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Abstract—In the modern world, frequent travel has become 

a necessity, with vehicles being the primary mode of 

transportation. Ensuring human safety while traveling is 

paramount. To address this, it is essential to adopt a 

combination of numerous static and dynamic parameters to 

achieve optimal route design in today’s complex 

transportation systems. This study introduces a methodology 

titled 'Multi-Factor Risk Assessment and Route Optimization 

for Safe Human Travel', which consists of three stages: Route 

Optimization, Risk Factor Analysis, and Data Collection. To 

assess the safety of various routes, a combination of dynamic 

and static factors is considered. These include traffic, 

weather, and road conditions, as well as vehicle-related 

factors such as type, age, and the surrounding road 

environment. By analyzing simulated data, the technique 

identifies potential risks and optimizes travel paths 

accordingly. For segmented routes, risk factors are calculated 

using both static and dynamic parameters, ensuring a 

comprehensive safety assessment. Prioritizing user safety, the 

system dynamically adjusts routes to offer the most cost-

effective and safest travel options. This study lays a robust 

foundation for intelligent transportation systems, aimed at 

ensuring safer travel for users across a range of scenarios.  
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I. INTRODUCTION 

Travel safety is a key issue in transportation, particularly as 
the number of vehicles and the complexity of urban 
environments increase. The focus in traditional route planning is 
on reducing travel time or distance, but it frequently ignores 
important safety considerations, leaving travelers exposed to 
dangers like accidents, injuries, and crime [1]. These 
shortcomings highlight the necessity for more holistic methods 
that place safety on par with efficiency when optimizing routes 
[2]. 

This paper addresses these challenges by presenting a novel 
approach that integrates multiple safety parameters for risk 
assessment in route optimization. As urbanization and 
population growth continue, the need for safe, reliable 
transportation systems is increasingly critical. Recent 
advancements in risk assessment and route optimization, 
particularly in dynamic road conditions, are essential for 
improving the safety of drivers and pedestrians alike [3]. 

The motivation for this study arises from the pressing need 
to address the limitations of traditional navigation systems, 
which often neglect crucial safety factors. The proposed 
approach leverages a combination of static and dynamic 
parameters to offer a more comprehensive and adaptive 
framework for route optimization. By incorporating factors such 
as traffic density, weather conditions, road environments, and 
vehicle attributes, the system ensures a holistic evaluation of 
travel risks. This methodology aims to enhance traveler safety 
by reducing the likelihood of accidents, fostering user 
confidence, and supporting the development of intelligent 
transportation systems. 

The primary contribution of this study is the development of 
a multi-factor risk assessment and route optimization model that 
dynamically evaluates routes based on safety and efficiency. By 
tailoring recommendations to different demographics, 
transportation modes, and real-time conditions, this approach 
ensures inclusivity and adaptability in route planning. 
Furthermore, the integration of real-time data enhances the 
system’s ability to adjust dynamically to changing conditions, 
paving the way for safer and more intelligent transportation 
networks. 

This approach moves beyond conventional navigation by 
incorporating real-time data and multi-factor analysis to 
prioritize safety and reduce hazards. Traditional systems that 
focus primarily on travel time and distance have often 
overlooked important factors influencing safety and fail to 
account for the ever-changing road environments and the 
varying needs of travelers. Multi-Factor risk assessment models 
now address a broad range of considerations, including time of 
travel, traffic density, vehicle types, demographics, road 
conditions, lighting, and traffic patterns [4]. This complete 
approach optimizes routes not only for efficiency but also for the 
specific safety needs of different individuals and communities, 
improving overall travel safety. 

Multi-Factor models recognize that higher traffic density, 
particularly during peak hours, can enhance safety by providing 
more visibility and reducing risks such as theft or harassment 
[5]. By incorporating time-sensitive routing that considers 
traffic density, users can opt for routes that may take longer but 
offer greater safety. 

Optimal routes vary significantly for pedestrians, cyclists, 
motorcyclists, and those using private or rented vehicles. By 
tailoring recommendations based on the mode of transport, the 
system ensures that each user’s safety is prioritized. 
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Demographics and traveler population also play a crucial 
role in multi- Factor risk assessment. Routes are adapted to 
reflect the age, gender, and travel patterns of users, fostering 
safer travel for all. 

