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Abstract—Machine learning models (MLMs) are used in 

industry to automate complicated activities, minimize human 

error, and improve decision-making by evaluating large volumes 

of data in real time. To managing inventory and quality control in 

the apparel and auto industries, they provide predictive 

capabilities such as predicting equipment breakdowns, 

maintenance and detecting fraud in the finance sector and the 

major key advantages include cost reduction, higher productivity, 

better product quality, and tailored client experiences. MLM helps 

the industries to reduce downtime, prevent errors, and gain a 

competitive edge through data-driven strategies and processing 

massive volumes of data in real time. So, there is a need to select 

the best MLMs for industrial robotics and by considering it, this 

paper addresses this problem as multiple criteria decision-making 

(MCDM) by exploiting hesitant bipolar fuzzy information, which 

takes into account both hesitation and bipolarity in decision-

maker preferences. This paper introduced the new aggregation 

operators (AO) based on geometric and arithmetic procedures to 

efficiently aggregate the data including the hesitant bipolar fuzzy 

weighted geometric operator (HBFWGO), which is appropriate 

for multiplicative relationships, and the hesitant bipolar fuzzy 

weighted average operator (HBFWAO), which gives weighted 

importance to qualities. Further, the dual operators including the 

dual hesitant bipolar fuzzy weighted geometric operator 

(DHBFWGO) and the dual hesitant bipolar fuzzy weighted 

average operator (DHBFWAO) have been presented that are 

further applied to create novel strategies for resolving MCDM 

issues and offering a methodical manner to assess and combine 

features. Moreover, the example of selecting the optimal MLMs to 

show the robustness and efficiency of the suggested methodology 

has been presented which illustrates the applicability and strength 

of the proposed methodology in actual decision-making situations. 
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I. INTRODUCTION 

The development and evaluation of the highest quality 
(MLMs) [1] for industrial robotics is an important step toward 
the improvement of current automation and decision-making 
systems. Industrial robotics [2] has an enormous effect on 
manufacturing environments by automating challenging 
activities, enhancing precision, and minimizing human error. 
As companies transition to smart manufacturing and Industry 

4.0 [3], the demand for advanced robotic systems that can 
intelligently adapt to dynamic and uncertain surroundings 
grows. Choosing the best MLM is a challenging process as it 
involves balancing various criteria [4]. In response, MCDM has 
grown to be a potent technique for handling complexity and 
of controlling uncertainty. This decision-making strategy is 
based on fuzzy set theory (FS) [5], which provides a flexible 
framework for addressing uncertainty. Zadeh developed the FS 
notion in 1965 to solve the boundaries of conventional set 
theory and binary logic [6], in which an individual either fully 
belongs to a set or does not. Many situations in the real world 
are not black and white, but rather exist in shades of gray, 
making it difficult to establish clear boundaries. FS permits the 
depiction of uncertainty by assigning degrees of membership to 
elements in a set. This significant development established the 
way for subsequent advances in decision-making under 
uncertainty, including the introduction of more advanced ideas 
like hesitant fuzzy sets (HFS) [7], and then bipolar fuzzy sets 
(BFS) [8]. 

FS was created to address difficulties where traditional 
true/false reasoning was insufficient. Since the traditional set 
theory implies that an element is either a member of a set or not, 
which is useful for issues having binary solutions. However, in 
many practical contexts such as robotics, control systems, and 
decision-making, real-world data is frequently unclear or 
missing. To address this, Zadeh's FS developed the concept of 
partial membership, which allows an element to belong to a set 
to some extent, represented by values ranging from [0, 1]. But, 
as the research developed, it became clear that the concept of 
membership alone was not necessarily adequate for modeling 
all types of uncertainty. This resulted in the creation of 
increasingly advanced extensions of FS. By considering it, 
Atanassov presented the concept of an intuitionistic fuzzy set 
(IFS) [9] in 1986, which expanded Zadeh's FS by including 
both a membership and non-membership function. This set 
offers an additional structure for dealing with uncertainty by 
considering an element's degree of non-membership in addition 
to its membership. The IFS was especially beneficial when 
decision-makers needed to indicate hesitancy about whether an 
element should be included in a set. Later on, researchers such 
as Alcantud [10] constructed on aggregation operator (AO) for 
IFS that allows for more flexible ways to aggregate and handle 
IFS, Ali et al. [11] utilized it for material selection, and Ahn et 
al. [12] utilized this framework for medical diagnosis. This 
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approach improved the ability to combine data from numerous 
sources under uncertainty and it into an effective framework for 
MCDM which is utilized by various researchers for evaluating 
decision-making problems. Furthermore, for even more 
freedom in expressing uncertainty, Torra presented the HFS 
[13]. In an HFS, an element's membership is represented by a 
set of alternative values rather than a single value, indicating 
uncertainty in choosing membership. Additionally, he 
investigated the connection between IFS and HFS, 
demonstrating that an IFS is fundamentally contained within 
the envelope of an HFS. Xia and Xu [14] expanded on previous 
research on HFS by inventing aggregation algorithms 
specifically intended for hesitant fuzzy information and 
applying them to decision-making situations. The bipolar fuzzy 
set (BFS) [15] has emerged as a potential solution to managing 
uncertainty in MCDM situations and utilized two values to 
characterize an object i.e. the positive membership degree and 
the negative membership degree. Unlike IFS, membership 
degrees in BFS range from[−1,1]. BFS has been widely applied 
in various domains, such as bipolar fuzzy heat equation [16], 
traditional Chinese medicine [17], bipolar cognitive mapping 
[18], decision analysis and organizational modeling [19], 
biosystem regulation, and graph theory [20]. Moreover, MLMs 
in industrial robots is selected based on a variety of 
performance parameters, including speed, accuracy, resilience, 
and computing efficiency. So, a structured strategy for 
decision-making due to the abundance of MLMs that are tuned 
for distinct tasks, such as object recognition, navigation, or 
manipulation. When evaluating the MLMs, the HFS approach 
allows decision-makers to express their uncertainty that a 
model may perform well under some conditions but poorly 
under others, raising questions about its overall applicability. In 
such circumstances, HFS offers the ability to depict hesitation 
and BFS approach extends this concept by allowing decision-
makers to consider both the positive and negative elements of 
any MLM which is beneficial in industrial robots, where the 
trade-offs between speed and precision, or adaptability and 
computational cost, must be carefully balanced. By integrating 
HFS and BFS into the decision-making process, it assists 
the decision-maker to systematically evaluating various factors 
while balancing competing aims to get the optimum ML model. 
Robotic systems can be made far more capable, efficient, and 
adaptable by choosing the best ML model for industrial robots. 
So, in the past FS, HFS, and BFS have all been adopted to 
model uncertainty in decision making, but these methodologies 
are still limited in terms of dealing with complex and 
conflicting criteria especially when working in changing arenas 
like industrial robotic systems. So, this paper aims to introduce 
the HBFWAO and HBFWGO operators that are more flexible 
and accurate than the existing ones hence fixing the drawback 
and improving support in decision making on the choice of ML 
models for industrial applications.  Some of the primary 
benefits are: 

