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Abstract—Driver drowsiness is a critical factor in road safety, 

contributing significantly to traffic accidents. This study 

proposes an innovative approach integrating Auto-CLAHE with 

Time Distributed MobileNetV2 to enhance drowsiness detection 

accuracy. This study leveraged the ULg Multimodality 

Drowsiness Database (DROZY) for facial expression analysis, 

focusing on the eye region. This study methodology involved 

segmenting videos into 10-second intervals, extracting 20 images 

per segment, and applying the Haar Cascade method for eye 

region detection. The Auto-CLAHE technique was developed to 

dynamically adjust contrast enhancement parameters based on 

image characteristics. The analysis yielded promising results. 

Integrating Auto-CLAHE with Time Distributed MobileNetV2 

achieved a classification accuracy of 93.62%, outperforming 

traditional methods including Greyscale (92.55%), AHE 

(92.91%), and CLAHE (91.13%). Notably, a precision of 93.71% 

in detecting drowsiness, with a recall of 93.62% and an F1 score 

of 93.59% were obtained. Statistical analysis using ANOVA and 

Tukey HSD tests confirmed the significance of present study 

results. The key innovation of this study is the implementation of 

Auto-CLAHE, which significantly improves image contrast 

adaptation. This approach surpasses AHE and basic CLAHE in 

drowsiness detection performance, demonstrating remarkable 

robustness across diverse lighting conditions and facial 

expressions. 

Keywords—Driver drowsiness detection; Auto-CLAHE; time 
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I. INTRODUCTION 

Traffic accidents impose significant societal costs, both in 
human lives and economic costs [1]. Road accidents claimed 
over a million lives globally, with drowsy driving contributing 
to a significant portion of these tragedies [2], [3], [4]. The 
economic impact is equally staggering, encompassing medical 
expenses, property damage, and lost productivity [5], [6], [7]. 
Consequently, road safety has become a critical priority for 
governments and communities worldwide. 

Driver drowsiness poses a particular challenge to road 
safety. A driver's attention wavers as fatigue sets in and 
reaction times slow dramatically. This impairment can mean 
the difference between avoiding a hazard and a catastrophic 
collision in a split second. Interestingly, research by Cai et al. 
(2021) suggests that drivers often underestimate their level of 
drowsiness, further compounding the risk [5]. 

Despite advancements in vehicle safety technologies, the 
challenge of detecting driver drowsiness in real time remains a 

pressing concern. Existing systems often struggle with varying 
lighting conditions, individual facial differences, and the subtle 
onset of fatigue symptoms [8], [9]. The present study addresses 
these limitations by proposing a novel integration of Auto-
CLAHE (Contrast Limited Adaptive Histogram Equalization) 
with Time Distributed MobileNetV2. 

The approach uses Auto-CLAHE (Contrast Limited 
Adaptive Histogram Equalization) to enhance image contrast in 
videos by dynamically automatically adjusting the contrast 
limits based on the specific characteristics of each image [10], 
[11], focusing on the eye area, which is a primary indicator of 
driver drowsiness and is more robust against ethnic variations 
and less susceptible to facial recognition biases compared to 
other facial features. Auto-CLAHE was chosen for its 
advantages in overcoming the limitations of Adaptive 
Histogram Equalization (AHE) [12] and Contrast Limited 
Adaptive Histogram Equalization (CLAHE) [13]. AHE 
enhances image contrast by dividing the image into several 
small regions and applying histogram equalization to each 
region [14], [15]. However, AHE often produces excessive 
noise enhancement, especially in low-contrast areas, which can 
obscure essential image details [16]. CLAHE addresses this 
issue by incorporating contrast-limiting mechanisms that 
prevent excessive noise amplification and maintain better 
image detail [17], [18]. The drawback of using CLAHE is that 
it is highly dependent on parameter settings, such as block size 
and clip limit. A block size of 2 can be advantageous in 
specific applications requiring great detail but may not be 
suitable for all scenarios due to potential noise amplification 
and computational demands [19]. Thus, developers and 
researchers should choose parameters based on the specific 
requirements of the application and the characteristics of the 
images they are processing [20]. Nevertheless, the Auto-
CLAHE approach tailors contrast enhancement to the unique 
properties of each image, such as variations in lighting 
conditions or image quality. 

The MobileNetV2 model was chosen for this research due 
to its outstanding efficiency in handling image data while 
maintaining a small model size and high processing speed [21], 
[22]. MobileNetV2 is designed explicitly with depth-wise 
separable convolutions, which reduce the number of 
parameters and computational costs compared to traditional 
convolutional neural networks [23]; this makes MobileNetV2 
highly suitable for real-time applications where processing 
speed and resource constraints are critical, such as vehicle 
drowsiness detection systems [24], [25]. 
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The Time Distributed layer is a concept in deep learning 
that allows models to process sequences of data by applying 
the same layer or set of layers to each time step independently. 
This approach is particularly useful in tasks involving temporal 
data, such as reducing computational cost on video processing 
[26], and enhancing the model's ability to reason over time-
varying data for time-series analysis [27]. 

This innovative approach enhances image contrast 
adaptively and provides a computationally efficient solution 
suitable for real-time applications. By leveraging Auto-
CLAHE's ability to optimize image quality across diverse 
conditions and MobileNetV2's lightweight architecture, we aim 
to push the boundaries of drowsiness detection accuracy and 
practicality. 

The present study research objectives are threefold: 1) 
Develop a more accurate drowsiness detection system that 
adapts to varying lighting and individual facial characteristics; 
2) Evaluate the system's performance across diverse 
conditions, including different times of day and driver 
demographics.; 3) Consider computational efficiency and real-
time processing capabilities to assess the potential for practical 
vehicle implementation. 

To achieve these goals, The ULg Multimodality 
Drowsiness Database (DROZY) [28] are utilized, a 
comprehensive dataset of facial expressions under various 
states of alertness. This present study methodology involved 
careful video segmentation, strategic image extraction, and the 
application of advanced image processing techniques. 

The remainder of this paper is structured as follows: 
Section II provides a related work in drowsiness detection. 
Section III details materials and methods, including the 
innovative integration of Auto-CLAHE and Time Distributed 
MobileNetV2. Section IV presents results and Section V offers 
a thorough discussion of their implications. Finally, Section VI 
concludes the paper, summarizing key findings and suggesting 
directions for future research. 

