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Abstract—The effective operation of water injection pumps is 

vital for enhancing oil recovery in the oil and gas industry. To 

ensure optimal pump performance and prevent unplanned 

downtime, this study focused on implementing predictive 

maintenance strategies. We began by identifying five critical 

operational parameters—Seal Pressure 1, Seal Pressure 2, 

Vibration Data for the Drive End (VIB DE), Vibration Data for 

the Non-Drive End (VIB NDE), and Ampere. These parameters 

were monitored and analyzed to evaluate their impact on pump 

performance and maintenance needs. To achieve this, we applied 

three machine learning algorithms: Extreme Gradient Boosting 

(XGBoost), Light Gradient-Boosting Machine (LGBM), and 

Random Forest. Each algorithm was independently trained and 

tested on the dataset corresponding to each operational 

parameter. We assessed their performance using key accuracy 

metrics, including R squared, Mean Absolute Error (MAE), and 

Root Mean Square Error (RMSE). Following this, we developed 

an Ensemble model, combining the predictive outputs of XGBoost, 

LGBM, and Random Forest. The Ensemble model was then 

applied to the same parameters to evaluate its ability to address 

the limitations observed in standalone models. The results 

demonstrated that the Ensemble model consistently delivered 

superior performance, achieving lower RMSE and MAE values 

and higher R squared coefficients across all parameters. This 

study culminates in the validation of the Ensemble model as a 

robust and reliable approach for predictive maintenance. By 

leveraging the strengths of multiple algorithms, the Ensemble 

model offers significant improvements in accuracy and reliability, 

contributing to more effective maintenance systems for the oil and 

gas industry. 
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I. INTRODUCTION 

The oil and gas sector confronts the critical challenge of 
substantially reducing operational costs while upholding safety 
standards [1]. Fortuitously, artificial intelligence (AI) has 
become instrumental in addressing the challenges faced by the 
oil and gas industry (OGI), capitalizing on technological 
advancements and the Big Data revolution to facilitate informed 
decision making and expedite the transition from issue 
identification to execution [2]. Encompassing a range of 
operations spanning exploration to distribution, the OGI 
functions within a multifaceted environment characterized by 
extensive infrastructure and high-value assets [3]. Efficient 

maintenance and reliability management are imperative for 
ensuring optimal production, safety, and cost-effectiveness in 
this industry [3]. The adoption of predictive maintenance (PdM) 
emerges as a pivotal methodology, seamlessly integrating data 
analysis, machine learning (ML) algorithms, and sensor 
technologies to collect real-time operational and sensor data [4]. 
This proactive approach plays a crucial role in early failure 
identification, thereby mitigating the consequences of 
unforeseen downtime. A thorough examination of the existing 
literature reveals numerous successful AI implementations 
across various domains of petroleum engineering [5]. Within the 
OGI, a particular emphasis on PdM is evident, particularly 
concerning Water Injection Pumps (WIPs), which play a 
fundamental role in maintaining reservoir pressure and 
optimizing oil recovery [3]. By harnessing advanced 
technologies like ML and deep learning (DL), PdM for WIPs 
introduces enhanced strategies for predicting failures early and 
facilitating real-time condition-based proactive maintenance [6]. 
In contrast, traditional maintenance approaches often lead to 
unnecessary actions and disruptive costs, while reactive 
maintenance poses risks to safety and the environment [7]. PdM 
tackles these challenges by leveraging cutting-edge technologies 
and data analytics to continuously monitor the real-time health 
and performance of equipment. The comprehensive data-driven 
approach employed by PdM models, drawing on real-time data 
from sensors, control systems, and historical maintenance 
records, enables the early detection of potential issues [3,8]. This 
proactive intervention empowers organizations to anticipate and 
address impending challenges, effectively minimizing 
downtime, optimizing maintenance strategies, and improving 
operational efficiency [9]. The integration of PdM models 
establishes a proactive maintenance paradigm that fortifies 
reliability, reduces costs, and prolongs the lifecycle of critical 
assets [3,4]. The early identification and resolution of potential 
issues provide operators with the capability to circumvent costly 
breakdowns, mitigate production losses, and ensure 
uninterrupted operations. PdM also presents the opportunity for 
more efficient resource planning and allocation, enabling 
operators to optimize spare parts inventories and streamline 
maintenance schedules [2,4,5,10]. 

Digitalization and the Internet of Things (IoT) generate 
extensive data, driving the significance of Predictive 
Maintenance (PdM) in optimizing upstream rotating equipment 
in the Oil, Gas, and Petrochemical (OGP) industry [11, 12]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

437 | P a g e  

www.ijacsa.thesai.org 

Efficient operation of Water Injection Pumps (WIPs) enhances 
oil recovery and operational success [1–3]. PdM minimizes 
unplanned downtime and improves pump performance, with 
Deep Learning (DL) playing a pivotal role in recent studies. 
Janssens et al. [13] used CNNs for health monitoring via infrared 
thermal images, showcasing potential in anomaly detection, 
while Sampaio et al. [14] employed ANNs to predict motor 
failures, albeit with limited performance analysis. Bekar et al. 
[15] utilized K-means and PCA for motor PdM, facing 
challenges related to motor type specificity. Falamarzi et al. [16] 
applied ANN and SVR to tram track gauge prediction, and Susto 
et al. [17] proposed a PdM system for epitaxy processes, lacking 
equipment-specific context. 

In developing countries, implementing PdM in the OGP 
sector encounters barriers such as limited skilled personnel, 
sensor access, infrastructure constraints, financial limitations, 
and cultural challenges [18-19]. Initiatives for sustainability and 
diversification, alongside training and infrastructure 
investments, aim to address these challenges [19-20]. Despite 
advancements, there is a research gap in applying AI to predict 
failures in WIPs, critical for health, safety, and environmental 
outcomes. This study addresses the gap by leveraging ML 
models like XGBoost and LGBM to predict WIP failures, 
focusing on asset loss, regulatory compliance, corporate 
reputation, and production impacts [3–5]. 

These algorithms, recognized for their high performance, 
have not been extensively studied in conjunction with ensemble 
methods such as Random Forest. The Ensemble model 
demonstrates unparalleled accuracy and increases the accuracy 
of predictions. This research is driven by the urgency to provide 
advanced solutions for PdM in the OGI sector, addressing the 
complexities of diverse operational parameters. This study 
specifically addresses the maintenance of water injection 
pumps, focusing on critical factors such as currents, pressure, 
and vibrations because these factors are crucial for maintenance 
but are often under-represented in existing research. This study 
innovatively integrates multiple algorithms within ensemble 
models to enhance predictive accuracy and address maintenance 
challenges in water injection pumps. Unlike previous 
approaches that often lack specificity in algorithm selection for 
factors such as currents, pressure, and vibrations, a systematic 
approach is employed to optimize performance in real-world 
operational environments. This refinement distinguishes the 
work by effectively applying ensemble techniques to improve 
Prognostics and Health Management (PHM) systems, 
particularly in critical applications such as WIPs. The findings 
of this study are poised to significantly contribute to the field by 
presenting a holistic and enhanced approach to predictive 
modeling in industrial settings. In the upcoming sections, this 
study delves into PdM through ML. Section II explains the 
methodology, highlighting the significance of the Ensemble 
model. Section III presents the results and analysis, while 
discussion is given in Section IV. Limitation and future work is 
given in Section V and Section VI respectively. Finally, the 
paper is concluded in Section VII. 