 With the help of MLMs, data is optimized and repeat 
processes are undertaken without errors in performance 
to learn from past experiences. 

 Traditional models are designed to perform only a few 
specific tasks since they follow prewritten instructions 

and cannot adapt to changes but ML on the other hand 
facilitates real-time data analysis, and enhancing 
efficiency in performing strategies. 

 Through the integration of MLMs, robots can now work 
together with a human teammate and accomplish 
diverse tasks with a great level of efficiency. 

However, the Industrial robotics faced numerous major 
obstacles that limited their effectiveness and flexibility prior to 
the inclusion of ML model, including: 

 Before the advent of ML, programming and maintaining 
robots was an expensive affair, and supervision made 
them inefficient and very impractical for the modern 
industries. 

 Conventional robots were confined to a certain set of 
tasks and lacked the quality of adaptability and therefore 
required expensive changes of programming if there 
were new tasks or new situations emerged. 

A. Motivation of the Research 

When it comes to making decisions that are quite complex 
in nature, the standard fuzzy sets have a lot of difficulties in 
capturing the preferences especially for those that have 
hesitations and bipolar judgments. This is addressed by HBFS 
but new aggregation operators (AOs) must be introduced to 
deal with the complexity of the existing data sets effectively 
thus providing the motivation of this research in enhancing 
MCDM processes. 

 In practice, the making of decisions tends to be marred 
with uncertainty and ambivalent views, for instance in 
industrial, financial, resource allocation scopes, etc. The 
HBFS framework depicts this uncertainty but does not 
apply well in MCDM without sophisticated aggregation 
methods. 

 In this study, the HBFWAO and HBFWGO are 
introduced in order to aggregate hesitant bipolar fuzzy 
information for more effective decision-making outputs. 

 The research extends these operators to develop flexible 
decision-making techniques for HBFS and DHBFS, 
useful in industrial applications like selecting the best 
ML model for robots. 

B. Organization of the Study 

For evaluating the MLMs for robot selection, this paper is 
organized as follows: Section I gives a brief introduction to 
MLMs and their evaluation as a decision-making problem. 
Then, the fundamental notions of FS, HFS, BFS, and its 
operational laws are defined in Section II. Section III proposed 
the HBF set and DHBF set which are then followed by AOs 
including averaging and geometric operators. In Section IV, the 
methodology was proposed by utilizing these AOs to address 
MCDM concerns and then utilized in evaluating the real-world 
decision-making problem. Section V provides a comparison 
between the prior studies and the proposed study and highlights 
the effectiveness of the proposed operator. In the end, Section 
VI concludes the whole discussion by defining its limitations 
and future direction. 
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II. PRELIMINARIES 

This section contains a prior defined definition of FS, BFS, 
HFS, and its operational laws for the understanding of the 
readers. 

Definition 1 [5]: Let 𝑈 be a fixed and non-empty set. Then, 
the FS ℬ on 𝑈 is defined as: 

which is determined by a membership function 

MF µℬ: µℬ ∈ [0,1] 

ℬ = {(𝜎𝑗, µℬ(𝜎𝑗)) : 𝜎𝑗 ∈ 𝑈} 
(1) 

 

Definition 2 [15]: Let 𝑈  be a fixed and non-empty set. 
Then, the BFSs ℬ on 𝑈 is defined as: 

ℬ = {< 𝜎𝑗(µℬ
+(𝜎𝑗), 𝜈ℬ

−(𝜎𝑗) > |𝜎𝑗 ∈ 𝑈)} (1) 

The positive MF function, denoted as µℬ
+(𝜎𝑗): 𝑈 → [0,1], 

represents the degree to which an element 𝜎𝑗  satisfies the 

property associated with a bipolar fuzzy set (BFS) ℬ . 

Conversely, the negative membership degree function, 𝜈ℬ
−(𝜎𝑗): 

𝑈 → [0,1], indicates the degree to which an element 𝜎𝑗   meets 

an implicit counter property related to the same BFS ℬ. For any 
𝜎𝑗 in the set 𝑈, the combination of these functions, expressed as 

𝔟(𝜎𝑗) = (µ+(𝜎𝑗), 𝑣
−(𝜎𝑗)) , is referred to as a bipolar fuzzy 

number (BFN), represented by 𝔟 = (µ+, 𝑣−), adhering to the 
conditions 0 ≤ µ+ ≤ 1 and −1 ≤ 𝑣− ≤ 0. 

Definition 3 [15]: The following is a description of the basic 
operations on BFNs. 

 𝒶1⨁𝒶2 = (µ1
+ + µ2

+ − µ1
+µ2

+, −|𝜈1
−||𝜈2

−|) 

 𝒶1⨂𝒶2 = (µ1
+µ2

+, 𝜈1
− + 𝜈2

− − 𝜈1
−𝜈2

−) 

 𝛾𝒶 = (1 − (1 − µ+)𝛾, −|𝑣−|𝛾), 𝛾 > 0 

 (𝒶)𝛾 = ((µ+)𝑉 , −1 + |1 + 𝑣−|𝛾), 𝛾 > 0 

 𝒶𝑐 = (1 − µ+, |𝑣−| − 1) 

 𝒶1 ⊆ 𝒶2,⟺ µ1
+ ≤ µ2

+ 𝑎𝑛𝑑 𝜈1
− ≥ 𝜈2

− 

 𝒶1 ∪ 𝒶2 = (𝑚𝑎𝑥{µ1
+, µ2

+},𝑚𝑖𝑛{𝜈1
−, 𝜈2

−}). 