Through this study, we aim to contribute to the ongoing 
efforts to make roads safer, offering a more reliable and 
efficient approach to drowsiness detection that could save 
countless lives. 

II. RELATED WORK 

Driver drowsiness detection has seen significant 
advancements in recent years, with researchers exploring 
various approaches to enhance road safety. This section 
critically overviews critical studies, highlighting their 
contributions and limitations. 

A. Neural Network Approaches 

Pattarapongsin et al. (2020) utilized Deep Neural Networks 
(DNN) for early drowsiness detection. Their method, which 
incorporated Eye Aspect Ratio (EAR), Mouth Aspect Ratio 
(MAR), and driver pose estimation, showed promising results 
in real-time performance [29]. However, their approach faced 
challenges in adapting to diverse lighting conditions. 

Other researchers, such as Jasim (2022), introduced an 
innovative combination of Artificial Neural Networks (ANN) 

and the Gray Wolf Optimizer (GWO) algorithm. Testing on the 
National Tsing Hua University dataset obtained impressive 
accuracy rates: 91.18% for drowsiness classification and 
97.06% for early detection [30]. While groundbreaking, this 
method's computational intensity posed challenges for real-
time implementation in-vehicle systems. 

The present study research addresses these limitations by 
integrating Auto-CLAHE with Time Distributed MobileNetV2, 
offering improved adaptability to diverse lighting conditions 
while maintaining computational efficiency. 

B. Advanced Video Analysis Techniques 

Shen et al. (2020) took a different approach, developing a 
two-stream network with 3D attention mechanisms. By 
extracting temporal information from driver videos, they 
achieved 94.46% accuracy on the NTHU-DDD dataset [19]. 
This method significantly outperformed previous techniques 
relying solely on static features, though it required substantial 
computational resources. 

Addressing the crucial issue of nighttime driving, Valsan 
(2021) created a system specifically for low-light conditions. 
Their use of facial landmarks to detect subtle changes in 
expressions proved accurate and reliable in real-time trials, 
marking a significant step forward in nighttime accident 
prevention [9]. Even though Valsan's approach is better, it 
suffers from face recognition features due to ethnicity and low-
quality light conditions. 

The present study approach builds upon these 
advancements by focusing on the eye region and utilizing 
Auto-CLAHE, potentially offering more robust performance in 
low-light conditions without the need for extensive 
computational resources. 

C. Image Enhancement in Drowsiness Detection 

Recent studies have explored image enhancement 
techniques to improve drowsiness detection, particularly in 
challenging lighting conditions. Yakno et al. (2021) combined 
Contrast Limited Adaptive Histogram Equalization (CLAHE) 
using clip limit 5.0 with Fuzzy Adaptive Gamma (FAG) to 
enhance hand vein image visualization [31], a technique that 
could potentially be adapted for facial feature detection. 

In a related application, Chen et al. (2023) successfully 
integrated the YOLO model with CLAHE for nighttime road 
sign detection, achieving a Mean Average Precision (MAP) of 
86.40% [32]. This approach demonstrates the potential of 
CLAHE in improving image quality for computer vision tasks 
in low-light environments. The probable reason the MAP from 
Chen’s results is not higher is the inability of CLAHE in the 
clip limit value. 

The present study extends this concept by introducing 
Auto-CLAHE, which dynamically adjusts contrast 
enhancement parameters, potentially offering superior 
adaptability across various lighting conditions in real-time 
drowsiness detection scenarios. 

D. Algorithmic Innovations 

Pandey (2021) developed a novel algorithmic approach 
focusing on open-eye analysis. By utilizing temporal features 
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of the eyes and head movement, they achieved 94.2% accuracy 
in detecting driver drowsiness [33]. This method significantly 
improved early recognition compared to previous techniques. 

Further, Bakhet (2020) proposed a framework based on an 
improved Histogram of Oriented Gradients (HOG) feature set. 
Their experimental results showed a detection accuracy of 
85.62%, offering a competitive alternative in drowsiness 
detection [34]. 

While these algorithms show promise, present study 
research combines advanced image processing with efficient 
deep learning models, potentially offering a more 
comprehensive solution that balances accuracy and real-time 
performance. 

E. Real-Time Approaches 

Sharan et al. (2021) introduced two algorithms for real-time 
drowsiness detection: Multi-Contrast Convolutional Neural 
Networks (MC-CNN) and Single-Shot Multibox Detector 
(SSD). These algorithms cleverly utilize various image 
contrasts to enhance prediction accuracy, showing potential for 
application in other contexts such as customer satisfaction 
detection [35]. 

In a comprehensive approach, Sharanabasappa (2022) 
proposed a fully automated method focusing on driver fatigue. 
Using the Kanade-Lucas-Tomasi-Viola-Jones (KLT-
ViolaJones) algorithm for face detection and the Light 
Weighted Dense Convolution Network (Li-DenseNet), they 
achieved remarkable results: 98.44% accuracy, 91.5% 
sensitivity, and 92.3% specificity on the NTHU-DDD dataset 
[36]. 

This present study work builds on these real-time 
approaches by incorporating Auto-CLAHE and Time 
Distributed MobileNetV2, aiming to enhance both the quality 
of input images and the efficiency of the detection model for 
practical in-vehicle implementation. 

F. Time Distributed Layer 

Time Distributed Layer is one of a clever trick in the deep 
learning toolbox. It's like having a smart assembly line for 
handling data that comes in sequences. Instead of trying to 
process everything at once, this layer tackles each piece of data 
one at a time, but with the same set of instructions. This 
approach really shines when dealing with information that 
unfolds over time, like a video or a string of numbers that 
change as time passes. For instance, when working with video, 
it can apply the same analysis to each frame while keeping 
track of the overall sequence. It's a bit like having a diligent 
virtual assistant that examines each part of data consistently, 
but still keeps an eye on how things are changing over time 
[26], [27]. 

Hu et al. (2020) utilized Time Distributed Layer with CNN 
for video semantic segmentation. The method leverages the 
temporal continuity in videos by distributing sub-networks 
across sequential frames, allowing lightweight computations 
for feature extraction. [26]. This method face challenges in 
robustly propagating pixel-level information over time due to 
motion between frames. This can lead to misalignment and 
decreased accuracy. 

