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Abstract—The detection of diabetic retinopathy traditionally 

requires the expertise of medical professionals, making manual 

detection both time- and labor-intensive. To address these 

challenges, numerous studies in recent years have proposed 

automatic detection methods for diabetic retinopathy. This 

research focuses on applying deep learning and image processing 

techniques to overcome the issue of performance degradation in 

classification models caused by imbalanced diabetic retinopathy 

datasets. It presents an efficient deep learning model aimed at 

assisting clinicians and medical teams in diagnosing diabetic 

retinopathy more effectively. In this study, image processing 

techniques, including image enhancement, brightness correction, 

and contrast adjustment, are employed as preprocessing steps for 

fundus images of diabetic retinopathy. A fusion technique 

combining color space conversion, contrast limited adaptive 

histogram equalization, multi-scale retinex with color restoration, 

and Gamma correction is applied to highlight retinal pathological 

features. Deep learning models such as ResNet50-V2, 

DenseNet121, Inception-V3, Xception, MobileNet-V2, and 

InceptionResNet-V2 were trained on the preprocessed datasets. 

For the APTOS-2019 dataset, DenseNet121 achieved the highest 

accuracy at 99% for detecting diabetic retinopathy. On the 

Messidor-2 dataset, InceptionResNet-V2 demonstrated the best 

performance, with an accuracy of 96%. The overall aim of this 

research is to develop a computer-aided diagnosis system for 

classifying diabetic retinopathy. 

Keywords—Diabetic retinopathy; deep learning; image 

processing technologies; imbalanced image dataset; computer aided 

diagnosis 

I. INTRODUCTION 

Diabetes is a chronic disease and a major public health issue 
that significantly affects quality of life due to its rising incidence. 
According to the International Diabetes Federation's Diabetes 
Atlas, 537 million people worldwide have diabetes, and this 
number is expected to increase to 629 million by 2045. Most 
cases occur in low-to-middle-income countries, with more than 
half undiagnosed. The World Health Organization predicts that 
diabetes will become the seventh leading cause of death 
globally. 

A common and often unnoticed complication of diabetes is 
diabetic retinopathy, which progresses slowly but can severely 
impact patients' quality of life, affecting their families, the 
economy, and society. The condition necessitates 
comprehensive care and regular screening. Diabetic retinopathy 

involves changes to the retina caused by diabetes, as elevated 
blood sugar levels lead to nerve and blood vessel damage. This 
results in complications such as retinal swelling, detachment, 
bleeding, and vision loss [1]. 

 Many countries face shortages in medical resources and 
ophthalmologists, particularly in rural or remote areas, where 
patients may not receive timely diagnosis and treatment due to 
the uneven distribution of healthcare resources. Traditional 
manual diagnosis by specialists also presents challenges, as it 
can be time-consuming and early-stage symptoms are often 
subtle, increasing the risk of misdiagnosis even by a single 
expert. As a result, monitoring and treating diabetic retinopathy 
demands considerable time and human resources, while training 
professional ophthalmologists entails significant costs. 

Given these challenges, recent years have seen numerous 
studies [2–4] proposing automated detection methods to assist 
medical teams and ophthalmologists in diagnosing diabetic 
retinopathy more efficiently. Automated diagnostic systems also 
help address the issue of low screening efficiency in areas with 
limited medical resources. 

Research on automating diabetic retinopathy detection has 
focused on areas such as medical image enhancement, machine 
learning, and deep learning-based image recognition. Scholars 
have reviewed these studies, discussing the advantages and 
disadvantages of various methods and the factors that may 
influence recognition results. 

The quality of fundus images for diabetic retinopathy is often 
inconsistent, making image preprocessing a crucial step in many 
studies. Different research efforts employ appropriate 
preprocessing techniques based on their specific objectives [5]. 

This study aims to develop a computer-aided diagnosis 
system for detecting diabetic retinopathy by addressing the 
imbalance in data characteristics within the diabetic retinopathy 
dataset and using categorical focal loss as the loss function 
instead of categorical cross-entropy loss. The research utilizes 
the Asia Pacific Tele-Ophthalmology Society-2019 Blindness 
Detection (APTOS-2019) and Messidor-2 datasets, containing 
3,662 and 1,744 images respectively, to train and compare the 
performance of various convolutional neural network models in 
diabetic retinopathy classification against other studies. Six 
convolutional neural network (CNN) models ResNet50-V2, 
DenseNet121, Inception-V3, Xception, MobileNet-V2, and 
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InceptionResNet-V2 were used to determine the most suitable 
model for training with these datasets. 