 𝒶1 ∩ 𝒶2 = (𝑚𝑖𝑛{µ1
+, µ2

+},𝑚𝑎𝑥{𝜈1
−, 𝜈2

−}); 

Theorem 1 [15]: Let 𝒶1 = (µ1
+, 𝜈1

−)  and 𝒶2 = (µ2
+, 𝜈2

−)  
represents for two BFNs, where 𝛾, 𝛾1, 𝛾2 > 0. In this context, 
µ1
+and µ2

+represent the positive membership functions, while 
𝜈1
− and 𝜈2

− denotes the negative membership functions. Under 
these conditions, the following operations can be applied to 
𝒶1and  𝒶2. 

 𝒶1⨁𝒶2 = 𝒶2⨁𝒶1 

 𝒶1⨂𝒶2 = 𝒶2⨂𝒶1 

 𝛾(𝒶1⨁𝒶2) = 𝛾𝒶1⨁𝛾𝒶2 

 (𝒶1⨂𝒶2)
𝛾 = (𝒶1)

𝛾⨂(𝒶2)
𝛾 

 𝛾1𝒶1⨁ 𝛾2𝒶1 = (𝛾1 + 𝛾2)𝒶1 

 (𝒶1)
𝛾1⨂(𝒶1)

𝛾2 = (𝒶1)
(𝛾1+𝛾2) 

 ((𝒶1)
𝛾1)𝛾2 = (𝒶1)

𝛾1𝛾2  

III. HESITANT BIPOLAR FUZZY AGGREGATION OPERATORS 

(HBFAO) 

In this part, a set of innovative and specialized aggregation 
procedures designed exclusively for HBFAO. These operators 
are developed to effectively integrate and process HBFAO, 
boosting their utility in various decision-making and analysis 
settings. Additionally, the important aspects of these operators 
by applying fundamental operations have been analyzed which 
allowing us to obtain deeper insights into their behavior and 
performance and provide more robust methods for managing 
unpredictable and bipolar data. 

Definition 4: Let 𝑈 be a fixed and non-empty set. Then, the 
HBFS ℬ¤ on 𝑈 is defined as: 

ℬ¤ = {< 𝜎𝑗,ℋℬ¤(𝜎𝑗)
> |𝜎𝑗 ∈ 𝑈 } 

(2) 

where, ℋℬ¤(𝜎𝑗)
 is a collection of BFNs in ℬ. Specifically, 

ℋℬ¤(𝜎𝑗)
= ⋃

(µ
ℬ¤
+ (𝜎𝑗),𝜈ℬ¤

− (𝜎𝑗))∈ ℋℬ¤(𝜎𝑗)

(µℬ¤
+ (𝜎𝑗), 𝜈ℬ¤

− (𝜎𝑗)) 

Where µℬ¤
+ (𝜎𝑗) represents the positive MF, indicating the 

degree to which an 𝜎𝑗 satisfies a given property related to HBFS 

ℬ¤ and 𝜈ℬ¤
− (𝜎𝑗) represents the negative MF which indicates the 

degree to which 𝜎𝑗  satisfies an opposing or counter-property 

related to the HBFS ℬ¤. 

These membership functions are bounded by the following 

conditions: 0 ≤ µℬ¤
+ (𝜎𝑗) ≤ 1 and −1 ≤ 𝜈ℬ¤

− (𝜎𝑗) ≤ 0 for every 

𝜎𝑗 ∈  𝑈. 

For ease of reference, the pair ℎ(𝜎𝑗) = {(µ+(𝜎𝑗), 𝑣
−(𝜎𝑗))} 

is called a HBFN, denoted as ℎ = (µ+, 𝑣−) , with the 
constraints: 0 ≤ 𝛼+ ≤ 1  and −1 ≤ 𝛽− ≤ 0 , (𝛼+, 𝛽−) ∈
(µ+, 𝑣−). 

To compare HBFNs, the following comparison laws have 
been used which give a systematic method for evaluating and 
distinguishing between different HBFNs and allow us to 
compare their relative strengths in terms of positive and 
negative membership functions. 

Definition 5: Let ℎ𝑖 = (µ𝑖
+, 𝑣𝑖

−) (𝑖 = 1,2)  be any two 
HBFNs. Then, 

𝔰(ℎ𝑖) =
1

⧤ ℎ𝑖
∑

1+ 𝛼+ + 𝛽−

2

⧤ℎ𝑖

𝑖=1

 

𝔰(ℎ𝑖) represents the score function of ℎ𝑖 = (µ𝑖
+, 𝑣𝑖

−). 

Definition 6: Let ℎ𝑖 = (µ𝑖
+, 𝑣𝑖

−) (𝑖 = 1,2)  be any two 
HBFNs. The accuracy function of ℎ𝑖 = (µ𝑖

+, 𝑣𝑖
−), 

𝔰∗(ℎ𝑖) =
1

⧤ ℎ𝑖
∑

𝛼+ − 𝛽−

2

⧤ℎ

𝑖=1
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where ⧤ ℎ𝑖  is the number of elements in ℎ𝑖. 

 If 𝔰(ℎ1) > 𝔰(ℎ2), then ℎ1 is considered superior to ℎ2 , 
which is represent as ℎ1 ≻ ℎ2; 

 If 𝔰∗(ℎ1) = 𝔰
∗(ℎ2), then, ℎ1is equal to ℎ2, denoted by 

ℎ1 ∼ ℎ2; 

 If 𝔰∗(ℎ1) > 𝔰
∗(ℎ2), then ℎ1is considered superior to ℎ2, 

which represent as ℎ1 ≻ ℎ2. 

The following operational laws will enable to combine the 
HBFNs in a variety of ways, making comparisons and analyses 
easier within the context of HBFS theory and improve the 
understanding of the links and interactions between various 
HBFNs. 