The use of real-time data enables systems to adjust routes 
based on current weather, road maintenance, and the availability 
of lighting, offering a dynamic and comprehensive approach to 
safer travel. By incorporating these elements into the routing 
process, multi-Factor models provide a comprehensive 
approach to safe navigation, addressing the full spectrum of risks 
that travelers may encounter. 

This paper outlines the development and application of 
multi-factor risk assessment and route optimization models. 
These models represent a significant advancement in ensuring 
safer travel for all, paving the way for a future where 
transportation systems are as safe as they are efficient. The paper 
is structured as follows: Section II presents the literature review, 
Section III covers the methodology, Section IV provides the 
implementation, Section V presents the results and discussion, 
and Section VI provides the conclusion. 

II. LITERATURE REVIEW 

Safe human route optimization has emerged as a critical area 
of research due to the growing need for enhancing road safety, 
crime activities and minimizing accident risks. A wide range of 
models and methodologies have been developed, incorporating 
factors such as road conditions, weather, traffic, and human 
demographics to provide tailored, safer route options. This 
literature review explores various strategies and models 
proposed for optimizing safe travel routes, focusing on both 
static and dynamic risk factors to ensure safer navigation. 

Lingamaneni Indraja et al. [6] examined the correlation 
between accidents, road conditions, and weather, developing a 
predictive model using machine learning algorithms like 
Support Vector Machines and Logistic Regression to identify 
safe, less accident-prone routes. Yash S. Asawa et al. [7] 
introduced a User-Specific Safe Route Recommendation 
System that visually represents safe routes on maps using 
historical crime data. It operates in two tiers: a Decision 
Network to capture user-specific features and Geospatial Data 
Analysis to generate personalized safe routes. 

Aruna Pavate et al. [8] developed a system using K-means 
clustering to categorize routes into security levels, helping 
women avoid high-crime areas. Isha Puthige et al. [9] devised a 
danger index based on multiple crime factors at specific 
locations, using clustering algorithms to identify safe paths. 
Aliasgar Eranpurwala et al. [10] created the "GoWomaniya" app 
to help women find safe routes in real-time during moments of 
distress, leveraging mobile technology. 

Deepa Bura et al. [11] developed a model using Google 
Maps to assess the safety of routes, considering risk factors like 
security and path quality. Roxan Salehab et al. [12] applied 
supervised machine learning to predict road sign status in 
Sweden, contributing to transportation safety by maintaining 
accurate navigation aids. Deepak Kumar Sharma et al. [13] 
utilized Random Forest algorithms to predict crash risks based 
on historical accident data, including weather and road 
conditions. 

Juncai Jiang et al. [14] proposed a framework for assessing 
urban road collapse risks, using SMOTE and Convolutional 
Neural Networks to predict road integrity. Mukherjee, D et al. 
[15] combined historical crash data with proactive pedestrian-
vehicular risk assessments to identify and rank high-risk 
intersections in Kolkata, enhancing pedestrian safety. 

Lakshmi et al. [16] conducted a systematic review of Safe 
Route Guidance Systems, focusing on traffic forecasting, 
congestion avoidance, and traffic signaling. Llopis-Castelló et 
al. [17] compared the Highway Safety Manual with geometric 
design consistency to estimate crash occurrences on road 
segments in North Carolina. 

Al-Bdairi et al. [18] investigated injury severity in weather-
related crashes, identifying factors like time of day, driver 
fatigue, and lack of streetlights that increase accident risks. 
Qiannan Wang et al. [19] explored how population density 
impacts autonomous vehicle navigation risks, emphasizing the 
need for risk-aware path planning. Changhong Zhou et al. [20] 
developed a road disaster risk assessment model using neural 
networks and a fuzzy comprehensive evaluation, incorporating 
environmental and geological factors to predict road disasters. 

Nishat Tasnim et al. [21] studied how road geometry, traffic 
volume, and other features influence accident occurrence. Shan 
Jiang et al. [22] introduced the Safe Route Mapping (SRM) 
model, combining crash estimates and conflict risks from driver 
data to predict route safety. Paul Litzinger et al. [23] proposed 
an algorithm that incorporates real-time weather forecasts into 
route planning to enhance safety and efficiency. 