The remaining content research is organized as follows: 
materials and methodology are presented in Section II. 
implementation details are shown in Section III. Section IV 
presents the experimental results, while Section V presents the 
discussion, and finally, Section VI concluded the paper. 

II. MATERIALS AND METHODOLOGY 

This study divides the experimental procedures into four 
sections: image collection, image preprocessing, deep learning 
model training, and system performance evaluation. The 
following subsections detail the processes and methods involved 
in each step. 

The first step is to confirm the dataset accessible under the 
experimental conditions. Due to concerns regarding medical 
privacy, diabetic retinopathy datasets often require annotation 
and grading by ophthalmic experts. To address these issues, a 
practical approach is to use existing publicly available datasets 
for experimentation. Public datasets offer several advantages: 
many previous studies have utilized them to evaluate their 
systems. By using the same publicly available datasets, 
researchers can assess the novelty of their approach and compare 
it with prior work. This also enhances the comparability and 
credibility of the current study. 

The APTOS-2019 and Messidor-2 datasets are foundational 
resources in artificial intelligence research for the detection and 
classification of diabetic retinopathy. These datasets contain 
extensive collections of eye images, each annotated with a 
specific severity level of diabetic retinopathy, making them 
instrumental for training and evaluating computer vision models 
aimed at accurate disease diagnosis. 

This research applies a variety of image processing 
techniques and deep learning models to train a classifier on the 
diabetic retinopathy dataset, as described in [5]. The classifier is 
responsible for categorizing images into five distinct stages of 
diabetic retinopathy: No Diabetic Retinopathy (NDR), Mild 
Diabetic Retinopathy (MiDR), Moderate Diabetic Retinopathy 
(MoDR), Severe Diabetic Retinopathy (SDR), and Proliferative 
Diabetic Retinopathy (PDR). Visual representations of these 
five stages are provided in Fig. 1. 

In addition, the diabetic retinopathy datasets face issues with 
class imbalance. This imbalance can negatively affect system 
performance, as certain classes in the dataset may be 
overrepresented or underrepresented. As a result, the model 
tends to predict the more frequent classes more easily, while the 
less frequent classes are harder to predict and are more likely to 
be misclassified as one of the dominant classes. 

In the second step, various image processing techniques 
were employed, including RGB color space conversion, 
commission internationale de l'eclairage (CIELAB), contrast-
limited adaptive histogram equalization (CLAHE), multi-scale 
retinex with color restoration (MSRCR), and Gamma 
correction. These techniques enhance image features to improve 
the neural network's ability to learn features effectively. 
Following this, the dataset was split into training, validation, and 

testing sets, with 80% allocated to training and 20% for testing, 
as shown in Table I.  

 

Fig. 1. Classification of the five levels of diabetic retinopathy. 

TABLE I. DISTRIBUTION OF IMAGE QUANTITIES ACROSS DISEASE 

CATEGORIES 

Dataset 

Name 

categories 

Total 

NDR MiDR MoDR SDR PDR 

APTOS-

2019 
1,805 370 999 193 295 3,662 

Messidor-2 1,020 264 347 77 36 1,744 

After splitting the dataset, the training set undergoes data 
augmentation techniques, including horizontal flipping, vertical 
flipping, and pixel value scaling. Before being fed into the 
convolutional neural network (CNN) models for training, each 
image is resized to the optimal dimensions required by the 
model. 

Fig.  2 presents a schematic representation of the hybrid 
image enhancement method used in this investigation, based on 
findings from previous studies [6–11]. Our proposed technique 
integrates the CLAHE algorithm with enhancements to the 
CIELAB color space. Empirical results show that this combined 
approach produces better results compared to using the hue, 
saturation, and value (HSV) color space or other color space 
transformations. In this framework, CLAHE is applied 
exclusively to the luminance (L) channel of the CIELAB color 
space. The process of splitting the V channel refers to isolating 
the Value component from the HSV color space, which allows 
for further processing or enhancement tasks such as sharpening 
or brightening. 

In medical imaging, particularly in retinal imaging, 
researchers often convert images to the CIELAB color space to 
separate luminance (L channel) from color information (a and b 
channels). Subsequently, CLAHE is applied to enhance the 
luminance component in CIELAB, preserving the original color 
information. This approach effectively enhances image details 
without compromising color fidelity. The synergistic 
combination of CIELAB and CLAHE provides a robust solution 
for improving image clarity and quality, particularly when 
processing high-detail images. 
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Fig. 2. The schematic of hybrid image enhancement method. 

