[25-27]. Moreover, high-resolution images are extremely 
required to obtain accurate inspection and analysis of PV 
modules [28], and the conventional techniques pose challenges 
regarding this. 

Many researchers have attributed the inaccuracy obtained 
in their segmentation tasks to incapability of SAM when 
applied to PV image segmentation tasks, confirming the 
discrepancies in the tasks, model, and datasets. Although SAM 
shows segmentation efficiency in object-specific tasks, it still 
has limitations when dealing with fine structures, small 
disconnected components, weak boundaries and modalities 
[29-30]. Complex modalities, fine modular structures, small 
disconnected cell components, and absence of sharp 
boundaries are the challenges confronting SAM in PV image 
segmentation [28]. Additionally, the segment anything-1 
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billion (SA-1B) of natural images on which SAM was pre-
trained couple with the approach to determine boundaries 
based on discrepancy in intensity [28] is not applicable to PV 
images due to analysis of solar cells of the PV modules. 

Moreover, while SAM can carry out many tasks, it does not 
have the prompts capability for panoptic and semantic 
segmentation implementation. Lately, SAM has experienced so 
much improvement due to many studies commitment to 
enhancing it due to its disappointing results to suit domain-
specific tasks as noticed in PV image analysis. Several of these 
studies has dedicated their strength to fine-tuning the SAM 
model to enhance its performance and reliability for PV image 
analysis. Yang et al. [13] in their quest to meet the demand for 
the extraction of large-scale PV panel, proposed a novel 
weakly-supervised method that was based on the SAM model. 
Knowing the importance of broad data volumes and the 
knowledge that the extraction process requires the concept of 
latent PV locations for reduction in scope of the amount 
processed subsequently, they applied the method to the 
segmentation of latent PV locations for smooth passage from 
classification to segmentation. They achieved segmentation 
results that could stand the test of time. 

Although SAM being initialized with a self-supervised 
technique [28], its efficiencies depend on large-scale 
supervised training. Rafaeli et al. [2] addressed this issue by 
proposing segmentation that is prompt-based at varied light 
conditions and resolutions using SAM 2. Their study revealed 
the efficiency of SAM 2 over SAM, particularly when 
prompted by points under lighting conditions that are sub-
optimal. SAM’s strength is challenged in segmentation of PV 
images, being a model trained on massive natural images. 
Although SAM may be prompt-able to efficiently segment PV 
images, it can still differentiate conspicuous solar cells of PV 
modules according to changes in image pixels. PV images are 
images of solar panels with a lot of revealing information only 
under high thermal image and pixel resolutions [31-32]. 

Therefore, thermal captured and enhanced images give 
visual quality to PV images for valuable information on 
anomalies detection, and analysis beyond what can be obtained 
from original image. Based on this, the aim of applying the 
techniques of PV image enhancement (PIE) in this study is to 
attain efficient and excellent inspection and analysis of PV 
faults from the available original PV imagery [33]. Therefore, 
we propose a new SAM-based PIE method (SAM-PIE) with 
the sole aim of enhancing the inspection and analysis of PV 
image segmentation models, and giving different perspective to 
the potential value of SAM in PV image analysis. 

Under moderate prompts, the stability scores and masks 
generated by SAM are essential resource for PV image 
segmentation and analysis. An important factor that 
distinguished SAM-PIE from the traditional IE methods is the 
low-level in which the traditional IE methods frequently work, 
which is below the high-level requirement for reconstructing 
and recovering an original image [5], which is what SAM-PIE 
aims to achieve. This feat by SAM-PIE was attained by 
increasing semantic structures from SAM. Our proposed image 
enhancement method, SAM-PIE is easy to adapt to SAM, 
ensuring its applicability in solving anomalies in solar cells of 

PV modules by PV experts. In this paper, two classification 
models, ResNet50 [34] and Convolutional Neural Networks 
(CNNs), popular for their applications in PV image 
segmentation tasks were selected for the evaluation of SAM-
PIE. One thousand PV module datasets [35], a Mendeley data 
comprising Hotspots (350 thermal generated images), Cracks 
(350 thermal generated images) and Shadings (300 thermal 
generated images) were used in performing the image 
segmentation experiments. 

