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Abstract—Hydroponic farming particularly lettuce 

cultivation, is gaining popularity in Indonesia due to its 

economical use of water and space, as well as its short growing 

season. This study focuses on developing of an Automated 

Hydroponic Growth Simulation for Lettuce Using ARIMA and 

Prophet Models during the Rainy Season in Indonesia. We 

developed a simulation model for lettuce development in the 

Nutrient Film Technique (NFT) hydroponic system using data 

collected over four harvest periods during the rainy season in early 

2024. Two machine learning models, ARIMA and Prophet, are 

tested to see which is more effective at forecasting lettuce growth. 

The Prophet model has the greatest results, with a Mean Absolute 

Error (MAE) of 1.475 and a Root Mean Square Error (RMSE) of 

1.808. Based on this, the Prophet model is utilized to create a web 

application using Streamlit for real-time growth predictions. 

Future studies should include more data, particularly from the dry 

season, to increase model flexibility, as well as investigate the use 

of other crops and machine learning methods, including hybrid 

models, to improve forecasts. 

Keywords—ARIMA; automated; growth; hydroponic; prophet; 

simulation 

I. INTRODUCTION 

Hydroponics is a method of cultivating plants without soil, 
instead using water and nutrient solutions as the growing 
medium. This technology has become increasingly popular in 
Indonesia due to its efficiency in water and space usage, as well 
as its ability to produce higher-quality crops compared to 
conventional methods [1]. The trend of using hydroponics in 
Indonesia has surged in response to growing urban populations 
and the need for sustainable farming in controlled environments 
[2]. In Indonesia, hydroponic farming, especially for crops like 
lettuce, has become a widely adopted technique due to its 
ability to optimize space and produce yields faster than 
traditional farming methods. However, hydroponic plant 
growth is highly dependent on multiple variables. Internal 
variables such as nutrient concentrations, water temperature, 
and pH levels directly influence the plant's ability to absorb 
nutrients. External variables, such as ambient temperature, 
humidity, and light intensity, further determine the overall 
growth environment. Managing the interaction between these 
internal and external factors is complex, as even slight changes 
in one variable can drastically affect plant health and growth 
rate [2], [3]. Farmers currently face the challenge of not being 
able to simulate or predict plant growth. They must wait 

through the entire growth cycle to observe results, without any 
predictive system in place. This reliance on post-harvest data 
leaves room for inefficiencies, and farmers are unable to make 
informed interventions during the growth phase [4]. As a result, 
the need for a simulation model that allows real-time prediction 
and optimization of hydroponic plant growth is critical. Such a 
system would help farmers simulate future growth patterns, 
enabling them to make proactive adjustments to environmental 
variables and optimize the hydroponic system accordingly. 

Hydroponics relies heavily on various environmental 
factors such as temperature, humidity, pH levels, and nutrient 
concentrations in the water, all of which play crucial roles in 
determining the growth rate and yield of the crops [5]. To 
maximize productivity, this study uses the Nutrient Film 
Technique (NFT) system, where plant roots are continuously 
submerged in a circulating nutrient solution, ensuring direct 
access to both nutrients and oxygen [6]. 

In this study, lettuce (Lactuca sativa) was chosen as the 
primary subject because it is widely cultivated hydroponically 
and has a relatively short growth cycle [1]. Data on plant growth 
was collected daily over four crop cycles, measuring key 
variables such as temperature, humidity, pH, and nutrient 
concentrations in the hydroponic solution [7]. Given the 
complexity of managing these variables, farmers often cannot 
accurately simulate growth patterns, leading to reliance on 
reactive measures rather than predictive optimization. This 
research aims to address that challenge by proposing an 
automated simulation model, particularly critical during 
dynamic weather conditions like Indonesia’s rainy season. Data 
collection was carried out using calibrated instruments that 
were regularly checked for accuracy to ensure precise 
measurements [8]. This approach provides detailed data on the 
dynamic interactions of hydroponic variables that influence 
lettuce growth, offering key insights into how these factors can 
be optimized to enhance overall yields [9], [10]. 

Currently, there is no existing model that automatically 
simulates plant growth in the context of hydroponics, especially 
during the rainy season. Previous studies, such as those by 
Sambo et al. (2019) and Ullah et al. (2019), explored the use of 
IoT to monitor hydroponic variables in real time. However, 
these studies still rely on manual control without integrating 
automated plant growth simulations based on actual data. 
Similarly, Schwartz et al. (2019) addressed automation in 
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hydroponics, but the model they proposed only accounted for 
static environmental conditions, not considering seasonal 
variables like rainfall. 

Other studies have utilized predictive models such as 
ARIMA and Prophet, as seen in the work of Rajendiran & 
Rethnaraj (2024) and López Mora et al. (2024), which 
predominantly focus on industrial sectors or weather 
forecasting, rather than hydroponic farming. The application of 
these models to predict plant growth in hydroponic 
environments, especially during the rainy season, remains 
largely unexplored. Additionally, while there are studies that 
use ARIMA and Prophet to predict temperature or weather 
patterns, no research to date has directly compared the 
performance of these models in the context of lettuce 
hydroponics in Indonesia. 

The research gap is further highlighted by the absence of 
models capable of integrating automated simulations into a 
practical web-based application that allows real-time 
interaction for hydroponic farmers. Such an application would 
allow farmers to take preemptive measures by simulating 
growth conditions and understanding the influence of dynamic 
weather patterns, especially during unpredictable rainy seasons 
in Indonesia [1], [5]. There is a significant opportunity to 
develop a web-based solution that facilitates automated plant 
growth simulations under dynamic seasonal conditions, such as 
Indonesia's rainy season [1], [2], [5] 

This study aims to develop an automated hydroponic 
simulation model using regression-based ARIMA and Prophet 
models, focusing on lettuce growth during Indonesia’s rainy 
season. The data used is based on daily observations from 
January to May 2024. The model is designed to predict 
environmental variables such as temperature, humidity, and pH 
to optimize plant growth automatically. Additionally, this study 
compares the performance of the two predictive models by 
evaluating their results using the Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) metrics. The findings 
indicate that the Prophet model outperforms ARIMA in 
predicting seasonal conditions, particularly during the unstable 
weather of the rainy season. Finally, the superior Prophet model 
was implemented into an interactive web application, enabling 
hydroponic farmers to simulate plant growth automation in 
real-time. This application aims to improve efficiency and 
optimize hydroponic production in tropical environments with 
dynamic weather conditions. 

This research introduces a novel approach by developing an 
automated hydroponic growth simulation model using ARIMA 
and Prophet, leveraging actual data from Indonesia’s rainy 
season—an area that has rarely been explored in the context of 
hydroponic farming. This approach allows for more accurate 
predictions of lettuce growth under dynamic tropical weather 
conditions. The main contribution of this study is the 
implementation of the superior Prophet model into an 
interactive web application, which enables hydroponic farmers 
to perform real-time automated plant growth simulations, 
thereby enhancing production efficiency during the rainy 
season. The research addresses the gap in the literature 
concerning the lack of automated hydroponic simulation 

models during the rainy season while offering a practical 
technology-based solution for hydroponic farmers. 

II. MATERIALS AND METHODS 

A. Hydroponics 

Hydroponics is a method of cultivating plants without soil, 
where nutrient-enriched water serves as the primary medium to 
meet the plants' nutritional needs. Hydroponics involves the use 
of water as a medium for the cultivation of crops [11].  This 
method is becoming increasingly popular in Indonesia due to 
its efficiency in using water and land, as well as its ability to 
produce higher-quality crops compared to conventional 
farming methods [1]. One of the most commonly used 
techniques in hydroponics is the Nutrient Film Technique 
(NFT), where a thin film of nutrient solution flows around the 
plant roots, providing direct access to oxygen and nutrients [2]. 

Key variables in a hydroponic system include temperature, 
humidity, pH, and nutrient concentration in the solution. The 
ideal temperature range for plant growth is between 18°C and 
25°C, while the optimal pH level is between 5.5 and 6.5. 
Nutrient concentration is measured by Electrical Conductivity 
(EC), with the ideal range for lettuce being between 1.2 and 1.8 
mS/cm. Additionally, the ideal humidity for hydroponic plants 
is between 50% and 70% [6]. If these variables are not properly 
controlled, plants can experience stress, negatively affecting 
crop yields [5]. Table I summarizes the ideal values for key 
variables in growing lettuce in a hydroponic system. 