Fig. 3 presents a schematic of alternative image 
enhancement methods, which are standard preprocessing 
techniques used in diabetic retinopathy severity grading. The 
multi-scale retinex with color restoration (MSRCR) 
transformation is a pivotal aspect of the hybrid image 
enhancement strategy adopted in this research. MSRCR has 
been extensively applied in medical image segmentation and 
classification, including retinal vessel segmentation and arterial-
venous classification, as evidenced by studies [12–15]. 

Data augmentation is a technique that enhances the amount 
of data by synthesizing new images from an original dataset. 
This method not only increases the dataset's size but also offers 
additional advantages, such as more efficient use of computer 
memory during model training and a regularization effect that 
helps mitigate overfitting. Common techniques for data 
augmentation include horizontal and vertical flipping, resizing, 
cropping, shifting, and scaling pixel values. While these 
transformations create variations of the original image that may 
look different to the model, they still allow humans to recognize 
them as the same image. This principle of generating multiple 
images from a single original image is the foundation of data 
augmentation [16]. 

In the third step, this study employs deep learning models, 
including ResNet50-V2 and InceptionResNet-V2, which were 
trained on diabetic retinopathy image datasets processed in the 
second step. Various CNN models were combined with image 
enhancement methods to identify the optimal combination and 
compare the advantages of each. The architecture of the models 
used in this study is illustrated in Fig. 4. All pretrained deep 

learning models mentioned serve as base models in this 
research, utilizing pretrained weights from the ImageNet image 
database. A custom dense neural network is connected beneath 
the base model, with each final layer of the CNNs configured to 
use a SoftMax activation function for five-class classification. 

To ensure that model training achieves the expected 
classification performance, continuous testing and parameter 
tuning are conducted. Ultimately, other public datasets are used 
to validate the system's performance and the model's reliability. 
The evaluation metrics used in this study are described below, 
sourced from studies related to diabetic retinopathy severity 
classification [5, 17, 18]. Table II presents the definitions of 
True Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN). 

TABLE II. MEANINGS OF TP, TN, FP, FN 

Indicator 

Names: 
Descriptions: 

True Positive 

(TP) 

True Positive (TP): Predicted positive and predicted 

correctly. 

True Negative 
(TN) 

True Negative (TN): Predicted negative and predicted 
correctly. 

False Positive 

(FP) 

False Positive (FP): Predicted positive but predicted 

incorrectly. 

False Negative 
(FN) 

False Negative (FN): Predicted negative but predicted 
incorrectly. 

Accuracy is used to calculate the proportion of correctly 
predicted samples by the model among the total number of 
samples in a classification task. It is calculated as shown in Eq. 
(1). 
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Accuracy = （TP+TN）/Total                   (1) 

Precision is the proportion of correctly identified samples of 
a particular class among all samples predicted to belong to that 
class by the model. It is calculated as shown in Eq. (2). 

Precision = TP/（TP+FP）                       (2) 

Sensitivity, also known as the True Positive Rate or Recall, 
refers to the proportion of true positive samples that are correctly 
predicted by the model among all actual positive samples. It is 
calculated as shown in Eq. (3). 

Sensitivity = TP/（TP+FN）                    (3) 

Specificity, also known as the True Negative Rate, refers to 
the proportion of true negative samples that are correctly 
predicted by the model among all actual negative samples. It is 
calculated as shown in Eq. (4). 

Specificity = TN/（FP+TN）                     (4) 

Additionally, the diabetic retinopathy datasets exhibit issues 
with class imbalance. This problem can adversely affect system 
performance, as certain classes in the dataset may be 
overrepresented while others are underrepresented. As a result, 
the more frequent classes are easier to predict, whereas the less 
frequent classes are harder to predict and more likely to be 
misclassified by the model as one of the more frequent classes. 

 

Fig. 3. The results of image enhancement methods. 

 

Fig. 4. Deep learning model.

III. IMPLEMENTATION DETAILS 

A. Experimental Environment 

The configuration of the experimental environment in this 
paper is shown in Table III. The computer hardware used 
includes an Intel® Core™ i9-9900K CPU 3.60GHz as the 
central processing unit, an NVIDIA GeForce RTX 2080 Ti 
11GB as the graphics processing unit, and 64GB of memory. In 
terms of software configuration, the operating system is 
Windows 10 Pro 64-bit. The platform used for programming is 
Jupyter Notebook 6.4.6, and the programming language used is 
Python 3.7.11. The deep learning frameworks utilized are 
TensorFlow-GPU 2.8.0 and Keras 2.8.0. 