 ℎ𝛾 =∪(𝛼+,𝛽−)∈(µ+,𝑣−) {
(𝛼+)𝛾,

−1 + |1 + 𝛽−|𝛾
} , 𝛾 > 0; 

 𝛾ℎ =∪(𝛼+,𝛽−)∈(µ+,𝑣−) {
1 − (1 − 𝛼+)𝛾,

|𝛽−|𝛾
} , 𝛾 > 0; 

 ℎ1⨁ ℎ2 =

∪(𝛼1+,𝛽1−)∈(µ1+,𝑣1−),(𝛼2+,𝛽2−)∈(µ2+,𝑣2−) {
𝛼1
+ + 𝛼2

+ − 𝛼1
+𝛼2

+,

−|𝛽1
−||𝛽2

−|
} 

 ℎ1⨂ℎ2 =

∪(𝛼1+,𝛽1−)∈(µ1+,𝑣1−),(𝛼2+,𝛽2−)∈(µ2+,𝑣2−) {
𝛼1
+𝛼2

+,
𝛽1
− + 𝛽2

− − 𝛽1
−𝛽1

−} 

A. Hesitant Bipolar Fuzzy Weighted Averaging Operators 

(HBFWAO) 

This part defines the HBFAO, which allow us to combine 
these HBFV in an organized manner for further analysis and 
decision making. 

Definition 7: Let ℎ𝑗 = (µ𝑗
+, 𝑣𝑗

−)  (𝑗 = 1,2,3, … , 𝑛) 
represent an entire collection of HBFV. The HBFWAO is 
defined as: 

𝐻𝐵𝐹𝑊𝐴𝑂𝓌(ℎ1ℎ2, … , ℎ𝑛) =∑(𝓌𝑗ℎ𝑗)

𝑛

𝑗=1

 
(3) 

where, 𝓌 = (𝓌1,𝓌1, . . . ,𝓌1)
𝔱  is the weight vector for 

each ℎ𝑗  for 𝑗 = 1,2,3, … , 𝑛 , with 𝓌𝑗 > 0  and ∑ (𝓌𝑗) = 1
𝑛
𝑗=1 . 

This operator combines the HBFVs by applying their respective 
weights.   

Theorem 2: The HBFWAO provides a HBFV with 

𝐻𝐵𝐹𝑊𝐴𝑂𝓌(ℎ1ℎ2, … , ℎ𝑛) =∑(𝓌𝑗ℎ𝑗)

𝑛

𝑗=1

 

𝐻𝐵𝐹𝑊𝐴𝑂𝓌(ℎ1ℎ2, … , ℎ𝑛)

=∪
(𝛼𝑗

+,𝛽𝑗
−)∈(µ𝑗

+,𝑣𝑗
−)

{
 
 

 
 1 −∏(1 − 𝛼𝑗

+)
𝓌𝑗

𝑛

𝑗=1

,

−∏|𝛽𝑗
−|
𝓌𝑗

𝑛

𝑗=1 }
 
 

 
 

 

 

(4) 

B. Hesitant Bipolar Fuzzy Weighted Geometric Operators 

(HBFWGO) 

This section introduced the hesitant bipolar fuzzy geometric 
operators (HBFGO) by combining hesitant fuzzy and bipolar 
fuzzy geometric mean principles. These operators are intended 
to successfully combine HBFNs by capturing the multiplicative 
relationships inherent in the dataset. This method not only 
improves the aggregation process, but it also assures that the 
output values better reflect the underlying interactions between 
the components. 

Definition 8: The HBFWGO is defined as: 

𝐻𝐵𝐹𝑊𝐺𝑂𝓌(ℎ1ℎ2, … , ℎ𝑛) =∑(ℎ𝑗)
𝓌𝑗

𝑛

𝑗=1

 
 

(5) 

where, 𝓌 = (𝓌1,𝓌1, . . . ,𝓌1)
𝔱  is the weight vector for 

each ℎ𝑗  for 𝑗 = 1,2,3, … , 𝑛 , with 𝓌𝑗 > 0  and ∑ (𝓌𝑗) = 1
𝑛
𝑗=1 . 

This operator combines the HBFV by applying their respective 
weights. 

Utilizing the established definition and mathematical 
induction methods, the validity of the following theorem can  
be demonstrate as; 

Theorem 3: The HBFWGO provides a HBFV, and 

𝐻𝐵𝐹𝑊𝐺𝑂𝓌(ℎ1ℎ2, … , ℎ𝑛) =∑(ℎ𝑗)
𝓌𝑗

𝑛

𝑗=1

 

𝐻𝐵𝐹𝑊𝐺𝑂𝓌(ℎ1ℎ2, … , ℎ𝑛)

=∪
(𝛼𝑗

+,𝛽𝑗
−)∈(µ𝑗

+,𝑣𝑗
−)

{
 
 

 
 ∏(𝛼𝑗

+)
𝓌𝑗

𝑛

𝑗=1

,

−1 +∏(1 + 𝛽𝑗
−)

𝓌𝑗

𝑛

𝑗=1 }
 
 

 
 

 

 

 

 

(6) 

where, 𝓌 = (𝓌1,𝓌1, . . . ,𝓌1)
𝔱  is the weight vector for 

each ℎ𝑗 for 𝑗 = 1,2,3, … , 𝑛, with 𝓌𝑗 > 0 and ∑ (𝓌𝑗) = 1
𝑛
𝑗=1 . 

C. Dual Hesitant Bipolar Fuzzy Aggregation Operators 

(DHBFAO) 

The Dual hesitant bipolar fuzzy AOs (DHBFAO) combine 
dual hesitant and bipolar fuzzy sets to deal with uncertainty, 
hesitation, and both positive and negative information. They are 
used to combine conflicting or uncertain evidence in decision-
making, hence improving analysis in complicated, confusing 
situations. 

