
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

553 | P a g e

www.ijacsa.thesai.org

Cyber Resilience Model Based on a Self Supervised

Anomaly Detection Approach

Eko Budi Cahyono1, Suriani Binti Mohd Sam2, Noor Hafizah Binti Hassan3, Amrul Faruq4

Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia1, 2, 3

Faculty of Engineering, Universitas Muhammadiyah Malang, Malang, Indonesia1, 4

Abstract—Cyber resilience plays an important role in dealing

with cybersecurity and business continuity uncertainty in the

post-COVID-19 era. The fundamental problem of cyber

resilience is the complexity of real-world problems. Therefore, it

is necessary to reduce the complexity of real-world problems to

be simple and easy to analyze through cyber resilience model.

The first part is the representational model by utilizes world

models. It utilizes the stochastic nature of latent data to generate

log-likelihood values by data-generating process. The second part

is the inference model. This concludes the observation of log-

likelihoods using a self-supervised anomaly detection approach.

This is related to optimizing decision boundary in anomaly

detection, which is achieved by supervising two competing

hypotheses based on bias-variance alignment and likelihood

ratios. The optimization operates a dynamic threshold supervised

by a supervisory signal from the underlying structure of log-

likelihoods. The paper contributes by conducting research on the

cyber resilience model from the perspective of statistical machine

learning. It enhances the representational modeling of world

models with the Gaussian mixture model for multimodal

regression (GMMR). Additionally, it examines the issue of

misleading log-likelihood for out-of-distribution inputs caused by

the generalization error and optimizes decision boundary in

minimizing the generalization error with a new metric named the

harmonic likelihood ratio (HLR). Finally, it aims to boost the

performance of anomaly detection using self-supervised learning.

Keywords—Cybersecurity; anomaly detection; cyber resilience

model; statistical machine learning; data generating process; bias

variance alignment; likelihood ratios; self-supervised learning

I. INTRODUCTION

In the post-COVID-19 era, cyber resilience plays an
important role in dealing with cybersecurity and business
continuity uncertainty. The problems and methodology for
cyber resilience, especially in the scope of small and medium
enterprises (SMEs), have been described systematically in the
cyber resilience progression model [5], [6]. The model helps
SMEs prioritize cyber resilience proposing the natural
evolution of implementation. It designed to be more flexible
based on available resources. It focuses on insights into
operationalizing cyber resilience strategies by describing ten
domains. One of the ten domains is detection processes and
continuous monitoring has been chosen as the central domain
[4]. In description, it is explained that there are two strategies
for this domain: actively monitor the company's assets and
define a detection process that specifies when to escalate
anomaly into incidents [5], [6]. This description allows self-
supervised anomaly detection technology that works fully
automatically to detect and monitor processes.

The cyber resilience model that will be studied refers to
technical architectures in [4]. The technical architecture was
built on five layers. The five layers were services, data,
generative models, data analysis, and resilience scale [4]. Each
layer had different structures and functions but was part of a
system. The technical architectures are necessarily simplified
without changing the fundamental architecture so that the
complexity of the problem is reduced and more focused on
anomaly detection. The fundamental architecture that
continues to go is Gaussian mixture models (GMMs), one of
the first-generation generative models with high flexibility in
handling data distribution, statistical modeling, and inference.
GMMs are the fundamental architecture of cyber resilience
with the underlying structure of a probabilistic model
approach [4]. However, GMMs fail if applied directly as the
basis of cyber resilience model. GMMs fail in high-
dimensional data. GMMs can be used for density estimation
but the perfect density model cannot guarantee anomaly
detection [23]. Also, GMMs work in an unsupervised setting
that often produces high false positive rates in a dynamic
system [28]. The paper studies GMMs as a reliable generative
model for anomaly detection.

The cyber resilience model designed by a two-part model:
the representational model in layers 1 to 3, which play a role
in data collection, and the inference model in layers 4 and 5,
which play a role in data analysis. The complexity of real-
world problems of cyber resilience encapsulated by data
collection and analysis as the key of a data-driven approach.
The paper studies critically the problems of the
representational and inference model to set up the appropriate
cyber resilience model, such as misleading log-likelihood, the
bias-variance alignment, and two competing hypotheses.

As the core of the representational model, the world model
[14] that lies in layer 2 takes the principal role in data-
generating process to strengthen a data-driven approach.
Hence, it needs to be enhanced to become part of the
representational model that meet the requirements for data
collection in a new setting. That is different from it utilized
previously. For developing the data-generating process, the
world model needs to avoid generating misleading log-
likelihood [3]. Also, it needs to be integrated in a supervised
setting [11], [12] to align the self-labeling problem of an
unsupervised learning algorithm [1], [28].

The inference model in layers 4 and 5 focuses more on
inferring the observed samples with data analysis directed by
anomaly detection. The concept of anomaly detection explains
that samples can be distinguished into normal and anomaly

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

554 | P a g e

www.ijacsa.thesai.org

samples [28], [35] with a two-class decision boundary [1], [8]
determined by two competing hypotheses [33], [41]. The
factual problem is aligning a two-class decision boundary with
two competing hypotheses so that the model can perform
anomaly detection properly, which will be studied in this
paper.

II. REVIEW OF EXISTING TECHNIQUES

One fundamental study as the basis of cyber resilience
model is anomaly detection [4]. Anomaly detection, in this
case, is similar tasks to novelty detection (ND) [1], one-class
classification (OCC) [29], and out-of-distribution (OOD) [8],
[27], [33], [41]. An anomaly is an observation that deviates
significantly from some concepts of normality [35]. This
definition is also suitable for ND, OCC, and OOD [16], [35].
If the distribution of normal instances is P, an anomaly is a
sample drawn from any distribution other than P. Furthermore,
ND has a new region of P; OCC has a one-class decision
boundary of P; OOD has fine-grained P during training [28],
[35]. Thus, there is a shared concept between anomaly
detection and ND, OCC, OOD.

The cyber resilience model represents a cyber resilience
system as a technical framework to measure the resilience
scale. The resilience scale denotes a scale of the service
resilience against cyber threats. In the domain of cyber
resilience, numerous services like Domain Name System
(DNS), firewall, web services, resource planning, and supply
chain are required to explore anomaly detection for
monitoring the continuity of services. It is necessary for one
specific service to bring about the model as suggested in [4]
which points to DNS. This choice is reasonable because DNS
used by most services and applications of the Internet, even
critical infrastructures of the Internet. Also, DNS provides an
authentic data distribution of anomalies by the system so that
anomaly detection works in factuality. DNS is the hierarchical
name system that uses the globally distributed database and
stores the information about every Internet domain [39]. DNS
information is stored on DNS servers and can be accessed
anytime based on user queries. DNS is like a phone book. It
contains addresses that make it easier for users to access the
Internet in cyberspace. Each address has a unique identity and
is different from one another. This identity is called an
Internet Protocol (IP) address. DNS translates these numbers
into names because IP addresses are complicated for users to
remember. DNS is made simple to solve IP address resolution
issues, however, it does not come with a security proficiency
by nature [4]. Therefore, a DNS measurement method is
needed to enable security proficiency by design.

DNS measurement methods are categorized into two
types: passive and active DNS. Passive DNS [39] allows
observation of DNS ecosystem limited to clients, resolver
servers, authoritative servers and the networks between the
three. Active DNS allows observing a global hierarchical DNS
ecosystem. It involves very large DNS networks. It does not
pay attention to the complete contents of the query and
response from a particular client, so it has difficult to apply for
data collection and analysis. The mechanism for DNS queries
only supports one type of query. One query of the domain
name and one response of an IP address. Other lookup keys

must be converted to domain names before being used in DNS
queries. Thus, passive DNS provides advantages over active
DNS in reconstructing specific queries/responses useful for
anomaly detection.

Passive DNS, as a local representative of the active DNS
ecosystem, contributes to efficient traffic data collection.
Many DNS traffic analysis uses passive DNS including
anomaly detection. The earlier DNS anomaly detection is
based on supervised model. The model produce high
precision, low false positive rates, and efficient anomaly
detection in specific patterns [28]. However, the model depend
on training data. The ability to recognize anomaly patterns
depends on the anomaly patterns that have been trained during
training time [16], [28], [35]. The trained anomaly patterns are
limited to the capacity of datasets. While DNS ecosystem is
always evolving, threats to DNS security never stop, and DNS
resilience needs to be monitored continuously. Therefore,
supervised models are less suitable for DNS traffic anomaly
detection in dynamic real world environments.

