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Abstract—With the emergence of new technologies ranging 

from smart cities to the Internet of Things (IoT), many objects rely 

on satellite-based navigation systems, such as GPS, to accomplish 

their tasks securely. However, GPS receivers are exposed to 

various unintentional and intentional attacks, threatening the 

availability and reliability of the delivered information. GPS 

spoofing is considered as one of the most dangerous attacks, where 

attackers transmit intense signals on the same frequency to disrupt 

the GPS receiver, leading to erroneous position calculations. 

Detection methods for GPS spoofing are crucial to ensure secure 

navigation. This paper proposes a method for GPS spoofing 

detection that utilizes artificial intelligence algorithms in 

combination with raw data from an inertial navigation system 

(INS). Since INS sensors are prone to accumulating errors over 

time, these inaccuracies are corrected via a Long Short-Term 

Memory (LSTM) algorithm. The corrected accelerations and 

angular rates are then compared to the accelerations and angular 

rates estimated from the GPS data to detect GPS spoofing signals. 

This comparison uses the modified M-of-N method, demonstrating 

its effectiveness by a detection rate reaching 80% of the spoofing 

zones. 
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I. INTRODUCTION 

In the era of recent technologies such as smart cities and IoT, 
Global Navigation Satellite Systems (GNSS), including GPS, 
play a pivotal role in delivering navigation information, time, 
and location, which are essential for the security of systems 
relying on such information [1]. GPS is a constellation of 
satellites orbiting the Earth at approximately 20,200 kilometers 
of altitude. These satellites continuously transmit signals to the 
Earth's surface, which are received by GPS receivers to 
determine precise locations and time information. 

However, this reliance on radio signals introduces a 
significant vulnerability: the susceptibility to interference and 
malicious attacks. One of the most concerning types of attacks 
is GPS spoofing. This attack broadcasts false GPS signals that 
deceive the receiver into calculating incorrect position or time. 
This exploitation poses a serious threat to the integrity and 
security of GPS-based systems, especially in safety-critical 
applications such as autonomous vehicles, aviation, and drones. 

In response to this growing threat, there is an urgent need to 
develop robust detection methods to secure GNSS from 
spoofing attacks. This work proposes a novel method that 
integrates inertial data with an LSTM network to detect the GPS 
spoofing attack and ensure secure navigation for GPS-dependent 
systems. 

The structure of the rest of this paper is as follows: The 
introduction of the study, the review of related work, the 
research gaps, and the discussion of associated challenges are 
detailed in Section I. Section II outlines our approach to simulate 
the IMU sensors, followed by the mechanization process to 
derive navigation data. Section III focuses on GPS 
vulnerabilities, particularly spoofing attacks, which are 
examined in detail. Section IV presents our proposed approach 
to recognize GPS spoofing attacks using the LSTM algorithm, 
INS raw data, and the M-of-N method. Section V demonstrates 
the performance of our approach in a simulated transport 
scenario. Section VI concludes the paper, while Section VII 
explores future directions for this research. 

A. Existing Work 

During the last decade, diverse works have been published 
in the literature dealing with the problems of detecting, 
identifying, and mitigating intentional and unintentional attacks 
on satellite-based systems such as GPS. Intentional attacks 
include both jamming and spoofing attacks [2] [3] [4] [5]. For 
example, the authors of study [6] developed a covert spoofing 
algorithm for UAVs using a GPS/INS-integrated navigation 
system. The method involves estimating the UAV's current state 
using external sensors and calculating a spoofing control input 
to guide the UAV toward a deceptive trajectory while making it 
appear as if it is following its original reference trajectory. The 
proposed algorithm was validated through simulations, 
demonstrating that the UAV can be covertly spoofed by making 
its estimated position remain near the reference trajectory, while 
its actual path deviates towards the deceptive target state. The 
results showed effective trajectory manipulation with minimal 
disruption to the UAV’s original path. To overcome these issues, 
numerous research studies were developed employing various 
techniques of machine learning, including Artificial Neural 
Networks (ANN) and Support Vector Machine (SVM), to 
evaluate their effectiveness in identifying spoofed signals [7]. 

