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Abstract—This study examines the predictive efficiency of 

several feature selection approaches in air quality models aimed 

to predict next-day PM2.5 concentrations in Shah Alam, 

Malaysia. Air pollution in urban areas is a significant public 

health concern, and accurate prediction models are essential for 

timely interventions. However, determining the most important 

parameters to include in these models remains difficult, 

especially in complex urban areas with several pollution sources. 

To address this, we employed three different feature selection 

methods and applied them to a dataset comprising 43,824 air 

quality data points provided by the Department of 

Environmental Malaysia. The data set contained ten variables, 

such as gas pollutants and meteorological indicators. Each 

feature selection approach determined top eight variables to 

include in a Radial Basis Function Neural Network (RBFNN) 

model. The results showed that ReliefF outperformed Lasso and 

mRMR in terms of accuracy, specificity, precision, F1 Score, and 

AUROC, making it the most effective feature selection method 

for this study. This study contributes to the body of knowledge on 

air quality modelling by emphasising the relevance of using 

proper feature selection techniques that are suited to the specific 

characteristics of the dataset and urban area. Furthermore, it 

proposes that future study should look into the use of ReliefF-

RBFNN in other settings, such as suburban and rural areas, as 

well as hybrid feature selection approaches to improve prediction 

performance across several context. 

Keywords—Lasso; mRMR; PM2.5 concentration; RBFNN; 

ReliefF 

I. INTRODUCTION 

Globally, air quality has grown to be a major environmental 
and public health concern, especially in urban areas such as 
Shah Alam, Malaysia where pollution levels can have a 
substantial negative influence on people's quality of life. 
According to study [1], the rapid urbanization in Shah Alam 
has worsened environmental problems, including air quality 
deterioration. Predicting air quality, particularly the 
concentration of dangerous pollutants like PM2.5, is essential 
for mitigating these risks and providing guidance for public 
health initiatives. Although various pollutants contribute to air 
pollution, [2] suggest that PM 2.5 is the most significant affect 
air pollution. Numerous studies have explored various methods 
to forecast air quality by utilizing a variety of meteorological 

and environmental data such as PM10, PM2.5, CO, O3, 
relative humidity, ambient temperatures and wind speed. 

In recent years, there has been a lot of focus on improving 
the accuracy of air quality predictions using powerful machine 
learning algorithms. Among these, feature selection approaches 
help to improve model performance by finding the most 
relevant variables while minimizing data dimensionality. [3] 
stated in their study that feature selection can improve model 
generalization by avoiding overfitting and mitigating the 
effects of the curse of dimensionality. According to study [4], 
filter technique, wrapper technique and embedded technique 
are three technique of feature selection. Various studies have 
applied different feature selection techniques on air quality data 
including Lasso, mRMR and reliefF. For instance, [5] used 
Lasso to find key features that influenced ozone (O3) levels 
during China's COVID-19 lockdown. Their findings revealed 
that Lasso efficiently identified key variables, such as O3 and 
meteorological conditions, which improved the model's 
interpretability. Moreover, the study in [6] presented a novel 
method that combines mRMR with Random Forest (RF) and 
Long Short-Term Memory (LSTM) networks to estimate the 
Air Quality Index (AQI). Their research showed that mRMR 
successfully identified key variables influencing AQI, greatly 
improving the model's predictive capability. Besides, ReliefF 
was used as a feature selection method for air pollution 
analysis in the Zonguldak region of Turkey in a study by [7]. 
They compared the performance of ReliefF with a firefly-based 
feature selection algorithm and found that even though ReliefF 
was effective, the firefly-based method outperformed it in 
classification tasks using Random Forest classifiers. However, 
most researchers prefer filter approaches because they have a 
straightforward algorithmic framework and are thus simple to 
apply [7]. However, the effectiveness of filter and embedded 
feature selection methods especially in predicting air quality 
data is still questionable. 

Hence, this study aims to determine which feature selection 
method provides better performance in predicting air quality. 
This study compares two filter feature selection method and 
one embedded feature selection method which are Maximum 
Relevance Minimum Redundancy (mRMR), ReliefF and Least 
Absolute Shrinkage and Selection Operator (Lasso). The 
findings of this study will help to build more reliable air quality 
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forecast models, with consequences for public health and 
environmental management. This paper is organized as 
follows: I. Introduction, II. Method, III. Results and 
Discussion. Then, it followed by the conclusion in Section IV 
and the reference lists. 