Since DNS traffic is dynamic, unsupervised model is
inherently suitable for anomaly detection. Labeling normal
and anomaly traffic are not necessary during training time.
The model accepts all types of unlabeled traffic and classify it
with certain rules into two classes that can distinguish normal
or anomaly traffic. The model does not depend on training
data [16], [28], [35]. The ability to recognize anomaly patterns
does not depend on the trained anomaly patterns during
training time. The model can recognize new anomaly patterns
using a classifier algorithm. However, the model often
produces high false positive rates and fails to recognize
patterns from the genuine labeled data [28]. The model's
ability to recognize normal and anomaly patterns is not as
precise as the supervised model because there is no strong
connection between the model and the genuine labeled data
[28]. In this model, the genuine labeled data is not defined.
Normal and anomaly labels are not explicitly defined.

A machine learning algorithm that makes use of the
structure within data for self-labeling is self-supervised model
[16], [32]. Self-supervised model has been designed as a
hybrid approach of supervised and unsupervised models. The
model produces pseudo-labels, but the model directs pseudo-
labels to follow the underlying structure of the genuine labeled
data. Anomaly detection can utilizes self-supervised model
based on likelihood ratios [32], [33], [41]. Likelihood ratios
can manage the relationship between supervised and
unsupervised models. Likelihood ratios have signal to measure
the performance of regression and classification functions in a
supervised setting [19], [22], [25], [37]. Likelihood ratios also
have signal to control self-labeling in an unsupervised setting
[1], [2], [19], [21], [33], [41].

III. METHODOLOGY

Cyber resilience plays an important role in facing business
continuity uncertainty. Outside of business matters, business
continuity uncertainty can be affected by data uncertainty in
data collection and analysis. Various sources, such as noisy
data, incomplete data, sampling errors, measurement errors
generalization errors, and anomalies, which will cause data
uncertainty. It is necessary to manage data uncertainty to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

555 | P a g e

www.ijacsa.thesai.org

improve the reliability of data collection and analysis. One of
the approaches chosen to address the problem of data
uncertainty is to study anomaly detection in more depth. It has
several indicators that will be used to obtain reliable data
collection and analysis. The indicators are bias, variance, and
likelihood ratios.

This section explains the research methodology of cyber
resilience model, consist of the representational model to
realize reliable data collection using data-generating process
and the inference model to realize reliable data analysis based
on likelihood ratios. Process flow diagram of the methodology
as seen in Fig, 1.

Fig. 1. Process flow diagram of the methodology.

A. Characteristics of Raw Datasets

The raw dataset is a collection of data from a network
capture-based DNS logger. The raw dataset was taken from
November 2018 to February 2020 on DNS servers
(dnsanalyzer.info) amount 1,000 samples (Sx). The tool used
to collect the raw dataset is GoPassiveDNS [26].

The raw dataset contains three feature vectors (X): TTL
(x1), latency (x2), and throughput (x3). The K-Means algorithm
was used to collect data for classifying positive and negative
classes from the raw dataset. The negative class have fine
grain structure with two type subdistributions: the sample
variance of subdistributions in one standard deviation (inliers)
and the sample variance of subdistributions more than two
standard deviations (outliers). Inliers of the negative class
represent DNS normal. Inliers of the negative class have the
lowest anomaly level in the resilience scale. The positive class
have fine grain structure with three type subdistributions: the
sample variance of subdistributions in one standard deviation
(inliers), the sample variance of subdistributions more than
two standard deviations (outliers), and anomaly. Anomaly
refers to the response of RCODE more than 0 (zero) by
GoPassiveDNS. RCODE more than 0 indicates DNS failure
[26]. Otherwise, RCODE equal to 0 indicates DNS normal.
The anomaly subdistribution have the highest anomaly level in
the resilience scale.

The raw dataset exhibit different data characteristics
named the generator of in-distribution, which is the source of
normal datasets, and the generator of out-of-distribution,
which is the source of anomaly datasets. The raw dataset
needs to be further processed to generate reliable datasets.

TABLE I. CHARACTERISTICS OF RAW DATASETS

Datasets In distribution Out-of-distribution

Classes Negative Positive

Types Inlier Outlier Inlier Outlier Anomaly

Variances ≤68% >95% ≤68% >95% -

RCODE 0 0 0 0 >0

Subdistributions 1 2 3 4 5

Samples 500 25 75 200 200

Anomaly levels 1 2 3 4 5

Table I presents two sources of raw datasets: In-
distribution (ID) and out-of-distribution (OOD). The ID
dataset comes from the generator of in-distribution. The OOD
dataset comes from the generator of out-of-distribution.
Conceptually, the two generators should produce different two
sources of datasets and naturally not overlap each other.
However, in practice, the two generators cannot avoid
producing two overlapping datasets.

Table I explains that the overlap occurs due to the two
approaches taken in data collection. The first approach, data
collection uses DNS sensors. The sensors are limited in
representing data from the real world with only three feature
vectors. The sensors are also limited in responding accurately
to RCODE. Furthermore, the sensors can only classify DNS
events by default based on the value of RCODE.

TABLE II. DNS RESPONSE CODE

RCODE Message Description

0 NOERROR DNS query completed successfully

1 FORMERR DNS query format error

2 SERVFAIL Server failed to complete the DNS request

3 NXDOMAIN Domain name does not exist

4 NOTIMP Function not implemented

5 REFUSED The server refused to answer for the query

6 YXDOMAIN Name that should not exist, does exist

7 XRRSET RRset that should not exist, does exist

8 NOTAUTH Server not authoritative for the zone

9 NOTZONE Name not in zone

Table II defines the DNS response code which have been
implemented in GoPassiveDNS [26]. It describes RCODE
values of the various types of DNS events that occur most

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

556 | P a g e

www.ijacsa.thesai.org

frequently. Refers to Table I that RCODE produces high false
negative rates. Subdistribution 1, 2, 3, and 4 are classified as
DNS normal even though some are DNS failure according to
K-Means. In contrast, the second approach, data collection
uses K-Means to classify two different datasets. Table I shows
that K-Means produce high false positive rates.
Subdistribution 3, 4, and 5 are classified as the positive class
even though some are the negative class according to RCODE.
The problem of the first approach is that normal and anomaly
labeling in the raw dataset is based on RCODE even though
many failure functions cannot be recognized by RCODE. The
second approach uses the algorithm of machine learning. The
K-Means is the simplest unsupervised learning algorithm for
basic self-labeling. It can be utilized to classify the raw dataset
into two classes on a specific rule.

It is a similarity between the two approaches. None of
anomaly samples in subdistribution 5 that has been classified
by the first approach are part of normal samples that has been
classified by the second approach. In other words, anomaly
samples from the first approach is the same as anomaly
samples from the second approach. So, it is concluded that the
classification of one sample as anomaly and another sample as
not anomaly is true. However, there are anomaly samples
from the second approach that are not anomaly samples from
the first approach such as samples in subdistribution 3 and 4.
Therefore, the first approach is not able to recognize new
patterns of anomaly other than those already recognized by
RCODE. This urges the use of machine learning algorithms to
better recognize new patterns of anomalies. Meanwhile, the
second approach is able to recognize new patterns of anomaly
other than those already recognized by the first approach.
However, not all of the new anomaly patterns of the second
approach are true due to the limitations of K-Means based on
a specific shape of the decision boundary and no training to do
for anomaly samples.

B. Data Collection

The representational model are useful in improving the
reliability of data collection. The reliability of data collection
is improved by modeling the raw dataset into latent samples
(Zx), a sequence of latent samples (Zy), and a density of latent
samples (logl).

Fig. 2. Process flow diagram of data collection.

Fig. 2 describes process flow diagram of data collection
which consists of five steps. The first step is initial data
collection which produces raw datasets as 1,000 samples (Sx).
The samples are a data distribution of 200 data points so raw
datasets are 200,000 data points in size. The samples are
designed as a data distribution to understand the underlying
generator of datasets through latent variable models. The
samples have parameters from a data distribution that show
the principal component of datasets.

The second step classifies positive (Xp) and negative (Xn)
classes from raw datasets using the K-Means algorithm. The
positive class are samples that assert the presence of anomaly.
The negative class are samples that assert the absence of
anomaly. The K-Means algorithm succeeded in classifying
raw datasets into 525 negative samples and 475 positive
samples from selected samples.

In the third step, each class is divided into two
subdistributions, namely inliers and outliers, so that in total
there are four subdistributions plus one specific
subdistribution produced by DNS sensors as the ground truth
of anomaly samples. So the total becomes five
subdistributions, each of 500, 25, 75, 200, and 200 selected
samples respectively. Inliers and outliers are formed using an
outlier detection technique [42].