Research reveals that prior maps generated from effect of 
adding together the original and SAM’s generated images can 
be employed for network inputs enhancement and thus 
improving the efficiency and performance of downstream 
models developed for segmenting PV images. This revelation 
motivated us to embark upon proposing SAM-PIE by applying 
the SAM’s generated stability scores and masks. The regions 
of thermal anomalies in the original image can be spotted by 
the enhanced images, thereby providing the attention maps for 
the classification models for an enhanced classification of PV 
images. The techniques in the proposed SAM-PIE enable its 
effectiveness in inspection and analysis of thermal anomalies 
in solar cells of PV modules. The work carried out in this paper 
is a step towards automated inspection and analysis of thermal 
anomalies in solar cells of PV modules. The unique 
contributions of the proposed SAM-PIE method are as follows: 

 Images of PV modules were originally collected, 
processed into datasets and publicly and freely available 
for scientific community use at 
https://doi.org/10.17632/5ssmfpgrpc.1 

 Using drone (DJI Mavic 3 Thermal) for data collection 
addresses limitations in prior works that focused on 
collecting static images of PV modules. Moreover, this 
approach solves data limitations that could negatively 
influence the performance and accuracy of the proposed 
SAM-PIE. 

 Integration of a novel PIE model into an existing SAM 
model to generate enhanced images for accurate 
classification of the thermal anomalies in solar cells of 
PV modules. 

The rest of the paper’s contents is as follows: Section II 
presents the related work. Section III presents the materials and 
methods. Section IV presents the experiments. Section V 
presents the results and discussions. Section VI concludes the 
study. 

II. RELATED WORK 

Kirillov et al. [1] proposed a model called SAM model for 
the segmentation of any objects in an image. The model 
displayed great efficiency in fundamental instance 
segmentation task. Rafaeli et al. [2] applied SAM model 2 for a 
prompt-based segmentation at multiple resolutions and lighting 
conditions. Wang et al. [3] proposed an image enhancement 
based on SAM model that facilitates diagnosis of medical 
images. Lüddecke and Ecker [4] proposed in their work, a 
method based on text and image prompts for segmenting 
images. Mazurowski et al. [5] in their work, proposed an 
experimental study for analyzing medical images using SAM 
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model. Wang et al. [6] proposed a SAM model for scaling-up 
segmentation dataset of remote sensing. Feldman and Margolis 
[7] presented a report that contained update on industrial 
production and consumption of solar energy. Huang et al. [8], 
by considering dust impact, proposed a method for diagnosing 
PV faults based on a designed hybrid artificial bee colony 
algorithm and semi-supervised extreme learning machine. 
Cubukcu and Akanalci [9] proposed an inspection and 
determination methods in real-time of PV power systems faults 
by thermal imaging. Tsanakas et al. [10] proposed an advanced 
installation inspection method of PV by aerial triangulation and 
terrestrial georeferencing of thermal/visual imagery. Herraiz et 
al. [11] proposed thermal images analysis through structure 
based on CNNs for PV plant condition monitoring. Cheng et 
al. [12] employed self-adaptive chaos particle swarm 
optimization algorithm for the extraction of solar cell model 
parameters. Yang et al. [13] proposed a perfectly consistent 
and coherent transition from classification to segmentation 
using a novel SAM-based weakly-supervised method with a 
case study in latent PV locations segmentation. Pei and Hao 
[14] used voltage and current observation and evaluation 
method in their proposed PV systems to detect a fault. 
Georgijevic et al. [15] employed arc current entropy for 
detecting series arc fault in PV systems. Zhao et al. [16] 
presented a fault analysis method and protection challenges for 
solar PV arrays based on line-line fault analysis. Hariharan et 
al [17] proposed a method for detecting in PV systems, partial 
shading and other faults in PV array. Pillai and Rajasekar [18] 
proposed a sensorless line-line and line-ground technique 
based on MPPT for detecting faults for PV systems. Kurukuru 
et al. [19] proposed a novel approach for PV systems designed 
for fault classification. Chine et al. [20] proposed a novel 
method for diagnosing fault for PV systems based on artificial 
neural networks (ANNs). Hussain et al. [21] proposed a 
method integrating two bi-directional input parameters driven 
by ANN for detecting PV fault. Vieira et al. [22] proposed a 
method for detecting faults in PV systems by comparing 
multilayer perceptron and probabilistic neural network. Yuan 
et al. [23] conducted a survey on ANN for solar PV systems 
fault diagnosis. Hichri et al. [24] applied genetic-algorithm-
based neural network to grid-connected PV systems for fault 
detection and diagnosis. Zhu et al. [25] proposed an approach 
based on unsupervised sample clustering and probabilistic 
neural network model for diagnosing fault for PV arrays. 
Eskandari et al. [26] proposed an autonomous fault diagnosis 
method based on weighted ensemble learning for PV systems 
using genetic algorithm. Wang et al. [27] proposed a support 
vector machine method for diagnosing PV array fault. Ravi et 
al. [28] proposed a Sam 2, a SAM model for segmenting 
anything in images and videos. Bommasani et al. [29] 
presented a work on the advantages and disadvantages of 
foundation models. Badr et al. [30] proposed a machine 
learning classifiers for identifying PV array fault. Lu et al. [31] 
proposed a CNN and electrical time series graph for diagnosing 
PV array fault. Liu et al. [32] proposed an approach based on 
stacked auto-encoder and clustering with IV curves for 