The authors of study [8] developed an approach based on 
machine learning called PERDET for detecting GPS spoofing 
attacks in unmanned aerial vehicles (UAVs). This method 
utilizes perception data collected from real flight experiments, 
including both normal and attacked scenarios, to enhance the 
detection capabilities against GPS spoofing. The authors 
performed feature analysis based on the principles of position 
and attitude estimation, selecting relevant sensor data types to 
improve the accuracy of their detection model. They concluded 
that PERDET outperformed in terms of effectiveness compared 
to various machine learning algorithms after applying them to 
their dataset. 
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In study [9], the authors developed a method for detecting 
GNSS signal spoofing based on supervised machine learning. 
The technique used includes SVM and Principal Component 
Analysis (PCA) for identifying manipulated GNSS signals. The 
SVM model achieved high performance in the experiments, 
with over 98% accuracy. However, the paper notes a potential 
challenge with model complexity, which may result in longer 
computation times. 

Sun et al. [10] developed a method for GPS spoofing 
detection, specifically designed for small UAVs, based on deep 
learning techniques. They proposed a model combining a PCA, 
a Convolutional Neural Network (CNN), and an LSTM to 
enhance the detection accuracy. The approach was validated 
using a dataset acquired from UAV flights with normal and 
spoofed GPS signals, achieving an accuracy of 99.49%. In 
contrast, the primary gap identified in this paper is the challenge 
of adapting the model to real-world environments. 

In 2020, Kwon and Shim [11] exploited Attitude and 
Heading Reference System (AHRS) accelerometers to develop 
a direct GPS spoofing detection method. This method involves 
a comparison between the acceleration estimated from the GPS 
receiver and the acceleration generated by the accelerometers to 
detect potential spoofing. The results indicated that both 
decision variables showed strong detection capabilities under 
different spoofing scenarios. However, the gap identified in this 
paper lies in the sensitivity of the decision variables to changes 
in moving acceleration. 

In study [12], the authors developed a GPS spoofing 
detection method using a tightly coupled Receiver Autonomous 
Integrity Monitoring (RAIM) with INS integration. The method 
monitors discrepancies between GPS and inertial 
measurements, using residual-based RAIM techniques. This 
approach utilizes an integrated GPS/INS architecture with a 
tightly coupled Kalman filter to improve sensitivity to spoofing 
attacks. The results demonstrated that the RAIM monitor 
effectively detected short-duration spoofing attacks. 

Shafique et al. [13] used two machine-learning techniques, 
SVM and K-fold analysis, for GPS spoofing detection. Various 
machine-learning algorithms were tested, and SVM with a 
polynomial kernel achieved the best results. Multiple metrics 
were utilized to evaluate the proposed, including accuracy, 
precision, recall, and F1-score, achieving an overall accuracy of 
99%. However, the gap identified is that the method's 
performance may degrade with noisy data and might not be 
robust against highly sophisticated spoofing attacks. 

The authors of study [14] designed a method, for detecting 
GPS spoofing attacks on Unmanned Aerial Systems (UAS), 
based on supervised machine learning. The proposed approach 
leverages an ANN model to classify GPS signals as genuine or 
spoofed using extracted features such as pseudo-range, Doppler 
shift, signal-to-noise ratio (SNR), and satellite vehicle number 
(SVN). The results showed that the ANN model with two hidden 
layers provided high detection accuracy, achieving up to 98.3% 
accuracy and a probability of detection of 99.2% with a low 
probability of false alarms. However, a primary gap identified in 
the study is that the model's performance is highly dependent on 
the quality of the collected GPS data. 