Definition 9: Let 𝔥𝑗 = (µ𝑗
+, 𝑣𝑗

−)  (𝑗 = 1,2,3, … , 𝑛) 
represent an entire collection of dual hesitant bipolar fuzzy 
values (DHBFV). Then, the DHBFS ℬ⎈ on 𝑈 is defined as: 

ℬ⎈ = {< 𝜎𝑗, (µ
+
(𝜎𝑗)

, 𝑣−(𝜎𝑗)) > |𝜎𝑗 ∈ 𝑈 } 
(7) 

where: positive membership function µℬ⎈
+
(𝜎𝑗)

: 𝑈 → [0,1] 

denotes the possible satisfaction function of an element 𝜎𝑗 with 

respect to the property corresponding to DHBFS ℬ⎈  and the 

negative membership function 𝑣ℬ⎈
−
(𝜎𝑗)

: 𝑈 → [0,1] denotes the 
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possible satisfaction function of an element 𝜎𝑗 with respect to 

some implicit counter property corresponding to ℬ⎈. For each 
𝜎𝑗 ∈ 𝑈, the following conditions hold: 

0 ≤ 𝛼+ ≤ 1,−1 ≤ 𝛽− ≤ 0 

where, 𝛼+ ∈ µ+
(𝜎𝑗)

, 𝛽− ∈ 𝑣−(𝜎𝑗) , and 𝛼𝑚𝑎𝑥 ∈ µ+
(𝜎𝑗)

=

∪𝛼+∈µ+
(𝜎𝑗)

𝑚𝑎𝑥{𝛼+} , 𝛽𝑚𝑎𝑥 ∈ 𝑣−(𝜎𝑗) =∪𝛽−∈𝑣−(𝜎𝑗)
𝑚𝑎𝑥{𝛽−} 

for all 𝜎𝑗 ∈ 𝑈 . To make things easier, the pair ℬ⎈(𝜎𝑗) =

(µ+(𝜎𝑗)
, 𝑣−(𝜎𝑗))  is called dual hesitant bipolar fuzzy values 

(DHBFV) denoted by ℬ⎈(𝜎𝑗) = (µ
+, 𝑣−). 

Definition 10: The dual hesitant bipolar fuzzy weighted 
aggregation operator (DHBFWAO) is defined as: 

𝐷𝐻𝐵𝐹𝑊𝐴𝑂𝓌(𝔥1, 𝔥2, … , 𝔥𝑛) = ∑(𝓌𝑗𝔥𝑗)

𝑛

𝑗=1

 
 

(8) 

where, 𝓌 = (𝓌1,𝓌1, . . . ,𝓌1)
𝔱  is the weight vector for 

each 𝔥𝑗  for 𝑗 = 1,2,3, … , 𝑛 , with 𝓌𝑗 > 0 and ∑ (𝓌𝑗) = 1
𝑛
𝑗=1 . 

This operator combines the DHBFV by applying their 
respective weights. 

The basic definition and principle of mathematical 
induction can be used to show Theorem 4. The following 
theorem uses the inductive reasoning and ensuring that it 
applies appropriately in all relevant cases. 

Theorem 4: The DHBFWAO provides a hesitant bipolar 
fuzzy value (HBFV) with 

𝐷𝐻𝐵𝐹𝑊𝐴𝑂𝓌(𝔥1, 𝔥2, … , 𝔥𝑛) = ∑(𝓌𝑗𝔥𝑗)

𝑛

𝑗=1

 

𝐷𝐻𝐵𝐹𝑊𝐴𝑂𝓌(𝔥1, 𝔥2, … , 𝔥𝑛)

=∪
(𝛼𝑗

+∈ µ𝑗
+),(𝛽𝑗

−∈ 𝑣𝑗
−)

{
  
 

  
 
{1 −∏(1 − 𝛼𝑗

+)
𝓌𝑗

𝑛

𝑗=1

} ,

{−∏|𝛽𝑗
−|
𝓌𝑗

𝑛

𝑗=1

}

}
  
 

  
 

 

 

 

 

(9) 

D. Dual Hesitant Bipolar Fuzzy Geometric Operators 

Dual hesitant bipolar fuzzy geometric operators 
(DHBFGOs) use dual hesitant and bipolar fuzzy sets to deal 
with uncertainty, reluctance, and both positive and negative 
information. 

Definition 11: The dual hesitant bipolar fuzzy weighted 
geometric operator (DHBFWGO) is defined as: 

𝐷𝐻𝐵𝐹𝑊𝐺𝑂𝓌(𝔥1, 𝔥2, … , 𝔥𝑛) = ∑(𝔥𝑗)
𝓌𝑗

𝑛

𝑗=1

 
 

(10) 

where, 𝓌 = (𝓌1,𝓌1, . . . ,𝓌1)
𝔱  is the weight vector for 

each 𝔥𝑗  for 𝑗 = 1,2,3, … , 𝑛 , with 𝓌𝑗 > 0 and ∑ (𝓌𝑗) = 1
𝑛
𝑗=1 . 

This operator combines the DHBFV by applying their 
respective weights. 

The basic definition and principle of mathematical 
induction can be used to show Theorem 5. The following 
theorem uses the inductive reasoning and ensures that it applies 
appropriately in all relevant cases. 

Theorem 5: The DHBFWGO provides a hesitant bipolar 
fuzzy value (HBFV) with 

𝐷𝐻𝐵𝐹𝑊𝐺𝑂𝓌(𝔥1, 𝔥2, … , 𝔥𝑛) = ∑(𝔥𝑗)
𝓌𝑗

𝑛

𝑗=1

 

𝐷𝐻𝐵𝐹𝑊𝐺𝑂𝓌(𝔥1, 𝔥2, … , 𝔥𝑛)

=∪
(𝛼𝑗

+∈ µ𝑗
+),(𝛽𝑗

−∈ 𝑣𝑗
−)

{
  
 

  
 

{∏(𝛼𝑗
+)

𝓌𝑗

𝑛

𝑗=1

} ,

{−1 +∏(1 + 𝛽𝑗
−)

𝓌𝑗

𝑛

𝑗=1

}

}
  
 

  
 

 

 

(11) 