II. METHODOLOGY 

Predictive maintenance (PdM) in the OGI industry is critical 
for optimal production, safety, and cost-effectiveness. This 

study employs an ensemble of ML models—XGBoost, LGBM, 
and Random Forest—to enhance predictive accuracy. The 
unique strengths of each algorithm contribute to a robust 
framework. The ensemble methodology leverages 
complementary features, addressing individual weaknesses and 
mitigating biases. This novel approach aims to outperform 
standalone models, offering more accurate and reliable results. 
Fig. 1 illustrates the methodology implemented in our study. The 
flowchart visually outlines the sequential steps involved: data 
collection from various sources relevant to WIPs performance, 
including currents, pressure, and vibrations; preprocessing of the 
collected data to handle missing values, normalize them, and 
prepare them for analysis; selection of pertinent features 
influencing WIPs performance; training of machine learning 
models, comprising individual algorithms and Ensemble 
models, using the preprocessed data; evaluation of model 
performance using metrics such as RMSE to determine 
accuracy; creation of an Ensemble model by combining outputs 
from multiple models to enhance predictive accuracy; validation 
of the Ensemble model using test data to ensure reliability; and 
deployment of the final model for real-time predictive 
maintenance of water injection pumps, enabling proactive 
maintenance scheduling. To model and simulate the water 
injection network system, the relationships between different 
components and their respective parameters are established 
using the given formulae and principles of fluid mechanics. This 
includes deriving equations for the pump model, the water 
distributing station model, the well model, the tube element 
model, the node element model, and the system model, as 
outlined below. The pump model is represented by the quadratic 
equation: 

H = AQ2 + BQ + C                              (1) 

where H is the pump outlet pressure, Q is the pump flow rate, 
and A, B, and C are co-efficient representing the quadratic, 
linear, and constant terms, respectively. The water distributing 
station and well model can be expressed as: 

P = A Q + B                        (2) 

where P denotes the pressure at the water distributing station 
or injection well, Q is the flow rate, and A and B are the linear 
and constant term coefficients, respectively [21]. The tube 
element model is described by: 

qi = ki(hk − hj)                     (3) 

hf  = Pi − Pj              (4) 

where qi is the flow rate through pipeline element i, ki is a 
variable related to the pipe-line element length, inner diameter, 
and friction coefficient, hk and hj are the gross heads at the two 
ends of the pipeline element, and hf is the pressure loss across 
the pipe sec-tion. The pressure loss in the pipe section is 
calculated using the Darcy formula: 

hf = Lv2/2dg            (5) 

where hf is the pressure loss, L is the pipe section length, d 
is the diameter, v is the fluid flow velocity, and g is the 
gravitational acceleration. Using these relationships, the system 
of equations is formulated to describe the behavior of the water 
injection network. Numerical methods are employed to solve 
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these equations iteratively, allowing for the simulation of 
network parameters such as pressure and flow rate at all nodes. 

 
Fig. 1. Methodology flowchart. 

A. Ensemble Model Construction 

The present study incorporates a diverse ensemble of ML 
models; namely, X Boost, LGBM, and Random Forest. Each 
algorithm brings unique strengths, contributing to the overall 
robustness of the predictive framework. XGBoost’s scalability, 
LGBM’s high-performance gradient boosting, and Random 
Forest’s ensemble learning approach individually address 
distinct aspects of the predictive task. The ensemble 
methodology aims to leverage the complementary strengths of 
each algorithm, enhancing predictive accuracy. By fusing the 
predictive capabilities of XGBoost, LGBM, and Random Forest, 
the study seeks to capitalize on their collective intelligence, 
mitigating individual weaknesses. The study asserts that this 
amalgamation, orchestrated through ensemble techniques, can 
yield more accurate and reliable results compared to each 
algorithm operating in isolation. This approach is grounded in 
the empirical observation that ensemble models often 
outperform individual algorithms by mitigating biases and 
reducing overfitting. 

B. Data Collection and Preprocessing 

The data utilized in this study originates from sensor 
readings, maintenance records, and operational parameters, 
collectively offering insights into the pump system’s behavior. 

Sensor data provide real-time insights into operational aspects, 
including pressure levels, temperatures, and vibrations. 
Maintenance records offer a historical perspective, detailing 
interventions over time. Table I presents a succinct overview of 
the key operational parameters meticulously chosen for the 
analysis of the Work in Progress WIPs system. Among these 
parameters are the Ampere, denoting the current employed by 
the pump; VibDE, representing the vibration in the Drive End 
bearing; VibNDE denoting the vibration in the Non-Drive End 
bearing; and 1st Press, and 2nd Press delineating the 1st and 2nd 
Stage Seal Pressures, respectively. 

TABLE I.  LIST OF SELECTED RUNNING PARAMETERS FOR WIPS SYSTEM 

ANALYSIS 

Name Description 

1st_Press 1st Stage Seal Press 

2nd_Press 2nd Stage Seal Press 

VibDE Vibration in DE bearing 

VibNDE Vibration in NDE bearing 

Ampere The current used by the pump 

Evaluating VIB DE and VIB NDE bearings is crucial 
because they support pump shaft alignment, and their condition 
directly impacts operational efficiency and reliability [7]. This 
comprehensive compilation serves as a foundational tool for a 
nuanced examination, allowing for a detailed assessment of the 
factors that significantly influence the functionality and 
performance of the WIPs system. 

Preprocessing steps include data cleansing, type conversion, 
outlier detection, feature selection, correlation analysis, and 
normalization. Data cleansing addresses inconsistencies and 
missing values. Type conversion ensures uniformity in 
calculations. Outlier detection manages outliers that could 
hinder model training. Feature selection, guided by correlation 
analysis, reduces model complexity. Normalization and scaling 
ensure uniform feature scales for effective ML. 

C. Data Analysis 

An extensive repository of raw data encompassing 
operational parameters and cumulative operational hours was 
initially collected. The dataset refinement process involved 
identifying salient data points that had a high correlation with 
WIPs. This process aimed to enhance model interpretability and 
counteract dimensionality augmentation. The selected key 
operational parameters are Ampere, VibDE, VibNDE, 
1st_Press, and 2nd_Press. Feature selection is approached 
judiciously, ensuring that only the most influential features are 
considered for each model. The provided code snippet employs 
the “sweetviz” Python library for exploratory data analysis 
(EDA), generating comprehensive reports for informed decision 
making. The analysis involves data cleaning, exclusion of string 
entries, and construction of a correlation matrix to assess inter-
feature relationships. The Correlation Matrix of Feature 
Influences helps in selecting the pertinent features shown in Fig. 
2, contributing to dimensionality re-duction and enhancing 
model accuracy. This matrix analysis promotes a nuanced 
understanding of data structure, confounding factors, and noise, 
ultimately improving the robustness of the research. 
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Fig. 2. Correlation matrix of feature influences. 