Nikhitha Pulmamidi et al. [24] proposed a model for 
identifying safe routes based on user experience, considering 
factors like road conditions, weather, and accident frequency. 
Krishnaraj Pawooskar et al. [25] developed a safety score based 
on features like hospitals, streetlights, and police stations along 
routes. Helai Huang et al. [26] emphasized the importance of 
dynamic traffic conditions and stationary road factors in 
conflict-based travel route safety assessments. The Road Safety 
Technical Report [27] highlighted the need for tailored safety 
solutions based on specific road and traffic conditions. 

The reviewed studies demonstrate the importance of 
integrating diverse factors such as road geometry, weather 
conditions, and user demographics in optimizing safe routes. 
Collectively, these efforts contribute to a more complete 
understanding of route safety optimization, paving the way for 
smarter, more responsive systems that enhance safety, 
awareness, and efficiency for all road users. 

However, most of these studies focus on single factors or use 
simplistic models that do not account for the complex 
interactions between different parameters. This study aims to 
develop a multi-factor risk assessment model that evaluates the 
safety of travel routes by considering both static and dynamic 
factors. The model will use the driven data to classify routes 
based on their risk levels and identify the safest route between a 
given source and destination. 

III. METHODOLOGY 

The proposed methodology for "Multi-Factor Risk 
Assessment and Route Optimization for Safe Human Travel" is 
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designed to address the complexities of modern transportation 
systems by integrating multiple static and dynamic factors. This 
approach prioritizes safety, aiming to create a transportation 
landscape that not only optimizes route efficiency but also 
enhances the well-being and safety of all users. 

The system is divided into three major phases: Data 
Collection, Risk Factor Analysis, and Route Optimization as 
shown in Fig. 1. These phases work together find best route 
based on static and real-time data (dynamic data). 

 

Fig. 1. Phases of route optimization. 

A. Data Collection 

In the context of Multi-Factor Risk Assessment and Route 
Optimization for Safe and Efficient Human Travel, the 
methodology involves a detailed analysis and integration of 
both static and dynamic parameters as shown in Table I. These 
parameters are essential for evaluating the safety of various 
routes and optimizing them to ensure secure travel. 

The system accounts for 10 static parameters to ensure route 
safety. First, the type of vehicle or transport mode is crucial, as 
different vehicles have distinct requirements for road width, 
speed limits, and flexibility. Gender-specific concerns are also 
considered, particularly to avoid areas prone to harassment or 
crime, especially at certain times of the day. Age is a key factor, 
influencing mobility and vulnerability; routes safer and more 
accessible for children, the elderly, and people with mobility 
challenges are prioritized. For solo travelers, the system suggests 
safer or more populated routes by factoring in the number of 
travelers. 

TABLE I. LIST OF STATIC AND DYNAMIC PARAMETERS USED 

Name of the Parameter 
Symbolic 

Representation 

Static Parameters 

Vehicle Type / Transport mode v 

Gender g 

Age a 

Number of Persons travelling n 

Lighting facility L 

Road types Rt 

Public spaces existence Ps 

Road Environment Re 

Road Complexity Rx 

Availability of CCTV C 

Dynamic Parameters 

Traffic condition Tc 

Weather condition Wc 

Road Conditions Rc 

Time t 

Lighting facilities are critical for night-time safety, so the 
system prioritizes well-lit routes in the evening and at night. 
Road type is also considered, as different types offer varying 
safety levels. Public spaces, such as parks, malls, and police 
stations, are seen as beneficial, so routes near these areas are 
preferred. The surrounding environment is evaluated to avoid 
potentially hazardous zones like forest areas. Road complexity 
is another factor, with simpler routes being recommended over 
those with more curves. 

Dynamic parameters are also integrated for real-time 
optimization. Traffic conditions are monitored in real-time to 
meet the safe condition when mode population density, reducing 
accident risks and improving travel efficiency. Weather 
conditions, such as rain, snow, and fog, are tracked, and the 
system adjusts to avoid dangerous routes during adverse 
weather. Road conditions, including potholes, construction, and 
surface quality, are factored in to steer travelers away from 
hazardous areas. Time of day is another key factor, as poorly lit 
or high-accident areas are avoided during late hours. 

The methodology for multi-factor risk assessment and route 
optimization begins with data collection. For the data 
simulation, the available routes between source and destination 
need to be identified. After the routes are identified, the route 
may be divided into partitions. A partition refers to a section of 
the route with a different road type. For example, the entire route 
section may consist of rural village roads, state highways, or 
national high ways. Before set the values to static and dynamic 
parameters, each route is divided into 100-m segments. 