IV. EVALUATION OF BEST MACHINE LEARNING MODELS 

FOR INDUSTRIAL ROBOTICS 

To evaluate the best machine learning models by applying 
the proposed hesitant bipolar AOs (HBAO), consider the 
collection of alternatives as 𝒜 = {𝒜1, 𝒜2, … ,𝒜𝑚} , and the 
collection of criteria denoted by 𝒞 = {𝒞1, 𝒞2, … , 𝒞𝑛} . The 
weight vectors for the criterias are given by 𝓌 =
{𝓌1,𝓌2, … ,𝓌𝑛} , where 𝓌𝑗 ≥ 0 ∀ 𝑗 = 1,2, … , 𝑛 , and 

∑ (𝓌𝑗) = 1
𝑛
𝑗=1 . Assume 𝐻 = [ℎ𝑖𝑗]𝑚×𝑛 =

[(µ𝑖𝑗
+ ,  𝑣𝑖𝑗

−)]
𝑚×𝑛

which represent the hesitant bipolar fuzzy 

decision matrix. Here µ𝑖𝑗
+  and  𝑣𝑖𝑗

−  and represent positive and 

negative functions, respectively, assessed by the decision-
maker for the effectiveness of alternative 𝒜𝑖 meets criteria 𝒞𝑗. 

These functions lie within ranges µ𝑖𝑗
+ ∈  [0,1] and  𝑣𝑖𝑗

− ∈  [0,1], 

where 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛. 

The methodology for using the HBFWAO or HBFWGO 
operator to solve a MCDM problem is explained below: 

Step 1: To evaluate the MCDM problem, formation of 
decision matrix based on hesitant bipolar fuzzy environment. 

Step 2: Applying the HBFWAO and HBFWG operator to 
process the information in matrix 𝐻 . Calculate the overall 
values ℎ𝑖(𝑖 = 1,2, … ,𝑚) of alternative 𝒜𝑖. 

𝐻𝐵𝐹𝑊𝐴𝑂𝓌(ℎ𝑖1ℎ𝑖2, … , ℎ𝑖𝑛) = ∑(𝓌𝑗ℎ𝑖𝑗)

𝑛

𝑗=1

 

=∪
(𝛼𝑖𝑗

+ ,𝛽𝑖𝑗
−)∈(µ𝑖𝑗

+ ,𝑣𝑖𝑗
−)

{
 
 

 
 1 −∏(1 − 𝛼𝑖𝑗

+)
𝓌𝑗

𝑛

𝑗=1

,

−∏|𝛽𝑖𝑗
−|
𝓌𝑗

𝑛

𝑗=1 }
 
 

 
 

 

 

(12) 

𝐻𝐵𝐹𝑊𝐺𝑂𝓌(ℎ𝑖1, ℎ𝑖2, … , ℎ𝑖𝑛) =∑(ℎ𝑖𝑗)
𝓌𝑗

𝑛

𝑗=1
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=∪
(𝛼𝑖𝑗

+ ,𝛽𝑖𝑗
−)∈(µ𝑖𝑗

+ ,𝑣𝑖𝑗
−)

{
 
 

 
 ∏(𝛼𝑖𝑗

+)
𝓌𝑗

𝑛

𝑗=1

,

−1 +∏(1 + 𝛽𝑖𝑗
−)

𝓌𝑗

𝑛

𝑗=1 }
 
 

 
 

 

(13) 

Step 3: Determine the score by 𝔰(ℎ𝑖) =
1

⧤ℎ𝑖
∑

1+𝛼++𝛽−

2

⧤ℎ𝑖
𝑖=1 , 

where 𝔰(ℎ𝑖)  (𝑖 = 1,2, … ,𝑚). 

Step 4: Rank all the alternatives 𝒜𝑖  (for 𝑖 = 1,2, … ,𝑚 ) 
based on their scores 𝔰(ℎ𝑖) (for 𝑖 = 1,2, … ,𝑚). If two scores 

𝔰(ℎ𝑖)  and 𝔰(ℎ𝑗)  are identical, then calculate the accuracy 

functions 𝔰∗(ℎ𝑖)  and 𝔰∗(ℎ𝑗)  to differentiate and rank 

alternatives 𝒜𝑖and 𝒜𝑗 . 

Step 5: Select the most suitable alternatives based on their 
score values. 

 

Fig. 1. Methodology of MCDM.

The pictorial representation of methodology to evaluation 
of best ML models is shown in Fig. 1. 

A. Illustrative Example 

Consider a manufacturing business that specializes in 
electronic device assembly. To boost their production 
efficiency, they decide to adopt an industrial robotic arm that 
can independently handle duties such as assembly and quality 
control. To maximize performance, however, choosing the best 

ML model for the robotic arm's functioning is essential. The 
main objective is to maximize the robotic arm's performance on 
the assembly line by selecting the best ML model from a pool 
of candidates using HBFAO. In this section, an empirical case 
study to assess the quality of ML model for industrial robots. 
The objective of the study is to evaluate which ML model, 
among several options that maximizes robotic performance in 
assembly line activities. The ML model for industrial robotic 
systems is shown in Fig. 2. 

 
Fig. 2. Some ML models for industrial robotic system.

 
Figure 1: Some ML models for industrial robotic system 
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So, for the evaluation of the ML model, consider the 
following machine learning models (alternatives) which are 
evaluated based on the following criteria including accuracy of 
the model, training period, robustness, and interpretability 
which can be formulated as an MCDM problem. 

The five machine learning models (alternatives) based on 
the following criteria are: 

 𝒜1  is Support Vector Machines (SVM): A high-
dimensional space classification algorithm that locates 
the hyperplane dividing distinct classes 

 𝒜2 is Random Forest (RF): An ensemble technique for 
reliable regression and classification with insights into 
feature relevance that uses several decision trees. 

 𝒜3 is Deep Neural Networks (DNN): A flexible model 
with numerous layers capable of learning complicated 
patterns from vast datasets. 

 𝒜4  is Gradient Boosting Machines (GBM): An 
ensemble technique that creates models in a step-by-step 
manner, fixing mistakes in earlier models to increase 
accuracy. 

 𝒜5 is k-Nearest Neighbors (k-NN): A straightforward 
technique that relies on the closest training instances in 
the feature space to classify have been recognized. 

These models will be assessed by a panel of experts who 
will make decisions based on the following four criteria: 

 𝒞1: Accuracy of the model 

 𝒞2: Training time required for the model. 