B. Research Gaps and Challenges 

Despite the increasing use of low-cost INS in navigation 
applications, these sensors suffer from high error rates and 
limited accuracy, making them unreliable in scenarios involving 
GPS spoofing or jamming. Current methods to address these 
issues heavily depend on high-grade INS, which are expensive 
and not feasible for large-scale adoption. This highlights a 
significant gap in the availability of robust, low-cost solutions 
that can maintain high accuracy. Additionally, many approaches 
lack adaptability to real-time changes in error characteristics, 
particularly during GPS spoofing or jamming events, making 
them less effective in dynamic environments. 

To address these challenges, our research focuses on 
developing a methodology for enhancing the quality of low-cost 
INS data by employing LSTM networks, using tactical-grade 
INS as a reference. The developed simulation platform in 
MATLAB enables researchers to build and validate their 
solutions based on our sensor modeling approach. This platform 
can simulate various scenarios without the need for complex 
infrastructure or expensive real-world setups involving GPS 
receivers and sensors mounted on vehicles. This flexibility 
makes it easier to test multiple configurations and spoofing 
scenarios efficiently. Successfully addressing these challenges 
will provide a practical and accessible platform for reliable 
navigation in GPS-compromised environments. 

II. INERTIAL NAVIGATION SIMULATION AND 

MECHANIZATION 

A. INS Simulation 

In this study, a real INS was not used; instead, a simulated 
one was employed, with errors affecting its sensors taken into 
consideration. This section presents the simulation of the six 
sensors of the Inertial Measurement Unit (IMU). Typically, a 
real INS is mounted on a mobile platform during a trajectory, 
measuring accelerations and angular rates [15]. However, in this 
case, we assume the availability of the real trajectory coordinates 
and proceed to simulate the behavior of the sensors accordingly. 
This allows us to replicate how the IMU would function in a 
real-world scenario, accounting for sensor errors without using 
an actual INS. 

To model INS sensors, two main frames are used to represent 
the sensor outputs, the navigation frame and the body frame 
[16]. The body frame represents local coordinates relative to the 
vehicle [17], while the navigation frame aligns with the Earth’s 
coordinate system [18]. Table I explains the differences between 
these frames, including their axes, alternative names, and 
reference centers. 

TABLE I.  DIFFERENCES BETWEEN THE ENU FRAME AND THE BODY 

FRAME 

Characteristic Body frame Navigation frame 

Axes 
X(Longitudinal), Y 

(Lateral), and Z (Vertical) 

East (E), North (N), and 

Up (U) 

Alternative 

name 

Local frame, vehicle frame, 

or b-frame ENU frame or n-frame 

Reference 

Center 

Center of the vehicle or 

mobile object 
Earth's surface 
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The equations that model the outputs of the three orthogonal 
accelerometers and the three orthogonal gyroscopes in the 
navigation frame can be expressed using the following equations 
(1) (2) (3) [19]. 
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The components of Eq. (1), (2), and (3) are detailed in Table 
II. 

TABLE II.  DESCRIPTION OF EQUATION COMPONENTS FOR IMU 

MODELING 

Equation component Description/Meaning 

[φ, θ, ψ] Euler angles 

[E, N, U] 3D position in the ENU frame 

t Time 

[p, q, r] Angular velocity 

, ,      Time derivative of the Euler angles 

 E N U
f , f , f  3D linear acceleration 

b

n
C  Transformation matrix from n-frame to b-frame 

B. INS Mechanization 

Once the sensors are simulated, their outputs can be 
generated using any predefined trajectory. The simulated sensor 

outputs include specific forces and angular rates. These outputs 
are processed through the mechanization equations to compute 
position, velocity, and orientation of the mobile. The 
mechanization equations integrate the sensor data over time, 
allowing for the continuous update of the navigation solution. 
These equations are given by Eq. (4) [20] [21] [22]. 
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Where, 

nr  presents the position components in terms of latitude, 
longitude, and height; 

nv  is the velocity; 

b

nC
 is a 3x3 conversion matrix from the ENU frame to the 

body frame; 

bf
 are the raw accelerations in the body frame; 

ng
 is the gravity. 