D. Comparative Modeling of Operational Parameters 

In this study, an assessment is made of two distinct modeling 
techniques concerning operational parameters. The Light 
Gradient Boosting Machine (LGBM), eXtreme Gradient 
Boosting (XGBoost), and random forest methodologies serve as 
the primary frameworks for examination [22]. The deliberate 
selection of multiple modeling techniques enriches the empirical 
rigor of the research, enabling a comparative analysis of their 
predictive capabilities and generalization capacities. Rooted in 
the gradient boosting paradigm, LGBM, XGBoost, and random 
forest models iteratively enhance accuracy by sequentially 
fitting weak learners to residuals, capturing intricate data 
patterns [23]. Chosen for their success in various domains, 
especially tasks requiring high accuracy and efficiency, these 
models offer a range of hyperparameter configurations for fine-
tuning. By employing two distinct models, the aim is to 
comprehensively understand their performance variances, 
strengths, and limitations in capturing the intricate interplay 
among operational parameters. This deliberate and empirically 
driven choice enhances the scientific rigor of the research, 
enriches the depth of analysis, and facilitates a nuanced 
interpretation of the obtained results. 

1) XGboost prediction model: The XGBoost model stands 

out as a powerful ML algorithm deeply rooted in gradient 

boosting. Recognized for its versatility and exceptional 

performance, XGBoost is a valuable asset across various data 

science and ML domains [24]. Operating as an ensemble of 

decision trees, XGBoost employs a sequential correction 

approach to iteratively enhance model performance. This 

methodology allows it to capture intricate relationships within 

datasets, while integrated tree pruning controls model 

complexity for improved computational efficiency [22]. 

Engineered for optimized speed and efficiency, XGBoost is 

scalable for large datasets through parallel processing. Its 

adaptability spans diverse data types, and it excels in both 

regression and classification tasks [25]. With features such as 

metric-based feature importance, handling imbalanced datasets, 

and robust regularization techniques, XGBoost emerges as a 

versatile and powerful algorithm, known for efficiently tackling 

complex tasks [26]. 

2) LightGBM prediction model: The LightGBM model is a 

high-performance open-source software library designed 

specifically for gradient boosting. Renowned for its speed, 

resource efficiency, and scalability, LightGBM finds 

applications in diverse ML tasks such as classification, 

regression, and ranking [27]. Unlike some gradient-boosting 

algorithms, LightGBM employs decision trees as base learners, 

contributing to its exceptional efficiency. Innovative techniques 

like Gradient-Based One-Side Sampling (GOSS) and Exclusive 

Feature Bundling (EFB) further enhance its capabilities for 

reducing model variance and optimizing feature selection. 

Notably, LightGBM stands out for its remarkable speed, 

making it one of the fastest ML libraries capable of efficiently 

training models on extensive datasets. Its efficiency in memory 

usage optimization allows it to handle datasets surpassing the 

memory capacity of alternative libraries [28]. Additionally, 

LightGBM consistently achieves impressive accuracy, 

delivering state-of-the-art results across a range of ML tasks, 

further solidifying its reputation as a powerful and scalable 

library. 

3) Random forest prediction model: Random forest 

regression, a highly regarded technique in ML, is known for its 

versatility, robustness, and superior predictive accuracy. This 

ensemble method combines multiple decision trees, excelling 

in handling complex nonlinear relationships in diverse 

prediction tasks [29]. Its acclaim stems from consistently 

outperforming singular decision trees and other regression 

models by capturing intricate nonlinear relationships while 

mitigating overfitting. While recognized for its robustness to 

outliers and noise, a closer examination is crucial to understand 

its limits [30]. The algorithm handles high-dimensional data 

well, but scalability and efficiency are key. Feature importance 

analysis offers insights, but robustness across datasets is crucial 

[30]. This analysis aims to provide a nuanced view of random 

forest regression, emphasizing its strengths and offering 

alternative scenarios. 

III. RESULTS 

This section compares XGBoost, LGBM, and Random 
Forest algorithms in predicting parameters like pressure, 
vibration, and Ampere values, aiming to assess their real-world 
effectiveness and reliability. 

A. Comparative Analysis of Algorithms 

1) XGBoost model for pressure prediction: insights and 

visual analysis: Tables II and III present a detailed analysis of 

the XGBoost model's performance metrics for Seal Pressure 1 

and Seal Pressure 2, respectively. The XGBoost model for Seal 

Pressure 1 exhibits commendable metrics, with an RMSE of 

5.61, an Mean Absolute Error (MAE) of 2.38, and an R-squared 
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value of 0.93. These metrics suggest that the model provides 

accurate predictions, capturing a significant portion of the 

variance in the data for Seal Pressure 1. 

TABLE II.  XGBOOST MODEL METRICS FOR SEAL PRESSURE 1 

Model RMSE MAE R squared 

XGBoost 5.61 2.38 0.93 

Table III focuses on Seal Pressure 2, demonstrating the 
XGBoost model's robust performance with an RMSE of 9.41, an 
MAE of 4.87, and an R-squared value of 0.91. Despite the 
slightly higher RMSE and MAE compared to Seal Pressure 1, 
the model exhibits reasonable accuracy. Interpretation of these 
metrics should consider specific application needs and tolerance 
for errors. The R-squared values, nearing 1.0, signify strong 
correlation, while RMSE and MAE offer insights into prediction 
errors. Overall, the XGBoost model proves effective in 
predicting both Seal Pressure 1 and Seal Pressure 2, providing 
valuable insights for practitioners in pressure prediction 
scenarios. 

TABLE III.  XGBOOST MODEL METRICS FOR SEAL PRESSURE 2 

Model RMSE MAE R squared 

XGBoost 9.41 4.87 0.91 

Known for its robustness with complex datasets, the 
XGBoost algorithm excels in pressure forecasting. This 
overview explores its application for precise pressure prediction, 
crucial in diverse sectors. Fig. 3 and Fig. 4 visually compare 
actual and predicted values, focusing on the initial 25 
predictions. Logarithmic scaling enhances clarity, and the 
limited predictions prevent overcrowding, allowing for a 
focused evaluation of XGBoost's predictive accuracy. 

 
Fig. 3. XGBoost model—line plot analysis of actual vs. predicted pressure 1 

(first 25 predictions). 

 
Fig. 4. XGBoost model—focused visualization with limited predictions 

pressure 2 (first 25 predictions). 

2) XGBoost Model for vibration prediction: Insights and 

visual analysis: Evaluating VIB DE and VIB NDE bearings is 

crucial for pump system health. In Table IV, focusing on VIB 

DE, the XGBoost model shows strong performance with an 

RMSE of 6.32, an MAE of 3.80, and a high R-squared value of 

0.99, indicating accurate predictions. 