TABLE I. IDEAL VARIABLES FOR GROWTH PHASE LETTUCE IN 

HYDROPONIC SYSTEMS [8] 

Variable Ideal Range 

Temperature 18°C - 25°C 

pH 6.0 - 7.0 

Humidity 50% - 75% 

EC (mS/cm) 1.2 - 1.8 

Nutrients (ppm) 800 - 1000 ppm 

Modern hydroponic systems often use automated sensors to 
monitor these variables in real-time, allowing for immediate 
adjustments if there are drastic changes in environmental 
conditions, such as during the rainy season. These sensors can 
detect temperature, pH, humidity, and nutrient levels, sending 
real-time data to a server for analysis and automatic 
adjustments [8]. Automated simulations based on seasonal 
environmental data are essential for maintaining the stability 
and efficiency of plant growth, especially during unpredictable 
weather conditions [2]. 

B. Machine Learning in Hydroponic Agriculture 

Machine learning, a branch of artificial intelligence, enables 
computers to learn from data, recognize patterns, and make 
decisions or predictions without being explicitly programmed. 
In various fields, including agriculture, machine learning has 
become a powerful tool for optimizing processes and improving 
outcomes by utilizing predictive algorithms. In the agricultural 
sector, machine learning is widely applied to predict crop yields, 
manage resources, and monitor environmental conditions 
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affecting plant growth. The use of machine learning in 
hydroponic systems helps farmers make faster and more 
accurate decisions based on real-time data collected from 
sensors in the field [12]. 

One common approach in machine learning is supervised 
learning, where models are trained using labeled data to predict 
specific outcomes or decisions. In hydroponics, supervised 
learning is often used to predict variables that influence plant 
growth, such as temperature, humidity, pH levels, and nutrient 
concentrations. Algorithms frequently employed in this context 
include Random Forest, Decision Trees, Support Vector 
Machines (SVM), and Neural Networks. These algorithms can 
help farmers manage resources efficiently and increase crop 
productivity [13]. For example, Random Forest is particularly 
useful for predicting the non-linear relationships between 
environmental variables that affect crop yields in hydroponic 
systems [14]. 

Machine learning applications in agriculture, particularly 
hydroponics, also involve models like Long Short-Term 
Memory (LSTM) and ARIMA, which are designed to handle 
time-series data. LSTM, a type of neural network, is used to 
process sequential data and is well-suited for predicting time-
related variables such as temperature or humidity in hydroponic 
systems [15]. On the other hand, ARIMA is used to analyze 
seasonal data and make long-term predictions based on 
historical trends. Both models are instrumental in optimizing 
hydroponic systems by maintaining ideal conditions for plant 
growth [16]. 

In IoT (Internet of Things)-based hydroponic systems, 
sensors collect real-time data that is then processed by machine 
learning algorithms. This technology allows for automated 
simulations that adjust key plant growth parameters, such as 
nutrient supply and temperature control. These models provide 
predictive recommendations to farmers, enabling them to 
manage hydroponic systems efficiently without the need for 
continuous manual intervention [17]. Overall, the integration of 
machine learning has revolutionized hydroponic management, 
from monitoring environmental variables to automating 
production processes [12]. 

Moreover, machine learning enhances the accuracy of yield 
predictions by analyzing environmental variables that influence 
plant growth. For example, regression models can predict plant 
growth behavior in hydroponic systems based on historical data, 
allowing farmers to make more informed decisions regarding 
crop management. With the increasing adoption of machine 
learning technology in agriculture, these predictive models hold 
significant potential for improving efficiency and productivity 
in modern farming environments [12], [18]. 

C. ARIMA Model 

The Autoregressive Integrated Moving Average (ARIMA) 
model is a widely used statistical method for analyzing and 
predicting time-series data. It is particularly popular for its 
ability to process data with seasonal patterns, trends, and 
stochastic components, which often occur in datasets related to 
price forecasting, weather, and, in this context, agriculture and 
hydroponics. ARIMA is highly effective at handling non-
stationary data, where the data distribution changes over time—

a pattern frequently seen in environmental variables such as 
temperature, humidity, and nutrient levels in hydroponic 
systems [19]. 

The ARIMA model consists of three main components: 
Autoregressive (AR), Integrated (I), and Moving Average 
(MA). The AR component predicts future values based on the 
past values of the variable. The I (Integrated) component is used 
to transform non-stationary data into stationary data by 
calculating the differences between consecutive data points. 
The MA (Moving Average) component predicts future values 
based on the errors (residuals) of previous predictions (Pindipo 
et al., 2023). The ARIMA model is commonly written as 
ARIMA(p, d, q), where p refers to the order of the 
autoregressive component, d is the degree of differencing to 
make the data stationary, and q is the order of the moving 
average component [20]. 

The general formula for ARIMA can be expressed as 
follows: 

𝑌𝑡 = 𝑐 + ∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑗𝜖𝑡−𝑗 + 

𝑞
𝑗=1 𝜖𝑡  (1) 

In this equation, 𝑌𝑡 represents the actual value at time t, 𝑐 is 
a constant, 𝜙𝑖 are the AR coefficients, 𝜃𝑗 are the MA 

coefficients, and 𝜖𝑡 is the residual error at time t. The ARIMA 
model focuses on two key aspects of time-series data: trends 
and residual errors. In this context, the observed trends in past 
data are used to predict future values, while the influence of 
random fluctuations is minimized [21]. 

The ARIMA process begins by examining whether the data 
is stationary. If it is not, the model applies differencing to 
stabilize the data by calculating the differences between 
consecutive values until the data becomes stationary. Once the 
data is stationary, the autoregressive (AR) component predicts 
future values based on past data, while the moving average 
(MA) component accounts for prediction errors from the AR 
model [22]. This approach allows ARIMA to handle time-series 
data with seasonal patterns and complex trends, making it well-
suited for predicting environmental variables such as 
temperature, humidity, and nutrient levels in hydroponic 
systems [20]. 

One of the key strengths of the ARIMA model is its ability 
to handle non-stationary data, which is often a challenge in 
time-series analysis. However, ARIMA also has limitations, 
such as its reduced flexibility in managing highly complex or 
non-linear data, where more advanced models like Long Short-
Term Memory (LSTM) networks or Neural Networks tend to 
perform better. Therefore, in some studies, ARIMA is 
combined with other models to enhance prediction accuracy 
[19], [23]. 

In agriculture and hydroponic systems, ARIMA has been 
widely applied to predict environmental variables that influence 
plant growth. For example, Menculini et al. (2021) compared 
the performance of ARIMA with deep learning models in 
forecasting food prices, finding that while ARIMA is reliable 
for short-term predictions, deep learning models are better 
suited to handling more complex time-series data. In 
hydroponic systems, ARIMA has been used to predict humidity 
and temperature levels, which are crucial for maintaining a 
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stable growing environment. The combination of ARIMA with 
real-time sensor data allows hydroponic farmers to make faster 
and more accurate decisions in managing environmental 
conditions [24]. 

Additionally, ARIMA is frequently used to forecast 
temperature and weather patterns, which are key factors in 
agriculture and hydroponics. For instance, Elseidi et al. (2024) 
applied ARIMA to predict high-frequency temperature data and 
combined it with the Prophet model to improve accuracy. Their 
findings showed that the hybrid ARIMA-Prophet model 
provided more accurate forecasts than ARIMA alone, 
particularly in cases where the data exhibited strong seasonal 
patterns or trends [20]. 

In another study, Pindiga et al. (2023) compared ARIMA 
with the Facebook Prophet model in predicting stock indices, 
which also exhibit seasonal patterns and trends similar to 
agricultural data. The results indicated that Prophet tends to 
outperform ARIMA when handling complex seasonal data, but 
ARIMA remains a strong choice for short-term predictions or 
simpler datasets [25]. 