B. Model Parameter Settings 

Each model was trained for a maximum of 100 epochs, with 
a callback function set to monitor the validation loss for early 
stopping, saving the model with the best training performance. 
In addition to early stopping, this study employed 
ModelCheckpoint to track and save the model weights with the 
highest validation specificity. 

The batch size for all training processes was set to 8. Nadam 
[16], an adaptive learning rate optimizer, was employed to 
enhance training stability by adjusting the learning rate based on 
its variance. The class weight parameters were adjusted 
according to the proportion of classes from class 0 to class 4 to 
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balance the training weights for each class. Classes with more 
examples were assigned lower weights, while classes with fewer 
examples were assigned higher weights. Instead of using the 
traditional categorical cross-entropy loss, this study employed 
categorical focal loss as the loss function. 

TABLE III. HARDWARE AND SOFTWARE ENVIRONMENT OF THE 

EXPERIMENT 

experimental 

environment 

configuration 

specifications 

operating system Windows 10 Professional 64-bit 

processor 
Intel（R）Core（TM）i9-9900K CPU  

3.60GHz 

graphic processor NVIDIA GeForce RTX 2080 Ti 11G 

memory 64GB 

software development 

platform 
Jupyter Notebook 6.4.6 

programming language Python 3.7.11 

deep learning 

framework 
Tensorflow-gpu 2.8.0、Keras 2.8.0 

ResNet50-V2 is an improved version of ResNet50 [19], 
which outperforms both ResNet101 and ResNet50 in terms of 
system performance on the large-scale ImageNet database. The 
primary enhancement in ResNet50-V2 involves modifying the 
propagation formula within the basic building blocks of the 
Residual Network (ResNet). The architectural differences 
between the basic units of ResNet50-V1 and ResNet50-V2 are 
shown in Fig. 5 (with ResNet50-V1 on the left and ResNet50-
V2 on the right). In ResNet50-V2, the batch normalization layer 
and ReLU activation function are moved before the weight 
layers, resulting in a pre-activation structure. The advantage of 
this structure is that it accelerates model convergence without 
changing the model's depth, and placing the batch normalization 
layer before the ReLU activation function and weight layers 
enhances the model's regularization effect. 

 

Fig. 5. Architectural differences between basic residual units of ResNet50-

V1 and ResNet50-V2. 

DenseNet (Densely Connected Convolutional Network) 
offers several advantages over ResNet, such as reducing 
network complexity, lowering the number of model parameters, 
mitigating the gradient vanishing problem, and enhancing 
feature propagation [20]. Due to its densely connected 
architecture, DenseNet efficiently improves feature utilization, 
reduces gradient vanishing, and aids model convergence. 
Reusing features means there is no need to learn new feature 
maps, leading to a reduction in the number of model parameters. 
Fig. 6 illustrates the architecture of a dense block in DenseNet. 

 

Fig. 6. Schematic diagram of dense block. 

Inception-V3 was released in December 2015. The principle 
of Inception involves connecting convolutional layers of 
different sizes in parallel. The output from these convolutional 
layers is then used as input for the next inception block utilizing 
convolutional layers of varying sizes allows for the creation of 
better feature maps by extracting diverse feature information. 
Inception avoids bottleneck issues, which, although reducing the 
model's parameters, can result in the loss of important features 
and require slow dimensionality reduction to prevent excessive 
data loss [21]. Fig. 7 shows a schematic diagram of the inception 
block, including convolutional layers of different sizes. 

 

Fig. 7. Schematic diagram of inception block. 
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Fig. 8. Xception network architecture diagram. 

Xception, short for extreme inception, is a network based on 
Inception-V3 [22]. It employs a depthwise separable 
Convolution architecture to replace the inception module 
structure in the original Inception-V3. depthwise separable 
convolution maintains the number of parameters of the original 
Inception-V3 network while reducing model complexity, 
increasing network width, and improving model accuracy, as 
illustrated in Fig. 8. 

 

Fig. 9. Convolution operation flowchart of depthwise convolution. 