II. METHOD 

A. Research Flowchart 

Fig. 1 below shows the flowchart outlines of this study to 
predicting next-day PM2.5 levels in Shah Alam, Malaysia, 
using air quality data from 2018 to 2022 provided by the 
Department of Environment, Malaysia. Data extraction is the 
first step in the process, which is then followed by extensive 
data pre-processing, such as imputation using linear 
interpolation, converting hourly data to daily figures, binary 
categorisation of PM2.5 levels, min-max normalisation, and 
dataset balancing using SMOTE. Next, three feature selection 
methods which are mRMR, Lasso, and ReliefF are applied to 
rank and select the top eight variables most relevant to 
predicting PM2.5. These selected features are then used to train 
a Radial Basis Function Neural Network (RBFNN), with the 
model's performance evaluated based on accuracy, specificity, 
precision, F1 Score, and AUROC. Finally, the best-performing 
model is identified by combining effective feature selection 
with the RBFNN. 

 

Fig. 1. Research flowchart. 

B. Data Description 

The Department of Environmental Malaysia provided 
43,824 air quality data points for 10 variables, such as gas 
pollutants and meteorological parameters, collected in Shah 
Alam. Table I below shows the percentage of missing values 

for each variable. Based on Table I, all variables have missing 
values below 10% except NO2 with 12.65% of missing data. In 
contrast, PM2.5 has a low percentage of missing values with 
just 1.29% of missing data. Missing values can arise from 
various sources, including sensor malfunctions, environmental 
conditions, or data transmission errors. High levels of missing 
data, particularly in gas pollutants, could introduce biases or 
reduce the statistical power of the analysis if not properly 
addressed. Therefore, we applied linear imputation methods to 
ensure that these gaps do not compromise the accuracy of the 
predictive models. 

TABLE I.  PERCENTAGE OF MISSING VALUES 

Variable N Missing Value 

PM2.5 43257 567 (1.29%) 

PM10 43151 673 (1.54%) 

SO2 41242 2582 (5.89%) 

NO2 38280 5544 (12.65%) 

O3 41198 2626 (5.99%) 

CO 40629 3195 (7.29%) 

WD 42925 899 (2.05%) 

WS 42868 956 (2.18%) 

Humidity 42907 917 (2.09%) 

Temperature 42926 898 (2.05%) 

To predict the next day's air quality based on PM2.5 levels, 
we used a binary classification system where 0 represents “not 
polluted” and 1 represents “polluted”. We followed the 
methodology of [8], wherein the Air Quality Index (AQI) 
categories “Good” and “Moderate” were combined into the 
“not polluted” class, while the other categories were grouped 
into the “polluted” class. Table II shows the PM2.5 breakpoints 
(24-hour average) as defined by the U.S. Environmental 
Protection Agency (EPA). 

TABLE II.  BINARY LABELS FOR THE RESPECTIVE PM2.5 BREAKPOINT 

AND AQI CATEGORIES 

AQI Category PM2.5 Breakpoints 

Good 0.0-12.0 

Moderate 12.1-35.4 

Unhealthy for Sensitive Groups 35.5-55.4 

Unhealthy 55.5-150.4 

Very Unhealthy 150.5-250.4 

Hazardous 250.5 and above 

C. Feature Selection Method 

1) Lasso: The Least Absolute Shrinkage and Selection 

Operator (Lasso) is an embedded feature selection method that 

improves model performance by selecting and regularizing 

variables at the same time. Linear regression assigns weight to 

each feature, while LASSO regression proposed by Robert 

Tibshirani removes less significant ones from the subset [9]. 

Lasso effectively eliminates less significant features from the 

model by forcing some of the coefficients to be exactly zero 

by adding a penalty to the loss function that is equal to the 

absolute value of the magnitude of the coefficients. 

Furthermore, the study in [10], stated that Lasso method goals 
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are to lower the variance in models with a high number of 

unnecessary variables. 