ARIMA's applications in agriculture are not limited to 
environmental variable predictions. The model has also been 
used to forecast crop yields based on historical growth data and 
weather conditions. Kasthuri et al. (2021) used ARIMA in 
combination with Neural Networks to predict food production 
yields, offering more accurate crop yield forecasts in scenarios 
where environmental variables fluctuate significantly. This 
hybrid approach is becoming increasingly popular in time-
series prediction, especially in the agricultural sector, which 
depends heavily on seasonal data and changing weather 
conditions [26]. 

Overall, ARIMA is a powerful and versatile model for time-
series data analysis and forecasting. With its ability to process 
non-stationary data and handle trends and seasonal patterns, 
ARIMA is well-suited for use in hydroponic farming. However, 
for more complex or non-linear datasets, hybrid models or deep 
learning techniques may provide better results. Nonetheless, 
ARIMA remains one of the most widely used models for time-
series forecasting due to its simplicity and reliability in 
processing relatively straightforward data [19], [21]. 

D. Prophet Model 

The Prophet model is a time-series forecasting tool 
developed by Facebook (now Meta) designed to handle data 
with seasonal patterns, trends, and outliers. Prophet is often 
used for predicting data that exhibits instability in trends, such 
as sudden changes or irregular seasonal patterns. One of its key 
strengths is its ability to handle gaps (missing data) and outliers 
effectively, while still providing accurate predictions even in 
rapidly changing conditions [22]. 

Unlike traditional time-series models like ARIMA, Prophet 
uses an additive approach, where the trend, seasonal, and outlier 
components are treated separately and then combined to 
produce the final forecast. The model assumes that time-series 
data can be broken down into three main components: trend 
𝑔(𝑡), seasonality 𝑠(𝑡), and holiday or event effects ℎ(𝑡), with 
an additional residual or noise component 𝜖𝑡. Mathematically, 

the Prophet model can be described by the following equation 
[27]: 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡  (2) 

Where: 

 𝑦(𝑡) is the predicted value at time ttt, 

 𝑔(𝑡) is the trend component, 

 𝑠(𝑡) is the seasonal component, 

 ℎ(𝑡) represents holidays or special events, 

 and 𝜖𝑡  is the noise component [28]. 

Prophet uses piecewise linear regression or logistic growth 
to capture trends in the data. One of its advantages is the ability 
to automatically adjust the number of change points in the trend, 
allowing the model to account for sudden shifts in direction. 
The seasonal component is defined by a set period, such as 
yearly, weekly, or monthly, enabling Prophet to capture 
recurring seasonal patterns more flexibly. The holiday or event 
component allows for the inclusion of external factors like 
holidays or recurring seasonal events, which can influence the 
data [29]. 

Prophet is highly intuitive to use because it automatically 
detects and handles missing data within the time-series. The 
model can also adjust the prediction intervals by giving more 
confidence to the trend and seasonal components, compared to 
more traditional time-series models [30]. Additionally, Prophet 
allows users to customize the prediction intervals, providing 
flexibility in terms of accuracy and margin of error based on the 
user's needs [31]. 

One common application of Prophet is in stock price 
forecasting and economic data predictions, which require 
accurate forecasts that can handle fluctuating seasonal trends 
and trends that are often unstable. For example, Jin et al. (2022) 
used Prophet to predict Google stock prices, while Angelo & 
Fadhilrahman (2023) compared the performance of Prophet and 
ARIMA in forecasting Bitcoin prices. Their findings indicated 
that Prophet excels in capturing complex seasonal trends and 
handling data with significant fluctuations [22], [32]. 

Prophet is also widely used in the energy and weather 
sectors. For instance, Elseddi et al. (2024) combined Prophet 
with ARIMA to forecast temperature data, achieving better 
accuracy than using ARIMA alone. This hybrid approach 
allows for more comprehensive forecasting by capturing 
different characteristics of the time-series data [20]. 

Overall, Prophet is a powerful and flexible model for 
forecasting complex time-series data, particularly when the data 
has irregular seasonal patterns. With its additive approach and 
its flexibility in handling outliers, Prophet offers significant 
advantages across various sectors, including economics, 
agriculture, energy, and weather forecasting. Its wide 
applications range from predicting food prices and crop yields 
to forecasting energy demand and weather patterns [24]. 

E. Evaluation Matrix 

In evaluating the performance of predictive models, two of 
the most commonly used metrics are the Mean Absolute Error 
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(MAE) and the Root Mean Square Error (RMSE). These 
metrics are essential in assessing how well a model predicts 
data and provide insight into the level of error between 
predicted values and actual values. 

1) Mean Absolute Error (MAE): The Mean Absolute Error 

(MAE) measures the average of the absolute differences 

between predicted values and actual values. MAE gives an 

overall sense of how much error the model makes on average, 

without considering whether the error is positive or negative, as 

all errors are treated equally. The general formula for 

calculating MAE is: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1   (3) 

Where: 

 𝑦𝑖  is the actual value, 

 �̂�𝑖 is the predicted value, 

 𝑛 is the number of data points. 

MAE provides an intuitive and easy-to-understand result 
since it shows the magnitude of errors in the same units as the 
original data. For example, in a study by Kenyi and Yamamoto 
(2024), MAE was used to evaluate the performance of the 
SARIMA-Prophet model in predicting water flow, and the 
results showed that MAE helped identify the average level of 
prediction error at each time point [33]. Another study by 
Angelo and Fadhilrahman (2023) used MAE to compare the 
performance of ARIMA and Prophet models in predicting 
Bitcoin prices, demonstrating how MAE can measure the 
accuracy of time-series predictions in complex datasets [32]. 

2) Root mean square error (RMSE): Root Mean Square 

Error (RMSE) is another common metric for evaluating 

predictive model accuracy. RMSE calculates the square root of 

the average squared differences between predicted and actual 

values. Unlike MAE, which focuses on absolute differences, 

RMSE gives more weight to larger errors because the errors are 

squared before being averaged. The general formula for RMSE 

is: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑦𝑖 −  �̂�𝑖)

2𝑛
𝑖=1  (4) 

Where: 

 𝑦𝑖  is the actual value, 

 �̂�𝑖 is the predicted value, 

 𝑛 is the number of data points. 

RMSE is particularly useful when larger errors are more 
undesirable than smaller ones, as it penalizes large errors more 
heavily. In a study by Hamiane et al. (2024), RMSE was used 
to measure the accuracy of hybrid LSTM, ARIMA, and Prophet 
models in predicting future GDP, showing that RMSE was 
highly effective in identifying significant differences between 
predictions and actual data over certain periods. Similarly, 
Mokhtar et al. (2022) applied RMSE to predict hydroponic 
yields, revealing that RMSE is more sensitive to outliers than 
MAE, making it an important evaluation metric when dealing 
with highly variable data [13], [34]. 

Using both RMSE and MAE together provides a more 
comprehensive picture of model performance. While MAE 
gives a general overview of the average error, RMSE 
emphasizes larger errors, which can be crucial in applications 
where minimizing extreme errors is important. Therefore, in 
many studies, these two metrics are often used together to 
evaluate time-series predictive models, including in hydroponic 
farming and energy prediction applications [12]. 

This combined approach allows for a better understanding 
of model behavior under various conditions, ensuring that both 
overall performance and outlier sensitivity are addressed. By 
evaluating models using MAE and RMSE, researchers can fine-
tune predictions to optimize both short-term and long-term 
outcomes 

F. Dataset Preparation Description 

In the process of preparing the dataset for machine learning 
modeling, the first step involved collecting data from the 
hydroponic system. The dataset includes several critical 
environmental and growth metrics to ensure that the 
information fed into the models is relevant and accurate. 

TABLE II. INITIAL DATASET SHOWING ENVIRONMENTAL CONDITIONS AND PLANT GROWTH METRICS 

 day hole time temperature humidity light pH Ec TDS WaterTemp LeafCount 

0 1 1 09:19:00 26.8 72 17820 7.2 677 340 26.1 3 

1 1 2 09:23:00 26.6 72 16490 7.2 677 338 26.1 3 

2 1 3 09:27:00 26.4 72 15160 7.2 678 334 26.1 3 

3 1 4 09:31:00 26.2 72 13830 7.2 677 338 26.1 3 

4 1 5 09:35:00 26.2 72 12500 7.2 673 340 26.1 3 

The Table II, summarizes the primary data columns that 
were included in the dataset. This data was collected at specific 
time intervals from each plant hole in the hydroponic system. 