diagnosing PV array fault. Mellit [33] proposed a method 
based on thermographic images and deep CNNs as embedded 
solution for detecting and diagnosing PV module fault. He et 
al. [34] proposed a deep residual learning method for 
recognizing images. Bello et al. [35] proposed a PVMD dataset 
for automated detection and analysis of fault in large PV 
systems using PV module fault detection. 

III. MATERIALS AND METHODS 

A. Data Collection and Description 

The main hardware materials employed in this study 
comprise the hardware components for collecting and 
processing the data used in performing the experiment in this 
study. The materials are: (1) DJI Mavic 3 Thermal which is a 
state-of-the-art drone specifically designed for thermal imaging 
and inspection tasks, (2) Solar panels, (3) PV modules which 
include two panels of Jinko JKM200M-72 modules, each 
producing 200 W, (4) Inverter, (5) Storage battery, (6) DC 
Load, and (7) Solar charge controller. Table I shows the 
PVMD Dataset with the number of images in each anomaly 
category. 

Popular PV image classification models, ResNet50 and 
CNNs were employed in carrying out the experiments of this 
study with one thousand PV module datasets [35], a Mendeley 
data comprising Hotspots (350 thermal generated images), 
Cracks (350 thermal generated images) and Shadings (300 
thermal generated images). Afterward, we partitioned the 
dataset into training dataset (80%) and testing dataset (20%) to 
ease model evaluation. The images were pre-processed to 
standard size dimensions, and normalization techniques were 
applied for dataset consistency. 

Additionally, the RGB images which were originally of 
different dimensions due to unfriendly and unstable 
environmental conditions were trimmed to size 512x512x3 (3 
keeps the color information) and augmented using 
augmentation techniques such as geometric transformation, 
color-based transformations, illumination transformation, noise 
injection, etc., for dataset robustness. 

Fig. 1 shows the framework of PV image classification 
with SAM-enabled PV-module image enhancement (SAM-
PIE). The Fig. 1 shows the step-by-step process comparing the 
PV image classification output with SAM-PIE and without 
SAM-PIE. 

TABLE I.  PVMD DATASET WITH THE NUMBER OF IMAGES IN EACH 

ANOMALY CATEGORY [35] 

Thermal Anomaly of PV Module Number of images 

Hotspots 350 

Cracks 350 

Shadings 300 

Total 1000 
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Fig. 1. The proposed framework of PV image classification with SAM-enabled PV-module image enhancement (SAM-PIE). 

B. Image Processing Methods 

The foundation of this study lies in the utilization of image 
processing techniques to detect and analyze faults in large PV 
systems. High-resolution images of PV panels are captured 
using drones equipped with advanced imaging sensors. These 
images undergo a series of preprocessing steps, including noise 
reduction, contrast enhancement, and normalization, to prepare 
the data for further analysis. The primary method for fault 
detection is based on the identification of anomalies such as 
cracks, hotspots, and shadings effects within the images. CV 
classification models, including ResNet50 and CNNs are 
employed to highlight these anomalies. Specifically, SAM-PIE 
method is used to improve the visibility of potential faults. 