The static and dynamic parameter values for each segment 
are simulated using a randomizer function in Python. To 
generate random values with the randomizer function, we 
initialize the static parameter value, such as road type. Based on 
the road type, the randomizer uses a uniform distribution to set 
the values for public space existence, road environment, and 
road complexity for the chosen percentage (minimum and 
maximum). The dynamic parameters are generated using a 
normal distribution with the chosen percentage (minimum and 
maximum) based on the road type and public space existence. 
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The algorithm for the randomizer function is provided in 
Algorithm 1: 

Algorithm 1: Randomizer Function (generate values) 

Segment the selected route; 

Initialize the road type of each segment; 

For all road segments () do 

 For parameters (Ps, Re, Rx, C, Tc, Wc, Rc) do 

 if parameter_type is "static" then 

Generate a value using a uniform distribution within 

the range [min_value, max_value] 

 else if parameter_type is "dynamic" then 

Generate a value using a normal distribution within 

the range [min_value, max_value] 

 End 

 Return generated value for the parameter 
 End 

End 
 

B. Parameter Value Fixation 

We identified 14 key parameters that significantly impact 
travel safety. Each parameter is symbolically represented and 
assigned a value between 0 and 1, indicating its influence on the 
overall risk factor. The value fixations on parameters are given 
as follows: 

1) Vehicle type / transport mode (v): Different types of 

vehicles have varying levels of stability, speed, and safety 

features, which influence their risk factor. For example, two-

wheelers are generally considered more vulnerable than cars or 

vans, hence assigned a higher risk value (0.7 for two-wheelers, 

0.5 for cars, and 0.3 for vans). 

2) Gender (g): Research indicates that gender can impact 

travel behavior and risk perception. Male travelers are feeling 

safer and ready to face risk than Female travelers. Hence the 

value is fixed as 0.9 for female and 0.6 for males. The average 

gender risk factor is calculated based on the average risk factor 

of all persons travelling. 

3) Age (a): Age influences factors such as reflexes, 

experience, and risk-facing tendencies. Younger travelers (aged 

0-15 years) have a higher risk value (0.9) due to inexperience. 

Travelers aged 15-30 years are assigned a risk value of 0.5. 

Those aged 30-45 years are considered the safest, with a lower 

risk value of 0.2. Travelers aged 46-60 years have a risk value 

of 0.3, while those over 60 years are considered to have 

moderate risk, with a value of 0.5. The average age risk factor 

is calculated based on the number of persons traveling. 

4) Number of persons traveling (n): The risk value for 

traveling decreases as the group size increases, with a risk value 

of 0.8 for solo travelers, 0.5 for two persons, 0.3 for groups of 

3-5, and the lowest risk value of 0.1 for groups larger than five. 

5) Lighting facility (L): Adequate lighting reduces the risk 

of accidents, robberies and other criminal activities. Segments 

with no artificial lighting are assigned the highest risk value (1), 

while light-facilitated segments have a value of 0. During the 

day, the value is set to 0 since there is no need of artificial light. 

At night, the value is also set to 0 if adequate lighting exists; 

otherwise, it is set to 1. This parameter is also depending on the 

public space existence and road types. 

6) Road types (Rt): The risk values for different road types 

decrease with increasing road capacity, with rural roads having 

a risk value of 0.8, state highways (SH) at 0.6, two-way national 

highways (NH) at 0.5, four-way NH at 0.4, six-way NH at 0.3, 

and eight-way NH at 0.2. 

7) Public spaces existence (Ps): The presence of public 

spaces such as parks, shopping areas, villages, and towns 

impacts the risk value. A value of 1 assigned if no public spaces 

exist, indicating higher risk, and a value of 0 if public spaces 

are present, indicating lower risk. 

8) Road environment (Re): The risk values for different 

road environments vary, segments with villages having a risk 

value of 0.45, towns at 0.4, and metro areas being the safest at 

0.2. More hazardous environments include forests segments 

with a risk value of 0.7, hilly region segments at 0.9, and plain 

region segments at 0.5. 