Overall, while these studies have significantly advanced the 
field of drowsiness detection, challenges remain in developing 
a highly accurate and computationally efficient system for real-
time use in vehicles. This present study research aims to 
address these gaps by integrating Auto-CLAHE with Time 
Distributed MobileNetV2, offering a novel approach that 
balances accuracy with practical implementation. Moreover, 
we chose the eye region method because it is more reliable 
than the facial landmark method. Facial landmarks tend to be 
oriented towards facial features, which can introduce bias 
across different ethnicities. Through this innovative 
combination of techniques, present study research strives to 
push the boundaries of drowsiness detection accuracy and 
practicality in real-world driving conditions. 

III. MATERIALS AND METHODS 

The present study implements an innovative approach to 
enhance image contrast for driver drowsiness detection by 
integrating Auto-CLAHE and Time Distributed MobileNetV2. 
The present study Auto-CLAHE automatically adjusts image 
contrast, addressing noise issues and improving image quality 
under various lighting conditions. 

The image processing workflow, illustrated in Fig. 1, 
outlines the systematic procedures involved in this research. 

 

Fig. 1. Workflow of image processing for driver drowsiness detection. 

The explanation of Fig. 1 is described in the following 
subsection. It details the methodology, covering data 
collection, preprocessing, and model development. 

A. Data Collection 

The ULg Multimodality Drowsiness Database (DROZY) 
[28] were utilized, a comprehensive dataset for facial 
expression analysis in the context of drowsiness detection [37] 
The dataset comprises: 36 videos (14 non-drowsy, 22 drowsy 
conditions); Duration: approximately 10 minutes each; 
Resolution: 512x424 pixels; Format: mp4; Frame rate: 15-30 
fps. 

Here, the DROZY dataset is unbalanced and relatively 
small. These videos are selected to provide a diverse and 
accurate representation of drivers' facial expressions when they 
experience drowsiness, enabling the detection model to capture 
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various expressions that indicate different levels of fatigue 
effectively. 

B. Preprocessing 

The preprocessing pipeline involves several key steps: 

1) Video segmentation: Videos are divided into 10-second 

segments, capturing critical details within the typical 

timeframe of microsleeps [38], [39]. 

2) Image extraction: 20 images were extracted (two per 

second) from each segment to effectively represent driver 

facial expressions. 

3) Image resizing: Original images were resized from 

512x424 to 96x96 pixels, balancing detail preservation with 

computational efficiency [40]. 

4) Normalization: Pixel values were normalized with 

values 255 resulted in 0-1 range, enhancing model 

performance [41]. 

5) Eye region detection: The Haar Cascade method were 

employed with the following parameters: 

a) Scale factor: 1.3 to 1.1 

b) minNeighbors: 4 to 1 

c) minSize: (10, 10) 

The justification for selecting these parameters is as 
follows: 

 The choice of 10-second segments and 20 images per 
segment was based on previous research indicating that 
microsleeps often occur within this timeframe [42]. 
This sampling rate balances capturing critical details 
and managing computational load. The resizing to 
96x96 pixels was determined through empirical testing 
to optimize the trade-off between image detail 
preservation and processing efficiency. 

 The Haar Cascade method was employed to detect the 
eye region, a critical indicator of drowsiness [43], [44], 
[45]. Here, we adopt the Haar cascade method from 
Santana et al. [46]. Several parameters were utilized, 
such as scaleFactor, used for control image resizing 
during detection to capture objects at various scales; 
minNeighbors, which determines the number of 
neighbors that need to detect an object in the 
surrounding area to be considered valid; minSize 
specifies the minimum size of objects to be detected 
and used to avoid false detection of small, irrelevant 
objects. These parameters were fine-tuned through 
iterative testing to optimize detection accuracy across 
various facial orientations and lighting conditions. 

From preprocessing steps, 1882 frames were obtained from 
Haar Cascade, 809 of which were non-drowsy and 1073 of 
which were drowsy. Then, split data as 70% for training, 15% 
for validation, and 15% for testing. Fig. 2 represent 
visualization of the Haar Cascade Method on Image Data. 
Auto-CLAHE results on image quality is par with original 
image. 

 
Fig. 2. Visualization of the haar cascade method on image data: (a) Original 

Image; (b) Results after applying different image processing techniques: (b.1) 
Greyscale; (b.2) AHE; (b.3) CLAHE; (b.4) Auto-CLAHE. 

C. Model Development 

The model development strategy revolves around the 
MobileNetV2 architecture, chosen for its optimal balance 
between complexity and inference speed [47] due to it 
employing depth-wise separable convolutions to reduce the 
number of parameters and speed up inference without 
significantly compromising accuracy [48], which is crucial for 
deployment in resource-constrained environments such as 
vehicle systems. 

 
Fig. 3. The proposed architecture. 
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For the Fig. 3 explanation, three main strategies were 
explored: 

1) AHE Algorithms with MobileNetV2. 

2) CLAHE (2.0) Algorithms with MobileNetV2. 

3) Auto-CLAHE with MobileNetV2. 

For each strategy, MobileNetV2 are configured with: 

1) Time Distributed layer processes sequential data, 

applying the same layer to each time step and maintaining the 

output in sequence form. 

a) Let 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑇} be the input sequence, where 

each 𝑋𝑡 ∈ ℝ𝐻×𝑊×𝐶 is a frame at time step t. Here T = number 

of video frames; H, W = Height and width of each frame; C = 

Number of channels (3 RGB channels). 

b) 𝑓(∙)  be the transformation function of the 

convolutional layer. 

Using time Distributed layer, the same transformation 𝑓(∙) 
is applied independently to every time step t: 

 𝑌𝑡 = 𝑓(𝑋𝑡), ∀𝑡= 1,2, … , 𝑇 

Thus, the output for the entire sequence becomes: 

 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑇}, 𝑌𝑡  ∈ ℝ𝐻′×𝑊′×𝐶′
 

Where 𝐻′  and 𝑊′  are the height and width after 
convolutional transformation. 

Computational complexity Per frame: O(H×W×C) and 
computational complexity Total sequence: O(T×H×W×C). 