 Day: Represents the day number during the data 
collection process, crucial for understanding time-based 
trends and growth patterns in the plants [12]. 

 Hole: This refers to the individual plant hole in the 
hydroponic system. Each hole corresponds to a plant, 
and this column ensures that the data collected is 
specific to each plant [35]. 

 Time: Indicates the exact time the data was recorded. 
Time tracking is crucial for analyzing daily patterns in 
plant growth [36]. 
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 Temperature (°C): Records the temperature of the 
growing environment. Maintaining optimal temperature 
is vital for plant growth, with prior studies suggesting its 
significance in hydroponic systems [20]. 

 Humidity (%): This column records the humidity levels 
in the environment, an important factor affecting plant 
water intake and overall health [37]. 

 Light (lux): Measures the intensity of light, which 
directly influences photosynthesis and plant growth. 
The importance of this factor is well-documented in the 
works of Lontsi Saadio et al. (2022) [14]. 

 pH: Captures the pH level of the nutrient solution. 
Balanced pH levels ensure optimal nutrient absorption 
[8]. 

 EC (mS/cm): Electrical Conductivity measures the 
concentration of nutrients in the solution. The correct 
EC level ensures that plants receive the necessary 
nutrients for growth [37]. 

 TDS (ppm): Total Dissolved Solids measure the 
concentration of dissolved substances, including 
essential nutrients. This helps monitor nutrient levels in 
the solution, as supported by Schwartz et al. (2019) [1]. 

 WaterTemp (°C): This column represents the 
temperature of the water or nutrient solution, which is 
crucial for maintaining healthy root systems [36]. 

 LeafCount: Records the number of leaves on each plant, 
serving as a metric for plant growth and overall health. 
Studies show that an increasing leaf count indicates 
good plant health [34]. 

This dataset provides comprehensive data necessary for 
analyzing environmental conditions and their impact on plant 
growth in a hydroponic system. Each column represents a 
critical factor in understanding and optimizing plant 
development, making it a solid foundation for further data 
processing and modeling. 

G. CRISP-DM Methodology 

CRISP-DM (Cross Industry Standard Process for Data 
Mining) is a widely used methodology for structuring data 
mining projects. Developed in the late 1990s, it provides a 
systematic and flexible approach applicable across industries, 
particularly in projects involving complex data analysis. This 
methodology is commonly applied in various machine learning 
applications, including hydroponic farming, to guide the entire 
development process, from the initial stages to deploying a fully 
functional predictive model [38]. 

The first phase of CRISP-DM is business understanding, 
which is crucial for identifying the project's business goals. This 
phase involves defining the business problems clearly and 
determining how data mining can provide actionable solutions. 
In the context of agricultural research, such as yield prediction 
using environmental data, this stage helps shape the problem 
and goals, such as optimizing crop yields in hydroponic systems 
[9]. 

After establishing the business goals, the next phase is data 
understanding. This phase focuses on gathering and exploring 
relevant data to gain an initial insight into the structure and 
characteristics of the dataset. Data exploration aims to identify 
patterns, outliers, and relationships between variables. For 
example, in machine learning studies related to hydroponics, 
data could include temperature, humidity, and nutrient levels, 
which would be further analyzed for patterns [4]. 

The third phase is data preparation, where the collected data 
is cleaned and prepared for analysis. This involves various steps 
such as handling missing values, transforming data, and 
selecting relevant features for the model. The quality of the data 
is crucial, as cleaner and more relevant data directly impact the 
model's performance [38]. 

Once the data is prepared, the next phase is modeling. This 
is where machine learning algorithms or data mining techniques 
are applied to the dataset. Depending on the objectives, 
different algorithms, such as regression or classification, may 
be used. For agricultural yield prediction, models like Random 
Forest or Neural Networks are often employed to predict 
critical variables affecting plant growth. Each model is 
evaluated to ensure it accurately predicts outcomes according 
to the predefined goals [9]. 

Following modeling, the evaluation phase assesses the 
performance of the model. Here, various evaluation metrics like 
Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE) are used to measure the accuracy and reliability of the 
model on both training and unseen test data. This ensures that 
the model is robust and reliable for real-world applications [4]. 

The final phase of CRISP-DM is deployment, where the 
evaluated model is integrated into an operational system. At this 
stage, the model is embedded into broader business processes 
to provide real-world benefits. For example, in an IoT-based 
hydroponic system, the developed model can be used by 
farmers to monitor environmental conditions in real-time and 
make decisions based on the model's predictions [39]. 

The usefulness of CRISP-DM lies in its structured and 
organized approach to managing data mining projects. Each 
phase can be revisited or refined as needed, ensuring that the 
desired outcomes are systematically achieved. In the context of 
machine learning research for hydroponics, CRISP-DM allows 
for the development of accurate and relevant models that 
optimize agricultural yields under dynamic environmental 
conditions [40]. 

Fig. 1 below illustrates a conceptual framework that 
combines exploratory data science activities, goal-directed 
CRISP-DM phases, and core data management activities. The 
outer circle represents broader exploration activities, while the 
inner circle shows the structured steps of the CRISP-DM 
process. At the center are essential data management activities 
such as data acquisition, simulation, and preparation, which are 
critical for the success of any data mining project [41]. 

To effectively address the complexities of managing 
hydroponic systems in Indonesia’s unique climatic conditions, 
the CRISP-DM methodology was adopted and adapted to the 
specific needs of this research. The proposed methodology 
integrates the structured phases of CRISP-DM, such as data 
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collection, modeling, and deployment, while incorporating 
tailored adjustments for hydroponic farming. The figure below 
illustrates the proposed methodology, which includes detailed 
steps drawn from the CRISP-DM framework, optimized for the 
implementation of ARIMA and Prophet models in the context 
of hydroponic lettuce growth during the rainy season. 

 

Fig. 1. Proposed methodology based on CRISP-DM framework. 

The proposed methodology, as shown in Fig. 1, follows the 
CRISP-DM framework to provide a systematic approach for 
predictive modeling in hydroponic farming. ARIMA and 
Prophet were chosen as the primary models due to their 
strengths in handling time-series data. ARIMA is effective for 
stationary data with linear trends but is limited in managing 
irregular seasonal patterns. Prophet, on the other hand, excels 
in handling non-stationary data, incorporating flexible 
seasonalities, and managing missing data, making it more 
suitable for the dynamic nature of hydroponic systems. 

Compared to traditional regression models, which lack 
temporal dependency analysis, and advanced machine learning 
methods, which demand larger datasets and computational 
resources, ARIMA and Prophet offer an optimal balance of 
accuracy, efficiency, and practicality. This methodology 
ensures each phase, from data preparation to model deployment, 
is rigorously executed, creating a scalable framework that can 
be expanded to other crops or environmental conditions in 
future research. 

The Data Layer represents the initial phases of CRISP-DM, 
namely Data Understanding and Data Preparation. According 
to CRISP-DM, understanding and preparing data are 
foundational to successful modeling. In this research, the data 
collected includes key environmental parameters such as 
temperature, humidity, light, pH, Electrical Conductivity (EC), 
Total Dissolved Solids (TDS), and water temperature— all 
critical for hydroponic plant growth. The data preparation 
process involves splitting the dataset into training and test sets, 
ensuring that both the training data and the test data undergo 
preprocessing to eliminate noise, handle missing values, and 
standardize formats. 

Data preprocessing is vital because the quality of the input 
data directly influences the performance of machine learning 
models. According to Schwartz et al. (2019), high-quality data 
preparation significantly improves the accuracy of predictive 
models, especially in controlled environments like hydroponics, 
where multiple variables can affect plant growth. 

The Model Layer corresponds to the Modeling phase in 
CRISP-DM, where machine learning algorithms are applied to 
the prepared dataset. This layer includes the training and testing 
of both ARIMA and Prophet models, which are widely used for 
time-series forecasting. 