9) Road complexity (Rx): The risk values for road 

complexity decrease as the curve angle increases. Segments 

with curves between 10°-30° have the highest risk value of 0.9, 

while curves between 30°-50° have a risk of 0.8, and curves 

from 50°-70° have a risk of 0.7. For more moderate curves, 

values range from 0.5 for 70°-100°, 0.4 for 100°-140°, 0.3 for 

140°-160°, and the lowest risk of 0.1 is assigned to curves 

between 160°-180° (straight roads). 

10) Availability of CCTV (C): The availability of CCTV 

significantly enhances safety, with segments equipped with 

cameras having a risk value of 0, indicating lower risk, while 

segments without CCTV have a higher risk value of 1, 

reflecting increased safety concerns. 

11) Traffic condition (Tc): The traffic conditions make 

significate effect on the risk factors. Red, indicating a higher 

presence of people, is the safest with a risk value of 0.3. Orange 

represents a moderate risk with a value of 0.6, while blue, 

signifying fewer co-travelers, is the most hazardous with a risk 

value of 0.8. 

12) Weather condition (Wc): Weather conditions 

significantly affect route safety, with accidents more likely in 

adverse conditions. Rainy weather has the highest risk value at 

0.8, followed by foggy conditions at 0.7. Cloudy weather 

presents a moderate risk with a value of 0.5, while sunny 

weather offers the safest conditions with the lowest risk value 

of 0.3. 

13) Road conditions (Rc): Poor road conditions, 

characterized by ridges and troughs, increase the risk of 

accidents (value 0.8), whereas plain roads are safer (value 0.2). 

These values are fixed for each segment on the route. 

14) Time (t): Risk values vary throughout the day, with early 

morning presenting the highest risk at 0.9 due to factors like 

reduced visibility and increased fatigue. Morning conditions 

have a risk value of 0.5, while the risk decreases to 0.4 in the 

afternoon. Evening and midnight have similar risk values of 0.3 

and 0.7 respectively, reflecting different factors such as 

changing light conditions and reduced alertness. 
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C. Finding Risk Factors 

Finding the risk factors for safe human routing involves 
analysing a combination of static and dynamic parameters to 
identify potential hazards and vulnerabilities in a given route. 
The risk factors are identified for the available routes from the 
source to the destination. The detailed calculation is provided in 
the implantation section 4.A. 

D. Route Optimization 

Finally, the safe route is identified using the risk factors 
calculated for all routes. The safe route measurement and 
explanation is provided in Section IV(B) This approach ensures 
that the routing system enhances safety for all users under a 
variety of conditions. 

IV. IMPLEMENTATION 

The safety of a travel route is influenced by various factors, 
which can be broadly categorized into static and dynamic 
parameters. Static parameters are those that do not change 
frequently and include factors such as the type of vehicle, the 
travelers age, and the road environment. Dynamic parameters, 
on the other hand, are subject to change over time and include 
traffic conditions, weather, and road conditions. 

A. Risk Factor Calculation 

For every source and destination pair, multiple routes can 
typically be identified, each offering a different path between the 
two points. These routes are referred to as 𝑅𝑗, where 1≤j≤m, 
with m representing the total number of possible routes. 

To ensure safety and optimize the selection process, it is 
essential to calculate the risk factor associated with each 
possible route. As said in Section III(A), each route 𝑅𝑗 is divided 
into smaller, manageable segments of 100 meters, denoted as 𝑆𝑖. 
Segmenting the route in this way allows for a detailed and 
accurate analysis of the risk factors associated with each 
segment of the journey. 

The risk factor for each segment, Si, is determined by 
analyzing a combination of static and dynamic parameters. The 
Static Risk Factor (SRFi) for ith segment is calculated as the 
average value of ten specific static parameters. 

𝑆𝑅𝐹
𝑖

=
𝑣+𝑔+𝑎+𝑛+𝐿+𝑅𝑡+𝑃𝑠+𝑅𝑒+𝑅𝑥+𝐶

10
                       (1) 

The Dynamic Risk Factor (DRF𝑖) for each segment 𝑆𝑖 is 
calculated by considering four key parameters that reflect the 
changing conditions such as traffic, weather, road condition and 
time of travel of the route. 

  𝐷𝑅𝐹𝑖
=

𝑇𝑐+𝑊𝐶+𝑅𝑐+𝑡

4
                               (2) 

Hence, the Risk Factor (RF𝑖) of the 𝑖th segment is determined 
by averaging both the Static Risk Factor (SRF𝑖) and the Dynamic 
Risk Factor (DRFi).  