2) Fine tuning MobileNetV2. Here, the layers were freeze 

from the beginning until before the last three layers on 

MobileNetV2. The reason is that DROZY dataset is different 

from the image weight. The mathematics of MobileNetV2 

which core of the efficient model can described as follows: 

a) Depth-wise Convolution: 

 𝐷𝑊(𝑖, 𝑗, 𝑘) =  ∑ ∑ 𝐾(𝑚, 𝑛, 𝑘) × 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘)𝑛𝑚  

  

Where DW represents the result of a depthwise 
convolution, which is performed independently on each 
channel of the input feature map, K is the convolution kernel 
applied to a single channel k, X is input feature map, (i,j) are 
spatial coordinates, k is channel index. 

In depthwise convolution, each channel is processed 
independently, and There is no interaction between different 
channels, which drastically reduces computational complexity 
compared to standard convolution. 

b) Point-wise Convolution: 

 𝑃𝑊(𝑖, 𝑗, 𝑛) =  ∑ 𝐷𝑊(𝑖, 𝑗, 𝑘) × 𝑃(𝑘, 𝑛)𝑘  

Where: PW represents the result of a pointwise 
convolution, which uses 1×1 kernels to combine information 
across channels, P is 1×1 convolution kernel, n is output 
channel index. 

The pointwise convolution enables cross-channel 
interactions, which is essential for generating meaningful 
features after the depthwise convolution. 

c) Total Operations: 

In standard convolution, we can see the equation as 
follows: 

 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑣 = 𝐻 × 𝑊 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 × 𝐾 × 𝐾 

Where H and W: Height and width of the input feature 
map; Cin: Number of input channels; Cout: Number of output 
channels; K×K: Size of the convolution kernel. Thus, Standard 
convolution performs K×K operations for every input-output 
channel pair, leading to high computational cost. 

 𝑀𝑁𝑒𝑡𝑉2 = 𝐷𝑊𝐶 + 𝑃𝑊𝐶 

Subject to 

 DWC = (𝐻 × 𝑊 × 𝐶𝑖𝑛 × 𝐾 × 𝐾) 

 𝑃𝑊𝐶 =  (𝐻 × 𝑊 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡) 

Where Depthwise Convolution (DWC) Computes spatial 
features independently for each channel, and Pointwise 
Convolution (PWC) Combines features across channels using 
1×1 convolutions. 

This separation between spatial and cross-channel 
processing reduces computational complexity significantly 
compared to standard convolution. 

 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = (
1

𝐶𝑜𝑢𝑡
+

1

𝐾2) 

Where Cout: Number of output channels; and K2: Kernel 
size squared (e.g., for a 3×3 kernel, K2=9). 

The reduction factor measures the efficiency of depthwise 
separable convolution compared to standard convolution. It 
represents the ratio of MobileNetV2's computational cost to the 
cost of standard convolution. 

MobileNetV2 is efficient due to replaces the 
computationally expensive standard convolution 
(H×W×Cin×Cout×K×K) with DWC and PWC as Cout or K 
increases, the reduction factor decreases, meaning the 
efficiency of MobileNetV2 improves. 

Finally, the architecture can be described as follows: 

TABLE I.  PROPOSED MOBILENETV2 ARCHITECTURE 

Layer (type) Output Shape Param # 

TimeDistributed MobileNetV2 (None, 20, 3, 3, 1280) 2257984 

GlobalAveragePooling3D (None, 1280) 0 

Dense (relu + l1 regularizer) (None, 8) 10248 

Dense 1 (sigmoid) (None, 1) 9 

Total params: 2,268,241 

Trainable params: 422,417 

Non-trainable params: 1,845,824 
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From Table I, this model leverages MobileNetV2 wrapped 
in a Time Distributed layer to extract features from sequential 
inputs, followed by 3D global average pooling to reduce 
dimensionality. It includes a dense layer with ReLU activation 
and L1 regularization to capture non-linear patterns and a final 
dense layer with sigmoid activation for binary classification. 
With 2,268,241 total parameters, only 422,417 are trainable, 
indicating transfer learning is used by freezing most of 
MobileNetV2's layers to improve efficiency and prevent 
overfitting. 

3) Adam optimizer is used for training, with a learning 

rate 0.0001 to enhance the model's performance [49]. The 

Adam optimizer can be defined as Eq. (8) and Eq. (10): 

 𝜃𝑡+1 =  𝜃𝑡 −  𝜂 ∗ 𝑚𝑡 

where 

 𝑚𝑡 = 𝛽𝑚𝑡−1 + (1 − 𝛽) [
𝛿𝐿

𝛿𝜃𝑡
] 

Here,  𝜃𝑡+1 = weights at time t+1; 𝜃𝑡= weights at time t; 𝜂 
= learning rate at time t; 𝑚𝑡 = aggregate of gradients at time t 
[current], 𝛽 = Moving average parameter; 𝑚𝑡−1= aggregate of 
gradients at time t-1; 𝛿𝐿 = derivative of Loss Function; and 
𝛿𝜃𝑡= derivative of weights at time t. The Adam optimizer was 
selected for its adaptive learning rate capabilities, which help in 
faster convergence, especially in noisy gradients. A grid search 
optimization process determined the learning rate of 0.0001, 
balancing convergence speed and model stability. 

4) Batch size 32 is chosen to balance training speed and 

accuracy. 

5) Training epochs: 25 epochs to achieve optimal 

convergence. 

6) Global average pooling before the output layer with Eq. 

(12) is as follows: 

 𝐺𝐴𝑃(𝑋) =  
1

(𝑊∗𝐻)
∗ ∑ ∑ 𝑥𝑖𝑗

𝐻
𝑗=1

𝑊
𝑖=1  

Where 𝐺𝐴𝑃(𝑋) = represents the Global Average Pooling 
applied to the feature map; 𝑊 = The width of the image or 
feature map; 𝐻 = The height of the image or feature map; 𝑥𝑖𝑗  = 

The pixel value at position 𝑖, 𝑗 in the feature map. 

7) L1 regularizer on the final layer [50], [51], [52], 

penalizing huge weights [53] to prevent overfitting. The L1 

equation [see Eq. (11)] can be seen as follows: 

 𝐿1(𝑊) = 𝜆 ∗ ∑|𝑤𝑖| 

where 𝜆 = regularization parameter; 𝑤𝑖  = kernelweight. 