MobileNet is a lightweight CNN model proposed by Google, 
designed to balance model size and computational speed for use 
in devices or mobile platforms [23]. MobileNet utilizes a 
depthwise separable convolution structure, which significantly 
reduces computational resources while maintaining good 
accuracy. Although both MobileNet and Xception use 
depthwise separable convolution, their goals differ: MobileNet 
focuses on model compression and computational speed, while 
Xception aims to enhance system performance with a parameter 

count similar to Inception-V3. The depthwise separable 
convolution consists of two parts: depthwise convolution and 
pointwise convolution. Depthwise convolution applies a k×k 
convolutional layer separately to each input channel, followed 
by pointwise convolution, which multiplies the output from the 
previous step using a 1×1 convolutional layer. The combined 
results provide a feature map, as illustrated in Fig. 9. 

 

Fig. 10. Architecture diagram of inception block combined with residual 

connection. 

InceptionResNet is a model developed by combining 
Inception-V3 and ResNet architectures [24]. The developers 
integrated residual connections into the inception architecture. 
Experimental results demonstrate that Inception networks with 
residual connections perform better in terms of system 
efficiency compared to inception networks without them. 
Additionally, residual connections significantly accelerate the 
training speed of the inception network. Fig. 10 illustrates the 
architectural diagram of an inception block integrated with a 
residual connection. 

 

Fig. 11. Transfer learning technique. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

370 | P a g e  

www.ijacsa.thesai.org 

Transfer learning involves training a neural network model 
on a related task and then adapting it to a new, similar problem. 
This technique leverages the model's pre-trained weights, often 
learned from large datasets like ImageNet. Transfer learning 
offers flexibility, enabling the use of pre-trained models as 
feature extractors or components of entirely new models. It has 
also been successfully applied in cancer subtype discovery, as 
illustrated in Fig. 11 [25]. 

 

Fig. 12. Dropout technique. 

To address overfitting, dropout is employed as a simple 
regularization technique that randomly deactivates neurons 
during training. In the context of CNNs, this means that some 
neurons are temporarily ignored, preventing them from sending 
signals to other neurons. A dropout rate of 0.5 in fully connected 
layers indicates that 50% of the neurons are deactivated. 
Dropout effectively mitigates overfitting by disrupting co-
adaptations among neurons, thereby enhancing the model's 
ability to generalize and reducing its tendency to overfit the 
training data [25]. 

C. Categorical Focal Loss 

The term α in the focal loss formula serves as a balancing 
factor that addresses class imbalance. It is calculated as shown 
in Eq. (5). 

FL(pt) = -α(1-pt) 
γ
.log(pt)                    (5) 

Focal loss focuses on difficult examples by adjusting the loss 
based on the probability of correct classification (pt). Hard 
examples, which have low pt values, exert minimal influence on 
the modulating factor (1-pt) γ, while easy examples with high pt 
values have a diminishing effect [26]. 

D. Optimizer 

Nadam [23] is an optimization algorithm that utilizes past 
information to efficiently update model weights. It combines the 
strengths of both Adam and Nesterov momentum, addressing 
the decaying learning rate issue of Adagrad. This combination 
leads to faster convergence and reduced parameter instability, 
enabling more effective model training. Nadam is calculated as 
shown in Eq. (6). 
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Nadam utilizes a learning rate of 0.002 ( )  with an objective 

function ( )t  defined by  = le-08 and 
1  = 0.9. These settings, 

inspired by [27], leverage vt, gt and mt to enhance the optimizer's 
efficiency at each time step t. 

IV. EXPERIMENTAL RESULTS 

Tables IV and V present the system evaluation results of the 
image enhancement fusion techniques and six deep learning 
model combinations on the APTOS-2019 and Messidor-2 
datasets, respectively. 