                      𝑅𝐹𝑖 =
𝑆𝑅𝐹𝑖

+𝐷𝑅𝐹𝑖

2
                                (3) 

This approach ensures that the RF𝑖 reflects a complete 
assessment of the segment’s safety, taking into account both the 
constant, essential risks associated with static parameters and the 
fluctuating risks introduced by dynamic conditions. By 
calculating the RF𝑖 for each segment, the overall safety of the 
route can be accurately evaluated by summing all segments’ risk 
factors as follows: 

    𝑅𝑗 =
∑ 𝑅𝐹𝑖

𝑁
𝑖=1

𝑁
                                      (4) 

The risk factor for the 𝑗th route from the source to the 
destination is denoted as 𝑅𝑗. This factor represents the level of 
risk associated with that specific route, considering static and 
dynamic factors. By quantifying 𝑅𝑗, the overall safety of each 
route can be assessed, which is crucial for optimizing travel and 
minimizing potential risks during journey. 

B. Route Optimization 

The safest route (SR) is determined by evaluating the risk 
factors associated with all identified routes. By analyzing the 
calculated risk factors, the route with the lowest risk is identified 
as the safest. This process involves comparing each route’s risk 
factor to ascertain which one presents the least potential for 
danger, thereby ensuring the most secure travel option. 

    𝑆𝑅 = 𝑚𝑖𝑛(𝑅𝑗)     where 1<j<m                     (5) 

The implementation of this approach is designed to identify 
the safest route by thoroughly evaluating all relevant parameters 
from the available routes. By integrating both static and dynamic 
factors, such as vehicle type, road conditions, lighting, real-time 
traffic, and weather, the system ensures that each route 
recommendation prioritizes safety. This methodology not only 
identifies the safest possible routes but also encourages travelers 
to follow to these recommendations, thereby enhancing overall 
travel security and reducing potential risks. 

V. RESULTS AND DISCUSSION 

In this section, we present analysis of the multi-factor risk 
assessment and route optimization methodology applied to 
various identified routes between source and destination. This 
section explores the effectiveness of the proposed system in 
identifying and recommending the safest routes by evaluating 
the impact of static and dynamic parameters on travel safety. 

To implement our proposed methodology, we selected 
Maragathapuram (near Villupuram), Tamil Nadu, as the source 
and Parvathipuram, Vadalur, Tamil Nadu, as the destination. 
Parvathipuram is situated in the Vadalur town area. We 
considered five distinct routes from Maragathapuram to 
Parvathipuram, all with similar distances but varying slightly in 
their specifics. These routes traverse diverse topographies, 
including rural villages, towns, state highways (SH), and 
national highways (NH), encompassing both two-way and four-
way roads. Additionally, the routes include sections passing 
through rural town near the destination. The routes were 
partitioned based on road types, and details are provided in 
Table II. 
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TABLE II. POSSIBLE ROUTES AND PARTITIONS FROM SOURCE TO 

DESTINATION 

Sl. 

No. 

Route 

Number 

Partition Type 

(Road Type) 

Partition 

Size (km) 