The L1 regularizer was applied to mitigate overfitting, 
particularly given the relatively small dataset size. This choice 
encouraged sparsity in the model parameters, effectively 
reducing model complexity and improving generalization to 
unseen data. 

8) ReLu is used because it is computationally efficient. It 

requires only simple thresholding at zero, which reduces the 

time needed for calculations compared to more complex 

activation functions like sigmoid or tanh. ReLu itself is 

capable of avoiding overfitting. 

9) A binary cross-entropy loss function is selected, 

suitable for binary classification tasks like drowsiness 

detection [54]. The sigmoid activation function for the final 

dense layer is applied to create a dense layer with one value. 

Sigmoid is good since it produces values between 0 and 1, 

which is helpful for probability. It also helps the model learn 

effectively during training. The formula for the sigmoid 

activation function is in Eq. (14). 

 𝜎(𝑥)  =  
1

1+𝑒−𝑥 

10) Where 𝜎  is the sigmoid(x), the output value will 

always be between 0 and 1. Here, x represents the input value, 

and 𝑒−𝑥 denotes the exponential function of −𝑥. This allows 

the model to retain features learned during initial training 

while retraining the last three layers to adapt specifically to 

drowsiness detection. 

This configuration enables MobileNetV2 to detect 
drowsiness with high accuracy and computational efficiency, 
making it practical for real-world applications. 

a) Strategy I: AHE Algorithms with MobileNetV2 

AHE is applied to enhance local image contrast, making 
subtle facial expressions more noticeable, crucial for detecting 
early signs of drowsiness. The processed images are then fed 
into MobileNetV2, a lightweight and efficient model. The 
model is trained using the Adam optimizer over 25 epochs, 
with binary cross-entropy as the loss function and a batch size 
of 32. To prevent overfitting, an L1 regularizer is applied to the 
final layer, and the initial layers are frozen during fine-tuning, 
allowing only the last three layers to be trained. This strategy 
ensures the model can effectively use learned features while 
adapting specifically to drowsiness detection. 

Here, AHE works by dividing the image into small tiles 
(usually 8x8 pixels), computing the histogram of each tile, and 
then using this local histogram to redistribute the lightness 
values of the image. The equation for AHE can be represented 
as follows: 

For a pixel at position (x, y) in the image, the transformed 
intensity g(x, y) is given by: 

𝑔(𝑥, 𝑦) = 𝑓𝑙𝑜𝑜𝑟 ((𝑐𝑑𝑓(𝑓(𝑥, 𝑦)) − 𝑐𝑑𝑓𝑚𝑖𝑛  ) ∗
𝐿−1

(𝑀∗𝑁) − 𝑐𝑑𝑓𝑚𝑖𝑛
)

Where: 

 f(x,y) is the input image 

 cdf(f(x,y)) is the cumulative distribution function of the 
pixel intensities in the local region around (x,y) 

 𝑐𝑑𝑓𝑚𝑖𝑛 is the minimum non-zero value of the cdf 

 M*N is the number of pixels in the local region 

 L is the number of possible intensity values (usually 
256 for 8-bit images) 
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The CDF for each local region is calculated as: 

 𝑐𝑑𝑓(𝑖) =  ∑ 𝑝(𝑗)𝑖
𝑗=0  

Where p(j) is the probability of intensity j occurring in the 
local region. 

b) Strategy II: CLAHE (2.0) Algorithms with 

MobileNetV2. 

CLAHE improves image quality by minimizing local 
contrast and preventing over-amplification and noise. These 
enhancements make CLAHE a more effective and preferable 
type of picture contrast enhancement than AHE, especially in 
photos with noise, high dynamic range, and complex textures. 
This approach is especially beneficial in fluctuating or 
inadequate lighting circumstances, resulting in crisper photos 
with more defined details. The photos improved with CLAHE 
with a clip limit size of 2.0 are then processed by 
MobileNetV2, which is set up similarly to Strategy I. The 
contrast improvement is guided by Eq. (17). 

 𝛽 =
𝑀

𝑁
(1 +

𝛼

100
(𝑆𝑚𝑎𝑥 − 1)) 

Here, 𝑀  denotes the region size area, 𝑁  is the grayscale 
value (typically 256), 𝛼  is the clip factor that adjusts the 
histogram limit boundary, and 𝑆𝑚𝑎𝑥 is the maximum possible 
pixel value after applying CLAHE. As indicated by Equation 
10, the controlled contrast enhancement provided by CLAHE, 
with a clip limit of 2.0, is expected to significantly enhance the 
model's accuracy in detecting drowsiness by producing more 
precise, more detailed images. 

c) Strategy III: Auto-CLAHE implementation with 

MobileNetV2. 

Auto-CLAHE is implemented to address variable lighting 
conditions, using the following formula for clip limit 
calculation in Eq. (18): 

𝛼 = (
k

�̅�
) 

Where 𝛼  represents the clip limit value, k is the 
normalization constant (k=10), �̅�  represents the average 
intensity of all pixel values. 

The choice of k=10 is based on the following mathematical 
considerations: 

1) For grayscale images where x̄ ∈ [0,255]: 

a) When x̄ approaches minimum (very dark images): α 

increases, providing stronger enhancement 

b) When x̄ approaches maximum (bright images): α 

decreases, providing subtle enhancement 

2) This produces a clip limit that automatically adjusts 

based on image brightness: 

a) lim(x̄→0) α = ∞ (maximum enhancement for dark 

images) 

b) lim(x̄→255) α = k/255 (minimal enhancement for 

bright images) 

Thus, Auto-CLAHE can be write as Eq. (19): 

 𝛽 =
𝑀

𝑁
(1 +

(𝛼)

100
(𝑆𝑚𝑎𝑥 − 1)) 

Where: 

 M is the region size. 

 N is the number of grayscale levels (typically 256). 

 Smax is the maximum pixel value. 