The formula to calculate Lasso is shown in Eq. (1) below. 

Where, ∑ |𝛽𝑗|
𝑝
𝑗=1  is known as L1 penalty term and the value is 

must below or equal to t, which is the upper bound of the 
summation of the absolute coefficients. While 𝜆 is the tuning 
parameter which controls the strength of the penalty (Ibrahim, 
2020). 

β̂ = min β {∑ (yi − β0 − ∑ xijβj
p
j=1 )

2

+ λ ∑ |
p
j=1

N
i=1 βj|}(1) 

2) Maximum relevance minimum redundancy (mRMR): 

Maximum Relevance Minimum Redundancy (mRMR) is a 

widely used feature selection technique that seeks to reduce 

redundancy among the independent variables while 

identifying a subset of features that are most significant to a 

target variable. This method works especially well with high-

dimensional datasets, where the number of features can 

significantly exceed the number of observations, making 

traditional modelling techniques less effective. The formula to 

calculates the maximum relevance shown in Eq. (2): 

𝑚𝑎𝑥𝐷(𝑆, 𝑐), 𝐷 =
1

|𝑠|
∑ 𝐼(𝑥𝑖 , 𝑐)𝑥𝑖∈𝑠   (2) 

Based on the Eq. (2), 𝑥𝑖  represents the 𝑖-th feature, while 
𝑐 = {𝑐0, 𝑐1} represents the class variables which is not polluted 
and polluted. 𝐿 is 2 which denotes the total number of classes, 
and 𝑆 indicates the feature subset. Moreover, to calculates the 
minimum redundancy shown in Eq. (3) below. 

𝑚𝑖𝑛𝑅(𝑆), 𝑅 =
1

|𝑠|2
∑ 𝐼(𝑥𝑖 ; 𝑥𝐽)𝑥𝑖,𝑥𝐽∈𝑠   (3) 

3) ReliefF: ReliefF algorithm is an extended version of the 

Relief algorithm. It is a filter-based feature selection method 

that used to identify a feature's contribution to a target 

variable's prediction in order to find relevant features in high-

dimensional data [11]. Unlike conventional methods, which 

just rely on statistical correlations or regression analysis, 

ReliefF operates by evaluating each feature's ability to 

differentiate between instances that belong to distinct classes. 

It has been demonstrated that ReliefF can handle noisy data 

and identify reelevant features in high-dimensional datasets 

[12]. 

The algorithm finds the k-nearest neighbours by repeatedly 
choosing random examples from training datasets. Finding the 
k-nearest in distinct classes, M_j (C), (j=1,2,…,k), where 
Euclidean distance is employed to determine the k-nearest 
neighbours, and H_j, (j=1,2,…,k) of R inside the same class 
[13]. The significance of each feature is estimated using the 
variation in feature values between these neighbours. Features 
that show significant variation across classes and small 
variations within the same class are more important. The 
weight of each characteristic is determined using the Eq. (4) 
below. While Eq. (5) is how the 𝑑𝑖𝑓𝑓 is calculated [13]. 

𝑤(𝑓𝑖)

=  𝑤(𝑓𝑖) − ∑
𝑑𝑖𝑓𝑓 (𝑓𝑖 , 𝑅, 𝐻𝑗)

𝑚𝑘

𝑘

𝑗=1

+ ∑
𝑝(𝐶)

1 − 𝑝(𝑐𝑙𝑎𝑠𝑠(𝑅))
𝑐≠𝑐𝑙𝑎𝑠𝑠(𝑅)

 𝑋 ∑
𝑑𝑖𝑓𝑓 (𝑓𝑖 , 𝑅, 𝑀𝑗(𝐶))

𝑚𝑘

𝑘

𝑗=1

, 

(𝑖 = 0,1, … , 𝑑)    (4) 

𝑑𝑖𝑓𝑓(𝐴, 𝑅1, 𝑅2) =

{

|𝑅1[𝐴]−𝑅2[𝐴]|

max 𝐴−min 𝐴
,

0,   𝑖𝑓 𝐴 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑎𝑛𝑑 𝑅1[𝐴] =  𝑅2[𝐴]

1, 𝑖𝑓 𝐴 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑎𝑛𝑑 𝑅1[𝐴] ≠  𝑅2[𝐴]

  𝑖𝑓 𝐴 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠

(5) 

where 𝑑𝑖𝑓𝑓(𝐴, 𝑅1, 𝑅2)  denotes the difference between 
samples 𝑅1  and 𝑅2  on feature 𝐴 . While 𝑅1[𝐴]  and 𝑅2[𝐴] 
indicate the values of sample 𝑅1 and 𝑅2 on feature 𝐴 (Zhang et 
al., 2022). 