The fourth step as the key of reliable data collection is
processes that generate data specifically event, memory, and
density processes. The three processes set up the data-
generating process properly. A detailed explanation of each
process is in the following subsection. Furthermore, one
sample subdistribution differs from another. It estimated by
the Expectation-Maximization (EM) algorithm [9].

TABLE III. EM AS A SAMPLE CLASSIFIER

 subd2 subd3 subd4

subd1 1.419 2.949 5.026

subd5 5.423 3.893 1.816

DI 4.004 0.944 3.210

abbreviations: subd = subdistribution, DI = difference index

Table III explains the process of classifying normal and
anomaly samples using EM. Two polars are defined as the
centroids of normal and anomaly classes. Subdistribution 1
with the lowest anomaly level selected as the polar of normal
class. Subdistribution 5 with the highest anomaly level
selected as the polar of anomaly class. The smaller difference
between a subdistribution and two polars defines the label of
subdistribution. As subdistribution 2 and 3 are closer to
subdistribution 1 than 5, subdistribution 2 and 3 are classified
as normal class. As well subdistribution 4 is closer to
subdistribution 5 than 1, subdistribution 4 is classified as
anomaly class. It can be seen that K-Means and EM are the
same in classifying subdistribution 1, 2, 4, and 5 but different
in classifying subdistribution 3. K-Means classify
subdistribution 3 as anomaly class while EM classify
subdistribution 3 as normal class. K-Means classify patterns
with a specific shape for all subdistributions, while EM
classifies patterns dynamically following the underlying

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

557 | P a g e

www.ijacsa.thesai.org

structure of each subdistribution. It seems EM is more flexible
than K-Means. EM is not limited by shape but depends on
unobserved latent variables performed properly by data-
generating process.

The output of data-generating process is primary datasets
(logl) that consist of 1,000 samples treated as a population of
observation. The samples come from five subdistributions of
raw datasets, each of 500, 25, 75, 200, and 200 respectively.
In the last step, the observation sample is generated as a
random variable of normal and anomaly samples. One
hundred random variables configure the observed samples that
are taken randomly from the population. Be appointed, the
sample size is 10% of the population provided for any
observation. The data-generating process will consider data
collection more appropriate as required.

C. The Event Process

The event process is the first part of data-generating
process. It encodes DNS events into a latent variable model. It
reproduces the idea from the world model [14] that pattern
recognition was performed indirectly through a latent variable
model. The model in latent space provides more advantages
than in data space. The pattern encoded as a principal
component is more concise. The principal component has
information sufficiency that can be further encoded in another
process smoothly, so it is easier to analyze in the next part of
data-generating process. VAEs take the task of encoding for a
latent variable model.

Variational autoencoders (VAEs) are an artificial neural
network architecture in which the latent space has good
properties to enable generative processes [21] utilizing
stochastic backpropagation [34]. It plays a role in
transforming data distribution in data space (X) into data
distribution in latent space (Zx) by the latent variable model. It
recognizes the characteristic of data distribution through EM
by estimating the joint distribution between X and Zx [9]. EM
will maximize the similarity between the two. If the joint
distribution Zx is a close approximation of X, then Zx will be
indistinguishable from X. Analysis of compressed data
distribution produces a principal component. This is called
dimensionality reduction. Principal components in latent space
are more ready to use to recognize the behavior of data
distribution than feature vectors in data space. It summarize
the pattern of data distribution without eliminating the
principal information substance.

VAEs use two neural networks: encoder (generative
model) and decoder (variational approximation) [21]. The
encoder part transforms samples of discrete data distribution
from DNS events into continuous latent variables by taking
the characteristic of probability distribution. In this case,
probability distribution as the core of a latent variable model
that has two parameters: mean (μ) and standard deviation (Σ).
The mean represents the expected value of DNS events, and
the standard deviation represents the variability of DNS
events. The type of probability distribution to generate the
latent sample is Gaussian distribution. So, a latent variable
model may be called a Gaussian model. The use of VAE
encoder as a generator of latent samples refers to the vision
model of world models [14].

One important component of neural networks that
quantifies the difference between the predicted and actual
outputs is the loss function. There are two loss functions for
VAEs: Mean Square Error (MSE) and Kullback–Leibler
Divergence (KLD). These two loss functions are standard for
measuring how fit a model explains the data. The decoder part
reconstructs latent samples into the predicted outputs (S'x). In
the experiment, the decoder part is only needed at training to
measure how fit a Gaussian model has been encodes DNS
events by comparing the difference between the predicted and
actual outputs (S'x-Sx). Flow diagram of VAEs as seen in Fig.
3.

Fig. 3. Flow diagram of VAEs for the event process.

The performance of training can be evaluated from
training and testing loss. Suppose the loss gets smaller for
larger epochs, the loss shift convergence to a specific value,
testing loss is smaller than training loss, that are indicating
that VAE training has achieved appropriate performance tasks.
Latent variables at training are set to μ + Σ × ε. The ε is
random noise added to the latent variable so that the loss will
always converge to a specific value [21], [34]. Some of the
reasons testing loss is smaller than training loss are that at
training: (1) the latent variable overloaded with random noise,
whereas, at testing, it does not, (2) testing loss measured after
training, and (3) training loss measured for all epochs while
testing loss measured once after completing the training
epoch. However, training and testing loss are limited to
optimizing the loss function in estimating the difference
between the actual (Sx) and predicted (S'x) DNS events and
not optimizing model parameters. The model parameter is
optimized by the architecture of encoder and decoder,
hyperparameter tuning, and using more flexible prior
distributions. This means that the model parameter of training
is better than those of testing because it is used as a reference
for testing. The performance of VAEs training as seen in Fig.
5(a).

VAEs are built with one input layer for three feature
vectors, two hidden layers, each with sizes 64 and 16, and one
output layer for training purpose only. One data distribution of
the input layer come from two hundred data points. One latent
sample is composed of two hundred latent vectors, in other
words, the two hundred dimensions of Zx. Then, a µ vector of
length two hundreds and a Σ vector of length also two
hundreds, so the VAE parameters are four hundreds. In these
configuration, two hundred latent vectors are a good sample
size to reduce the log-likelihood of sampling errors. The
observed samples need to be ensured to be independent (one
discrete data of DNS events does not depend on other discrete
data of DNS events in the same data distribution) and
identically distributed (in one data distribution of DNS events,
the probability distribution of data distribution is the same).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

558 | P a g e

www.ijacsa.thesai.org

Consequently, a latent sample which generated by the model
meets the criteria of independent and identically distributed
(i.i.d) as a stochastic random sample, making it well-suited for
addressing an observation sample of DNS events in latent
space.

D. The Memory Process

The memory process is the second part of data-generating
process that play a role in encoding a sequence of latent
samples from the event process into a latent dynamics model.
A latent sample which is the output of the event process does
not have the sequence because it is an i.i.d sample.
Meanwhile, one observation consists of many latent samples
to form a sequence. The event process needs to be extended
with another process called the memory process so that it can
encode the sequence. Hence, the memory process is an
extended event process.

Mixture density-recurrent neural networks (MDRNNs) are
one specific neural network architecture that combines
mixture density networks (MDNs) and recurrent neural
networks (RNNs) to build a latent dynamics model. MDNs
encode the output of a neural network parametrize a mixture
of Gaussian distribution, which can model general conditional
probability densities [2]. RNNs are an artificial neural network
architecture of dynamic models that have been used to
generate sequences [13], [15]. Dynamic models simplified
representations of real-world problems by algorithms, such as
dynamic models of signal processing, automatic speech
recognition (ASR), and time-series forecasting. As a sequence
generator, MDRNNs encode a sequence of latent samples Zx
generated by a Gaussian model to latent samples Zy generated
by a latent dynamics model. The use of MDRNNs as a
sequence generator refers to the memory model of world
models [14].

RNNs are used as the forefront of a sequence generator.
RNNs have a recurrent layer (a cell) to remember its previous
inputs by internal memory. A recurrent layer works with
iterative sampling from the output, then feeding in the sample
as input at the next step [13]. The problem with standard
RNNs is that it is used only for basic sequential data tasks and
cannot be used to store information about previous inputs for a
very long time [13]. Hence, a type of RNNs called long short-
term memory networks (LSTMs) [15] was designed to address
the problem of standard RNNs. LSTMs can be used for
advanced sequential data and artificial long-time lag tasks
[15], such as tasks to predict a sequence of latent samples, and
then store information in internal memory with memory cells
and gating mechanisms for long-term. Memory cells store
information from the previous step and use it to update the cell
output for the current step. Gating mechanisms remove
unimportant information, store new information, and encode
information from the cell state to the output layer.