Number of 

segments 

1 1 Rural Village 3.7 37 

2 1 NH38-4 ways 5.3 53 

3 1 SH68 17 170 

4 1 
NH36- 2 ways/ 4-
ways 

23.5 235 

5 1 NH532- 4ways 1 100 

6 1 Rural Twon 0.8 80 

7 2 Rural Village 4.6 46 

8 2 
Bye Pass Road - 4 
ways 

9.7 87 

9 2 
NH36- 2 ways / 4 

ways 
38.3 383 

10 2 NH532- 4ways 1 100 

11 2 Rural Twon 0.8 80 

12 3 Rural Village 4.3 43 

13 3 NH38-4 ways 3.5 35 

14 3 NH38-Town 4.2 42 

15 3 NH332-2 ways 5 50 

16 3 
NH36- 2 ways / 4 
ways 

41.3 413 

17 3 NH532- 4ways 1 100 

18 3 Rural Twon 0.8 80 

19 4 Rural Village 3.7 37 

20 4 NH38-4 ways 10.3 103 

21 4 SH9 17.3 173 

22 4 
NH36- 2 ways/ 4-

ways 
23.5 235 

23 4 NH532- 4ways 1 100 

24 4 Rural Twon 0.8 80 

25 5 Rural Village 3.7 37 

26 5 NH38-4 ways 16.4 164 

27 5 SH602 27.9 279 

28 5 
NH36- 2 ways/ 4-

ways 
11.4 114 

29 5 NH532- 4ways 1 100 

30 5 Rural Twon 0.8 80 

For the route analysis from Maragathapuram to 
Parvathipuram, Route 1 includes rural village road, NH38, 
SH68, NH36, NH532, and a rural town segment. Route 2 
features rural village road, a four-lane bypass, NH36, NH532, 
and a rural town. Route 3 starts with rural village road, NH38, 
NH38-Town, NH332, NH36, NH532, and ends in a rural town. 
Route 4 consists of rural village road, NH38, SH9, NH36, 
NH532, and a rural town segment. Route 5 includes rural village 
road, NH38, SH602, NH36, NH532, and concludes with a rural 
town. All five routes start from the same rural village road with 
little variation due to connect with next partition and end with 
NH532 and rural town segments of same distance. 

C. Risk Factor Analysis 

Based on the partition details provided in the Table II and 
values fixed for parameters in the section 3.B, we have simulated 
values for all the parameters of all partitions by seriously 
considering the partitions types. The chosen mode of transport 
is a car, with four passengers (three men and one woman), and 
the average age-related risk factor for the group is 0.4. The data 
was simulated using default values for three parameters: lighting 
facility was assigned 0 risk due to daytime travel, weather 
condition was set to sunny, and the travel time was set to 

afternoon. The remaining parameter values were fixed based on 
partitions and dependent parameters. 

The risk factor is calculated for each 100-meter segments 
using the Eq. (3) with help of Eq. (1) and Eq. (2). The overall 
risk factor for the route is calculated using the Eq. (4). 

The Fig. 2 shows the risk factors of all segments of Route-1. 
For Route-1, risk factors across partitions range from a 
minimum of 0.29375 to 0.34625 and a maximum of 0.40125 to 
0.59125. Average risk factors vary between 0.35975 and 
0.478885135, with specific averages of 0.478885135, 
0.422900943, 0.458838235, 0.432356383, 0.35975, and 
0.4253125. This variation reflects inconsistencies in risk levels 
along the route, particularly in village environments. 

 

Fig. 2. Risk factors of all segments in route-1. 

Fig. 3 presents the risk factors along Route-2. The minimum 
risk factors for Route-2 range from 0.29375 to 0.34625, while 
the maximum values vary between 0.40125 and 0.59125. The 
average risk factors across the five segments are 0.4748, 0.4553, 
0.4391, 0.3598, and 0.4253, respectively. 

 

Fig. 3. Risk factors of all segments in route-2. 
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Route-3 consists of seven partitions and risk factors are 
calculated. Fig. 4 illustrates the risk factors across all segments 
of Route-3. The minimum risk factors range from 0.27875 to 
0.36125, while the maximum values range from 0.40125 to 
0.59125. The average risk factors for the seven segments are 
0.4830, 0.4418, 0.3616, 0.4217, 0.4406, 0.3598, and 0.4253, 
respectively. 

 

Fig. 4. Risk factors of all segments in route-3. 

Route-4 consists of six segments, with the same 
combinations of road types as discussed in Route-1, but with 
variations in the distances of state and national highways. It 
follows a different path compared to Route-1. 

Fig. 5 shows the risk factors for all six segments of Route-
4, as outlined in Table II. The minimum risk factors range from 
0.29375 to 0.34625, while the maximum values range from 
0.40125 to 0.59125. The average risk factors for the six 
segments are 0.4782, 0.4208, 0.4463, 0.4324, 0.3598, and 
0.4253, respectively. 

 

Fig. 5. Risk factors of all segments in route-4. 

Similarly, the risk factors for the six segments of Route-5, 
where the state highway is the major contributing partition, have 
been calculated. Fig. 6 illustrates the risk factors for all segments 
of six partitions along Route-5. The minimum risk factors range 
from 0.29125 to 0.34875, while the maximum values range from 
0.33375 to 0.53875. The average risk factors for the six 
segments are 0.4819, 0.4182, 0.4770, 0.4287, 0.3598, and 
0.4253, respectively. 