The specific forces are integrated twice to derive the position 
in the body frame. Following this, the angular rates play a crucial 
role in calculating the transformation matrix, which is used to 
convert the values from the b-frame to the ENU frame. This 
transformation is key to ensuring that the navigation 
information, such as position and velocity, is expressed correctly 
relative to the Earth or the navigation frame. The process of INS 
mechanization is detailed in Fig. 1, illustrating the steps 
involved in converting raw IMU data into usable navigation 
data. 

 

Fig. 1. Illustration of the INS mechanization process [23] [24]. 

III. GPS SPOOFING 

Radiofrequency technologies are widely used to offer 
mobility and cost-effectiveness for numerous applications. GPS, 
one of the most in-demand navigation systems, relies on 
electromagnetic waves for positioning and navigation. 
However, this reliance on electromagnetic signals makes GPS 
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highly vulnerable to various attacks. These vulnerabilities can 
be categorized into intentional and unintentional threats. 
Unintentional threats may arise from environmental interference 
or signal obstruction. The primary unintentional attacks 
targeting GPS systems are illustrated in Fig. 2, highlighting the 
risks associated with GPS's reliance on radio frequencies. 

 

Fig. 2. Primary unintentional attacks targeting GPS [25]. 

Intentional attacks, often realized by hackers, include 
jamming and spoofing. Spoofing involves a powerful 
illegitimate signal transmitted at the same frequency as the 
legitimate GPS signal, with the intent to disrupt the receiver's 
ability to calculate the accurate location. The attacker can trick 
the GPS receiver into accepting false location data, leading to 
errors in navigation and positioning or reporting incorrect 
coordinates. The principle behind this spoofing attack is 
depicted in Fig. 3. 

 

Fig. 3. The principle of the GPS spoofing attack [26]. 

In a legitimate GPS operation, the pseudo-range is the 
calculated distance between the receiver and the satellite, based 
on the time it takes for the satellite signal to reach the receiver. 
The legitimate pseudo-range to satellite i can be represented as 
Eq. (5).  

.( )i

i r sc t t  
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Where i is the true pseudo-range to satellite i , c is the 

light’s speed, rt is the time of signal reception, and 
i

st is the time 

of signal transmission from the satellite i . 

When a spoofing signal is introduced, the receiver detects a 

false signal that leads to an altered pseudo-range 
'

i given by Eq. 

(6). 
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Where 
'i

st is the fake time of transmission introduced by the 

spoofer. This new pseudo-range 
'

i deviates from the true 

pseudo-range i , causing the receiver to calculate an incorrect 

position. The difference between the true and spoofed pseudo-

ranges, i  , can be expressed as Eq. (7). 
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IV. LSTM AND M-OF-N METHOD  

A. LSTM Model 

LSTM is a deep learning network belonging to the Recurrent 
Neural Networks (RNNs) family. It is particularly preferred 
when dealing with sequential data, such as INS measurements, 
effectively capturing long-term dependencies in time-series 
data, unlike traditional neural networks or deep neural networks. 
Fig. 4 illustrates the main structure of a basic LSTM unit. As 
shown in the following figure, this unit consists of three gates: 
the input gate, the forget gate, and the output gate. 

 
Fig. 4. Structure of a basic LSTM unit with input, forget, and output gates 

[27]. 

The input gate controls the information entering the cell 
state, the forget gate determines which information should be 
discarded from the memory, and the output gate decides which 
information is sent to the output. Eq. (8) (9) (10) (11) (12) give 
the LSTM-specific formulas [27] [28]. 
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1. .t t t t tc f c i g  