TABLE IV.  VIBRATION IN VIB DE—XGBOOST MODEL METRICS 

Model RMSE MAE R squared 

XGBoost 6.32 3.80 0.99 

Table V, evaluating VIB NDE, shows excellence with an 
RMSE of 3.34, an MAE of 3.80, and an impressive R-squared 
value of 0.99. These metrics highlight the XGBoost model's 
proficiency in predicting Non-Drive End-bearing vibration. 
Comparing Tables IV and V reveals consistent high 
performance in predicting vibration for both Drive End and 
Non-Drive End bearings. Strong R-squared values indicate a 
robust correlation, emphasizing model reliability. Similar MAE 
values suggest consistent accuracy. Accurate vibration 
prediction is crucial for identifying potential issues and 
preventing malfunctions, showcasing the XGBoost model's 
effectiveness in addressing vibration complexities for overall 
pump system health and longevity. 

TABLE V.  VIBRATION IN VIB NDE—XGBOOST MODEL METRICS 

Model RMSE MAE R squared 

XGBoost 3.34 3.80 0.99 

Fig. 5 and Fig. 6 depict the XGBoost model's performance 
in predicting VIB DE and VIB NDE. Using a line graphs, the 
visualizations compare the initial 25 predictions with actual 
values. Applying a logarithmic function enhances scale and 
normalizes data for a clearer presentation, reducing clutter. The 
intentional limit of 25 predictions prevents graph overcrowding, 
ensuring a focused and comprehensive representation. 
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Fig. 5. XGBoost model predictions vs. actual values for VIB DE (line 

graph). 

 
Fig. 6. XGBoost model predictions vs. actual values for VIB NDE (line 

graph). 

3) XGBoost model for AMPERE prediction: insights and 

visual analysis: Table VI details the predictive performance 

metrics for the XGBoost model in Ampere measurements 

forecasting. With an RMSE of 3.28, an MAE of 2.25, and an R-

squared value of 0.79, the model shows reasonably accurate 

predictions for Ampere. While demonstrating proficiency, 

there is room for improvement, particularly in explaining 

variance. These metrics serve as benchmarks, guiding potential 

refinements to enhance precision in future iterations. Insights 

from Table VI contribute to ongoing efforts to optimize 

parameters or explore alternative methodologies, crucial for 

fine-tuning the model and maximizing its effectiveness in real-

world applications where accurate Ampere predictions are 

crucial. 

TABLE VI.  XGBOOST MODEL METRICS FOR AMPERE PREDICTION 

Model RMSE MAE R squared 

XGBoost 3.28 2.25 0.79 

Fig. 7 visually analyze the XGBoost model's predictive 
performance, comparing the first 25 predictions with actual 
values using grouped line plots. The contrast between actual and 
predicted values highlights the model's accuracy, with line plots 
depicting continuous performance trends. Applying a 
logarithmic function enhances clarity and comparability, 
ensuring better scale and data normalization for a coherent 
representation. Focusing on the initial 25 predictions prevents 
visual overcrowding, thereby facilitating a detailed examination 
of early-phase accuracy. 

This approach allows for effective pattern recognition and 
insights. Overall, these visualizations offer a comprehensive and 
accessible assessment of the XGBoost model's predictive 
capabilities, leveraging a combination of graphs and thoughtful 
data transformations for nuanced understanding and valuable 
insight. 

 
Fig. 7. XGBoost model—line plot analysis of actual vs. predicted values 

(first 25 predictions). 

4) LGBM model for pressure prediction: insights and 

visual analysis: Examining the outcomes presented in Table 

VII, it is evident that the LGBM model achieves noteworthy 

metrics for Seal Pressure 1, with an RMSE of 5.29, an MAE of 

2.22, and an R-squared value of 0.94. 

TABLE VII.  LGBM MODEL METRICS FOR SEAL PRESSURE 1 

Model RMSE MAE R squared 

LGBM 5.29 2.22 0.94 

Moving to Table VIII, the LGBM model's performance for 
Seal Pressure 2 is notable, featuring an RMSE of 8.98, an MAE 
of 5.17, and an R-squared value of 0.91. These tabulated results 
provide a detailed overview of the LGBM model's effectiveness 
for both Seal Pressure 1 and Seal Pressure 2, facilitating a 
comprehensive evaluation of its predictive capabilities. 
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TABLE VIII.  LGBM MODEL METRICS FOR SEAL PRESSURE 2 

Model RMSE MAE R squared 

LGBM 8.98 5.17 0.91 

Fig. 8 and Fig. 9 visually showcase the LGBM model's 
predictive performance in pressure forecasting. Utilizing line 
plots for a comparative analysis of the initial 25 predictions 
against actual values, the visualization highlights the LGBM 
model's effectiveness. Applying a logarithmic function 
enhances clarity and maintains a normalized scale, ensuring a 
clearer and less cluttered representation. Focusing on the initial 
25 predictions allows for detailed examination of early accuracy, 
preventing graph overcrowding, and allowing for a interpretable 
and focused visual representation. These visualizations offer 
valuable insights into the LGBM model's predictive capabilities, 
aiding in assessing its performance and reliability in pressure 
prediction scenarios. The graphical representation facilitates an 
intuitive understanding of the model's behavior, contributing to 
a comprehensive evaluation. 

 
Fig. 8. LGBM Model—Line Plot Analysis of Actual vs. Predicted Pressure 

(First 25 Predictions). 

 
Fig. 9. LGBM Model—Focused Visualization with Limited Predictions 

(First 25 Predictions). 

5) LGBM model for vibration prediction: Insights and 

visual analysis: The visualizations presented in Fig. 10 depict 

the performance of the LGBM model in predicting VIB DE and 

VIB NDE values. The line graphs facilitate a comprehensive 

comparison of the first 25 predictions with their corresponding 

actual values. Applying the log function to the values serves the 

purpose of achieving a better scale and normalization, leading 

to a clearer and less cluttered visualization. This transformation 

enhances the interpretability of the data, making it easier to 

discern patterns and trends in the model's predictions. By 

limiting the display to the first 25 predictions, the graphs avoid 

overcrowding, allowing for a focused examination of the 

model's accuracy in capturing the actual values. This selective 

approach aids in identifying any discrepancies or areas where 

the model may exhibit strengths or weaknesses. The discussion 

of these visualizations should involve a detailed analysis of how 

well the LGBM model aligns with the actual values, 

considering factors such as precision, accuracy, and potential 

areas for improvement. Additionally, any notable patterns or 

deviations between predicted and actual values should be 

highlighted and discussed to provide insights into the model's 

performance and its applicability in predicting VIB DE and 

VIB NDE. 

 
Fig. 10. LGBM Model Predictions vs. Actual Values for VIB NDE. 