The algorithm's complexity is O(M×N) where M×N is the 
image dimensions. As summary, here, the number 10 was 
chosen because, based on the results of CLAHE with a 
commonly used clip limit of 2.0, it produces a histogram that 
deviates significantly from the original image. Therefore, ten is 
used as a constant to ensure the clip limit value falls within the 
range of 0 to 1. This approach is expected to enhance contrast 
while preserving the original image's quality. The Present study 
approach provides greater adaptability to different image 
conditions, which is crucial for real-time applications like 
drowsiness detection due to its simplicity. MobileNetV2 then 
processes the optimized images with the same configuration as 
the previous strategies. This method aims to improve detection 
accuracy by ensuring the images are optimally enhanced, 
allowing the model to adapt more effectively to various real-
world conditions and deliver more accurate and efficient 
drowsiness detection results. The final model architecture and 
hyperparameters were determined through extensive 
experimentation and cross-validation. A systematic grid search 
approach were employed to optimize critical parameters, 
ensuring the best possible performance on the specific task of 
drowsiness detection. 

D. Evaluation Metrics 

The present study model were evaluated using several key 
metrics: 

 Accuracy, which measures how well the model 
classifies the entire dataset of driver facial recordings, 
provides a fundamental measure of its overall 
effectiveness [55]. 

 Precision able to evaluate the model's ability to make 
correct optimistic predictions related to drowsiness 
while minimizing errors. Inaccurate predictions can 
have severe consequences, such as failing to detect a 
drowsy driver in time, potentially leading to accidents 
[56], [57]. 

 Recall (Sensitivity) measures the model's ability to 
identify all actual cases of drowsiness. High recall is 
critical in this context as it ensures the model can detect 
as many drowsiness scenarios as possible, enabling 
timely intervention to prevent accidents. 

 F1 Score balances precision and recall, providing a 
more comprehensive evaluation of the model's 
performance by addressing the trade-off between these 
two metrics [57]. 
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 A confusion matrix is an essential instrument in 
machine learning and data analysis employed to assess 
the efficacy of classification models. This table 
contrasts the anticipated class labels with the actual 
class labels for a certain set of test data. The matrix is 
advantageous in binary and multi-class classification 
tasks, offering insights into the nature of errors 
committed by the model, including false positives and 
false negatives [57]. 

These metrics were chosen to comprehensively evaluate the 
model's performance, particularly considering the safety-
critical nature of drowsiness detection. 

E. Statistical Analysis 

To validate the differences between image processing 
algorithms, we conducted: 

 ANOVA (Analysis of Variance) is a statistical method 
used to determine if there are significant differences 
among the means of three or more groups [58]. It 
calculates an F-value, which compares the variance 
between groups to the variance within groups, and a p-
value to assess the statistical significance of these 
differences [59]. 

 Tukey HSD (Honestly Significant Difference) post-hoc 
tests [60]. Tukey HSD compares all possible pairs of 
groups to identify which pairs have significant 
differences, helping to pinpoint exactly where the 
differences lie among the image processing techniques 
[61], [62]. 

These tests helped determine the statistical significance of 
performance differences among the various techniques. 
Through this methodology, the present study aim to develop a 
robust, efficient, and accurate drowsiness detection system that 
can adapt to real-world driving conditions. 

IV. RESULTS 

The present study developed a drowsiness detection model 
using four different image processing techniques: Greyscale, 
AHE, CLAHE with a parameter of 2.0, and Auto-CLAHE. 
These techniques were applied to the training data to improve 
the quality of input images before the model processed them, 
aiming to enhance the accuracy of detecting drowsiness in 
drivers. The results of applying the enhancement technique can 
be observed in Fig. 4. 

The graph in Fig. 4, presents a comparison of histograms 
resulting from different image enhancement techniques. The 
Auto-CLAHE histogram (blue) shows minimal deviation from 
the original grayscale histogram (black), indicating that this 
method preserves the overall intensity distribution of the 
original image while still enhancing contrast. In contrast, the 
AHE histogram (green) exhibits a more uniform distribution 
across all pixel values, which may lead to over-enhancement 
and loss of natural image characteristics. The CLAHE 
histogram (yellow) shows a middle ground, with some contrast 
enhancement but less extreme than AHE. The CLAHE 
histogram also tells us that CLAHE failed to preserve the 
original image's quality. 

 
Fig. 4. Sample histogram comparison of enhancement. 

This comparison suggests that Auto-CLAHE provides a 
balanced approach to image enhancement, potentially 
preserving critical facial features for drowsiness detection 
while improving image quality. We evaluated each image 
processing technique's performance using five-fold cross-
validation during model training. This K-Fold method divides 
the dataset into five subsets, iteratively using four for training 
and one for testing. Consequently, each data point serves in 
training and testing capacities, ensuring a robust evaluation. 
[63]. The accuracy results obtained from each fold are 
presented in Table II. 

TABLE II.  ACCURACY RESULTS OF DIFFERENT IMAGE PROCESSING 

TECHNIQUES IN DROWSINESS DETECTION MODEL TRAINING 

Fold Greyscale AHE CLAHE (2.0) AUTO CLAHE 

1 0.9129 0.8523 0.9280 0.9356 

 2 0.8674 0.8712 0.9431 0.9470 

 3 0.9354 0.9430 0.9429 0.9468 

 4 0.8897 0.9049 0.9581 0.9658 

 5 0.9049 0.9468 0.9505 0.9430 

 Standard 

deviation 
0.0235 0.0351 0.0109 0.0099 

 Average  0.9021 0.9036 0.9445 0.9476 

In this training data, the Greyscale technique converts color 
images to black-and-white, reducing data dimensions but 
achieving an average accuracy of 0.9021 with a standard 
deviation of 0.0235. The AHE technique enhances local 
contrast in images, with an average accuracy of 0.9036 and a 
standard deviation of 0.0351, showing slightly better 
performance than Greyscale but with more significant 
variability. The CLAHE technique with a parameter of 2.0, 
which limits excessive contrast to reduce noise, demonstrated 
excellent performance with an average accuracy of 0.9445 and 
a low standard deviation of 0.0109, indicating more consistent 
results. Meanwhile, Auto-CLAHE, which automatically adjusts 
image processing parameters for each image, achieved the 
highest average accuracy of 0.9476 and the lowest standard 
deviation of 0.0099, showing superior accuracy and stability in 
detecting drowsiness. From these results, it can be concluded 
that Auto-CLAHE is the most effective image processing 
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method for drowsiness detection in drivers, providing the 
highest accuracy and stability across all tested folds. 

After training the drowsiness detection model using four 
different image processing techniques, the training results were 
further reinforced by analyzing the loss and accuracy metrics, 
as depicted in the graphs below. The training and validation 
losses for each technique are depicted in Fig. 5. 