.tanht t th o c 

B. M-of-N Method 

In this study, we employ a modified M-of-N method to 
enhance the detection of GPS spoofing through the fusion of 
INS and GPS data. This approach compares sensor 
measurements from both systems and evaluates whether at least 
M-of-N measurements remain within an acceptable threshold. 
Deviations beyond this threshold are flagged as potential GPS 
spoofing events. Unlike traditional methods, the modified M-of-
N approach incorporates tolerance for minor deviations arising 
from sensor noise and environmental factors, which are common 
in real-world scenarios. This method is based on calculating key 

statistical metrics such as the residual error kE , the standard 

deviation k , and a predefined confidence threshold C . These 

metrics help in determining whether the discrepancies between 
GPS and INS measurements are significant enough to be 
classified as spoofing or normal deviations due to noise. The 
equations used in this approach are as follows (13) (14). 
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Where kE  is the absolute difference between the GPS 

estimated measurement at the time step k and the corresponding 

INS measurement, k is the standard deviation of the residual 

errors over a window of size N, and  is the mean of the 

residual errors in that window. Furthermore, the threshold is 
expressed as Eq. (15). 

kTh C  


This threshold helps to distinguish between normal 
measurement deviations and significant anomalies caused by 

GPS spoofing. If the residual error kE exceeds this threshold, a 

potential spoofing event is flagged. 

In this study, we fix 3C   to balance between sensitivity 

and false alarm rate. In a Gaussian distribution, a threshold of 

3 encompasses 99.73% of all normal data, meaning that only 

0.27% of residual errors are expected to exceed this threshold 
due to noise. This makes the system sensitive to significant 
deviations while minimizing false alarms. Using a lower value, 

such as 2C  , would increase the sensitivity but also result in 

a higher false alarm rate, as 4.55% of the data would exceed the 
threshold, potentially flagging benign deviations as spoofing. 

Conversely, a higher value, such as 4C  , would further 

reduce the false alarm rate but could make the system less 
sensitive, missing smaller but meaningful anomalies. Therefore, 

3C  is chosen as an optimal value to provide reliable 

detection while minimizing false positives. The calculated 

values of kE and Th are then used to detect the presence of 

anomalies in the GPS data. The flowchart of the detection 
process using the modified M-of-N technique is detailed in Fig. 
5. 

 
Fig. 5. Flowchart diagram of GPS spoofing detection using modified M-of-

N technique. 

To reduce false alarms in GPS spoofing detection, a 
reasonable value for N is 50, meaning spoofing is checked over 
every window of 50 points. This ensures that approximately 60 
regions are covered in the trajectory. The value of M determines 
the sensitivity of the spoofing detection algorithm. To avoid high 
sensitivity to false positives due to noise, M is set at 35, around 
70-80% of N. This ensures that the method requires a majority 
of the measurements in each window to exceed the threshold to 
flag an anomaly, providing a balance between sensitivity and 
robustness against noise. 

V. PROPOSED APPROACH 

Our proposed method relies on three key factors: corrected 
raw INS data, a supervised LSTM algorithm, and the modified 
M-of-N method. First, we model two categories of INS, tactical 
and low-cost, using the model described in Section I with 
adjustment of the appropriate characteristics for each category. 
The data from the tactical-grade INS are used with the LSTM 
algorithm to correct the raw data from the low-cost INS. Next, 
the simulated GPS data are employed to estimate accelerations 
and angular rates. The difference between the corrected low-cost 
INS data and the GPS-estimated values is then computed. 
Finally, the M-of-N method is applied to detect GPS spoofing 
by setting a threshold to identify discrepancies between the two 
data sources. 
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Fig. 6. The proposed approach. 

The proposed method is highlighted in Fig. 6, showing the 
process steps from the initial INS sensor modeling to the final 
stage of GPS spoofing detection using the modified M-of-N 
method. The process begins with modeling the tactical and low-
cost INS systems, followed by applying the LSTM algorithm for 
data correction. The simulated GPS data is then integrated to 
estimate motion parameters, which are compared to the 
corrected INS data. Discrepancies between these two sources are 
assessed using the modified M-of-N method, allowing for 
precise identification of GPS spoofing events. 

Algorithm 1 provides a step-by-step description of the 
developed approach to detect GPS spoofing attacks using 
corrected inertial data. 