Practically, LSTMs need MDNs for modeling advanced
sequential data. LSTMs and MDNs are compatible with each
other. MDNs consist of two components: a feed-fordward
neural network and a mixture model [2]. The output layer of
LSTMs is the final layer of a feed-fordward neural network
and a fully connected layer that connects all units in the layer

directly to every unit in the previous layer, so it can be utilized
as an interface between LSTMs and MDNs.

MDNs can smoothly encode the outputs of LSTMs to form
the parameters of a mixture model, generally with Gaussian
models for each mixture component [2], [10]. These
parameters are mean (μ), standard deviation (Σ), and weight
(π). The mean represents the expected value of DNS events,
the standard deviation represents the variability of DNS
events, and the weight represents mixing each Gaussian
distribution of DNS events into a mixture distribution. These
parameters involve shaping probability density functions
(PDFs) for each mixture component and categorical
distribution from the mixture weights [2], [10]. Additionally,
there are two reasons why LSTMs require MDNs: different
mixture components represent different stochastic events and
different situations [10]. In other words, MDNs are able to
model different stochastic events and situations for any DNS
events in Gaussian models for each mixture component.
Therefore, LSTMs and MDNs can seamlessly work together
in MDRNNs. Flow diagram of MDRNNs as seen in Fig. 4.

Fig. 4. Flow diagram of MDRNNs for the memory process.

One observation consists of some latent samples. In a
sequence, one latent sample is related to other latent samples.
MDRNNs training recognize the underlying generator of a
sequence by making relationships between one sample and
another using a time-series regression approach. Some
samples are treated as independent variables, while the
dependent variable is taken from the independent variable
itself which has been shifted in a sequence. In this case, the
independent variable is Zx while Zy is constructed from
shifted Zx with a sequence length of four.

LSTMs have been applied to realize this time-series
regression. Because LSTMs can memorize previous input,
then for each latent sample, MDNs would encode the output
of LSTMs into a mixture component that was a combination
of individual distributions in the form of a mixture
distribution. To identify that MDRNNs training has been able
to recognize the underlying generator of a sequence, it was
evaluated using the logsumexp function. The logsumexp
function is a smooth approximation to the maximum function
in a logarithmic scale. This provides a numerically stable
estimation of PDFs for each sequence and sample. The
logsumexp is used to measuring the similarity between the
sequence and sample by maximizing the log-likelihood.

MDRNNs are built with one input layer, a single hidden
LSTM layer, the output layer of LSTMs as the input of
MDNs, a sequence length is four at training time, and a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

559 | P a g e

www.ijacsa.thesai.org

mixture distribution from three Gaussian distributions as a
mixture model. Three Gaussian distributions were chosen
because the input distribution is not complex, it only consists
of three feature vectors. One data distribution of the input
layer comes from two hundred latent vectors. A single hidden
layer with sixteen units is enough to perform computations on
the input which consists of two hundred latent vectors. MDNs
aim to model a sequence of latent samples that can be drawn
from one of several possible distributions with a certain
probability. Several possible distributions come from three
Gaussian distributions. Each parameter of three Gaussian
distributions needs two hundred vectors, so MDNs
parameterize 3×3×200 = 1,800 parameters. These parameters
will generate two hundred latent vectors as the output of
MDRNNs (Zy). MDRNNs training uses the data of VAEs
training so that the performance of MDRNNs training follows
of VAEs training such as shown in Fig. 5.

a. The performance of VAEs training b. The performance of MDRNNs
training

Fig. 5. The performance of VAEs and MDRNNs training.

E. The Density Process

The density process is the last part of data-generating
process that play a role in producing the density (logl) from a
sequence of latent samples. The density process works to
enhance the density of the memory process. The memory
process is designed to encode a sequence of latent samples,
not the density. It is not sufficient to produce reliable density
because a standard MDN as part of the memory process is
prone to mode collapse [25]. Mode collapse happens when a
standard MDN fail to generate data samples from the
underlying probability distribution of Zx. It will turn
multimodal learning [38] into unimodal so that all of the
generated samples are very similar [25]. To overcome the
problem, a joint distribution was built on Zx and Zy, denoted
p(Zx, Zy). In this case, Zx and Zy represent the input and
target variables respectively. The relationship between the
input and target variables has been initialized by LSTMs in the
memory process through time-series regression. It is the
conditional distribution, which is the probability that Zy
happens given Zx has happened, denoted p(Zy|Zx). It is
created to build a more proper regression that is the joint
probability density functions (joint PDFs). All the statistical
information of the input and target variables is stored in the
joint PDFs [37]. Furthermore, learning the joint PDFs of the
input and target variables is a form of supervised learning
[12]. It is a statistical approach to transform from
unsupervised learning of the event process, denoted p(Zx),
into supervised learning of the density process, denoted p(Zx,

Zy). The joint PDFs and the conditional distribution are the
statistical basis for multimodal regression.

An important factor in the joint PDFs is to predict target
variables from input variables. A type of supervised learning
algorithm that has been used to predict target variables from
input variables as part of the joint PDFs is Gaussian mixture
regression (GMR) [11], [12], [20], [36], [37], [40]. GMR is a
regression approach that models probability distributions of
latent samples from the event process and the memory process
into multimodal regression using Gaussian mixture models
(GMMs). It can be used to predict distributions of variables
Zy by computing the conditional distribution p(Zy|Zx). The
first process in GMR is to learn the joint PDFs through EM,
then compute the conditional distribution to predictions.
Training is the same procedure as in GMMs [11].

GMMs and GMR can seamlessly work together called the
Gaussian mixture model for multimodal regression (GMMR),
which applies two functions in one: the prediction function
and the score function. The prediction function to predict
target variables from input variables, this is the role of GMR.
The score function to estimate the new joint PDFs of the input
and class label, this is the role of GMMs. The realization of
GMMR is in two steps. Step 1 is to predict target variables Zr
from input variables (Zx, Zy) or Zxy using the prediction
function. This target variable Zr is also used to predict class
labels. Step 2 is to produce log-likelihood (logl) from bivariate
data (Zx, Zr) or Zxr using the score function. Therefore,
GMMR specifically is designed to enhance the reliability of
the log-likelihood estimation produced by world models [14].
Flow diagram of GMMR as seen in Fig. 6.

Fig. 6. Flow diagram of GMMR for the density process.

In step 1, GMMR has utilized the mixture of experts
(MoE) [20] for developing the GMR prediction. MoE gives a
simple approach to combine parametric and nonparametric
regression methods by taking the analytic advantages of
parametric and the flexibility of nonparametric [12], [19],
[37]. The parametric method has been realized by a mixture of
linear models [36] and the nonparametric method has been
realized with divide-and-conquer principles [20]. In fact, the
model log-likelihood function disregards the global data
density [32], because the global maximum that indicates the
global data density does not smoothly regress all local
maxima. Then, MoE replaces a single global model with a
weighted sum of local models (experts) [11], [12], [20], [40]
to achieve the stability of multimodal regression as follows:

p(Zx, Zy) = ∑ πkNk(Zx, Zy|μ(Zxyk), Σ(Zxyk))
K
k=1 (1)

p(Zy|Zx) = ∑ π(Zy|Zxk)Nk(Zy|μ(Zy|Zxk), Σ(Zy|Zxk))
K
k=1 (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

560 | P a g e

www.ijacsa.thesai.org

Eq. (1) is the joint PDFs of GMMs via the EM algorithm
[9]. Nk(Zx, Zy|μ(Zxyk), Σ(Zxyk)) are Gaussian distributions
with means μ(Zxyk), covariances Σ(Zxyk), five Gaussian
components (K=5). Weights πk ∈ [0, 1] are priors that sum up
to one. EM is an iterative method for fitting GMMs to the
negative class label of latent samples (Zx, Zy) or Zxy in an
OCC setting. Eq. (2) is GMR model via the MoE to predict
distributions of variables Zr by computing the conditional
distribution p(Zy|Zx). The conditional distribution of each
Gaussian distribution is N(Zx,Zy|μ(Zxy),Σ(Zxy)) then the
conditional distribution of a mixture of Gaussian distributions
is Nk(Zy | μ(Zy | Zxk), Σ(Zy | Zxk)) with means μ(Zy|Zxk) and
covariances Σ(Zy|Zxk). Weights π(Zy|Zxk) ∈ [0, 1] are priors
that sum up to one.