 𝒞3: Robustness of the model under various operational 
conditions. 

 𝒞4: Interpretability of the model results. 

The weight values assigned by the decision makers 
(hypothetically) to each criterion represented by weighting 
vector 𝓌 = (0.20,0.10,0.30,0.40). 

The decision-making problem i.e. evaluation of the ML 
model is evaluated by utilizing the above-defined methodology 
as follows; 

Step 1: To evaluate the MCDM problem, the formation of 
a decision matrix from the opinion of the decision-maker based 
on a hesitant bipolar fuzzy environment is shown in Table I.

TABLE I. DECISION MATRIX 

 𝒞1 𝒞2 𝒞3 𝓒𝟒 

𝒜1 {(0.7,0.8,0.1), (−0.7,−0.4,−0.1)} {(0.4,0.6,0.8), (−0.4,−0.3,−0.2)} {(0.6,0.8,0.7), (−0.6,−0.3,−0.1)} {(0.3,0.8,0.1), (−0.6,−0.4,−0.1)} 

𝒜2 {(0.6,0.7,0.2), (−0.6,−0.2,−0.7)} {(0.6,0.7,0.1), (−0.6,−0.5,−0.1)} {(0.5,0.7,0), (−0.3,−0.7,−0.1)} {(0.5,0.7,0), (−0.3,−0.6,−0.2)} 

𝒜3 {(0.8,0.6,0), (−0.4,−0.3,0)} {(0.5,0.6,0), (−0.4,−0.3,0)} {(0.4,0.6,0.8), (−0.2,−0.5,−0.2)} {(0.7,0.6,0.3), (−0.2,−0.4,−0.2)} 

𝒜4 {(0.6,0.7,0.8), (−0.4,−0.3,−0.3)} {(0.7,0.8,0.2), (−0.2,−0.5,−0.4)} {(0.6,0.7,0), (−0.2,−0.4,−0.1)} {(0.6,0.7,0.8), (−0.2,−0.2,−0.4)} 

𝒜5 {(0.8,0.5,0), (−0.3,−0.4,−0.1)} {(0.6,0.8,0), (−0.3,−0.5,−0.4)} {(0.4,0.5,0.8), (−0.5,−0.4,−0.6)} {(0.4,0.5,0), (−0.5,−0.3,−0.4)} 

Step 2: By following above step 2, applying the HBFWAO 
and HBFWGO to process the information in a decision matrix 

𝐻 . Calculate the overall values ℎ𝑖(𝑖 = 1,2, … ,𝑚)  of each 
alternative 𝒜𝑖 corresponds to the criteria, shown in Table II.

TABLE II. AGGREGATION OF DECISION MATRIX 

 HBFWAO HBFWGO 

𝒜1 {(0.5081,0.7856,0.4431), (−0.5942,−0.3565,−0.1072)} {(0.4503,0.7773,0.2207), (−0.6067,−0.3618,−0.1105)} 

𝒜2 {(0.5324,0.7000,0.0537), (−0.3693,−0.4953,−0.1947)} {(0.5281,0.7000,0.0), (−0.4082,−0.5690,−0.3108)} 

𝒜3 {(0.6416,0.6000,0.4650), (−0.2462,−0.3923,0)} {(0.5877,0.6000,0.4650), (−0.2661,−0.4050,−0.1446)} 

𝒜4 {(0.6113,0.7119,0.6277), (−0.2297,−0.2927,−0.2491)} {(0.6093,0.7094,0.6277), (−0.2447,−0.3183,−0.3012)} 

𝒜5 {(0.5375,0.5438,0.3830), (−0.4290,−0.3646,−0.3424)} {(0.4785,0.5241,0.0), (−0.4469,−0.3734,−0.4238)} 

Step 3: Compute the score function of the evaluated 
decision matrix by step 3 and display in Table III. 

TABLE III. SCORE VALUE 

 𝒜1 𝒜2 𝒜3 𝒜4 𝒜5 

HBFWAO 0.1679 0.1227 0.2068 0.2179 0.1328 

HBFWGO 0.1369 0.0940 0.1372 0.1455 0.0758 

Step 4: Rank all the ML model 𝒜𝑖  (for 𝑖 = 1,2, … ,5) in 
according with the score function 𝔰(ℎ𝑖) = ℎ𝑖(𝑖 = 1,2, … ,5) 
and demonstrate in Table IV. 

TABLE IV. RANKING OF THE BEST ML MODEL FOR INDUSTRIAL ROBOTIC 

 Ranking Value 

HBFWAO 𝒜4 ≻ 𝒜3 ≻ 𝒜1 ≻ 𝒜5 ≻ 𝒜2 

HBFWGO 𝒜4 ≻ 𝒜3 ≻ 𝒜1 ≻ 𝒜2 ≻ 𝒜5 
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Step 5: The most suitable alternatives based on their score 
values are shown in Table V. 

TABLE V. SUITABLE ML MODEL FOR INDUSTRIAL ROBOTIC 

 Ranking Value Suitable ML 

(Alternative) 

HBFWAO 𝒜4 ≻ 𝒜3 ≻ 𝒜1 ≻ 𝒜5

≻ 𝒜2 

𝒜4 

HBFWGO 𝒜4 ≻ 𝒜3 ≻ 𝒜1 ≻ 𝒜2

≻ 𝒜5 

𝒜4 

The graphical representation of the ranking of alternatives 
is shown in Fig. 3(a) and Fig. 3(b). 

 
Fig. 3. Ranking of alternatives.

 
Fig. 4. Ranking of alternatives.

B. Result and Discussion 

To evaluate the MLMs that are best suited for industrial 
robotics, the following Aos HBFWAO and HBFWGO have 
been employed, in this study. The proposed operators show that 
the Gradient Boosting Machines (GBM) model i.e. A₄ ranks 
higher than the other models, as shown by Table IV i.e. ranking 
of the ML model for industrial robotics based on these 
operators. By utilizing both AOs i.e. HBFWAO and HBFWGO, 
the results show that  𝒜4  is the most appropriate model, 
followed by 𝒜3, 𝒜2, and so on. The ultimate rankings in Table 
5 indicate that 𝒜4 is the best-fit ML model based on both 
operators. The constancy of these operators' rating findings 
demonstrates their competence in decision-making, 
guaranteeing that the best model is chosen for industrial 
robotics jobs. 