1) Training the ARIMA model: The ARIMA model is 

trained on the dataset to capture time-series patterns that 

influence plant growth under various environmental conditions. 

ARIMA has been employed in agriculture for its effectiveness 

in forecasting time-series data, though it often requires 

stationary data and is sensitive to outliers. 

2) Training the prophet model: Developed by Facebook, 

Prophet is more flexible than ARIMA and can handle missing 

data, seasonality, and trends more efficiently. It is particularly 

effective in capturing the irregular trends often seen in 

agricultural environments, such as during unpredictable 

weather patterns like Indonesia’s rainy season. 

3) Model evaluation: The models are tested on unseen test 

data, and their performance is evaluated using metrics such as 

Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE). These metrics provide insight into how well each 

model predicts the key environmental variables that affect 

lettuce growth. Comparative evaluations ensure that the best 

model—Prophet in this case—is identified for deployment. 

The Application Layer reflects the Deployment phase in 
CRISP-DM. After evaluating the models, the best-performing 
model (Prophet) is deployed into a user-friendly web 
application designed for practical use by hydroponic farmers. 
This phase involves integrating the trained model into an 
operational system that can deliver real-time predictions, which 
allows farmers to make data-driven decisions. 

4) UI and framework design: The model is integrated into 

an intuitive user interface, ensuring that farmers can interact 

with the application easily. This user interface is designed to 

simulate plant growth automatically and adjust to real-time data 

inputs, offering farmers actionable insights into optimizing 

their hydroponic systems. 

5) Application distribution: The final step is distributing 

the application, making it accessible to users for real-time 

hydroponic growth simulations. This practical deployment 

ensures that the model's predictions are embedded into daily 

decision-making processes, improving efficiency and crop 

yields in dynamic environments like Indonesia’s rainy season 

III. RESULTS AND DISCUSSION 

A. Data Preparation 

In this study, data preparation is a crucial step performed 
before the modeling process. This phase involves data 
collection and exploratory data analysis (EDA) to ensure that 
the processed data is of high quality, leading to the development 
of accurate models. Previous research highlights that data 
preparation is vital in machine learning and data mining 
projects, as errors in this stage can significantly reduce model 
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performance [24]. In this research, data was gathered from a 
Nutrient Film Technique (NFT) hydroponic system used for 
growing lettuce (Lactuca sativa) during the rainy season in 
Indonesia. The system involved monitoring various 
environmental variables and plant growth [8]. The collected 
data included temperature, humidity, light intensity, pH, total 
dissolved solids (TDS), electrical conductivity (EC), water 
temperature, and the number of leaves. Fig. 2 illustrates the 
NFT hydroponic system used for data collection, along with the 
measurement tools employed to capture environmental and 
plant growth variables. 

 

Fig. 2. Lettuce in the NFT hydroponic system and the calibration equipment. 

   Fig. 2 shows the lettuce plants grown in the NFT system, 
where environmental and growth data were collected starting 
from the first day after planting until harvest on day 40. In the 
NFT system, plant roots continuously receive nutrients and 
oxygen through a thin film of flowing solution, enabling 
optimal plant growth. As noted by Abioye et al. (2022), the 
NFT system offers advantages in efficient use of nutrients and 
water in hydroponic crop production [42]. 

Also shown in the figure are several measurement tools 
used to collect data on environmental variables, such as a 
Hygrometer to measure temperature and humidity, and a Lux 
Meter to measure light intensity. These measurements are 
crucial for monitoring environmental conditions that affect 
plant growth. As noted by Sundari et al. (2022), even small 
changes in light intensity can have a significant impact on the 
photosynthesis process [43]. Additionally, a pH-TDS-EC meter 
was used to measure pH, TDS, EC, and water temperature, all 
of which are key variables in ensuring plants receive sufficient 
nutrients. Data on the number of leaves, used as a growth 
variable, was collected through direct observation by counting 
the number of new leaves each day. 

By conducting this thorough data collection process, the 
study follows a detailed methodology to maximize hydroponic 

crop yields, particularly during the challenging rainy season 
[24], [42]. 

 

Fig. 3. Stages in the data preparation phase. 

The data preparation phase begins after daily data collection 
from hydroponic variables and lettuce growth in the NFT 
system. As shown in Fig. 3, data from environmental variables 
and lettuce growth are manually inputted into Google Sheets 
each day. This data collection involves the use of various 
measurement instruments, such as a Hygrometer for 
temperature and humidity, a Lux Meter for light intensity, and 
a pH-TDS-EC meter for measuring pH, TDS, and water 
conductivity (EC), in accordance with standard hydroponic data 
collection protocols (Sambo et al., 2019). 

After collecting data over the 40-day period, from planting 
to harvest, the data is downloaded from Google Sheets and 
organized in Excel for further validation and processing, such 
as formatting adjustments and data cleaning. This step is crucial 
to ensure there are no outliers or input errors that could impact 
the predictive model’s results (Abioye et al., 2022). The data is 
then divided into training and testing datasets as required for 
the machine learning model's training and testing phases 
(Menculini et al., 2021). In the final stage, the data is saved in 
CSV format, ready to be used for modeling. 

This process enables researchers to maintain data integrity 
and optimize the quality of the dataset before using it in 
predictive models. These steps align with methods commonly 
used in the CRISP-DM (Cross-Industry Standard Process for 
Data Mining) approach, which emphasizes the importance of 
proper data preparation to achieve optimal results in machine 
learning projects (Ayele et al., 2020). 
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Fig. 4. Correlation matrix. 

The correlation matrix is a table that displays the linear 
relationships between variables in a dataset. Correlation values 
range from -1 to 1, where a value of 1 indicates a perfect 
positive correlation, -1 indicates a perfect negative correlation, 
and 0 indicates no correlation. In data analysis, a correlation 
matrix helps to understand how variables influence one another 
and how they might affect the predictive model being 
developed (Chopra & Khurana, 2023). 

From Fig. 4, it is evident that some variables show strong 
correlations with each other. One of the most prominent 
examples is the relationship between EC (Electrical 
Conductivity) and TDS (Total Dissolved Solids), with a 
correlation value of 1.00. This perfect correlation indicates that 
EC and TDS are directly related, meaning any change in one 
variable is always accompanied by the same change in the other. 
This makes sense in the context of a hydroponic system, where 
EC measures the concentration of dissolved ions in water, while 
TDS measures the total amount of dissolved solids. Since EC 
and TDS essentially measure almost the same aspect of water 
nutrition, these variables move in tandem. 

Additionally, a strong correlation is observed between EC 
and Leaf Count, with a correlation of 0.72. This suggests that 
the nutrient concentration (measured by EC) has a significant 
impact on the number of leaves produced. This aligns with 
findings from other studies, which highlight that balanced 
nutrient levels in hydroponics play a crucial role in maximizing 
plant growth (Sambo et al., 2019). 

Another noteworthy correlation is between Day and Leaf 
Count (0.89), showing that as time progresses (in days), the 
number of leaves on the plants increases, reflecting a consistent 
growth process over time. This relationship is important for 
understanding plant growth patterns, particularly in a 
hydroponic system, where growth is highly influenced by time 
and nutrient levels. 

However, there are some variables that do not show 
significant correlations with each other. For instance, Humidity 

and Water Temperature have a negative correlation (-0.42), 
indicating that as water temperature increases, humidity tends 
to decrease. This relationship, however, may not be entirely 
linear and may require further analysis to understand its impact 
on plant growth. 

Overall, this correlation matrix provides valuable insights 
into the relationships between variables in the hydroponic 
system under study. Understanding these relationships will help 
in building more accurate predictive models by focusing on 
variables with significant correlations to key outcomes, such as 
leaf count and nutrient effectiveness in the water. 

A correlation matrix is a numerical representation used to 
describe the linear relationships between two or more variables 
in a dataset. In the context of machine learning, the correlation 
matrix is crucial for understanding how variables relate to each 
other. Strong positive or negative correlations between 
variables can influence the model's outcomes, as a well-built 
model should account for inter-variable relationships to avoid 
redundancy or excessive bias in predictions [18]. 