TABLE IV. SYSTEM EVALUATION RESULTS OF IMAGE ENHANCEMENT 

FUSION TECHNIQUES AND SIX DEEP LEARNING MODEL COMBINATIONS USED 

IN THIS STUDY ON THE APTOS-2019 DATASET 

Models Accuracy% Precision% 
Sensitivity 

% 

Specificity 

% 

ResNet50-V2 92.4 86.1 99.1 99.5 

DenseNet121 93.0 86.7 99.8 99.7 

Inception-V3 89.7 85.6 99.7 99.0 

Xception 91.9 87.0 99.5 99.6 

MobileNet-

V2 
91.2 83.0 99.7 99.5 

Inception 

ResNet-V2 
91.8 82.5 99.1 99.5 

DenseNet121 achieved the highest performance on the 
APTOS-2019 dataset with an accuracy of 93.0%, precision of 
86.7%, sensitivity of 99.8%, and specificity of 99.7%. Xception 
and ResNet50-V2 exhibited slightly lower accuracy compared 
to DenseNet121. Xception achieved an accuracy of 91.9%, 
precision of 87.0%, sensitivity of 99.5%, and specificity of 
99.6%, while ResNet50-V2 had an accuracy of 92.4%, precision 
of 86.1%, sensitivity of 99.1%, and specificity of 99.5%. The 
remaining three models, InceptionV3, MobileNet-V2, and 
InceptionResNet-V2, showed the following performance: 
InceptionResNet-V2 achieved an accuracy of 91.8%, precision 
of 82.5%, sensitivity of 99.1%, and specificity of 99.5%; 
MobileNet-V2 achieved an accuracy of 91.2%, precision of 
83.0%, sensitivity of 99.7%, and specificity of 99.5%; and 
Inception-V3 achieved an accuracy of 89.7%, precision of 
85.6%, sensitivity of 99.7%, and specificity of 99.0%. Overall, 
the sensitivity and specificity of all six deep learning 
classification models were greater than 99.0%. In conclusion, 
the image preprocessing methods used in this study consistently 
demonstrated good performance across all models with minimal 
variation, as illustrated in Table IV. 

TABLE V. SYSTEM EVALUATION RESULTS OF IMAGE ENHANCEMENT 

FUSION TECHNIQUES AND SIX DEEP LEARNING MODEL COMBINATIONS USED 

IN THIS STUDY ON THE MESSIDOR-2 DATASET 

Models 
Accuracy

% 

Precision

% 

Sensitivity

% 

Specificity

% 

ResNet50-
V2 

84.0 80.0 99.1 90.6 

DenseNet12

1 
85.9 72.9 99.7 94.7 

Inception-
V3 

81.4 57.2 98.9 87.3 

Xception 86.9 79.5 99.1 96.2 

MobileNet-

V2 
84.0 64.1 96.9 91.6 

Inception 
ResNet-V2 

87.9 75.7 99.4 97.0 
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InceptionResNet-V2 demonstrated the best performance on 
the Messidor-2 dataset, achieving an accuracy of 87.9%, 
precision of 75.7%, sensitivity of 99.4%, and specificity of 
97.0%. The second and third best performing models were 
Xception and DenseNet121, respectively, with slightly lower 
accuracies. Xception had an accuracy of 86.9%, precision of 
79.5%, sensitivity of 99.1%, and specificity of 96.2%. 
DenseNet121 achieved an accuracy of 85.9%, precision of 
72.9%, sensitivity of 99.7%, and specificity of 94.7%. The 
remaining three models, ranked fourth to sixth, were ResNet50-
V2, MobileNet-V2, and Inception-V3, respectively. ResNet50-
V2 had an accuracy of 84.0%, precision of 80.0%, sensitivity of 
99.1%, and specificity of 90.6%. MobileNet-V2 achieved an 
accuracy of 84.0%, precision of 64.1%, sensitivity of 96.9%, and 
specificity of 91.6%. Inception-V3 had the lowest performance 
with an accuracy of 81.4%, precision of 57.2%, sensitivity of 
98.9%, and specificity of 87.3%. Overall, the sensitivity and 
specificity of all six deep learning classification models were 
greater than 97.0%. In conclusion, the image preprocessing 
methods used in this study consistently demonstrated good 
performance across all models with minimal variation, as 
illustrated in Table V. 

TABLE VI. COMPARISON WITH OTHER STUDIES USING THE APTOS-2019 

DATASET 

Researches Accuracy% 
Precision 

% 

Sensitivity 

% 

Specificity 

% 

[28] 86.5 85.7 86.1 85.9 

[29] 92.0 85.0 99.0 99.0 

[30] 
VGG19 

88.1 90.3 79.3 94.0 

[30] 

DenseNet121 
89.5 83.8 92.1 87.7 

[31] 84.2 - 98.5 98.8 

[32] 83.4 69.7 67.7 67.0 

This 

research 

methodology 

93.2 86.8 99.5 99.6 

Research in [28] utilized the APTOS-2019 Dataset to 
develop a diabetic retinopathy classification model. The model 
achieved an accuracy of 86.5%, precision of 85.7%, sensitivity 
of 86.1%, and specificity of 85.9%. Research [29] reported an 
accuracy of 92.0%, precision of 85.0%, sensitivity of 99.0%, and 
specificity of 99.0%. Research in [30] evaluated both VGG19 
and DenseNet121 models, with VGG19 achieving an accuracy 
of 88.1%, precision of 90.3%, sensitivity of 79.3%, and 
specificity of 94.0, while DenseNet121 attained an accuracy of 
89.5%, precision of 83.8%, sensitivity of 92.1%, and specificity 
of 87.7%, while research [31] showed an accuracy of 84.2%, 
sensitivity of 98.5%, and specificity of 98.8%. Research [32] 
reported an accuracy of 83.4%, precision of 69.7%, sensitivity 
of 67.7%, and specificity of 67.0. The proposed model 
demonstrated superior performance, achieving an accuracy of 
93.2%, precision of 86.8%, sensitivity of 99.5%, and specificity 
of 99.6%. Overall, the model developed in this experiment 
demonstrated superior performance in classifying diabetic 
retinopathy compared to previous studies, as shown in Table VI.  