4) Radial basis function neural network: Radial Basis 

Function Neural Networks (RBFNNs) are a subset of artificial 

neural networks that used radial basis functions as activation 

functions. The abilities of the model to describe complex 

nonlinear interactions makes them especially useful for 

problems involving function approximation, classification, 

and regression. There are three important layers in RBFNN 

which are the input layer, hidden layer, and output layer that 

are generally connected by weights. Firstly, a source node, 

also known as the independent variable is connected to the 

network to its surroundings in the input layer, meanwhile, the 

hidden layer involves a nonlinear transformation from input 

space to a high-dimension hidden space. Lastly, the output 

layer is the outcome of the network that applied to the input 

layer or called the predicted output. Fig. 2 shows the general 

framework of RBFNN [14]. 

 

Fig. 2. General framework of a RBFNN. 

The hidden layer comprises individual units, each 
corresponding to a transfer function ∅𝑗 , which is generally a 

Gaussian function. The radial basis function (RBF), 
characterized by its radially symmetric shape, serves as the 
transfer function in this context. The number of hidden layer 
units directly corresponds to the number of RBFs used. The 
Gaussian radial basis function is formally defined in Eq. (6). 
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∅(𝑥) = exp(−
||𝑥−𝑐||2

2𝜎2 )  (6) 

where 𝑥 is the input vector, 𝑐 is the center of the RBF, and 
𝜎 is the spread (width) parameter. The output of the hidden 
layer is calculated by taking a weighted sum of these radial 
basis functions. Specifically, for an input vector 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛}, the output of the hidden layer is given in Eq. 
(7). 

𝑔(𝑋) = ∑ 𝑤𝑗∅𝑗(𝑟‖𝑋 − 𝐶𝑗‖𝑘
𝑗=1 )  (7) 

where 𝑤𝑗  are the weights associated with the radial basis 

functions, 𝐶𝑗 are the centers of the RBFs, while 𝑟 is a scaling 

factor. In RBFNN, the output layer typically utilizes a logistic 
(sigmoid) activation function for binary classification tasks. 
The logistic function, as represented in Eq. (8), is employed to 
convert the weighted sum of the hidden layer outputs into a 
probability value within the interval of 0 to 1. 

𝜎(z) =
1

1+𝑒−z   (8) 

Hence, the final output calculation of the RBFNN for 
binary classification is shown in Eq. (9), where 𝑤0  is a bias 
term. 

�̂� = 𝜎 (𝑤0  +  ∑ 𝑤𝑗∅𝑗(𝑟‖𝑋 − 𝐶𝑗‖𝑘
𝑗=1 )) (9) 

D. Model Performances 

The performance of developed model in this study will be 
evaluated based on accuracy, sensitivity, specificity, precision, 
F1 score and AUROC. The accuracy is the number of correct 
predictions in a given number of predictions [15]. The formula 
to calculates accuracy is shown in Eq. (10): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 +𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 +𝐹𝑃 +𝐹𝑁)
    (10) 

Sensitivity and specificity are used to explain the 
relationship between the system's input and output variables 
and to evaluate the model's resilience in the face of uncertainty. 
The percentage of real positives that are correctly identified is 
known as sensitivity, or the True Positive (TP) rate, while the 
percentage of real negatives that are correctly recognised is 
known as specificity, or the True Negative (TN) rate. The 
following Eq. (11) and Eq. (12) provide the formulas for 
determining specificity and sensitivity, respectively. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
  (12) 