In step 2, GMMR has utilized EM [9] for developing the
score function. EM has a role for fitting GMMs to the negative
class label of latent samples (Zx, Zr) or Zxr in an OCC setting
again. The joint PDFs are used to store the statistical
information of the input and target variables such in Eq. (3).
The target variable is assumed class labels. In this case, class
labels for the global model are missing, then EM is used to
compute the parameters of each mixture component and
estimate the maximum log-likelihood of GMMs as the score
function such in (4).

p(Zx, Zr) = ∑ πkNk(Zx, Zr|μ(Zxrk), Σ(Zxrk))
K
k=1 (3)

logl = log p(Zx, Zr) (4)

Fig. 7 demonstrates GMMR with five local models, which
yield the predicted outcome Zr_pred in the output space y-axis
when conditioning by Zx on the input space x-axis. GMMR
has worked well to combine linear and non-linear models. The
key model of GMMR is p(Zy|Zx) which produces p(Zx, Zy)
from p(Zx) that can be well represented by a set of Gaussians
[36] so that GMMR can be analyzed easily using a mixture of
linear models. For this reason, the evaluation of GMMR is
carried out on the linear regression model. It is linear in the
parameters. The linearity of parameters is shown by a linear
relationship between the predictor (Zx), observed outcome
(Zy), predicted outcome (Zr) in performing local regression
[19], [20], [36] at the query point on demand. The query point
on demand using: (1) the nearby training observations [19],
(2) a nested sequence of regions [20], and (3) a small set of
close points [36], to build a mixture of linear models. From
global regression into local regression referred to as a
memory-based procedure [19] of experts and gates. It can
predict the outcome according to the memory of experts, each
expert specializes in one local regression, and the gate defines
the regions where the memory of an individual expert are
trustworthy.

Fig. 7. GMMR with five local models.

The mechanism of GMMR with the local models has been
explained specifically in hierarchical mixtures of experts
(HME) [20]. The mechanism works on a set of experts and
gates collaborating to solve a nonlinear function by dividing
the input space into a nested sequence of regions [20], [40].
The experts learn the simple parameterized surfaces in these
partitions of these regions, and the gate makes a soft split of
the input space. The simple parameterized surface in both
experts and gates can be learned using the EM algorithm [9].

The common metric to evaluate a regression model is root
mean squared error (RMSE) and R-squared (R2) [22]. RMSE
is a function of the model residuals which is the difference
between Zr_true and Zr_pred: in [0, ∞], the smaller the better.
R2 can be interpreted as the proportion of the variance in
Zr_pred which is explained by the model: in [−∞, 1], the
closer to 1 the better. R2 is a measure of correlation, not
accuracy [22]. The other metric is mean absolute error (MAE)
which is the average of the absolut difference between Zr_true
and Zr_pred: in [0, ∞], the smaller the better. The performance
of GMMR for three selected models is shown in Table IV.

TABLE IV. MEASURING PERFORMANCE OF GMMR

Model RMSE↓ R2↑ MAE↓

1 0.0022 0.9752 0.0010

2 0.0010 0.9928 0.0009

3 0.0011 0.9926 0.0009

F. The Bias-Variance Alignment

The center point of cyber resilience model is in GMMs
which build the fundamentals of representational and
inference models. GMMs work on a probabilistic model to
estimate maximum log-likelihood via the EM algorithm [9].
GMMs are a simple generative model that utilizes a mixture of
Gaussian distributions to build a weighted sum of PDFs but
GMMs have high flexibility in the predictive and inference
modeling. The weakness is that GMMs fail in high-
dimensional data [4]. To address the problem, the three
methods take into account. The first method, dimensionality
reduction to summarize important information from feature
vectors into latent samples. The method uses VAEs for
analyzing latent samples and MDRNNs for generating
sequences of latent samples. The second method, multimodal
regression to transform the non-linear function of latent
samples into a mixture of linear models so that latent samples
are easier to analyze just using linear regression but more
stable in handling the density with local regression. The
method uses MoE to combine parametric and nonparametric
estimates of the model for a regression function. The third
method, decision boundary optimization to conclude log-
likelihood. The method uses the bias-variance alignment
described in this subsection and likelihood ratios described in
the next subsection.

The bias-variance tradeoff and alignment have similarities
in decomposing the generalization error into bias and
variance. The bias-variance tradeoff is often used to analyze

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

561 | P a g e

www.ijacsa.thesai.org

the generalization error in a regression setting [19], [22], while
the bias-variance alignment is more suitable used to analyze
the generalization error in a classification setting [7].
Quantitative measures of the generalization error in regression
are derived from the mean squared error (MSE) which also
can be calculated by squaring RMSE. The expected test MSE
can be decomposed into bias and variance [19], [22] as
follows:

E[MSE] = σ2 + (model bias)2 + model variance (5)

The first part (σ2) is an irreducible error. It cannot be
eliminated in predictive modeling. It shows intrinsic noise in
the model due to unknown variables. The second part is the
squared bias of the model. It shows the relationship between
the predictor (Zx) and the outcome (Zr_true and Zr_pred) of
the model. High bias means the model is unable to relate
accurately between the predictor and the outcome, Zr_pred is
very different from Zr_true that indicates underfitting. The
third part is the model variance. It shows the sensitivity of
predictive modeling to different datasets. High variance means
the model learns more about the noise than the underlying
patterns in datasets. More fitting in training data but poor in
testing data indicates overfitting. The expected test MSE
simultaneously achieves low bias and low variance.

Eq. (5) also works to multimodal regression via MoE. The
variance model of multimodal regression can be expressed as
the sum of two parts: the first part is related to the variance of
the expert networks and the second part is related to the
covariance of the expert networks [18]. This shows that a
model that can be analyzed using a regression function means
it can also be analyzed using bias-variance tradeoff, including
GMMR.

TABLE V. TWO SAMPLES FOR CLASSIFICATION

Model N(Zn) N(Zp) H

1 10 90 Hp

2 50 50 Hp

3 90 10 Hp

1 10 90 Hn

2 50 50 Hn

3 90 10 Hn

Table V describes two samples for classification. The
samples size is one hundred for one observation. Positive
samples denoted Zp and the size denoted N(Zp). Negative
samples denoted Zn and the size denoted N(Zn). The
hypothesis of classification models denoted H. There are two
hypotheses: a positive hypothesis (Hp) and a negative
hypothesis (Hn). A positive hypothesis is an observation that
tests log-likelihood in an expected finding of the presence of
an anomaly if the hypothesis is true. Quantitative measures of
the presence of an anomaly are indicated by the positive
likelihood ratio (PLR). Low log-likelihood is an instance from

the presence of an anomaly. A negative hypothesis is an
observation that tests log-likelihood in an expected finding of
the absence of an anomaly if the hypothesis is true.
Quantitative measures of the absence of an anomaly are
indicated by the negative likelihood ratio (NLR). High log-
likelihood is an instance from the absence of an anomaly.

The idea of using two samples for classification is
motivated by the one-class classification method that suffered
spurious detection [29] and perfect density models that could
not guarantee anomaly detection [23]. One-class classification
in the density process aims to learn a one-class decision
boundary by GMMR that minimizes false positive rate (FPR)
[35]. In this problem, the underlying patterns of negative
samples is well-recognized by the model. However, because
positive samples were not trained on the model, the model did
not know the underlying patterns of positive samples. As a
consequence, it suffers from spurious detection. The next
problem, even though the data-generating process produces
reliable log-likelihood, it does not mean that low log-
likelihood is identical to the presence of an anomaly and vice
versa. If the inference model of log-likelihood is not well-
defined, high log-likelihood may be interpreted as the
presence of an anomaly [8], [27]. The low and high log-
likelihood of the representational model need to be proven
quantitatively as the decision boundary that discriminates the
two [33]. Therefore, anomaly detection using a single-sample
distributional test is impossible [41]. The existency of positive
and negative samples is a must for developing two competing
hypotheses [33], [41]. The samples may be derived from
ground truth or without. The model will learn from the
samples and justified by two competing hypotheses. However,
one-class classification is still required to define initial
assumptions about the samples before modeling two
competing hypotheses.

Fig. 8. The bias-variance alignment.