 

Fig. 6. Risk factors of all segments in route-5. 

The risk factors for all partitions across all routes are shown 
in Fig. 7. The risk factors for the first partition are nearly 
identical across all routes due to minimal distance variation on 
the routes. Likewise, the risk factors for the last two partitions 
are the same, as these partitions remain consistent across all 
routes. 

 

Fig. 7. Risk factors of all partitions in five routes. 
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The average static, dynamic, and final risk factors for all five 
routes are shown in Fig. 8. It illustrates that the static risk factor 
is higher than the dynamic risk factors for all routes except 
Route 3, which has a larger town area compared to the other 
routes. 

 

Fig. 8. Static, dynamic and final risk factors of all routes. 

D. Safe Route Identification 

The safest route is determined using Eq. (5), which 
calculates the route with the minimum risk factor among the 
studied routes. In this study, we analyzed five possible routes as 
given in Table II, each with varying partitions. Fig. 9 presents 
the risk factor values for all five routes. Route 3 has the lowest 
risk factor compared to the others. 

 

Fig. 9. Risk factors of all routes. 

The reduced risk for Route 3 is attributed to several factors. 
This route passes through more town areas, which typically have 
better infrastructure and safety measures such as lighting and 
traffic control. Additionally, Route 3 follows longer stretches of 
national highways, known for their higher safety standards and 
better road conditions. Finally, the higher population density 
along this route also contributes to its lower risk, as densely 
populated areas have less threatened from the attackers. 

The risk factors of five routes are evaluated under varying 
weather conditions, while maintaining the other parameters 
constant. Fig. 10 illustrates the impact of different weather 
conditions on the risk factors across all five routes. 

 

Fig. 10. Risk factors at different weather conditions. 

Route 3 consistently offers the lowest risk factor across all 
weather conditions, as it passes through more densely populated 
areas. 

The time of travel is also taken into account when calculating 
the risk factors for all five routes. For daytime travel, including 
morning, afternoon, and evening, the lighting facility value is 
set to 0, as natural light is sufficient. For night time travel, the 
lighting facility value is determined based on the presence of 
public places along the route and the type of route partitions. 
This adjustment reflects the availability and effectiveness of 
artificial lighting in reducing risk during night time. Fig. 11 
illustrates how travel time influences the overall risk factor 
calculation across different routes. 

The results indicate that Route 3 is the most optimal for 
daytime travel, yielding the lowest risk factors due to its natural 
lighting and favorable conditions during daylight hours. 
Conversely, for nighttime travel, the Route 2 is found to be the 
safest, offering the lowest risk factors. This is primarily 
attributed to better lighting infrastructure, the presence of 
public spaces, and well-defined route partitions that enhance 
visibility and safety during night hours. These findings highlight 
the importance of adapting route selection based on the time of 
travel to minimize risk. 
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Fig. 11. Risk factors at different travel time. 

The results demonstrate the effectiveness of the proposed 
model in identifying safe travel routes. The inclusion of both 
static and dynamic parameters ensured a risk assessment, 
making the model suitable for safe human travelling on the 
optimal route predicted by the proposed model. 

VI. CONCLUSION 

In conclusion, this study presents a multi-factor risk 
assessment and route optimization methodology aimed at 
improving travel safety based on the chosen sources and 
destination places. By incorporating both static and dynamic 
factors, the system effectively identifies the safest routes based 
on calculated risk factors. Our analysis reveals that Route 3 is 
the safest for daytime travel, while Route 2 is optimal for 
nighttime travel due to better lighting and route partitions. The 
granular assessment of 100-meter segments along the routes 
highlights the significant impact of environmental and 
infrastructural factors on travel safety, including artificial 
lighting, time of travel, and weather conditions. This adaptable 
framework, influence widely applicable risk parameters, 
demonstrates the potential for broader real-world applications in 
dynamic and changing road networks, ensuring safer route 
recommendations. 

In future work, we aim to enhance the system by integrating 
real-time data sources, such as live weather updates, traffic 
congestion reports, and road maintenance data, to provide even 
more accurate risk assessments. Additionally, we plan to 
incorporate machine learning techniques to continuously 
improve the precision of risk predictions based on observed 
outcomes. By doing so, the system can become more robust and 
reliable in its route optimization recommendations. 
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