Algorithm 1: GPS spoofing detection using corrected INS 
and modified M-of-N method 

Initialization : 

 Set Counetr1=0; 

 Set Counetr2=50; 

 Parameters : M=50, N=35, C=3;  

Computation:   

While (new data is available) do 

 For (each point k of the trajectory) do 

Compute residual errors 

Acc

kE
and 

Gyro

kE
  

Calculate detection thresholds 
AccTh and 

GyroTh   

       If ( &Acc Acc Gyro Gyro

k kE Th E Th  ) then 

              Increment counter1 

       Else  

              If (counter2) then  

                     Decrease counter2 

              Else  

                     Move to the next trajectory point k+1 

       If (Counter1≥35) then  

              Confirm the presence of GPS spoofing  

       Else  

              Reinitialize Counter1=0 and reset Counter2=50 

 

 End 

 End 
 

VI. SIMULATION AND RESULTS 

A. Simulation Platform 

The experience was conducted using the MATLAB 
environment. The simulation begins by generating a reference 
trajectory with a total duration of 50 minutes. This ground truth 
trajectory incorporates both straight paths and complex curves, 
along with changes in the vertical (Up) direction, to emulate a 
realistic urban transportation scenario, as depicted in Fig. 7. 
These variations aim to reflect the dynamic conditions often 
encountered in such environments, providing a more accurate 
representation for evaluating the system’s performance in 
challenging navigation contexts. Additionally, ten spoofing 
attacks were carried out on the GPS signal at separate intervals 
along the trajectory. 

B. LSTM Correction of Low-Cost INS Data 

The key characteristics of the two grades of INS include the 
levels of bias, scale factor, and noise, which directly affect both 
the accelerometers and gyroscopes. In this paper, the values 
were selected based on the specifications of existing and 
commercially available INS. The main characteristics of each 
grade of INS are summarized in Table III, highlighting the 
differences in performance and precision between the low-cost 
and tactical models. 

Using the characteristics of each INS grade and based on the 
INS modeling equations presented in Section I, we modeled the 
six sensors composing both the low-cost and tactical INS grades. 
The result of this modeling process was the simulated outputs of 
the sensors in terms of specific forces and angular rates. Fig. 8 
and Fig. 9 illustrate the comparison between the reference 
values, the estimated measurements from the low-cost INS 
sensors, and the estimated measurements from the tactical INS 
sensors. This comparison highlights the performance 
differences between the two grades, with the tactical INS 
showing improved accuracy and lower error margins compared 
to the low-cost INS. 
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(a)      (b) 

Fig. 7. Reference trajectory for urban transportation simulation: 2D overview (a) and 3D overview (b). 

TABLE III.  KEY CHARACTERISTICS OF LOW-COST AND TACTICAL INS MODELS [29] [30] 

Key characteristics 
INS grade 

Low Cost Tactical 

Gyroscopes 

Noise 0.1°/s/√Hz 0.01°/s/√Hz 

Bias <±1.5 deg/s <±0.0055 deg/s 

Scale factor <2% <0.15% 

Accelerometers 

Noise 500 µg/√Hz 50 µg/√Hz 

Bias 1 mg 0.1 mg 

Scale factor <1% <0.4% 

Range ±6 g ±10 g 

 
(a) 
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(b) 

Fig. 8. Comparison of accelerometer outputs from reference, Low-Cost INS, tactical INS, and corrected data: (a) Full view and (b) Zoomed-in view. 

 
(a) 

 
(b) 

Fig. 9. Comparison of gyroscope outputs from reference, Low-Cost INS, tactical INS, and corrected data: (a) Full view and (b) Zoomed-In view. 
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The Root Mean Square Error (RMSE) is the metric used to 
highlight the deviation from the reference for the low-cost INS, 
the tactical INS, and the corrected data. Table IV presents the 
calculated metric in the three directions (E, N, and U) for each 
grade. The equation of this metric is given in Eq. (16) [31]. 