PV image segmentation method of SAM-PIE is applied to 
isolate areas of interest, facilitating targeted analysis. Once the 
segmentation is complete, each segment is analyzed using 
pattern recognition and classification algorithms to determine 
the presence and type of fault. The system is designed to 
operate unsupervised, utilizing machine learning models 
trained on a diverse dataset of labeled fault types. This 
approach allows for the automatic classification of detected 
faults without the need for manual intervention, significantly 
reducing the time and effort required for maintenance. Fig. 2 
shows the hardware components used in developing the 
system. 

C. Video Processing Methods 

In addition to image processing, video processing is 
implemented to provide a comprehensive overview of the PV 
system's health. Drones equipped with video cameras capture 

continuous footage of the solar panels, which is then processed 
frame-by-frame to detect dynamic changes and faults that may 
not be visible in still images. The video processing workflow 
begins with the extraction of key frames from the video feed, 
focusing on frames that show significant changes or potential 
faults. These key frames are processed using similar techniques 
used in image processing. However, video processing also 
allows for the analysis of temporal changes, such as the 
progression of hotspots or the spread of shadings over time. To 
enhance the fault detection process, motion detection and 
tracking algorithms are used to follow up anomalies across 
multiple frames. This enables the system to monitor the 
development of faults and assess their impact on the overall 
performance of the PV system. 

The combination of image and video processing ensures a 
more robust and reliable fault detection mechanism, capable of 
adapting to varying environmental conditions and operational 
challenges. As illustrated in Fig. 2, the deployment of a DJI 
Mavic 3 drone, equipped with a thermal camera, captures the 
detailed images and videos of a solar PV array. The drone flies 
over the solar installation, systematically collecting visual data 
that reveals the thermal characteristics of the PV panels. This 
data is then transferred to a computer where a specialized 
application (proposed in this paper) processes the images and 
videos. The processing involves analyzing the thermal data to 
detect anomalies such as hotspots, cracks, and shadings issues, 
which are indicative of faults in the solar panels. This method 
provides a comprehensive and efficient approach to monitoring 
and maintaining large PV systems. The drone is equipped with 
a thermal camera to record the condition of the solar panels. 
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Fig. 2. System description showing the hardware components for (a) Satellite, (b) DJI Mavic 3 Thermal drone, (c) PV, (d) Remote control, (e) Computer system. 

The drone captures thermal images and videos of the PV 
array, collecting comprehensive data on the surface 
temperature and potential anomalies across the solar panels. 
After capturing the necessary data, the drone transmits the 
thermal images and videos to a computer for further processing 
and analysis. The transferred data undergoes preprocessing, 
which includes steps like noise reduction and normalization to 
enhance the quality and clarity of the images and videos, 
making them suitable for analysis. Machine vision algorithms 
(proposed in this paper) are applied to the preprocessed data to 
detect any anomalies, such as hotspots, cracks, or shadings that 
might indicate faults in the PV panels. 

D. Image Enhancement and Classification Models 

Applying the pre-trained SAM enables the segmentation 
masks generation for PV images, and the segmentation masks 
(including stability scores) can be generated by SAM for the 
whole regions in a PV image with no antecedent prompts; 
binary mask and contour mask are also generated, this is 
followed by a procedure performed to generate enhanced 
images as evident in Fig. 1 and Fig. 3. Two types of 
segmentation tasks are involved when segmenting PV images; 
the foreground (that contains region of object) and the 
background. Given the following set as the original training 
dataset {(p1, q1), (p2, q2), (p3, q3), …, (pn, qn)}, where the 
classification label of the PV image pi is denoted as pi ϵℝw×h×3, 
q1ϵ{0, 1}. By the application of SAM-PIE method to each 
image of PV in the training set, the following set is generated 
as a new enhanced training dataset: {(𝑝1

𝑃𝐼𝐸 , q1), (𝑝2
𝑃𝐼𝐸 , q2), 

(𝑝3
𝑃𝐼𝐸, q3), …, (𝑝𝑛

𝑃𝐼𝐸, qn)}, where 𝑝𝑖
𝑃𝐼𝐸ϵℝw×h×3 is the enhanced 

image pi of PV. ResNet50 and CNNs (denoted as M) were 
applied in order to learn from training sets that were not 
enhanced by SAM-PIE; optimization of the parameters of M is 
as follows: 