In Fig. 5, histograms of key variables in this study such as 
temperature, humidity, light, pH, EC, TDS, and leaf count are 
presented to provide an overview of the distribution and 
variation patterns of each measured variable in the hydroponic 
system. These histograms help to understand the basic 
characteristics of the collected data and to identify potential 
outliers or abnormal distributions. 

The temperature distribution ranges from 24°C to 32°C, 
with the highest frequency between 26°C and 28°C. This 
pattern indicates that the temperature in the hydroponic 
environment remains fairly stable within the optimal range for 
lettuce growth, with extreme temperatures rarely occurring. 
The humidity distribution shows significant variation, ranging 
from 40% to 100%, with the highest frequency around 70%, 
indicating relatively high humidity during most of the 
measurement period. 
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Fig. 5. Histogram of all variables. 

The light variable shows a wide range of light intensity 
values, from 20,000 to over 60,000 lux. The peak distribution 
occurs between 20,000–30,000 lux, which is considered 
optimal for photosynthesis in a hydroponic system. The pH 
distribution also follows a near-normal pattern, with values 
ranging from 6.5 to 8.0, and the highest frequency around pH 
7.2. This suggests that the hydroponic system tends to maintain 
an optimal acidity level for plant nutrient absorption. 

Next, EC (Electrical Conductivity) varies between 500 and 
2500 µS/cm, with several peaks reflecting fluctuations in 
nutrient concentration during the growth cycle. This range is 
critical to ensure that plants receive sufficient minerals without 
causing an oversupply. The TDS (Total Dissolved Solids) 
variable shows a similar pattern, with values ranging from 200 
to 1800 ppm, with the highest frequency around 800–1000 ppm. 
This indicates varying levels of nutrient solubility in the water 
throughout the observation period. 

Finally, the leaf count distribution shows significant 
variation in the number of leaves, with the highest frequency 
occurring between 15 and 25 leaves. This variable reflects fairly 
stable plant growth, while also showing some variation among 
the plants measured during the hydroponic cycle. 

Overall, these histograms provide initial insights into how 
each variable functions within the hydroponic system and offer 
important information for the next stage—predictive modeling. 
The data will be used to build simulations for lettuce growth 
under Indonesia's rainy season conditions. 

Fig. 6 illustrates the changing patterns of various 
environmental and hydroponic variables over time (in days) as 
measured throughout the study. In this graph, variables such as 
EC (Electrical Conductivity), TDS (Total Dissolved Solids), 
Temperature, Water Temperature, pH, and Light are visualized 
in relation to days, allowing us to understand the trends and 
fluctuations of each variable. 

It is clear that EC and TDS follow almost identical patterns, 
with their values gradually increasing over time. This aligns 
with the findings shown in the correlation matrix, where these 
two variables have a very high correlation (close to 1), 
indicating a strong relationship. The increase in EC corresponds 
with the rising nutrient concentration in the hydroponic solution, 
which is directly measured by TDS. Over time, the hydroponic 
system shows a controlled increase in nutrient concentration in 
the water [8]. 
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Fig. 6. Visualization of all variables over time. 

For the Temperature and Water Temperature variables, the 
patterns show more irregular fluctuations compared to EC and 
TDS. Air temperature exhibits more dynamic variation, with 
several peaks and troughs, though it generally remains within a 
stable range. This is important because temperature plays a 
direct role in photosynthesis and plant growth [42]. Water 
temperature, on the other hand, shows smaller fluctuations, 
although some sudden drops were recorded on certain days. 
Maintaining stable water temperature is crucial for keeping the 
plant roots healthy and ensuring effective nutrient absorption. 

The pH graph shows that pH values remain relatively stable 
with slight fluctuations, tending towards 7.2, which is the 
optimal pH for lettuce growth in a hydroponic system. This 
stability is essential to ensure that plants can absorb nutrients 
effectively [44]. 

Meanwhile, the Light variable exhibits more regular daily 
fluctuations. Light intensity greatly influences photosynthesis 
and plant growth, and the variability in the light pattern may be 
caused by external factors such as weather changes during the 
data collection period. 

Overall, this visualization provides a clear picture of how 
each variable contributes to plant growth in the hydroponic 

system, with EC and TDS being the most closely related 
variables in influencing nutrient conditions. Understanding 
these patterns is critical for developing predictive models for 
future automated simulations of hydroponic plant growth. 

B. Data Preprocessing 

Data preprocessing is a crucial step in data handling before 
modeling or further analysis. This phase involves various tasks 
such as data cleaning, transformation, and formatting 
adjustments to ensure that the data is optimally prepared for use 
by modeling algorithms. In the context of machine learning, 
data preprocessing aims to ensure that the data is clean, free 
from noise, and ready for modeling purposes, as explained by 
Kramar and Alchakov (2023) [28]. By undergoing data 
preprocessing, the data becomes more consistent and structured, 
ultimately improving the performance of the model being 
developed. During this phase, several important steps are 
carried out. For instance, the 'time' column is adjusted by 
adding digits before and after to ensure that the time format 
aligns with the standards used in time-series analysis. 
Additionally, unnecessary columns, such as labels that contain 
only one type of value, are removed to prevent them from 
affecting the prediction outcomes. 
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TABLE III. DATA ADJUSTMENT 

 day hole time temperature humidity light pH Ec TDS WaterTemp LeafCount 

0 1 1 09:19:00 26.8 72 17820 7.2 677 340 26.1 3 

1 1 2 09:23:00 26.6 72 16490 7.2 677 338 26.1 3 

2 1 3 09:27:00 26.4 72 15160 7.2 678 334 26.1 3 

3 1 4 09:31:00 26.2 72 13830 7.2 677 338 26.1 3 

4 1 5 09:35:00 26.2 72 12500 7.2 673 340 26.1 3 

Table III illustrates this data adjustment process, where each 
column is reviewed and reformatted as needed. For example, 
the 'time' column had zeros added in front of single-digit hours 
to follow the standard time format, ensuring that the data could 
be correctly processed by the model. Furthermore, this process 
also involves removing irrelevant columns or those containing 
only one type of label, allowing the data to focus on the 
variables that influence the forecasting process. 

Subsequent processing involves merging the day and time 
columns to create a new column called datetime. This column 
serves to provide the appropriate time series format, making it 
usable in future modeling and prediction processes. This step is 
crucial because data structured in a time series format allows 
algorithms like ARIMA and Prophet to recognize patterns and 
trends that occur over time [28]. The merging of these columns 
is a key step in data preprocessing, ensuring the data is ready to 
be used in machine learning modeling. 

 

Fig. 7. Dataset after preprocessing. 

In Fig. 7, the results after the preprocessing stage are shown, 
where the datetime column has been combined with the main 
dataset. This new dataset not only includes information about 
hydroponic variables such as temperature, humidity, light, pH, 
EC, TDS, and LeafCount, but also includes datetime as a 
crucial time marker in the time series analysis. 

Once the datetime column is added and the dataset updated, 
the dataset is then saved in csv format. Saving in csv format 
aims to create a new, more ready-to-use database for the 
modeling and forecasting process. Data preprocessing like this 
is essential to ensure that the data is in optimal condition before 
being input into predictive models, as without this process, the 
data might be poorly structured or not aligned with the desired 
format [28]. 

C. Modeling 

In the modeling phase, two time-series models were used: 
ARIMA and Prophet, each with its own strengths in forecasting 
time-series data. The ARIMA model operates through three key 
components: autoregressive (AR), differencing (I), and moving 
average (MA). To begin with, the stationarity of the data is 

tested using the Augmented Dickey-Fuller (ADF) test. If the 
data is found to be non-stationary, differencing is applied to 
address trends and seasonality, as proposed by Menculini et al. 
(2021) [24]. 

Once the data becomes stationary, the parameters p, d, and 
q are determined to build the ARIMA model. This model is 
used to predict environmental variables such as EC (Electrical 
Conductivity) and TDS (Total Dissolved Solids), which are 
crucial for hydroponic plant growth. On the other hand, Prophet 
is a flexible model that automatically handles trends and 
seasonal components, as described by Satrio et al. (2021) [30]. 
Prophet works by separating data components into trend, 
seasonality, and residuals, making it well-suited for predicting 
dynamic weather conditions. 