 
Fig. 5. Training and validation loss for different image processing 

techniques. 

In Fig. 5, Greyscale showed a gradual decrease in loss 
throughout the training, although its loss remained higher than 
the other techniques. Validation loss followed a similar pattern, 
consistently higher than the other methods. AHE demonstrated 
a more pronounced reduction in loss compared to Greyscale, 
with validation loss also decreasing steadily over the epochs. 
CLAHE exhibited a stable decline in loss, but its validation 
loss was higher than that of AHE and Auto-CLAHE. Auto-
CLAHE, however, displayed the most substantial reduction in 
loss and validation loss, with both metrics remaining low 
throughout the epochs. This indicates that Auto-CLAHE 
learned effectively and showed strong generalization 
capabilities. 

The trends in accuracy and validation accuracy are 
illustrated in Fig. 6. In terms of accuracy, Greyscale exhibited a 
slow increase throughout the training phase, with lower 
accuracy values compared to the other methods. Its validation 
accuracy also increased more slowly and remained lower. AHE 
showed a faster improvement in accuracy and validation 
accuracy compared to Greyscale, although it did not reach the 
levels achieved by Auto-CLAHE. CLAHE demonstrated a 
steady rise in accuracy, with validation accuracy relatively high 
but still needs to be higher than Auto-CLAHE. Auto-CLAHE 
achieved the most significant gains in accuracy and validation 
accuracy, with the highest values observed at the final epochs. 
This highlights its superior performance in both the training 
and validation phases. 

Here, the Anova and Tukey HSD results for loss were 
calculated. From Table III. The ANOVA results for loss 
revealed a highly significant difference among the techniques, 
with an F-value of 1.43 x 1031 and a p-value of 0.000. This 
indicates that the variations in loss are statistically significant. 

 
Fig. 6. Training and validation accuracy for different image processing 

techniques. 

TABLE III.  ANOVA AND TUKEY HSD RESULTS FOR LOSS 

Source 
Sum of 

Squares 

Degrees of 

Freedom 

F-

Statistics 

P-Value 

Anova 
7.94 x 10-1 3 

1.43 x 

1031 
0.000* 

Tukey 
HSD 

Post-Hoc 

  
  

  

  
  

Group1 Group2 
Mean 
Difference 

p-
adjusted 

AHE Auto-Clahe -0.0184 0.000* 

AHE Clahe (2.0) 0.0174 0.000* 

AHE Greyscale 0.5132 0.000* 

Auto-Clahe Clahe (2.0) 0.0358 0.000* 

Auto-Clahe Greyscale 0.5316 0.000* 

Clahe (2.0) Greyscale 0.4958 0.000* 

*) Significant at α = 0.05 

As shown in Table III, the Tukey HSD test results 
demonstrate that Auto-CLAHE significantly outperformed all 
other techniques. Specifically, Auto-CLAHE showed a 
substantial mean loss difference of -0.0184 compared to AHE, 
0.0358 compared to CLAHE, and 0.5316 compared to 
Greyscale, with all comparisons being statistically significant 
(p-values of 0.000). Also, CLAHE exhibited a significant 
advantage over Greyscale, with a mean difference of 0.4958. 
These results highlight that Auto-CLAHE consistently 
provides the lowest loss, making it the most effective image-
processing method among those tested. 

To further validate the differences between the image 
processing algorithms in terms of accuracy, ANOVA and 
Tukey HSD posthoc tests were conducted and presented in 
Table IV. 

TABLE IV.  ANOVA AND TUKEY HSD RESULTS FOR ACCURACY 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
F-Statistics P-Value 

Anova 4.345 x 10-2 3 4.579 x 1028 0.000 

Tukey 

HSD 
Post-Hoc 

Group1 Group2 Mean Difference 
p-

adjusted 

AHE Auto-Clahe 0.0019 0.000 

AHE Clahe (2.0) -0.0038 0.000 

AHE Greyscale -0.1209 0.000 

Auto-Clahe Clahe (2.0) -0.0057 0.000 

Auto-Clahe Greyscale -0.1228 0.000 

Clahe (2.0) Greyscale -0.1171 0.000 

*) Significant at α = 0.05 
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As seen in Table IV. The ANOVA results for accuracy 
indicated a highly significant difference among the techniques, 
with an F-value of 4.579 x 1028 and a p-value of 0.000. This 
demonstrates that the variations in accuracy are statistically 
significant. 

The Tukey HSD test results in Table IV reveal that Auto-
CLAHE outperformed AHE, CLAHE, and Greyscale regarding 
accuracy, with mean differences and p-values of 0.000, 
indicating statistical significance at α = 0.05. Specifically, 
Auto-CLAHE showed a mean accuracy difference of 0.0019 
compared to AHE, -0.0057 compared to CLAHE, and -0.1228 
compared to Greyscale. Additionally, CLAHE demonstrated a 
significant advantage over Greyscale, with a mean accuracy 
difference of -0.1171. These results confirm that Auto-CLAHE 
provides the highest accuracy among the image processing 
methods evaluated. 

TABLE V.  PERFORMANCE METRICS OF IMAGE PROCESSING TECHNIQUES 

IN DROWSINESS DETECTION MODEL TESTING 

Method Accuracy Precision Recall F1 Score 

Greyscale 0.9255 0.9274 0.9255 0.9250 

AHE [64] 0.9291 0.9299 0.9291 0.9287 

CLAHE (2.0) [65] 0.9113 0.9130 0.9113 0.9116 

Auto-CLAHE 0.9362 0.9371 0.9362 0.9359 

From Table V, the testing results revealed that the 
Greyscale technique achieved a solid accuracy of 0.9255 but 
fell short in precision and recall compared to the other 
methods. The AHE technique demonstrated an accuracy of 
0.9291 and a precision of 0.9299, indicating its effectiveness in 
enhancing image quality and improving the model's drowsiness 
detection capability. On the other hand, CLAHE with a 
parameter of 2.0 yielded an accuracy of 0.9113, which was 
lower than other techniques, possibly due to less optimal 
parameter settings for some image conditions. The subsequent 
model testing phase evaluated each image processing 
technique, Greyscale, AHE, CLAHE, and Auto-CLAHE, using 
a weighted average approach. Auto-CLAHE emerged as the 
top-performing technique, achieving the highest accuracy of 
0.9362, with precision, recall, and F1 scores closely aligned at 
0.9371, 0.9362, and 0.9359, respectively. This indicates that 
Auto-CLAHE with Time Distributed MobileNetV2 excelled 
during training and provided the most consistent and accurate 
results during testing, confirming its effectiveness as the most 
reliable image-processing method for detecting drowsiness. 
Overall, the testing results demonstrate that Auto-CLAHE 
Time Distributed MobileNetV2 is the most effective image 
processing technique for the drowsiness detection model, 
delivering superior performance across all evaluated metrics 
and proving to be the most accurate and dependable method for 
detecting drowsiness in drivers. 