Fig. 8 describes the bias-variance alignment. The bias-
variance alignment plays a role in decision boundary
optimization to conclude log-likelihood. GMMR as part of
data-generating process that produces log-likelihood is not
free from the generalization error. The generalization error
causes the estimated log-likelihood to shift from the true log-
likelihood. This is called misleading and weak log-likelihood.
However, the bias-variance tradeoff does not completely
explain the phenomenon in a classification setting [7] as
follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

562 | P a g e

www.ijacsa.thesai.org

(model bias)2 ≈ model variance (6)

Eq. (6) about the phenomenon, which is different from
bias-variance tradeoff in general that models of low capacity
have high bias but low variance and vice versa. While in Eq.
(6) shows the flexibility of bias-variance tradeoff. The model
that has high bias does not tend to have low variance or vice
versa. Eq. (6) suggests that the bias-variance alignment is
specific to large neural networks. Meanwhile, for the small
model as in Fig. 8 shows the same results that bias and
variance are aligned at a sample level although squared bias
does not approximately equal variance, as seen in a full and
not-full concave curve of optimal likelihood ratios. It means
that the effect of bias-variance tradeoff does not lost at all in a
classification setting. Fig. 8 shows that decision boundary in a
classification setting has optimized by bias-variance
alignment. The relation between decision boundary and bias-
variance alignment is as follows:

aligned_logl = logl-B×μ(Ze)×logl (7)

T = μ(aligned_logl)-V×Σ(aligned_logl) (8)

y_pred = {
1, aligned_logl < T
0, aligned_logl ≥ T

 (9)

In Eq. (7), aligned_logl has related to a bias factor (B) and
the mean of the predictors at testing time μ(Ze). Meanwhile, a
decision boundary threshold (T) has related to a variance
factor (V), means μ(aligned_logl), and standard deviations
Σ(aligned_logl). Eq. (7) shows that log-likelihood needs to be
aligned so that it shifts closer to the true log-likelihood, then
aligned_logl performs as a parameter in determining the
variability of thresholds together with a variance factor.

In Eq. (9), the threshold T creates a decision boundary that
classifies log-likelihood into two classes: low log-likelihood if
aligned_logl < T and high log-likelihood if aligned_logl ≥ T.
Low log-likelihood being labeled positive samples (predicted
positive/PP) and high log-likelihood being labeled negative
samples (predicted negative/PN). Eq. (9) applies if the bias-
variance alignment has achieved the optimal likelihood ratio.

G. Likelihood Ratios

A likelihood (L) is the relative probability of the observed
data given a hypothesis parameter value [3]. It refers to the
probability or density of a sample under a distribution [41]. It
is related to the observed data, statistical models, and
statistical hypotheses. It indicates the hypothesis for the
goodness of fit of a model to the observed data. With these
roles, the data-generating process is designed to produce the
likelihood datasets that construct hypothesis. A hypothesis is a
prediction for the observed data that can be tested for truth.
Hypothesis testing is an important step to ensure that a model
being built fits the observed data. Together with the observed
data, statistical models, and statistical hypotheses are actual
components to be able to draw inferences. The likelihood ratio
(LR) is the ratio of two likelihoods for parameter values for
two different hypotheses H1 over H2 given the observed data x
[3] that can be written as follows:

LR = L(H1|x)/L(H2|x) = P(x|H1)/P(x|H2) (10)

The likelihood ratio LR represents and measures statistical
evidence. The LR is not a probability but a relative measure of
evidence for competing two hypotheses. The likelihood of a
hypothesis H given the observed data x (L(H|x)) is
proportional to the probability of the observed data x under a
hypothesis H (P(x|H)). L(H|x) builds a likelihood model. As a
consequence, the LR builds a model to represent statistical
evidence. Then, the LR model performs as an evidence
measure for the observed data. Two different evidences will
be measured: evidence from ground truth datasets (y_true) as
explained in the subsection III.B and evidence from the bias-
variance alignment (y_pred).

In the LR, hypotheses can be easily derived from the
model and vice versa. Eq. (7) represents the observed data in a
model and (9) is the hypothesis of the model. Eq. (9)
formulates the positive hypothesis H1 (align_logl<T) and the
negative hypothesis H2 (align_logl≥T). In contrast, the
hypotheses formulated in (9) together with ground truth
datasets build a new model, as seen in Fig. 9(b). The LR
model measures statistical evidence by support, denoted S.
Statistical evidence for two hypotheses on the graded scale
can be seen in Table VI.

TABLE VI. INTERPRETING SUPPORT [3]

LR (1/LR) Support (log LR) Interpretation H1 over H2

1 (1.00) 0 No evidence

2.7 (0.37) 1 Weak evidence

7.4 (0.14) 2 Moderate evidence

20 (0.05) 3 Strong evidence

55 (0.02) 4 Extremely strong evidence

Table VII shows likelihood intervals or support intervals
and their corresponding frequentist confidence intervals (CI)
for the standard Gaussian distribution. Similar to confidence
intervals, likelihood intervals describe the accuracy and
reliability of estimation obtained from the observed data.
Likelihood intervals measure the level of confidence in the
estimation that expected parameters fall within a certain range.
Likelihood intervals are a need to interpret likelihood clearly
that the likelihood evidence points are confidence within a
certain range.

TABLE VII. LIKELIHOOD INTERVALS [3]

S LR 1/LR % CI

1.6 4.95 0.202 92.6

2 7.39 0.135 95.4

3 20.09 0.050 98.6

4 54.60 0.018 99.5

5 148.4 0.007 99.8

6 403.4 0.0025 99.95

7 1096.6 0.0009 99.98

8 2981.0 0.0003 99.99

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

563 | P a g e

www.ijacsa.thesai.org

The LR is about the relative strength of evidence for two
competing hypotheses. In contrast, the frequentist approach
use of type I and type II errors allows one to specify the
probability of rejecting the null hypothesis when it is true, and
of not rejecting it when it is false [3]. The LR was built to test
two hypotheses: predicted label as an outcome and true label
as a reference standard. The two hypotheses compete to
measure the relative strength of evidence.

In this paper, a competition is performed by considering
ground truth datasets as a reference standard to test the
hypothesis in (9) as predicted label. It will produce the
outcome of a test: (1) y_pred=1 for a positive label, (2)
y_pred=0 for a negative label, and (3) the relative strength of
evidence for the observed data. Therefore, the outcome of a
test by the LR is not to reject or not reject the null hypothesis
(H0 or H2). If the relative strength of evidence is not
misleading and not weak, the hypothesis may be accepted.

The 2×2 contingency table describes a matrix format used
to display a frequency distribution of two variables with the
vertical columns denoting instances of reference standard, or
true label and the horizontal rows denoting instances of
outcome of a test, or predicted label [24]. The relative strength
of evidence is measured using the 2×2 contingency table as
seen in Fig. 9.

 align_logl<T align_logl≥T y_true=1 y_true=0

y_pred=1 TP FP y_pred=1 TP FP

y_pred=0 FN TN y_pred=0 FN TN

a. The 2×2 contingency table to
evaluate the performance indicator of a

model

 b. The 2×2 contingency table
to assess the relative strength

indicator of evidence

Fig. 9. The 2×2 contingency table for binary classification.

Table VIII defines a measure factor in the 2×2 contingency
table and its derivative. The limitation in the evidential
approach is that no observed values are zero [3]. The
generalization error controlled by the bias-variance alignment
is only a reducible error part not all error conditions [19], [22].
A measure factor of TPR, TNR, FPR, and FNR is an error-
based measure. A measure factor, such as TPR or TNR, has a
test's ability to detect correctly a condition when it is present
and to rule it out correctly when it is absent. A measure factor,
such as FPR or FNR, has a test's propensity to detect
incorrectly a condition when it is absent and not to detect it
correctly when it is present [24]. Therefore, a measure factor
of TP, TN, FP, and FN is considered to be not zero.

PLR measures the change in pre-test to post-test odds and
diagnostic gain. It also combines information about TPR and
FPR [24]. If a sample from population tested positive, PLR
represents the relative strength of evidence that a sample is an
anomaly given a positive test result. However, the relative
evidence of PLR also depends on the explicit prior in the
Bayesian approach which is not discussed in this paper. To
reduce uncertainty due to factors that influence it, PLR utilizes
information from NLR.