∑ 𝑙𝑜𝑠𝑠(𝑀(𝑝𝑖), 𝑞𝑖) 𝑛
𝑖=1         (1) 

In essence, to minimize the target based on M parameters is 
the new learning objective: 

∑ 𝛼𝑙𝑜𝑠𝑠(𝑀(𝑝𝑖), 𝑞𝑖) +  𝜃𝑙𝑜𝑠𝑠(𝑀(𝑝𝑖
𝑃𝐼𝐸), 𝑞𝑖)         

𝑛

𝑖=1
 (2) 

Where α and θ put under check the training loss value for 
original and enhanced images; Eq. (2) would be simplified to 
Eq. (1) when α=1 and θ=0. However, in this paper, both α and 
θ take the same number 1, in order to assign equal weight to 
both original and enhan ced images. Cross-entropy loss was 
employed for the construction of loss function (expressed in 
Eq. (1) and Eq. (2)). Eq. (3) is used for testing the model as 
follows: 

ꝗ =  𝑓 (M(p))    (3) 

where f the sigmoid output activation function. 

IV. EXPERIMENTS 

A. Implementation Details and Evaluation Metrics 

The main software materials employed to process the 
images and the videos are: (1) Python 3.x on a Windows 11 
Home, along with libraries such as Flask, OpenCV, NumPy, 
Matplotlib, Google Colab and GPU for training the model, (2) 
CV classification models, including ResNet50 and CNNs.  The 
initial learning rate of 0.01 was set for ResNet50, with batch 
size fixed at 70; the initial learning rate of 0.001 was set for 
CNNs, with batch size fixed at 40. The classification 
experiment was conducted on all the original datasets and the 
performance compared with the performance of the 
classification experiment conducted on SAM-PIE enhanced 
datasets. 
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In this paper, the performance of the proposed method was 
evaluated using the evaluation metrics in terms of Precision, 
Average Precision (AP), and Recall. Precision is denoted by 
Eq. (4), Recall is denoted by Eq. (5), AP is denoted by Eq. (6), 
IOU, which stands for Intersection Over Union is denoted by 
Eq. (7). The analysis stage involves evaluating the detected 
faults, determining their types, and pinpointing their exact 
locations on the solar panels. The results of the analysis would 
be compiled into a comprehensive report. This report not only 
includes the identified faults and their locations but also 
suggests potential maintenance actions to address the detected 
issues. 

𝑃 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (4) 

𝑅 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
          (5) 

𝐴𝑃 = ∑ [𝑅(𝑛) − 𝑅(𝑛 − 1)]. 𝑚𝑎𝑥𝑃(𝑛) 
𝑁

𝑛=1
            (6) 

Where, N is the number for PR points calculate  

𝐼𝑂𝑈 =
A∩B

A U B
 × 100       (7) 

Where, f is the sigmoid output activation function. 

V. RESULTS AND DISCUSSIONS 

A. Results 

This study achieved the image enhancement solution for 
PV thermal Hotspots, PV thermal Shadings, and PV thermal 
Cracks datasets with the aid of SAM-PIE; this is shown in Fig. 
3, which depicts the original images and the enhanced images 
by SAM-PIE (the processed contour and binary masks resulted 
in enhanced images). 

The performance of the classification experiment 
conducted on all the original datasets was compared with the 
performance of the classification experiment conducted on 
SAM-PIE enhanced datasets. Table II shows the results of the 
classification task on three datasets, namely Hotspots, Cracks, 
and Shadings. 

The results obtained in this study support SAM 
performance as a fundamental model that has produced 
significant achievements in natural image segmentation tasks, 
even with more better results if well guided for prompt-able 
segmentation. SAM’s performance in segmentation tasks 
involving PV images is below par with the best due to the 
dissimilarity between images of solar cells of PV modules and 
natural images. The performance of SAM’s application in PV 
image segmentation tasks remains a topic of public interest. 
Fig. 4 shows the graphical results of ResNet50 and CNNs 
classification models on original Hotspot thermal anomaly 
dataset and SAM-PIE enhanced Hotspot thermal anomaly 
dataset. The metrics measure the classification accuracy of the 
ResNet50 and CNNs classification models on original Hotspot 
thermal anomaly dataset and SAM-PIE enhanced Hotspot 
thermal anomaly dataset. 