2 2

1

1
ˆ( )

n

i i

i

RMSE y y
n 

 


Where iy = Actual value, ˆ
iy = Estimated value, and n = 

Number of observations. 

TABLE IV.  RMSE FOR LOW-COST INS, TACTICAL INS, AND CORRECTED 

DATA  IN EAST, NORTH, AND UP DIRECTIONS 

Direction 

RMSE 

Low-Cost INS Tactical INS Corrected data 

Accelo Gyro Accelo Gyro Accelo Gyro 

E (East) 1.97 1.48 0.11 0.10 0.18 0.15 

N (North) 2.03 1.52 0.97 0.12 1.04 0.19 

U (Up) 2.94 2.13 1.12 0.83 1.68 1.12 

Total RMSE 2.36 1.74 0.86 0.49 1.15 0.66 

The results show a significant reduction in RMSE values 
when comparing the low-cost INS to the corrected data via 
LSTM. The low-cost INS determines higher errors in all 

directions, with a total RMSE of 2.36 m/s² for accelerometers 
and 1.74 rad/s for gyroscopes. Due to its higher precision, the 
tactical INS achieves a notable decrease in RMSE, particularly 
in the East and North directions, resulting in a total RMSE of 
0.86 m/s² for accelerometers and 0.49 rad/s for gyroscopes. The 
corrected data, representing the application of the LSTM 
algorithm for error mitigation, shows improved performance 
over the low-cost INS, with a total RMSE of 1.15 m/s² for 
accelerometers and 0.66 rad/s for gyroscopes, indicating 
successful error reduction. 

C. GPS Spoofing Detection via M-of-N Method 

To test our detection method, we have introduced ten zones 
of GPS spoofing along the trajectory, each lasting 60 points. 
Using the corrected accelerations and angular rates with 
estimated values from GPS, we applied the modified M-of-N 
method to detect GPS spoofing. As depicted in Fig. 10, the 
method detected eight of the 10 zones. This indicates good 
performance in detecting GPS spoofing, achieving a detection 
percentage of 80%. However, two zones were not detected due 
to the spoofing signal's similarity to the true GPS data or to the 
duration of spoofing in these zones, set to 60 points, was 
insufficient for the method to accumulate the required number 
of consecutive detections, leading to missed detections. These 
limitations suggest the need for refining the detection thresholds 
or increasing sensitivity in specific regions to improve overall 
performance. 

 
Fig. 10. Detection of GPS spoofing zones along the trajectory. 

VII. CONCLUSION 

This paper presents a GPS spoofing detection technique that 
integrates artificial intelligence algorithms with data from INS. 
By exploiting an LSTM algorithm to correct inherent INS errors, 
the proposed approach significantly improves the accuracy of 
the INS measurements, as evidenced by the reduction in the 
RMSE values. The corrected accelerations and angular rates are 
used in combination with the modified M-of-N method to detect 
spoofing by comparing INS outputs with GPS-estimated values. 
Experimental results demonstrate that the approach successfully 

detected 80% of the introduced spoofing zones. However, some 
zones were not detected, likely due to similarities between the 
spoofed and true GPS signals or the limited duration of the 
spoofing events, which did not provide enough consecutive 
detections for confirmation. These findings highlight the 
potential of the proposed technique but also indicate areas for 
further refinement, such as optimizing detection thresholds and 
improving sensitivity in specific segments of the trajectory to 
achieve reliable spoofing detection in diverse scenarios. 
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VIII. FUTURE WORK 

Although the modified M-of-N method demonstrated 
promising results in detecting GPS spoofing attacks, it revealed 
certain limitations. One of the main challenges is its sensitivity 
to transient anomalies, which can lead to false positives in the 
detection process. To address these limitations, our future work 
will explore the robustness of both the K-consecutive alarm 
method and the modified Tong method. We will then compare 
the performances of these three approaches to identify the most 
effective solution for GPS spoofing detection. 
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