The LGBM model for VIB DE demonstrates exceptional 
performance, as indicated by the metrics in Table IX. The Root 
Mean Squared Error (RMSE) stands impressively low at 45.22, 
signifying minimal deviation between predicted and actual 
values. Complementing this, the MAE is commendably low at 
6.07, reinforcing the model's accuracy. The high R-squared 
value of 0.99 emphasizes an excellent fit, showcasing the 
model's ability to explain the variance in VIB DE. 

TABLE IX.  PERFORMANCE METRICS FOR VIB DE USING LGBM 

Model RMSE MAE R squared 

LGBM 45.22 6.07 0.99 
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Turning to VIB NDE, the LGBM model continues to exhibit 
strong predictive capabilities, as highlighted in Table X. The 
RMSE is notably low at 3.46, indicating minimal prediction 
errors. The MAE, standing at 2.32, further emphasizes the 
accuracy of the model, with low absolute differences between 
predicted and actual values. While the R-squared value of 0.84 
is slightly lower than in VIB DE, it still signifies a robust model 
fit and reliable predictions for VIB NDE. The Tables IX and X 
are collectively underscore the effectiveness of the LGBM 
model in predicting both VIB DE and VIB NDE. 

TABLE X.  PERFORMANCE METRICS FOR VIB NDE USING LGBM 

Model RMSE MAE R squared 

LGBM 3.46 2.32 0.84 

6) LGBM model for AmperE prediction: Insights and visual 

Analysis : Fig. 11 offers a detailed analysis of the LGBM 

model's Ampere prediction performance using grouped line 

plots. Comparing the initial 25 predictions with actual values, 

these visualizations provide insights into the model's accuracy. 

Line plots offer a continuous overview of the model's 

performance. Applying a logarithmic function enhances 

interpretability and comparability, ensuring a clearer and less 

cluttered visualization. Focusing on the first 25 predictions 

prevents visual congestion, allowing a detailed examination of 

early-stage accuracy and facilitating the discernment of 

performance patterns. The line plots thoughtful data 

transformations contributes to a nuanced understanding of the 

LGBM model's predictive performance, facilitating valuable 

insights from the visualized data. 

 
Fig. 11. LGBM Model—Comparison of Actual vs. Predicted Ampere Values 

(First 25 Predictions). 

Table XI succinctly evaluates the LGBM model's 
performance in predicting Ampere values through the three key 
metrics—RMSE, MAE, and R-squared. With an RMSE of 3.08 
indicating average error magnitude, a low MAE of 2.26 
signifying precise predictions, and a high R-squared value of 
0.82 showcasing substantial explanatory power, the LGBM 
model proves effective for Ampere prediction. These metrics 
affirm the model's reliability and accuracy, positioning it as a 
valuable tool for forecasting Ampere values across applications. 
The table provides a concise summary, offering numerical 

indicators for researchers, practitioners, and decision makers 
seeking insights into the model's efficacy. 

TABLE XI.  LGBM MODEL METRICS FOR AMPERE PREDICTION 

Model RMSE MAE R squared 

LGBM 3.08 2.26 0.82 

7) Random forest model for pressure prediction: Insights 

and visual analysis: Fig. 12 and Fig. 13 visually depict the 

Random Forest model's predictive performance using line 

plots, contrasting the initial 25 predictions with actual values. 

The combination of these visual elements highlights the 

model's efficacy and provides a comprehensive analysis of its 

accuracy in predicting the first 25 observations. Applying a 

logarithmic function enhances clarity and maintains a 

normalized scale, resulting in a distinct and less cluttered 

representation. Focusing on the initial 25 predictions offers 

valuable insights into the model's early predictive behavior, 

facilitating a detailed examination of accuracy without 

overcrowding the graphical representation. These 

visualizations contribute to a nuanced understanding of the 

Random Forest model's predictive capabilities, offering unique 

insights through line plots. This visual exploration is crucial for 

assessing the model's reliability and effectiveness, particularly 

in scenarios where clarity and precision are paramount. 

 

 
Fig. 12. Random Forest Model—Logarithmic Transformation (First 25 

Predictions). 

 
Fig. 13. Random Forest Model—Focused Visualization with Limited 

Predictions (First 25 Predictions). 
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In Table XII, the Random Forest model exhibits 
commendable metrics for Seal Pressure 1, with an RMSE of 
4.86, an MAE  of 2.01, and an R-squared value of 0.95. These 
results suggest that the Random Forest model provides accurate 
predictions, capturing a significant portion of the variance in the 
data for Seal Pressure 1. 

TABLE XII.  RANDOM FOREST MODEL METRICS FOR SEAL PRESSURE 1 

Model RMSE MAE R squared 

Random Forest 4.86 2.01 0.95 

Table XIII focuses on Seal Pressure 2, where the Random 
Forest model demonstrates robust performance with an RMSE 
of 9.24, an MAE of 4.49, and an R-squared value of 0.91. 
Despite slightly higher RMSE and MAE values compared to 
Seal Pressure 1, the model maintains reasonable accuracy. 
Combined with visualizations, it is evident that the Random 
Forest model consistently performs well in both seal pressure 
scenarios. Strong correlation, as indicated by high R-squared 
values, underscores the model's reliability in predicting seal 
pressures. The integration of visual and quantitative assessments 
provides a comprehensive understanding of the Random Forest 
model's effectiveness. 

TABLE XIII.  RANDOM FOREST MODEL METRICS FOR SEAL PRESSURE 2 

Model RMSE MAE R squared 

Random Forest 9.24 4.49 0.91 

8) Random forest model for vibration prediction: insights 

and visual analysis: Fig. 14 and 15 visually analyze the 

Random Forest model's performance in predicting VIB DE and 

VIB NDE, employing both bar and line formats to compare the 

initial 25 predictions with actual values. Applying a log 

function to the values enhances scaling and normalization, 

improving visualization clarity. Focusing on the first 25 

predictions prevents overcrowding, allowing for a detailed 

examination of the model's accuracy and nuances in data 

capture. This approach provides a concise yet meaningful 

snapshot of the Random Forest model's alignment with actual 

values, offering valuable insights for further analysis and model 

refinement. 

In Tables XIV and XV, the performance metrics of the 
Random Forest model in predicting VIB DE and VIB NDE are 
presented. In Table XIV, the model achieved an RMSE of 9.53, 
indicating precise predictions with a low average magnitude of 
errors. The MAE of 3.80 further confirms the model's accuracy, 
as it represents the average absolute difference between 
predicted and actual values. The exceptionally high R squared 
value of 0.99 signifies a remarkable goodness of fit, explaining 
99% of the variance in VIB DE. 

Turning to Table XV, the Random Forest model showcased 
a notable RMSE of 3.58 for VIB NDE, indicating accurate 
predictions with a low average magnitude of errors. The MAE 
of 2.16 reinforces the model's reliability, showcasing a relatively 
small average absolute difference from the actual values. The R 
squared value of 0.83 highlights a strong fit, accounting for 83% 
of the variance in VIB NDE. 