 
Fig. 3. Image segmentation showing (a) raw image of thermal Hotspot, (b) 

SAM-PIE enhanced image of thermal Hotspot, (c) raw image of thermal 

Shading, (d) SAM-PIE enhanced image of thermal Shading, (e) raw image of 

thermal Crack, (f) SAM-PIE enhanced image of thermal Crack. 

TABLE II.  THE RESULTS OF RESNET50 AND CNNS CLASSIFICATION MODELS ON ORIGINAL THREE THERMAL ANOMALY DATASETS (HOTSPOTS, CRACKS, 
AND SHADINGS) AND SAM-PIE ENHANCED THREE THERMAL ANOMALY DATASETS (HOTSPOTS, CRACKS, AND SHADINGS) 

Dataset Model AUC Accuracy Precision Recall F1 score 

Hotspot 

CNNs 0.906 0.778 0.756 0.900 0.828 

ResNet50 0.958 0.889 0.789 0.915 0.852 

CNNs with SAM-PIE 0.964 0.878 0.766 0.910 0.838 

ResNet50 with SAM-PIE 0.966 0.891 0.847 0.955 0.901 

Crack 

CNNs 0.899 0.776 0.750 0.888 0.826 

ResNet50 0.950 0.879 0.788 0.910 0.848 

CNNs with SAM-PIE 0.962 0.878 0.764 0.905 0.834 

ResNet50 with SAM-PIE 0.964 0.895 0.795 0.945 0.870 

Shading 

CNNs 0.850 0.766 0.735 0.824 0.826 

ResNet50 0.940 0.877 0.768 0.915 0.848 

CNNs with SAM-PIE 0.955 0.855 0.765 0.895 0.830 

ResNet50 with SAM-PIE 0.955 0.890 0.785 0.935 0.860 
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Fig. 4. Graphical results of ResNet50 and CNNs classification models on 

original Hotspot thermal anomaly dataset and SAM-PIE enhanced Hotspot 

thermal anomaly dataset. 

The solar cells of PV modules are not among the natural 
images covered in SAM datasets, making it difficult for SAM 
to be applied to the PV image segmentation task, however, the 
experimental evidence shows that the performance of SAM, 
although may not be excellent on solar cells image 
segmentation, it could perform excellently well on region of 
thermal anomaly (region of interest) in an image by adjusting 
the confidence level of the region segmented. In PV fault 
diagnosis, whether during installation, repair or maintenance, 
the anomalies occurrence in solar cells of the PV modules are 
often traced to changes in their morphologies and other 
components due to environmental factors, making it worthy to 
apply SAM for the extraction of those regions of interest in this 
paper. Fig. 5 shows the graphical results of ResNet50 and 
CNNs classification models on original Crack thermal anomaly 
dataset and SAM-PIE enhanced Crack thermal anomaly 
dataset. The metrics measure the classification accuracy of the 
ResNet50 and CNNs classification models on original Crack 
thermal anomaly dataset and SAM-PIE enhanced Crack 
thermal anomaly dataset. 

 
Fig. 5. Graphical results of ResNet50 and CNNs classification models on 

original Crack thermal anomaly dataset and SAM-PIE enhanced Crack 
thermal anomaly dataset. 

According to Table II, the classification results obtained by 
ResNet50 and CNNs classification models with SAM-PIE 
enhanced images in AUC, Accuracy, Precision, Recall, and F1 
score were higher than the results obtained by ResNet50 and 
CNNs classification models without SAM-PIE enhanced 
images. Moreover, according to Fig. 3, SAM-PIE performed 

excellently well on image enhancement of raw images of 
thermal Hotspot, thermal Shading, and thermal Crack as 
presented in Fig. 3 (a) to Fig. 3 (f). 

These results were influenced by the characteristics of 
individual thermal anomalies. Although SAM-PIE produced 
promising results, it faced some performance challenges and 
compromise in enhancing some regions of interest on the 
image due to unrevealed external information in the image. 
Fig. 6 shows the graphical results of ResNet50 and CNNs 
classification models on original Shading thermal anomaly 
dataset and SAM-PIE enhanced Shading thermal anomaly 
dataset. The metrics measure the classification accuracy of the 
ResNet50 and CNNs classification models on original Shading 
thermal anomaly dataset and SAM-PIE enhanced Shading 
thermal anomaly dataset. 