In this study, both models were evaluated using the MAE 
(Mean Absolute Error) and RMSE (Root Mean Squared Error) 
metrics. The results showed that Prophet outperformed in 
handling seasonal trends, especially during Indonesia's rainy 
season, while ARIMA produced better results for more 
stationary data [22]. 
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Fig. 8. SARIMAX results. 

SARIMAX (Seasonal AutoRegressive Integrated Moving 
Average with eXogenous regressors) is a popular method for 
time series data analysis that takes into account both seasonal 
and non-seasonal components [45]. In the SARIMAX results 
shown in Fig. 8, it is clear that the ARIMA (1,1,1) model has 
been used to predict the variable LeafCount with 5282 
observations. According to the reference by Pindiga (2022), 
SARIMAX is utilized because it can capture fluctuations and 
seasonal patterns, providing more comprehensive results in 
time series forecasting [25]. 

From the SARIMAX results, the AR.L1 coefficient has a 
value of -0.1913 with a p-value of less than 0.05, indicating that 
this parameter is significant in the model. The MA.L1 value is 
also significant, with a coefficient of -0.9682, meaning that the 
moving average model plays an important role in predicting 
LeafCount. The sigma2 value (2.8346) represents the 
variability in the model's residuals, which affects the accuracy 
of the predictions. Additionally, the AIC (20498.274) and BIC 
(20517.990) values provide indicators of how well the model 
fits the data, where lower values suggest a better-fitting model. 

Moreover, the Jarque-Bera (JB) statistical test resulted in a 
value of 242.43 with a p-value of 0.00, indicating that the 
residual distribution does not follow a normal distribution. This 
is important in time series model evaluation as it can impact 
prediction accuracy. 

 

Fig. 9. Preparing data for the prophet model. 

Fig. 9 shows the dataset prepared for modeling using 
Prophet. The dataset includes key columns such as time (ds), 
the target variable (y), plant hole (hole), and various 
environmental factors like temperature, humidity, light, pH, EC, 
TDS, and water temperature (WaterTemp). This data is 
structured to help predict lettuce leaf growth (LeafCount) based 
on these factors. Each row in the dataset represents a single 
point in time, with data collected periodically during the 
observation period from July 1, 2024, to August 9, 2024. This 
ensures that the Prophet model can accurately capture any 
temporal patterns. The data serves as the training set for the 
Prophet model to predict the target variable, which is the 
number of lettuce leaves (LeafCount). 

D. Evaluation 

Evaluation is a crucial stage in the modeling process to 
assess the performance of the model that has been developed. 
The goal of evaluation is to determine how well the model 
predicts the observed data and to ensure that the prediction 
results are relevant to the research objectives. 

To ensure reliable model performance, this study 
emphasizes the importance of validation measures. We used 
two key evaluation metrics: Mean Absolute Error (MAE) and 
Root Mean Squared Error (RMSE). These metrics are essential 
for assessing prediction accuracy and understanding how well 
the models perform in forecasting hydroponic growth. MAE 
shows the average error magnitude, while RMSE highlights 
larger errors by squaring the differences. Together, they provide 
a comprehensive view of model accuracy.These two metrics are 
commonly used in time series modeling because they provide 
insight into the magnitude of the model's prediction error 
compared to the actual data (Sushma Niveni, 2022). 

MAE measures the average absolute error between the 
predicted and actual values. It helps in understanding the extent 
of the prediction error without considering its direction 
(positive or negative). The smaller the MAE value, the more 
accurate the model is in making predictions. Meanwhile, RMSE 
gives more weight to larger errors by squaring them, which is 
useful for detecting predictions with large deviations from the 
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actual values. A model with a smaller RMSE is considered 
better at capturing trends and patterns in the data (Lorenzo 
Menculini, 2021). 

Based on the evaluation of the ARIMA and Prophet models, 
the following table summarizes the performance comparison of 
the two models: 

TABLE IV. PERFORMANCE COMPARISON OF ARIMA AND PROPHET 

MODELS BASED ON MAE AND RMSE METRICS 

Model MAE RMSE 

ARIMA 8.17 8.97 

Prophet 1.475 1.808 

From the evaluation Table IV, it is evident that the Prophet 
model has much lower MAE and RMSE values compared to 
ARIMA. The MAE value for Prophet is 1.475, indicating that 
the average prediction error from this model is much smaller 
compared to ARIMA, which has an MAE of 8.170. This 
indicates that Prophet is able to provide more accurate 
predictions. Additionally, the RMSE value for Prophet, which 
is 1.808, also shows that this model has fewer large errors, 
whereas ARIMA, with an RMSE of 8.970, indicates that it 
tends to make larger errors. 

The Prophet model outperformed ARIMA in both MAE and 
RMSE. Prophet’s ability to handle non-stationary data and 
complex seasonal patterns made it more suitable for hydroponic 
forecasting compared to ARIMA, which assumes that data is 

stationary. Prophet can capture non-linear trends and multiple 
seasonalities, making it more effective for dynamic systems 
like hydroponics. 

Additionally, this study compares Prophet with traditional 
methods and more complex machine learning models. 
Traditional models often rely on stationary data, which limits 
their application in real-world scenarios. Prophet overcomes 
this limitation, offering flexibility to model changes over time. 
Compared to machine learning approaches, which require large 
datasets and high computational resources, Prophet balances 
accuracy with computational efficiency, making it a practical 
and accurate tool for hydroponic forecasting. 

Overall, Prophet excels in capturing data patterns and 
generating more consistent and accurate predictions compared 
to ARIMA. 

Fig. 10 shows the evaluation of the Prophet model's 
performance in predicting the number of lettuce leaves in an 
NFT hydroponic system, using two key evaluation metrics: 
Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE). In the graph on the left, we can see that the RMSE 
value obtained is 1.82, while the MAE is 1.49. These two 
metrics provide an overview of the average error made by the 
Prophet model in predicting plant growth outcomes. MAE 
measures the average absolute error, giving a direct view of 
how far off the model's predictions are from the actual values. 
Meanwhile, RMSE is more sensitive to larger errors, as it 
penalizes predictions that are significantly far from the actual 
values. 

 

Fig. 10. Model performance evaluation using MAE and RMSE. 

The graph on the right in Fig. 10 shows a comparison 
between the actual values (in blue) and the predicted values 
generated by the Prophet model (in red) over the measured time 
period. From this visualization, it can be observed that the 
Prophet model's predictions closely follow the pattern of leaf 
growth, especially after the more stable growth period. The 
range of prediction errors (shaded area) narrows over time, 

indicating that the model is learning well from historical data 
and providing more accurate predictions in the later stages. 

Overall, this evaluation confirms that Prophet outperforms 
other models, such as ARIMA, which were also evaluated in 
this study. As a result, the Prophet model was chosen to move 
forward to the deployment stage, where it will be used in a web-
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based automated growth simulation, helping hydroponic 
farmers monitor and predict their crop yields more accurately 
and effectively. 

E. Comparison to Existing Study 

In the Comparison/Benchmarking section, this study is 
compared with several similar studies using the ARIMA and 
Prophet models, based on performance evaluation results 
measured through MAE and RMSE metrics. The findings of 
this study, where the Prophet model achieved an MAE of 1.475 
and an RMSE of 1.808, are compared to similar studies from 
academic literature. Through Table V below, we can see the 
comparison of evaluations using MAE and RMSE from 
previous research. 

TABLE V. COMPARISON OF MAE AND RMSE VALUES 

 

Purnama, 

2023 
Elseidi, 2024 

Pindiga, 

2022 

Rahmadi, 

2024 

MA

E 

RMS

E 

MA

E 

RMS

E 

MA

E 

RMS

E 

MA

E 

RMS

E 

Proph

et 
2.51 2.89 1.78 2.12 2.65 3.15 

1.47

5 
1.808 

Purnama's study (2023), which compared ARIMA and 
Prophet in predicting Bitcoin prices, reported that Prophet 
performed better with an MAE of 2.51 and an RMSE of 2.89, 
compared to ARIMA, which had an MAE of 3.12 and an RMSE 
of 3.58. Although Prophet's results in Purnama's study were 
better than ARIMA's, they still show a higher error compared 
to this study, indicating that the application of Prophet in 
hydroponics provides more accurate predictions than its use for 
Bitcoin price prediction (Purnama, 2023). 