Ideally the PLR value is 1/NLR [3], but in practice, the
PLR value is sometimes greater than 1/NLR so that the

relative strength of evidence for the observed data is less
properly. It is necessary to combine PLR and NLR for a single
test value as the performance indicator of a model and the
relative strength indicator of evidence. Basically, PLR and
NLR are the ratio of paired measures [24]. Hence the
approach taken is based on the harmonic mean method [43] to
combine PLR and NLR that gets a new measure factor,
namely, the harmonic likelihood ratio (HLR):

HLR = 2×PLR/(1+(PLR×NLR)) (11)

TABLE VIII. A MEASURE FACTOR IN THE 2×2 CONTINGENCY TABLE AND

ITS DERIVATIVE

Term Denoted Formula Description

True positive TP TP > 0 Correct predictions of anomaly

True negative TN TN > 0 Correct predictions of normal

False positive FP FP > 0 Incorrect predictions of anomaly

False negative FN FN > 0 Incorrect predictions of normal

True positive

rate

TPR TP/(TP+FN) The rate of an anomaly sample

tested positive

True negative

rate

TNR TN/(TN+FP) The rate of a normal sample

tested negative

False positive

rate

FPR 1-TNR The rate of a normal sample

tested positive

False negative
rate

FNR 1-TPR The rate of an anomaly sample
tested negative

Positive

likelihood ratio

PLR TPR/FPR The ratio of an anomaly sample

tested positive and a normal
sample tested positive

Negative
likelihood ratio

NLR FNR/TNR The ratio of an anomaly sample
tested negative and a normal

sample tested negative

The idea of a self-supervised binary classifier is to utilize
the structure within data from the samples (logl) to build a
supervisory signal for the classifier. A supervisory signal
comes from the underlying structure of the samples realized in
producing two samples using (7), (8), and (9). A supervisory
signal first finds the bias B and variance V that give the
maximum likelihood ratios of the two samples. For simplicity,
the bias B is assumed to be 10 refers to the B value in the
description of the bias-variance alignment in Fig. 8 and the
variance V is tried to find iteratively within a certain range on
the PLR or HLR value is the maximum, denoted _PLR_ and
HLR. This maximum value indicates the relative strength of
evidence for two samples that the classifier has worked to
classify the two samples properly.

The performance evaluation of classifiers involves three
models, two groups of observation, and five indicators.
Classification is designed in two stages. The first stage is
about training samples with a one-class classification method
for fine-grained negative samples from subdistributions 1, 2,
and 3. Three types of training samples were realized with a
negative sample size of 10, 50, and 90, respectively. Training
samples were taken from ground truth datasets randomly.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

564 | P a g e

www.ijacsa.thesai.org

Training samples were the initial assumptions about the prior
distribution implicitly (the implicit prior). The second stage is
about testing samples with a binary classification method for
fine-grained negative samples from subdistributions 1, 2, and
3 and positive samples from subdistributions 4, and 5. Ninety-
nine types of testing samples were realized with a negative
sample size from 1 to 99 and a positive sample size from 99 to
1, respectively. Testing samples were taken from ground truth
datasets randomly. The second stage applies (7), (8), and (9).

Table IX shows that 4 out of 5 performance indicators of
the group of observation _HLR_ are better than the group of
observation _PLR_. This proves that HLR as a single test
value of performance indicators has worked well to evaluate
the performance of binary classifier even though the absence
of the explicit prior. This correspond to the result of the area
under the receiver operating characteristic (AUROC). While
the area under the precision-recall curve (AUPRC) is almost
the same.

TABLE IX. THE METRIC TO EVALUATE THE PERFORMANCE OF BINARY

CLASSIFIERS

Model Model 1 Model 2 Model 3

Group _PLR_ _HLR_ _PLR_ _HLR_ _PLR_ _HLR_

V 1.148 0.576 1.556 0.741 1.352 0.683

T 3.815 5.127 3.868 5.114 3.908 5.067

PLR↑ 36.128 22.432 36.664 20.053 37.811 22.591

NLR↓ 0.207 0.076 0.211 0.082 0.200 0.079

HLR↑ 11.608 16.072 11.041 14.805 10.966 15.492

AUROC↑ 0.894 0.941 0.895 0.938 0.897 0.938

AUPRC↑ 0.922 0.935 0.927 0.931 0.926 0.939

IV. EXPERIMENTAL RESULTS

The study in this paper was conducted using an
experimental method. The experiment was conducted in four
stages. The first stage was an experiment with raw datasets
that produce ground truth datasets: true or to be true positive
(TP) samples and true or to be true negative (TN) samples
using the K-Means and EM algorithms.

The second stage was an experiment with the LR as the
performance indicator of a model (HLR). The experiment uses
data-generating process to produce the logl. The bias-variance
alignment enhances likelihood by shifting the logl closer to
true likelihood thereby producing the LR model. An indication
that the logl closer to true likelihood if the LR model is not
misleading and not weak refers to Table VI. The LR model
constructs two hypotheses: a positive hypothesis (H1) and a
negative hypothesis (H2). A measure factor HLR facilitates the
resolution of two hypotheses to obtain the variance V properly
based on the underlying structure of the two samples. The
variance V is proper if the HLR has reached its maximum
within a certain range of variance. Together with the bias B,

the variance V constructs a supervisory signal for the classifier
by a threshold T. Referring to (9), the LR model produces
predicted datasets: predicted positive (PP) samples and
predicted negative (PN) samples. In the LR, two samples
present two models and two hypotheses. Otherwise, two
models and two hypotheses represent two samples.

The third stage was an experiment with the LR as the
relative strength indicator of evidence (S). Evidence comes
from ground truth and predicted datasets which construct two
hypotheses: a primary hypothesis (H1) and a null hypothesis
(H0). Once again, a measure factor HLR makes it easier to
resolve two hypotheses to get the relative strength of evidence.

The fourth stage was an experiment to build up a self-
supervised anomaly detection (AD) approach. The resilience
scale (RS) and anomaly score (AS) can be written as follows:

RS = 2×IPN×S/(IPN+S) (12)

AS = 4-RS (13)

In (12), the support S is the natural logarithm of a measure
factor HLR. It assumes the highest relative strength of
evidence is 4 that refers to Table VI. Also, the highest index of
PN is 4, because PN is in the range of 0 to 100, the index of
PN (IPN) is PN/25. So that the IPN and S have the same ratio
from 0 to 4, then both variables can be estimated smoothly
using a harmonic mean method [43] to derive (12). Eq. (13)
assumes the resilience scale and anomaly score are
complements to the support S.

The experiments were realized using a Python
programming language, a deep learning library Pytorch [30] to
implement an artificial neural network, a Python module
Scikit-learn [31] to implement a machine learning model, a
Python library gmr [11] to implement a mixture of experts, a
Python toolbox PyOD [42] for benchmarking anomaly
detection methods, and a 2D graphics package Matplotlib [17]
for the visualization of observational and experimental results.

TABLE X. THE LOG-LIKELIHOOD SCORE OF EACH SUBDISTRIBUTION

subd 1 2 3 4 5

Zx -1.238 -1.199 -1.281 -1.372 -1.475

Zxy -1.217 -1.193 -1.233 -1.278 -1.335

Zxr 5.078 5.104 5.057 4.985 4.921

Zxr, B=5 6.211 5.514 4.726 3.652 2.712

Zxr, B=10 7.344 5.925 4.395 2.318 0.502

Zxr, B=15 8.477 6.335 4.064 0.985 -1.707

Table X presents the log-likelihood score of each
subdistribution for some latent variables and the bias factor
that affects the log-likelihood score. The latent variable Zx is
the latent samples generated by VAEs. The latent variable Zxy
is the latent samples generated by VAEs and MDRNNs also
known as world models [14]. The latent variable Zxr is the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

565 | P a g e

www.ijacsa.thesai.org

latent samples generated by VAEs, MDRNNs, and GMMR
also called the representational model.

Table X proves that the log-likelihood score of Zx and Zxy
is too low, below zero. GMMR can increase the log-likelihood
score significantly from Zxy to Zxr. However, the log-
likelihood score generated by GMMR is not strong enough to
be used as evidence. The log-likelihood scores of one
subdistribution and the others are difficult to distinguish as
normal and anomaly classes. It shows that the classification of
the two samples is not clear. The reason is that the latent
samples are generated by the model, while a model is not free
from the generalization error.

In Table X, the bias factor B as one of a supervisory signal
straightens the weak evidence by shifting the log-likelihood
score closer to the true classification of the two samples. A
higher B value has implications for a higher log-likelihood
score of subdistributions 1, and 2 and a lower log-likelihood
score of subdistributions 3, 4, and 5. This simple experiment
explains that subdistributions 1, and 2 tend to be samples of
normal class and subdistributions 3, 4, and 5 tend to be
samples of anomaly class.

Fig. 10 gives three indicators of the cyber resilience
model: the predicted negative PN, the support S, and the
resilience scale RS. The predicted negative PN about two
samples needed in a likelihood ratio model. One sample
represents a reference standard used as an example (ground
truth datasets). The other sample represents the observed data
(predicted datasets). Ground truth and predicted datasets
construct a likelihood ratio model. In the context of cyber
resilience, the samples that need to be monitored are the
predicted negative (PN) as part of the predicted datasets. PN is
the total number of elements labeled as belonging to the
negative class. PN is true negative (TN) + false negative (FN).
True negative (TN) is as part of the ground truth datasets
while false negative (FN) indicates incorrect predictions of the
negative class. So, FN is the difference between PN and TN.
The PN indicator proves the relationship between PN and the
number of negative samples N(Zn), TN, FN.