 
Fig. 6. Graphical results of ResNet50 and CNNs classification models on 

original Hotspot Graphical results of ResNet50 and CNNs classification 

models on original Shading thermal anomaly dataset and SAM-PIE enhanced 

Shading thermal anomaly dataset. 

B. Discussions 

Table II shows the results of ResNet50 and CNNs 
classification models on original three thermal anomaly 
datasets (hotspots, cracks, and shadings) and SAM-PIE 
enhanced three thermal anomaly datasets (hotspots, cracks, and 
shadings). These results were compared with similar previous 
work. The findings from the result obtained in Huang et al. [8] 
validate the effectiveness of SAM-PIE proposed in this study 
for diagnosing PV faults. The thermal imaging applied in 
Cubukcu and Akanalci [9] produced results that also validate 
the results generated by the drone used in this study to inspect 
and determine PV power systems faults in real-time. The 
advanced installation inspection method employed in Tsanakas 
et al. [10] for PV systems produced results that are on a par 
with the results produced in Herraiz et al. [11], who applied 
thermal images analysis through structure based on CNNs for 
PV plant condition monitoring. However, the performance of 
the thermal images applied in [10] and [11] was less accurate 
than the performance obtained in this study for anomaly 
classification of hotspots, cracks and shadings. The application 
of the proposed SAM-PIE in this study performed better than 
the method applied in Cheng et al. [12] for the extraction of 
solar cell model parameters. The novel SAM-based weakly-
supervised method applied in Yang et al. [13], though showed 
promising results, however, their approach in transiting from 
classification to segmentation of latent PV locations 
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segmentation did not extensively cover the thermal anomalies 
studied in this work. Moreover, the SAM model on which their 
experiment was based does not have the prompts capability for 
panoptic and semantic segmentation implementation. The 
voltage and current observation and evaluation method used in 
Pei and Hao [14] to detect a fault in PV systems had limitations 
in its application to hotspots, cracks, and shadings thermal 
anomalies detection. The results obtained in Georgijevic et al. 
[15] were on a par with the results obtained in Zhao et al. [16] 
for detecting fault in PV systems. Their results were in contrast 
to the results obtained in this study and this is due to the 
difference in method employed and problem addressed. The 
problem addressed and the results obtained in Hariharan et al 
[17] were similar to the problem and results obtained in this 
study except for the methods. In this study, we addressed and 
detected full shadings in PV systems, however, partial shading 
was addressed in [17]. The sensorless line-line and line-ground 
technique based on MPPT used in Pillai and Rajasekar [18] 
could not give accurate account of the three anomalies 
addressed in this study, which are the main challenges faced by 
PV systems. The method applied in this study are similar to the 
method employed in Chine et al. [20], Hussain et al. [21], 
Vieira et al. [22], and Yuan et al. [23] with promising results 
obtained. The method, CNN and electrical time series graph, 
used in Lu et al. [31] for diagnosing PV array fault was 
partially similar to the method used in this study except for the 
electrical time series graph. However, the classification results 
of the diagnosed PV array fault were not as accurate as the 
results obtained in this study. An important factor that 
distinguished SAM-PIE from the traditional IE methods is the 
low-level in which the traditional IE methods frequently work, 
which is below the high-level requirement for reconstructing 
and recovering an original image [5], which is what SAM-PIE 
achieved in this study. 

VI. CONCLUSION 

SAM-enabled photovoltaic-module image enhancement 
(SAM-PIE) for fault inspection and analysis using ResNet50 
and CNNs has been proposed in this paper. The results from 
the classification experiments were obtained from three 
different publicly available thermal anomaly datasets of PV 
modules, which also validate SAM-PIE efficiency and 
performance in image enhancement for PV image classification 
tasks by classification models. 

However, SAM-PIE faces some performance challenges 
and compromise in enhancing some regions of interest on the 
image due to unrevealed external information in the image. To 
improve on SAM-PIE limitations for PV image classification, 
it is part of our future work to employ more practicable tactics 
such as integrating SAM-PIE into more different PV image 
classification models or related tasks, for instance. 
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