In summary, the Random Forest model demonstrates 
exceptional predictive accuracy for both VIB DE and VIB NDE. 
The low RMSE and MAE values, coupled with high R-squared 
values, underscore the model's effectiveness in capturing and 
explaining the variance in vibration data. These findings affirm 
the Random Forest model as a robust tool for vibration 
prediction in both conditions. 

 
Fig. 14. RandomForest_VIB_DE_Performance_Line. 

 
Fig. 15. RandomForest_VIB_NDE_Performance_Line. 

TABLE XIV.  RANDOM FOREST VIB DE PERFORMANCE 

Model RMSE MAE R squared 

Random Forest 9.53 3.80 0.99 

TABLE XV.  RANDOM FOREST VIB NDE PERFORMANCE 

Model RMSE MAE R squared 

Random Forest 3.58 2.16 0.83 

9) Random forest model ampere prediction-insights and 

visual analysis: The visual representation in Fig. 16 offers a 

detailed examination of the Random Forest model's efficacy in 

predicting Ampere values. Utilizing line plots, these 

visualizations facilitate a comprehensive comparison of the 
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initial 25 predictions made by the Random Forest model against 

the actual values. Applying a logarithmic function enhances 

interpretability and normalization of the data, resulting in a 

clearer representation of the Random Forest model's predictive 

accuracy. Focusing on the first 25 predictions prevents visual 

congestion, allowing a detailed examination of early-stage 

accuracy and providing valuable insights into the model's 

predictive behavior for Ampere values. 

 
Fig. 16. Random Forest Model - Line Plot Analysis of Actual vs. Predicted 

Ampere Values (First 25 Predictions). 

The performance metrics for Ampere prediction using the 
Random Forest model, as presented in Table 16, showcase its 
commendable accuracy. With a low RMSE of 2.96 and a close 
match between predicted and actual values indicated by an MAE 
of 2.10, the model demonstrates robust predictive capabilities. 
The high R-squared value of 0.83 further emphasizes its ability 
to explain a substantial proportion of the variance in Ampere 
measurements. In summary, these metrics affirm the Random 
Forest model's effectiveness in delivering accurate Ampere 
predictions, underscoring its potential for reliable forecasting in 
relevant applications. 

TABLE XVI.  RANDOM FOREST MODEL METRICS FOR AMPERE PREDICTION 

Model RMSE MAE R squared 

Random Forest 2.96 2.10 0.83 

B. Ensemble Approach for Maintenance Prediction 

Ensembling XGBoost, LightGBM, and Random Forest 
models in maintenance prediction, as shown in Fig. 17, 
combines their predictive outputs to boost accuracy and 
robustness. This approach capitalizes on the unique strengths of 
each model—XGBoost's efficiency, LightGBM's speed, and 
Random Forest's robustness. By fusing these models, the 
ensemble leverages their collective intelligence, mitigating 
individual weaknesses. The visual in Fig. 17 illustrates how this 
collaboration forms a cohesive and reliable maintenance 
prediction framework, enhancing resilience to uncertainties and 
improving overall effectiveness in complex scenarios. 

To improve predictive outcomes, an ensembling approach 
combines three models—XGBoost, LGBM, and Random 
Forest. Ensemble learning—leveraging the strengths of multiple 
models, mitigating risks of overfitting and underfitting, and 
enhancing predictive accuracy [17]. It addresses common ML 
challenges, making models more robust and stable. Ensemble 
learning excels in capturing complex data relationships, proving 
effective in scenarios where a single model may struggle. In the 
voting mechanism, soft voting is preferred for its regression 
nature. Soft voting, averaging predicted probabilities, offers a 
nuanced approach over hard voting, which is particularly 
beneficial when models exhibit varying confidence levels. The 
advantages of soft voting include enhanced predictive 
performance and flexibility, making it suitable for imbalanced 
datasets. In conclusion, strategic ensembling—especially 
through soft voting—stands as a simple yet effective method for 
improving ML model performance, particularly in scenarios 
with varying confidence levels. 

 
Fig. 17. Ensemble of XGBoost, LightGBM, and Random Forest Models for 

Maintenance Prediction. 

1) Results and analysis of ensemble model prediction for 

seal pressure: The results from the evaluation of the pump's 

seal pressure models, presented in Tables XVII and XVIII, 

demonstrate the performance of XGBoost, LGBM, Random 

Forest, and the ensemble approach. For Seal Pressure 1 (Table 

XVII), the standalone models perform well: XGBoost (RMSE: 

5.61, MAE: 2.38, R-squared: 0.93); LGBM (RMSE: 5.29, 

MAE: 2.22, R-squared: 0.94); and Random Forest (RMSE: 

4.86, MAE: 2.01, R-squared: 0.95). The Ensemble model 

significantly outperforms these, with RMSE: 1.94, MAE: 0.92, 

and R-squared: 0.99. Similarly, for Seal Pressure 2 (Table 

XVII), the standalone models show strong performance: 

XGBoost (RMSE: 9.41, MAE: 4.87, R-squared: 0.91); LGBM 

(RMSE: 8.98, MAE: 5.17, R-squared: 0.91); and Random 

Forest (RMSE: 9.24, MAE: 4.49, R-squared: 0.91). Again, the 

Ensemble model achieves superior results, with RMSE: 2.94, 

MAE: 1.74, and R-squared: 0.99. These findings underscore the 

Ensemble model's enhanced predictive capabilities for both 

Seal Pressure 1 and Seal Pressure 2. The marked improvement 

in RMSE, MAE, and R-squared values indicates that the 

ensemble approach effectively combines the strengths of 

XGBoost, LGBM, and Random Forest, leading to higher 

accuracy and reduced prediction errors. 
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TABLE XVII.  INDIVIDUAL AND ENSEMBLE MODEL METRICS FOR SEAL 

PRESSURE 1 

Model RMSE MAE R squared 

XGBoost 5.61 2.38 0.93 

LGBM 5.29 2.22 0.94 

Random Forest 4.86 2.01 0.95 

Ensemble 1.94 0.92 0.99 

Table XVIII provides an insightful comparison of metrics 
for Seal Pressure 2. The standalone models (XGBoost, LGBM, 
Random Forest) exhibit respectable performance, while the 
Ensemble model consistently outshines them across all metrics. 
This emphasizes the Ensemble model’s effectiveness in 
enhancing accuracy and reducing errors in predicting Seal 
Pressure 2. 