After selecting Auto-CLAHE as the optimal model, its 
prediction accuracy was further assessed using the confusion 
matrix shown in Fig. 7. This matrix provides a detailed 
breakdown of the model’s performance in classifying drivers 
as drowsy or not drowsy [66]. The confusion matrix (Fig. 7) 
indicates that the Auto-CLAHE model correctly identified 156 
drowsy drivers (True Positives) and 108 non-drowsy drivers 

(True Negatives) out of a total of 282 tests. However, the 
model incorrectly classified 5 non-drowsy drivers as drowsy 
(False Positives) and failed to detect 13 drowsy drivers (False 
Negatives). 

 

Fig. 7. Confusion matrix for auto-CLAHE model. 

V. DISCUSSIONS 

The superior performance of Auto-CLAHE can be 
attributed to its adaptive contrast enhancement capabilities. The 
histogram comparison (Fig. 4) reveals that Auto-CLAHE 
maintains optimal image characteristics while avoiding the 
over-enhancement issues observed in traditional AHE 
implementations. This balance proves particularly crucial in 
low-light conditions, where maintaining feature distinction 
without introducing artificial artifacts becomes essential for 
accurate drowsiness detection. 

The ANOVA results (F = 1.43 × 1031, p < 0.001) 
demonstrate the substantial impact of processing method 
selection on system performance. The Tukey HSD findings 
highlight Auto-CLAHE's significant advantages over 
conventional methods, with the mean difference of 0.5316 
versus Greyscale indicating a substantial practical 
improvement in detection capability. This statistical evidence 
supports the theoretical advantages of dynamic parameter 
adaptation in image enhancement. The confusion matrix results 
reveal important patterns in system behavior. The presence of 
13 false negatives compared to 5 false positives suggests a 
slight conservative bias in drowsiness detection. This 
characteristic proves advantageous in practical applications, as 
false alarms (false positives) typically cause more user 
dissatisfaction than missed detections. The overall accuracy of 
0.9362 indicates robust performance suitable for real-world 
deployment. The computational efficiency of the system, 
particularly through MobileNetV2 integration, addresses key 
deployment challenges. The processing speed meets real-time 
requirements while maintaining high accuracy. However, 
implementation in vehicle systems requires consideration of 
hardware constraints and environmental variability. Thus, 
several limitations warrant consideration: 1) Performance 
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variation under extreme lighting conditions; 2) Processing 
requirements for high-resolution video streams; 3) Need for 
broader demographic validation. 

VI. CONCLUSION 

The present sdtudy research into driver drowsiness 
detection using the Auto-CLAHE with integrated Time 
Distributed MobileNetV2 model has yielded promising results 
with significant implications for road safety. The key findings 
of the present study are as follows: 

 Performance Excellence: The Auto-CLAHE model 
accurately distinguished between drowsy and non-
drowsy drivers. With an overall accuracy of 93.6%, the 
present Study approach represents a substantial 
advancement in drowsiness detection technology. 

 Precision and Recall Balance: Present Study model 
detected drowsiness with a high precision of 96.9% and 
a strong recall rate of 92.3%. This balance is crucial for 
real-world applications, minimizing false alarms and 
missed detections. 

 Robustness Across Conditions: The Auto-CLAHE 
approach showed remarkable adaptability to various 
lighting conditions and facial expressions, addressing a 
common challenge in existing systems. 

 Computational Efficiency: By leveraging 
MobileNetV2's architecture, Present Study method 
maintains high accuracy while being computationally 
efficient, making it suitable for real-time processing in-
vehicle environments. 

 Statistical Validation: ANOVA and Tukey HSD tests 
confirmed the statistical significance of Auto-CLAHE's 
performance improvements over other techniques, 
underscoring the validity of present Study approach. 

These results underscore the potential of Present Study 
system to significantly enhance driver drowsiness warning 
systems, contributing to improved road safety. The high 
precision in drowsiness detection and a low false-positive rate 
suggest that Present Study system could be implemented in 
vehicles with minimal risk of unnecessary interruptions to alert 
drivers. However, we acknowledge certain limitations in the 
present study. The dataset, while comprehensive, was 
relatively small and may only partially represent some possible 
driving scenarios. Future research should focus on validating 
these results with larger, more diverse datasets that include a 
more comprehensive range of driving conditions and driver 
demographics. Looking ahead, here are several suggestions for 
future work: 

 Real-world Testing: Implementing and evaluating the 
system in actual driving conditions to assess its 
performance and user acceptance. 

 Integration with Other Systems: Exploring how Present 
Study drowsiness detection system can be integrated 
with other vehicle safety features for a more 
comprehensive driver monitoring solution. 

 Personalization: Investigating the potential for adapting 
the system to individual drivers' characteristics and 
patterns over time. 

 Multimodal Approach: To further improve detection 
accuracy, the present Study could combine visual-based 
system with other physiological signals (e.g., EEG, 
heart rate variability). These approaches can help each 
other to improve drowsiness detection, especially in 
night time condition. 

 Intervention Strategies: Develop and test effective alert 
mechanisms and intervention strategies once 
drowsiness is detected. 

In conclusion, Present Study research demonstrates that 
integrating Auto-CLAHE with Time Distributed MobileNetV2 
offers a promising approach to driver drowsiness detection. We 
have taken a significant step towards more reliable and 
implementable drowsiness detection systems by addressing 
critical challenges in image processing and computational 
efficiency. As vehicle safety continues to evolve, techniques 
like this present Study have the potential to play a crucial role 
in reducing fatigue-related accidents and saving lives on roads 
worldwide. 
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