Precision quantifies the proportion of correctly classified 
positive samples out of all samples classified as positive. On 
the other hand, the F1 score represents the harmonic mean of 
precision and sensitivity, providing an indication of whether 
the model's performance is well-balanced. Eq. (13) and Eq. 
(14) below present the formulas for calculating precision and 
the F1 score, respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (13) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)
  (14) 

ROC (Receiver Operating Characteristic) curve examines 
the relationship between the true positive rate (sensitivity) on 
the y-axis and the false positive rate (1-specificity) on the x-
axis, serving as a tool to assess the performance of the 
classifier. The AUROC (Area Under the ROC Curve) 
quantifies the model's ability to distinguish between classes. 
The AUC value ranges from 0 to 1, where an AUC of 0.0 
signifies a model with entirely incorrect predictions, and an 
AUC of 1.0 indicates a model with perfectly accurate 
predictions. Hence, high values of accuracy, sensitivity, 
specificity, F1 score and AUROC indicates that the 
performance model is good. 

III. RESULTS AND DISCUSSION 

This section displays the result and discussion of this study. 
Table III presents the descriptive statistics for the independent 
variables, which shows a broad range of standard deviations 
from 0 to 48.507, showing different scales for each variable. 
To address this, the data was standardized using min-max 
normalization, as described by [16] in their study on prediction 
of air pollutants for air quality using deep learning methods in 
a metropolitan city. Furthermore, the histogram for the 
PM2.5Dt1 category in Fig. 3 shows an imbalance in the 
distribution. Thus, the Synthetic Minority Over-sampling 
Technique (SMOTE) was used to ensure a balanced dataset, 
improving the dependability of future results. 

The descriptive statistics after data pre-processing are 
shown in Table IV. Following min-max normalization, all 
mean and median values now fall within the range of 0 to 1, 
indicating that the data has been successfully scaled to a 
standard range. Additionally, the skewness values are now 
closer to 0, reflecting a more balanced distribution across the 
dataset. Moreover, Fig. 4 shows the distribution of PM2.5Dt1 
after the application of SMOTE up sampling to the dataset. It 
demonstrates that there is a consistent amount of sample sizes 
in both groups, with 1676 (50.6%) not polluted and 1639 
(49.4%) are polluted. 

TABLE III.  DESCRIPTIVE STATISTICS OF BEFORE DATA PRE-PROCESSING 

Variable N Mean Median 
Std. 

Dev. 
Skewness 

PM2.5 1825 23.321 21.187 11.712 4.142 

PM10 1825 32.554 30.244 13.739 3.086 

SO2 1825 0.001 0.001 0.000 1.330 

NO2 1825 0.015 0.015 0.005 0.308 

O3 1825 0.020 0.019 0.007 0.800 

CO 1825 0.770 0.754 0.266 0.447 

WD 1825 206.597 205.583 48.507 0.106 

WS 1825 0.820 0.783 0.240 1.468 

Humidity 1825 80.138 80.109 6.603 -0.151 

Temperature 1825 27.552 27.573 1.247 -0.155 
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Fig. 3. PM2.5Dt1 distribution of (Before SMOTE). 

TABLE IV.  DESCRIPTIVE STATISTICS OF AFTER DATA PRE-PROCESSING 

Variable N Mean Median Std. Dev 

PM2.5 3315 0.176 0.144 0.142 

PM10 3315 0.219 0.190 0.146 

SO2 3315 0.227 0.215 0.100 

NO2 3315 0.426 0.423 0.165 

O3 3315 0.333 0.315 0.130 

CO 3315 0.395 0.388 0.165 

WD 3315 0.522 0.510 0.183 

WS 3315 0.214 0.201 0.100 

Humidity 3315 0.520 0.517 0.146 

Temperature 3315 0.559 0.565 0.118 

Table V shows the rankings independent variables 
according to three feature selection methods which are Lasso, 
mRMR, and ReliefF on predicting PM2.5D+1 in Shah Alam. 
Each features methods identifies top 8 independent variables to 
includes in the RBFNN model. The Lasso method ranks PM2.5 
as the most critical feature to predict PM2.5 levels of the next 
day, a result that contrasts with the mRMR and ReliefF 
methods, where PM2.5 is not included among the top 8 
features. However, the mRMR method select PM10 as the 
most significant feature while Lasso method rank PM10 as 
second most important features. 