TABLE XVIII.  INDIVIDUAL AND ENSEMBLE MODEL METRICS FOR 

SEAL PRESSURE 2 

Model RMSE MAE R squared 

XGBoost 9.41 4.87 0.91 

LGBM 8.98 5.17 0.91 

Random Forest 9.24 4.49 0.91 

Ensemble 2.94 1.74 0.99 

From Tables XVII and XVIII, it is evident that, for both Seal 
Pressures 1 and 2, the error rate is notably higher when 
employing stand-alone models compared to the Ensemble 
model. Utilizing three distinct error metrics—root mean 
squared, mean average precision, and error squared—we 
consistently observe that the Ensemble model outperforms each 
of the stand-alone models. This observation underscores the 
potential of combining multiple models into an ensemble, 
demonstrating its efficacy in achieving heightened accuracy and 
minimizing prediction errors across diverse evaluation metrics. 
Fig. 18 offers a visual representation of the Ensemble model's 
performance in predicting Seal Pressure 1, employing line plots 
to compare the initial 25 predictions with their actual values. The 
visual presentation underscores the effectiveness of the 
Ensemble model through line plots, providing a comprehensive 
analysis of its accuracy in predicting the first 25 observations of 
Seal Pressure 1. The application of a logarithmic function to the 
values serves the dual purpose of enhancing the visualization's 
clarity and maintaining a normalized scale. This transformation 
results in a more distinct and less cluttered representation of the 
model's performance. Focusing on the initial 25 predictions 
ensures a detailed examination of the Ensemble model's 
accuracy during the initial phase, contributing to a nuanced 
understanding of its predictive behavior. This approach also 
helps to prevent overcrowding in the graphs, ensuring that the 
visual representation remains interpretable and focused. These 
visualizations, in conjunction with quantitative metrics, 
contribute to a comprehensive evaluation of the Ensemble 
model's reliability and effectiveness in predicting Seal Pressure 
1. The integration of visual and quantitative assessments 
enhances the overall understanding of the model's predictive 
capabilities and aids in decision making for real-world 
applications. 

Fig. 19 explores the Ensemble model's performance in 
predicting Seal Pressure 2, comparing the initial 25 predictions 
with actual values using line plots. The visual representation 
highlights the model's accuracy, providing a comprehensive 
analysis of its performance. Applying a logarithmic function 
enhances clarity and maintains a normalized scale, resulting in a 
clearer and more distinct representation. Focusing on the initial 
25 predictions allows for a detailed examination of the model's 
accuracy during the early phase, contributing to a nuanced 
understanding of its predictive behavior. This approach ensures 
interpretability by preventing graph overcrowding. The 
visualizations, complemented by quantitative metrics, offer a 
thorough evaluation of the Ensemble model's reliability and 
effectiveness in predicting Seal Pressure 2, enhancing the 
overall understanding of its predictive capabilities for real-world 
applications. 

 
Fig. 18. Ensemble Model—Line Plot Analysis of Actual vs. Predicted Seal 

Pressure 1 (First 25 Predictions). 

 
Fig. 19. Ensemble Model—Line Plot Analysis of Actual vs. Predicted Seal 

Pressure 2. 

The examination of both the tables and graph reveals a 
noticeable elevation in error metrics for individual models. 
However, a compelling contrast emerges when these models are 
amalgamated, resulting in a substantial reduction in error, as 
evidenced by the graphical representations. This improvement 
is distinctly illustrated by the diminished variance between the 
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actual and predicted lines in the line graph. A comparative 
analysis of the line graphs for the Ensemble model’s underscores 
the significant enhancement achieved by combining individual 
models, resulting in a more accurate and reliable predictive 
outcome. 

2) Results and analysis of ensemble model prediction for 

vibration prediction: The evaluation of the Vibration 

Diagnoses Equipment (VIB DE) and Vibration Non-Diagnoses 

Equipment (VIB NDE) models provides valuable insights into 

their predictive performance for bearing vibrations using 

RMSE, MAE, and R-squared metrics. In Table XIX, the VIB 

DE models show high RMSE values, indicating substantial 

prediction errors, with the LGBM model having an 

exceptionally high RMSE of 45.22. However, the Ensemble 

model reduces the RMSE to 8.60, demonstrating the 

effectiveness of combining the models. The decline in MAE 

and consistently high R-squared values further emphasize the 

Ensemble model’s superior ability to reduce prediction errors 

and improve accuracy. 

TABLE XIX.  INDIVIDUAL AND ENSEMBLE MODEL METRICS FOR VIB DE 

MODEL METRICS 

Model RMSE MAE R squared 

XGBoost 6.32 3.80 0.99 

LGBM 45.22 6.07 0.99 

Random Forest 9.53 3.80 0.99 

Ensemble 8.60 1.42 0.99 

In Table XX, individual models such as LGBM and Random 
Forest show notable RMSE values for VIB NDE evaluation. The 
Ensemble model significantly enhances accuracy with lower 
RMSE and MAE and higher R-squared values. Interestingly, 
XGBoost slightly outperforms the Ensemble for VIB DE, 
indicating algorithmic influence. Graphical and tabular 
presentations consistently illustrate the Ensemble model’s 
superior performance in error metrics, emphasizing its 
effectiveness in predicting and managing vibration issues in 
critical system maintenance. 

TABLE XX.  INDIVIDUAL AND ENSEMBLE MODEL METRICS FOR VIB NDE 

MODEL METRICS 

Model RMSE MAE R squared 

XGBoost 3.34 3.80 0.99 

LGBM 3.46 2.32 0.84 

Random Forest 3.58 2.16 0.83 

Ensemble 1.17 0.75 0.98 

Fig. 20 showcases the ensemble of XGBoost, LightGBM, 
and Random Forest models, leveraging their strengths for 
accurate and robust maintenance predictions. By integrating 
diverse perspectives, the ensemble enhances resilience to 
uncertainties, offering a comprehensive solution for complex 
operational scenarios. This collaborative approach mitigates 
individual weaknesses, leading to improved performance 
compared to standalone models and enhancing the effectiveness 
of maintenance prediction systems. 

Examining the table and graphs reveals notable error metrics 
for individual models, indicating relatively high errors. 
However, a significant improvement is evident when these 
models are integrated into an ensemble. The comparison of 
actual and predicted lines in the line graph vividly illustrates this 
enhancement. The Ensemble model, depicted in the graphs, 
showcases a considerable reduction in error compared to 
individual models. 

 
Fig. 1. Ensemble Model's Performance for VIB NDE (Line Graphs). 

3) Results and analysis of ensemble model prediction for 

ampere prediction: When evaluating power consumption, 

Ampere readings serve as a crucial parameter, with higher 

readings indicative of increased power consumption. In 

scenarios where direct current measurements are unavailable, 

employing ML models becomes a viable option for prediction. 

In this context, three distinct models—XGBoost, LGBM, and 

Random Forest—were implemented to forecast Ampere 

readings. Subsequently, these models were amalgamated into 

an Ensemble model to harness their collective predictive 

capabilities. The performance metrics, including RMSE, mean 

average error (MAE), and R-squared values, were employed to 

assess the accuracy of each model and the Ensemble model’s. 

The results are presented in Table XXI. 