Research in [30] utilized the Messidor-2 dataset to construct 
a diabetic retinopathy classification model using 
InceptionResNet-V2 and Inception-V3. The models' 
performance metrics were as follows: InceptionResNet-V2 

achieved an accuracy of 69.2%, precision of 60.2%, sensitivity 
of 54.9%, and specificity of 75.9%. Inception-V3 obtained an 
accuracy of 72.8%, precision of 54.3%, sensitivity of 50.2%, and 
specificity of 80.6%. In contrast, research [33] reported a 
sensitivity of 81.0% and specificity of 86.1%, while research 
[29] showed an accuracy of 80.0%, precision of 85.0%, 
sensitivity of 89.0%, and specificity of 90.0%. Research [34] 
reported an accuracy of 89.6%, sensitivity of 91.4%, and 
specificity of 93.2. Comparing these results to the current 
experiment, which achieved an accuracy of 87.3%, precision of 
75.2%, sensitivity of 99.6%, and specificity of 97.8%, it is 
evident that the current model exhibits high performance 
compared to other research and closely resembles the results of 
research [34]. The model in this experiment demonstrated a 
strong ability to detect positive cases due to its higher sensitivity 
compared to other studies, as shown in Table VII. 

TABLE VII. COMPARISON WITH OTHER STUDIES USING THE MESSIDOR-2 

DATASET 

Researches Accuracy% 
Precision 

% 

Sensitivity 

% 

Specificity 

% 

[29] 80.0 85.0 89.0 90.0 

[30] 
Inception 

ResNet-V2 

69.2 60.2 54.9 75.9 

[30] 

Inception-V3 
72.8 54.3 50.2 80.6 

[33] - - 81.0 86.1 

[34] 89,6 - 91.4 93.2 

This 

research 

methodology 

87.3 75.2 99.6 97.8 

V. DISCUSSION 

In this research, the diabetic retinopathy dataset consists of 
retinal images with varying resolutions and aspect ratios. The 
dataset has been adjusted to accommodate different CNN 
architectures. Additionally, background information or images 
unrelated to retinal diseases may impact classification accuracy, 
consistent with findings in prior research [5] [35]. Automated 
detection of diabetic retinopathy often involves preprocessing 
original images, including cropping, resizing, and adjusting 
resolution, to mitigate these issues and improve model training 
efficiency. 

The imbalanced nature of the diabetic retinopathy dataset 
used to train the classification model resulted in suboptimal 
performance. To address this issue, categorical focal loss was 
employed to balance class weights instead of the standard 
categorical cross-entropy loss, aligning with findings from 
studies [36–38]. This approach demonstrated improved 
evaluation metrics. The dataset often suffers from class 
imbalance, where certain classes are overrepresented or 
underrepresented. This imbalance can bias the model toward 
predicting the majority class, making it challenging to accurately 
classify minority classes. 

To enhance feature extraction, this research employed 
various image preprocessing techniques, including MSRCR, 
Gamma correction, CIELAB color space conversion, and 
CLAHE. MSRCR, based on retinex theory, simulates human 
visual perception by adjusting image brightness and color across 
multiple scales. Gamma correction controls brightness by 
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manipulating the gamma value, while CIELAB conversion 
transforms RGB images into a perceptually uniform color space. 
CLAHE enhances local contrast by adjusting histograms within 
image blocks. These techniques provide deeper insights and 
additional perspectives, contributing to a more comprehensive 
understanding of the underlying problem. Current research 
highlights the potential of deep learning techniques for feature 
extraction in medical image and signal processing. 