ReliefF, on the other hand, identify wind direction as the 
most important feature. This implies that variations in wind 
direction can result in significant variations in the dispersion or 
concentration of pollutants in urban environments. Moreover, 
[17] investigated the relationship between wind direction and 
air quality, specifically focusing on fine particulate matter 
(PM2.5) and its precursor gases. The investigation shows that 
the distribution and concentration of these contaminants are 

strongly influenced by wind direction. Moreover, this study 
shows ReliefF ranks both humidity and temperature as the least 
important features which is 7 and 8, in contrast to the Lasso 
and mRMR methods, which assign higher importance to these 
variables in predicting PM2.5 levels. 

Furthermore, all three methods did not select SO2 as top 8 
important variables to predict PM2.5 levels of the next day. 
According to a study by [18] on analysis of air pollution levels 
in a settlement area using passive sampling methods. Despite 
of SO2 presence, their results showed that SO2 had a small 
impact on the area under study's overall air quality index 
(AQI). This study supports the findings that SO2 may not have 
a significant impact on air quality projections, especially in 
areas where other pollutants predominate. 

 

Fig. 4. PM2.5Dt1 distribution of (After SMOTE). 

TABLE V.  FEATURE RANKING ACROSS LASSO, MRMR, AND RELIEFF 

METHODS 

Variable Lasso mRMR reliefF 

PM2.5 1 - 5 

PM10 2 1 6 

SO2 - - - 

NO2 4 6 2 

O3 - 3 4 

CO 6 7 3 

WD 7 8 1 

WS 8 2 - 

Humidity 3 5 7 

Temperature 5 4 8 

Table VI shows the comparison of RBFNN model 
performance by using different feature selection methods to 
predict air quality of the next day based on PM2.5 level. 
According to Table VI, ReliefF outperformed Lasso and 
mRMR method with higher accuracy, specificity, precision, F1 
Score and AUROC value which are 0.757, 0.719, 0.719, 0.758 
and 0.759 respectively. This findings contrast with a study by 
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[9], who found that the Lasso method outperformed the ReliefF 
method in terms of performance metrics. However, it is 
important to note that [9] utilized a different classifier, 
specifically KNN, whereas this study employs RBFNN. 
Besides, a comparative study by [19], ReliefF was evaluated 
alongside Lasso and mRMR for survival prediction models. 
The findings showed that ReliefF was able to consistently find 
more relevant features than Lasso and mRMR, which had 
difficulty to maintain stability in their selections. 

TABLE VI.  COMPARISON MODEL PERFORMANCE 

Model Lasso mRMR ReliefF 

Accuracy 0.735 0.753 0.757 

Sensitivity 0.771 0.818 0.801 

Specificity 0.702 0.703 0.719 

Precision 0.702 0.703 0.719 

F1 Score 0.735 0.756 0.758 

AUROC 0.736 0.756 0.759 

IV. CONCLUSION 

In conclusion, this study's findings highlight the variety in 
feature selection approaches and their impact on the predictive 
effectiveness of air quality models in urban area which is Shah 
Alam, Malaysia. Among the three methods evaluated, ReliefF 
emerged as the most successful feature selection method for 
predicting next-day PM2.5 levels, outperforming both Lasso 
and mRMR in terms of accuracy, specificity, precision, F1 
Score, and AUROC. This outcome aligns with some research 
that underscores ReliefF's ability to reliably detect relevant 
features, although other studies have favored the Lasso 
method. This study recommends that future research to explore 
the application of reliefF-RBFNN method to other type of 
areas such as sub-urban and rural area. This study also suggests 
that future studies should be conducted in other urban regions 
with varying climatic and pollutant features to confirm the 
generalisability of the findings and to develop more robust air 
quality prediction models that can be tailored to various 
situations. Moreover, it is recommended future researcher to 
explore on hybrid feature selection method such as ReliefF 
(filter) integrated with Lasso (embedded) feature selection 
method that might improve prediction performance across a 
variety of urban settings. However, the output of this study is 
not generalised to other country as the air quality patterns are 
differed across country. 
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