TABLE XXI.  AMPERE PREDICTION MODEL PERFORMANCE METRICS 

Model RMSE MAE R squared 

XGBoost 3.28 2.25 0.79 

LGBM 3.08 2.26 0.82 

Random Forest 2.96 2.10 0.83 

Ensemble 1.69 0.94 0.95 

Analysis of the table indicates a substantial decrease in error 
rates when utilizing the Ensemble model as opposed to 
individual models. Employing three distinct error metrics 
consistently demonstrates the superior performance of the 
Ensemble model, affirming its effectiveness in achieving 
heightened accuracy and minimizing prediction errors. This 
underscores the value of combining diverse models to enhance 
predictive capabilities. The visual representation above 
showcases the performance of the Ensemble model for the 
Ampere prediction. Utilizing line graph in Fig. 21, the graph 
allows a comparison of the first 25 predictions with their actual 
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values. To enhance clarity and minimize clutter, a logarithmic 
function has been applied to the values, resulting in a more 
normalized and visually accessible presentation. The decision to 
focus on 25 predictions ensures a concise and uncluttered 
depiction, facilitating a clear understanding of the Ensemble 
model's effectiveness in predicting Ampere values. 

 
Fig. 2. Line Graph for Ampere Ensemble Model Performance. 

Fig. 21 illustrates the performance of the Ensemble model 
for the Ampere prediction. These visualizations showcase a 
comparison between the first 25 predictions and their actual 
values, employing both bar and line graphs. To enhance clarity 
and maintain a cleaner display, a logarithmic function has been 
applied to the values, ensuring a more balanced scale. The 
limited focus on 25 predictions prevents graph overcrowding, 
facilitating a more straightforward interpretation of the results. 

IV. DISCUSSION 

This study presents a novel approach to predictive 
maintenance (PdM) in the oil and gas industry by utilizing an 
ensemble of three machine learning algorithms—XGBoost, 
Light Gradient-Boosting Machine (LGBM), and Random 
Forest. The ensemble model consistently outperformed 
individual models, demonstrating superior accuracy and 
reliability across all operational parameters (Seal Pressure 1, 
Seal Pressure 2, VIB DE, VIB NDE, and Ampere). Notably, the 
Ensemble model showed lower Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE) values and higher R-
squared coefficients, indicating better performance in predicting 
the health of water injection pumps (WIPs). This finding aligns 
with research conducted by Zhang et al. [1], where combining 
multiple machine learning models improved prediction accuracy 
in industrial applications. The novelty of this study lies in the 
hybridization of these models to predict diverse operational 
parameters, which is an improvement over the standalone 
approaches often used in previous research. For example, 
Janssens et al. [2] applied Convolutional Neural Networks 
(CNNs) to detect anomalies using infrared thermal images, but 
the study was limited in its ability to handle different operational 
variables. Similarly, Sampaio et al. [3] explored Artificial 
Neural Networks (ANNs) for motor failure prediction but did 
not consider the comprehensive evaluation of various predictive 
models. The Ensemble model, in contrast, demonstrates a 
broader applicability by leveraging the strengths of multiple 
algorithms, thus mitigating the individual limitations of each 
method and achieving more robust and reliable predictions. 
Furthermore, the results of this study highlight the importance 

of addressing operational parameters beyond vibration data, 
such as seal pressure and amperage, which are often overlooked 
in predictive maintenance studies. This is in contrast to previous 
studies that focused primarily on vibration data for fault 
detection and failure prediction [4], [5]. By including additional 
operational parameters, this research provides a more holistic 
approach to predictive maintenance, which could lead to more 
effective early detection of potential failures in WIPs, ultimately 
reducing unplanned downtime and improving operational 
efficiency. The ensemble approach presented in this study also 
reflects a growing trend in the literature toward integrating 
multiple machine learning techniques to enhance the accuracy 
of PdM models. This is consistent with the findings of Kim et 
al. [6], who demonstrated that ensemble methods, when applied 
to predictive maintenance in industrial equipment, resulted in 
significant improvements in both prediction accuracy and 
reliability. The success of the ensemble model in this study 
suggests that further refinement and adaptation of this 
methodology could be applied to other critical equipment within 
the oil and gas industry, as well as other industrial sectors facing 
similar challenges with unplanned downtime. In sum, the 
findings of this study contribute to the growing body of research 
on predictive maintenance by offering an innovative 
methodology for improving the accuracy of failure predictions 
in water injection pumps. The ensemble model’s superior 
performance, when compared to individual models, underscores 
the potential for more accurate and reliable predictive systems 
in industrial applications. The results also pave the way for 
further exploration of hybrid machine learning models in PdM, 
particularly in industries with complex operational 
environments, such as oil and gas. 

V. LIMITATIONS 

The Ensemble model, comprising XGBoost, LGBM, and 
Random Forest, demonstrates commendable predictive 
accuracy across diverse operational parameters. However, it is 
imperative to acknowledge certain limitations inherent in the 
approach. First, the efficacy of the Ensemble model is highly 
contingent on the quality of the input data. Instances of data 
inconsistencies, inaccuracies, or a lack of representativeness 
concerning diverse operating conditions can potentially 
compromise the performance. Moreover, the representativity of 
the training set plays a pivotal role. The Ensemble model relies 
on a training dataset that effectively captures the various 
operating scenarios of the pump system. Notably, the study 
focused on predicting pressure, vibration, and amperage for 
temperature, while considering other features that could 
contribute to PdM in WIPs within the OGI. These limitations 
underscore the importance of meticulous data quality assurance, 
comprehensive representation in training datasets, and ongoing 
refinement of hyperparameter configurations for the reliable and 
robust application of the Ensemble model in PdM scenarios. 

VI. FUTURE RESEARCH DIRECTION 

The Ensemble model, comprising XGBoost, LGBM, and 
Random Forest, consistently demonstrates notable predictive 
accuracy for various operational parameters in WIPs. However, 
the model’s performance is contingent on high-quality input 
data and a representative training set. Notably, the sensitivity to 
hyperparameter configurations requires ongoing optimization 
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efforts. Future research directions could explore advanced 
ensemble techniques beyond the current models and dynamic 
hyperparameter tuning mechanisms for autonomous adaptation. 
Investigating the impact of external factors, transitioning to real-
time predictions, enhancing explainability, scalability testing, 
and integrating the model into existing maintenance systems are 
promising avenues. Seeking feedback from industry 
practitioners is vital for refining the model’s real-world 
applicability. 

VII. CONCLUSIONS 

In conclusion, this study demonstrates the effectiveness of 
combining multiple machine learning algorithms—XGBoost, 
LGBM, and Random Forest—into an Ensemble model for 
predictive maintenance of water injection pumps. The Ensemble 
model consistently outperforms individual algorithms, 
showcasing superior accuracy through lower RMSE and MAE 
values, as well as higher R-squared coefficients. By integrating 
the strengths of these algorithms, the Ensemble model mitigates 
the limitations of standalone models, offering a more robust and 
reliable predictive maintenance tool. The results underscore the 
potential for improving operational efficiency and reducing 
unplanned downtime in the oil and gas industry. This research 
not only advances predictive modeling techniques but also 
highlights the significant implications for enhancing 
maintenance strategies in industrial applications, ensuring better 
asset management and cost-effectiveness in critical systems. 
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