Feature extraction relates to dimensionality reduction and is 
a crucial preprocessing step in deep learning, potentially leading 
to new discoveries. In this study, six models were used to extract 
features, along with an optimizer, which continuously adjusts 
model parameters (weights and biases) to improve accuracy. 
The main goal is to minimize the loss function, enhancing the 
model’s predictive ability. The Nadam optimizer was employed, 
improving the measurement of the difference between predicted 
and actual results. The development of these techniques 
enhances classifier performance and aids in better decision-
making for diagnosis. Evaluating large mixed input data requires 
significant memory and computational power. In this research, 
transfer learning and dropout techniques were applied to 
optimize model performance. Feature extraction ultimately 
helps save processing power and disk space while improving 
classification, thus enhancing the efficiency of diagnostic 
support systems. Therefore, developing effective algorithms for 
feature extraction is essential in building diagnostic support 
systems. A common method to eliminate irrelevant or redundant 
data is dimensionality reduction, with feature extraction being a 
popular approach. 

Transfer learning was utilized by fine-tuning the weights of 
models trained on the APTOS-2019 dataset to adapt them to the 
Messidor-2 dataset. Although the results were slightly inferior, 
the best-performing model combination on the Messidor-2 
dataset was InceptionResNet-V2, with a sensitivity of 99.4% 
and specificity of 97.0%. Sensitivity and specificity scores 
remained stable between 97% and 99%, demonstrating effective 
differentiation between diabetic retinopathy and normal retina. 
Compared to other research methods, these results were 
excellent, showcasing the effectiveness of transfer learning in 
this study. 

VI. CONCLUSION 

In recent years, the application of artificial intelligence-
based diabetic retinopathy screening technologies has surged in 
the medical field. Automated screening methods effectively 
address the limitations of traditional manual diagnosis, enabling 
ophthalmologists to make quicker and more accurate 
assessments. Additionally, these technologies have played a 
crucial role in overcoming the challenges of inefficient 
screening in rural areas with limited medical resources, 
significantly enhancing the chances of early detection and 
treatment of diabetic retinopathy. 

In this experiment, various image processing techniques 
were combined, including MSRCR, Gamma correction, 
CIELAB, CLAHE, and image enhancement. These techniques 
were integrated with six deep learning models and optimization 
techniques such as Nadam, transfer learning, and dropout. The 

models were trained and evaluated on the APTOS-2019 and 
Messidor-2 datasets, consisting of 3,662 and 1,744 images, 
respectively. These datasets exhibit class imbalance, with five 
severity levels: NDR, MiDR, MoDR, SDR, and PDR. The 
experimental results demonstrated that DenseNet121 achieved 
the highest performance on the APTOS-2019 dataset, with a 
sensitivity of 99.8% and specificity of 99.7%, outperforming 
previous studies.  

Tables VI and VII present a comparison of the evaluation 
results between the best model from this research and other 
studies utilizing the same datasets (APTOS-2019 and Messidor-
2). The data in these tables are directly cited from the best results 
of each study. For the APTOS-2019 dataset, the proposed 
method demonstrated comparable performance in terms of 
sensitivity and specificity, achieving values close to 100%. The 
model excelled across all metrics. In the case of the Messidor-2 
dataset, although accuracy was not as optimal, sensitivity and 
specificity were more stable compared to other studies.  

This study employed a fusion technique for image 
enhancement to improve the feature extraction efficiency of six 
deep learning models (ResNet50-V2, DenseNet121, Inception-
V3, Xception, MobileNetV2, InceptionResNet-V2). The models 
were trained to classify healthy retinas and four different 
severities of diabetic retinopathy. Class-weighting techniques, 
including parameter setting and categorical focal loss, were 
utilized to enhance the model's accuracy in distinguishing 
various categories of retinal images, even when certain 
categories were underrepresented in the dataset. 

To address the class imbalance problem and improve feature 
extraction performance, these models were trained to classify 
normal retinas and diabetic retinopathy across four different 
severity levels. categorical focal loss was adopted as the loss 
function to enhance classification accuracy for different types of 
retinal images, particularly those with smaller sample sizes. This 
loss function is specifically designed to address class imbalance 
issues in classification tasks, especially when the minority class 
has fewer samples than the majority class. By assigning more 
weight to samples from the minority class, categorical focal loss 
enables the model to better classify these underrepresented 
classes, which is a common challenge in real-world 
classification problems. This approach significantly contributes 
to the model's performance on datasets characterized by diabetic 
retinopathy. However, these methods can impact the model's 
ability to effectively classify classes with fewer samples. The 
greater the imbalance in sample proportions between classes, the 
more pronounced this effect becomes, particularly in improving 
classification performance for classes with minimal 
representation. The evaluation scores from this study's best 
results are compared with those from other research studies. 
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