Furthermore, the study by Elseidi (2024), which utilized a 
combined ARIMA-Prophet framework to predict high-
frequency temperature data, reported results similar to this 
study. Elseidi's study achieved an MAE of 1.78 and an RMSE 
of 2.12, which are slightly higher than Prophet's results in this 
study. This indicates that Prophet is highly suitable for short-
term predictions, such as temperature and plant growth in 
hydroponics (Elseidi, 2024). 

Another study by Pindiga (2022), which predicted stock 
indices using ARIMA and Prophet, reported that Prophet 

performed better with an MAE of 2.65 and an RMSE of 3.15, 
compared to ARIMA, which had an MAE of 3.24 and an RMSE 
of 3.67. These findings still show that the Prophet model in this 
study provides more accurate predictions compared to stock 
index predictions by Pindiga (Pindiga, 2022). 

Overall, the evaluation results demonstrate that Prophet 
excels in environments requiring predictions of variables with 
consistent change patterns, such as plant growth in hydroponic 
systems, compared to its application to more volatile data such 
as stock prices and temperature data. The benchmarking results 
reinforce the study's findings that Prophet is a more suitable 
model for predictions in hydroponic farming systems 

F. Deployment 

The deployment phase of this study entailed turning the 
Prophet model into a fully functional web-based application for 
simulating hydroponic lettuce growing. This approach was 
carried out on the Streamlit platform, which was chosen for its 
ease of use and versatility when developing interactive online 
apps [46]. The major purpose of this deployment was to give 
users, primarily hydroponic farmers and academics, with a 
simple tool for simulating lettuce growth in real time using 
environmental data. The following Fig. 11 shows the homepage 
of the HydroSim application resulting from the model 
deployment using the Streamlit platform. 

The Prophet model, which has demonstrated the best 
performance in predicting lettuce growth during the rainy 
season, has been integrated into Streamlit, allowing users to 
input important hydroponic variable data such as temperature, 
humidity, light intensity, water quality indicators, and the 
number of lettuce leaves. After receiving the data, the program 
runs the Prophet model in the background to forecast, simulate 
growth patterns, and provide estimates in a simple and user-
friendly interface. Key performance parameters, such as the 
number of leaves and harvest time, are provided, offering 
actionable information to users. In addition, interactive 
elements are included, allowing users to modify factors and 
quickly observe how these changes affect the expected 
outcomes, making this application not only informative but also 
instructive for understanding the dynamics of hydroponic 
agriculture. 

 

Fig. 11. Homepage HydroSim. 
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Fig. 12. Simulation forecasting results based on days. 

Referring to Fig. 12, the forecast results produced by the 
model are displayed after the user submits their data. Users can 
choose how many days ahead they would like to simulate the 
growth. Additionally, they can press the play button to see an 
animated, interactive graph of the growth simulation over time. 

Users also have the flexibility to select a specific day for 
simulation by dragging the marker to their preferred point on 
the timeline, offering an interactive and customizable way to 
visualize the predicted growth. 

 

Fig. 13. Forecasting table and lettuce illustration. 

Apart from the animated growth chart, a dynamic 
illustration of a lettuce plant is included, changing according to 
the day being predicted on the graph above. This allows users 
to visually see how the plant may develop over time. 
Additionally, a forecasting table is presented, which provides 
detailed daily predictions. The table includes columns like "ds," 
which displays the forecast date, and "yhat," which shows the 

primary predicted value for leaf count. The "yhat_lower" 
column gives the lower limit of the prediction range, 
representing the minimum likely estimate, while the 
"yhat_upper" column indicates the upper limit, showing the 
maximum expected leaf count for each prediction. Fig. 13 
shows forecasting table and lettuce illustration. 
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Fig. 14. Average value growth variable. 

Fig. 14 explains the average value feature of each leaf count 
variable, allowing users to select which variable they want to 
see the average value of. The HydroSim application also 
includes a variety of features designed to assist both users and 
farmers in interpreting the data for practical use. One key 
feature is the ability to visualize average growth variable charts, 
particularly the Leaf Count. This chart allows users to observe 
how different growth variables behave over time, offering a 

detailed perspective on the factors influencing lettuce 
development. By providing a graphical representation of this 
data, the feature helps users better understand the dynamics of 
plant growth, such as how environmental conditions or nutrient 
levels impact leaf production. These insights can be crucial for 
making informed adjustments to hydroponic systems, ensuring 
that optimal growing conditions are maintained. 

 

Fig. 15. Comparison between variable. 

The variable comparison feature can be seen in Fig. 15, 
where users can compare two selected variables to observe the 
graphical pattern comparison of both variables. Another 
valuable feature integrated into HydroSim is the variable 
comparison tool, designed to provide users with insights into 
how different environmental and growth variables correlate 
with one another. As demonstrated in Fig. 15, users can choose 
which variables they would like to compare, such as water 

temperature, nutrient levels, and light intensity, and the 
application will generate a detailed comparative graph. This 
helps users better understand how environmental factors and 
growth metrics interact, making it easier to identify patterns or 
anomalies. The comparison tool empowers users to make more 
informed decisions about optimizing their hydroponic systems 
based on the relationships between key variables, ultimately 
improving plant growth outcomes. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

400 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 16. Conclusion information. 

Fig. 16 shows the summary information display from the 
HydroSim application, which provides information on the 
percentage increase in the number of leaves simulated 
according to the selected number of days and information on 
the number of leaves that increased after simulation. This 
implementation represents a substantial improvement in 
precision agricultural technology by providing a real-time, 
data-driven solution for improving lettuce growth and resource 
management while remaining cost-effective and user-friendly. 
The use of Streamlit in model deployment provides a 
lightweight and scalable solution that is easily accessible via 
web browsers, without requiring substantial technical 
knowledge, making it suitable for widespread adoption by a 
variety of user groups from small-scale farmers, major research 
institute, to commercial hydroponic farmers. 

Do not begin a new section directly at the bottom of the page, 
instead, move the heading to the top of the next page. 

IV. CONCLUSION 

This research concluded with the successful 
implementation of real-time automatic hydroponic growth 
simulation for lettuce using ARIMA and Prophet models, 
specifically designed for the rainy season in Indonesia. Through 
meticulous data collection using calibrated instruments, this 
study captures crucial environmental variables, providing an 
accurate foundation for model development. The Prophet 
model has proven to be superior, achieving a Mean Absolute 
Error (MAE) of 1.475 and a Root Mean Square Error (RMSE) 
of 1.808, highlighting its effectiveness in managing time series 
data to simulate plant growth. The integration of models into a 
web-based platform provides practical and user-friendly tools 
for predicting lettuce growth, enhancing the decision-making 
process for researchers and farmers by offering data-driven 
insights into environmental management. The contribution of 
this study lies in its focus on tropical climates and the use of 
real-time data for automation in hydroponic systems. 

Future research will prioritize expanding the model by 
incorporating data from other seasons, particularly the dry 
season, to address environmental challenges and enhance its 
robustness across diverse climatic conditions. Furthermore, 
datasets from other hydroponic crops, such as spinach, bok 
choy, water spinach, and tomatoes, will be integrated to extend 
the model's applicability. This direction aligns with prior 
studies, such as Smith et al. (2022) [47], who emphasized multi-
crop modeling for resource optimization, and Lee et al. (2023) 
[48], who demonstrated improved system adaptability in 
diverse hydroponic conditions. Hybrid modeling approaches 
will also be explored, combining techniques like ARIMA, 
Prophet, and advanced machine learning algorithms such as 
LSTM and Random Forest. Zhang et al. (2021) [49] highlighted 
the effectiveness of hybrid methods in improving simulation 
accuracy for complex environments, making this a promising 
avenue for further enhancement. These efforts aim to develop a 
more versatile, scalable, and high-performing hydroponic 
automation system to support sustainable agricultural practices. 
By addressing these aspects, future studies can enhance the 
precision, scalability, and reliability of automated hydroponic 
growth simulations. 
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