V. COMPARATIVE ANALYSIS 

To check the validity and effectiveness of the proposed 

operator, this comparison study demonstrates the benefits and 

drawbacks of several fuzzy-based operators, from the simpler 

FS to the more sophisticated HBFAO. While HFS adds the 

capacity to model uncertainty but lacks flexibility, FS are 

limited in their ability to handle complicated attribute 

interactions. Although BFS introduces both positive and 

negative attribute dimensions, they are still insufficient for 

parametric flexibility, which hinders decision-making. 

Flexibility is further increased by operators like HBFWAO and 

HBFWGO, which consider the weighted relationships between 

criteria. We have compared the proposed AOs with the prior 

operators as shown in Table VI, which demonstrates how 

inadequate and ineffective the previous approaches are at 

handling connections between attribute values. To close this 

gap, we developed the HBFWAO and HBFWGO, which 

support optimal decision-making by thoroughly addressing 

these constraints.
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TABLE VI. COMPARISON BETWEEN PRIOR APPROACHES AND THE PROPOSED APPROACH

Approaches Connection 

Between Two 

Attributive 

Values 

Relationships 

between Various 

Attributive Values 

Reduced 

Adverse 

Effects 

Parametric Method 

Increases 

Flexibility 

Scalability Robustness 

FS [5] ✗ ✗ ✗ ✗ ✗ ✗ 

HFS [13] ✓ ✗ ✗ ✗ ✗ ✗ 

BFS [15] ✓ ✓ ✗ ✓ ✗ ✗ 

HFAO [21] ✓ ✓ ✓ ✗ ✗ ✗ 

BFAO [22] ✓ ✓ ✓ ✓ ✓ ✗ 

HFGO  [21] ✓ ✓ ✓ ✗ ✓ ✗ 

BFGO [22] ✓ ✓ ✓ ✓ ✓ ✗ 

HBFAWO (Proposed Operator) ✓ ✓ ✓ ✓ ✓ ✓ 

HBFGWO (Proposed Operator) ✓ ✓ ✓ ✓ ✓ ✓ 

So, the above Table VI demonstrate the proposed operators 
has the ability to highlights the relation between the various 
attributive values and reducing the adverse effects which make 
it flexible, efficient and versatile operator which assists the 
decision makers in making decisions. The proposed HBFWAO 
and HBFWGO operators are advanced and less laborious 
approaches to decision making under uncertainty, conflict, and 
incompleteness. Compared to earlier works, they afford a 
superior incorporation of uncertainty and flexibility with 
respect to complex with many criteria and objectives problems, 
especially those relating to industrial robotics, which have been 
the focus of this study. 

VI. CONCLUSION 

The MLMs are increasingly utilized in industrial 
applications to automate the complex activities, reduce human 
error, and enhance decision-making by analyzing large volumes 
of data in real-time. In this paper, a comprehensive novel 
approach for evaluating the best MLMs in industrial robots has 
been developed by utilizing the hesitant bipolar fuzzy and dual 
hesitant bipolar fuzzy AOs within the averaging and geometric 
framework. i.e. HBFWAO, HBFWGO, DHBFWAO, and 
DHBFGO. These operators, inspired by arithmetic and 
geometric operations, effectively address MCDM challenges 
and capturing the uncertainties associated with hesitancy and 
bipolarity which enabling a robust evaluation of positive and 
negative attributes. To demonstrate the effectiveness and 
robustness of proposed operator, an exemplary case study has 
been defined which is evaluated by utilizing the proposed 
decision-making algorithm.  The proposed operators 
demonstrated their practical utility, providing precise and 
adaptable solutions for real-world applications in industrial 
robotics. 

Moreover, a rigorous comparative analysis demonstrates 
the superiority of the proposed approach over existing methods 
and highlighting its robustness, accuracy, and flexibility. The 
parametric adaptability of the framework ensures its broad 
applicability across various decision-making scenarios, 

minimizing errors and optimizing the outcomes in complex 
industrial environments. 

A. Limitations and Future Direction 

To demonstrate the thorough evaluation and defines the 
balanced perspective, it is necessary to discuss the limitations 
of the proposed approach. 

 The proposed approach offers complexity in handling a 
large data set, resulting in a high processing time and 
memory consumption. 

 The proposed operators may be sensitive towards the 
various parameters and then improper selection may 
affect the accuracy and effectiveness. 

 The complex nature of integrating the hesitant and 
bipolar environment can lead to complex situations in 
evaluating decision-making problems. 

 Although the proposed operators show flexibility and 
robustness, however, it is not applicable in a highly 
dynamic framework and demands further modification. 

So, to improve the precision and adaptability of decision-
making, future research could concentrate on merging the 
proposed operators with sophisticated fuzzy logic systems [23], 
Intuitionistic fuzzy framework [24], and Pythagorean fuzzy set 
(PyFS) [25] framework, Neutrosophic framework [26] that may 
handle hesitation and more complex decision scenarios 
precisely. Furthermore, it can be extended by utilizing the AOs 
[27], [28], [29], [30] that can be useful for dealing with noisy 
or incomplete data. More resilient and adaptable decision-
making models can be created by fusing these operators with 
sophisticated fuzzy techniques. Moreover, it could expand the 
applicability of these models beyond industrial robots to 
industries where uncertainty is crucial, such as healthcare, 
finance, and autonomous systems. Including different sectors, 
such as healthcare in diagnostic decision support systems, 
finance in risk assessment tools and autonomous systems for 
vehicle navigation or resource allocation, in the research     
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activities or case studies developed would serve to indicate the 
extensibility of the methods suggested. This wider perspective 
reveals not only the usefulness of the methods in practice across 
different sectors, but also the desire to appeal to a larger 
audience. Such examples would emphasize how these types of 
models can be adapted to different industries yet remain 
internally consistent and accurate in the face of uncertainty 
when making decisions. 
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