The support S about the relative strength indicator of
evidence. Two samples in a likelihood ratio model construct
two competing hypotheses. A measure factor HLR makes it
easier to resolve two competing hypotheses to get the support
S. From the experiment, it is known that the support S is not
affected by the number of negative samples linearly in the
training and testing phases except for extreme numbers, such
as less than 10 or more than 90 if the sample size is 100. As a
consequence, the number of negative samples of 10 has met
the requirement as training data.

The resilience scale RS about the resilience scale of the
service. It is the indicator to measure the behavior of cyber
resilience model. The cyber resilience model requires two data

to realize (12): the predicted negative (PN) and the support
(S). Because RS derives from the PN and S, which refers to
Table VI, the resilience scale RS also has an interpretation that
refers to Table VI.

Fig. 10. The cyber resilience model.

Referring to this experimental results, it is known that the
cyber resilience model is identical to a likelihood ratio model
(LRM). A likelihood ratio model is effectively carried out
based on anomaly detection. In anomaly detection, two
samples are clearly defined. LRM summarizes complete
information about the observed data, statistical models, and
statistical hypotheses of DNS events. It identifies the
individual and group behavior of each sample shown by the
PN and S indicator.

The PN indicator can be used to estimate the status of the
data. High PN shows that DNS events are normal and low PN
shows otherwise. In addition, LRM provides information
about the stability of the model in predicting the observed
data. The stability of the model can be seen from the S
indicator. A high S shows that the model has the ability to
predict the data normally and a low S shows otherwise.
Furthermore, the two indicators are used to test the hypothesis
of DNS events. A high anomaly score or low resilience scale
indicates a DNS anomaly. A low anomaly score or high
resilience scale indicates a DNS normal. Table VI will help
interpret both in a more understandable form. Therefore, the
anomaly score AS is a complement to the resilience scale RS
as has been formulated in (13).

Anomaly detection is designed using a specific binary
classification task to build a reliable anomaly detection
method in dealing with dynamic models. The binary
classification task goes through two stages. The first stage is
fitting data using regression to obtain the initial value of the
relationship between the model and the genuine labeled data
(the implicit prior) and the second stage classifies the log-
likelihood by a decision boundary threshold to define high and
low log-likelihoods. The complete differences between some
anomaly detection methods (PyOD) and the tested method
(LRM) in the experiment can be seen in Table XI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

566 | P a g e

www.ijacsa.thesai.org

TABLE XI. THE DIFFERENCE OF PYOD AND LRM IN THE EXPERIMENT

PyOD LRM

Input from the log-likelihood score of
latent samples (logl) about 100

samples

Input from latent samples (Zxr) about
2×200×100 latent samples

Fitting and predicting in classification Fitting in regression
Predicting in classification

Fitting is done on the negative

samples

Fitting is done on the negative latent

samples

Predictors are the negative and

positive samples

Predictors for regression are the

negative latent samples

Predictors for classification are the
negative and positive samples

Not using latent samples but directly
using the log-likelihood score as the

observed samples

For each latent sample, the maximum
log-likelihood score is taken as the

observed samples

Some anomaly detection methods that have been
compared: Angle-Based Outlier Detection (ABOD), Isolation
Forest (IForest), K-Nearest Neighbors (KNN), and One-Class
Support Vector Machines (OCSVM). The methods represent
four different anomaly detection methods that have been
implemented in PyOD [42]. The results of the benchmarking
show that LRM has high performance and stability as an
anomaly detection method as seen in Table XII.

TABLE XII. BENCHMARKING THE FOUR METHODS AND LRM

Model Indicator ABOD IForest KNN OCSVM LRM

1

HLR↑ 6.003 14.236 14.236 17.626 17.626

AUROC↑ 0.856 0.933 0.933 0.944 0.944

AUPRC↑ 0.984 0.993 0.993 0.994 0.994

2
HLR↑ 10.212 13.458 13.458 13.458 32.441

AUROC↑ 0.910 0.930 0.930 0.930 0.970

AUPRC↑ 0.928 0.943 0.943 0.943 0.980

3
HLR↑ 10.862 10.124 10.124 9.478 19.203

AUROC↑ 0.961 0.956 0.956 0.950 0.994

AUPRC↑ 0.794 0.778 0.778 0.763 0.955

V. DISCUSSION AND FUTURE WORK

Two samples can be well-modeled with the LR model so
that the interpretation of the observed data is more objective,
depending only on the data itself. It is relevant to be used for
anomaly detection. It is also relevant to be used for normal
detection (resilience). Based on a self-supervised anomaly
detection approach, self-labeling in a dynamic model can be
realized with measurable supervision. Self-labeling directed
by a supervisory signal consisting of a bias factor B, a
variance factor V, and a threshold T. The evaluation of
regression and classification models with results as follows:
RMSE=0.0014, R2=0.9869, MAE=0.0009 for fitting 3
regression models at training time and HLR=15.456,
AUROC=0.939, AUPRC=0.935, S=2 (2.738) with the S-2
likelihood interval for 297 (3×99) classification models at
testing time. It means that the LR model does not generally

produce misleading and weak log-likelihood. In this LR, the
relative strength of evidence is defined by a primary
hypothesis that models self-labeling and a null hypothesis that
models a standard reference of the samples. In the experiment,
it has been proven that a primary hypothesis is accepted, S=2
with a 95% confidence level.

The difference index (DI) of likelihood in the EM as a
sample classifier is the difference between a subdistribution
classified as positive and negative samples. The larger DI, the
larger the disjoint support between the distribution of positive
and negative samples. In Table III, subdistribution 2 has a DI
of 4.004, subdistribution 3 has a DI of 0.944, and
subdistribution 4 has a DI of 3.210. It means the difference
index of subdistribution 3 is small, then the disjoint support is
also small. As a consequence, subdistribution 3 is less reliable
as a standard reference of samples.

To address the problem of misleading and weak log-
likelihood required aligning bias-variance and optimizing
likelihood-ratios. In Table X, the bias factor B has been
worked properly for subdistributions 1, 2, 4, and 5 but not for
subdistribution 3. This is correlated with the analysis of Table
III that the disjoint support of subdistribution 3 is small so
subdistribution 3 produces anomaly interpretation: some parts
tend to be negative samples and others tend to be positive
samples.

Referring to the facts in Table III and X, it is necessary
that a null hypothesis may need to be redesign. A null
hypothesis represents ground truth datasets as examples of
positive and negative samples that declare a reference standard
of the observed samples in two competing hypotheses. The
next study focused on enhancing the ground truth datasets,
especially to address the problem of subdistribution 3 that
produces a stronger relative strength indicator of evidence.
Furthermore, predictive modeling only relies on examples of
positive and negative samples from those trained to the model
as the implicit prior.

VI. CONCLUSION

There is a relationship between the cyber resilience and
likelihood ratio models. The likelihood ratio model (LRM) is
useful in building the cyber resilience model. It meets the
requirements needed to realize the representational and
inference models in practice. The representational model has
been realized with likelihood maximization inside data-
generating process and the inference model has been realized
with likelihood ratios inside two competing hypotheses. In the
representational model, the Gaussian mixture model for
multimodal regression (GMMR) enhances the ability of world
models produces log-likelihood. The log-likelihood needs to
be aligned by the bias-variance factor to be worthy of being
used as evidence. In the inference model, evidence from
ground truth datasets and evidence from the model build two
competing hypotheses to handle anomaly detection tasks in
self-supervised settings. Evidence from the model has been
labeled through a self-labeling technique that supervised by
three supervisory signals: a bias factor, a variance factor, and a
threshold to optimize decision boundary in minimizing the
generalization error of predictive modeling with the harmonic
likelihood ratio (HLR).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

567 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENT

This study was conducted in collaboration between
Universitas Muhammadiyah Malang and Universiti Teknologi
Malaysia. The authors fully acknowledge to Rector of
Universitas Muhammadiyah Malang for the research grant
(E.5.c/1693/UMM/XII/2020) that helps in funding the
research works. Special thanks to all the reviewers for their
valuable feedback.

REFERENCES

[1] C.M. Bishop, "Novelty detection and neural network validation," In: S.
Gielen, B. Kappen (eds), ICANN ’93, Springer, 1993.

[2] C.M. Bishop, Mixture density networks, Technical Report, Aston
University, 1994.

[3] P.M.B. Cahusac, Evidence-based statistics: An introduction to the
evidential approach-from likelihood principle to statistical practice, John
Wiley & Sons, 2020.

[4] E.B. Cahyono, S.M. Sam, N.H. Hassan, N. Mohamed, N.B. Ahmad, and
Y.M. Yusuf, "A review on cyber resilience model in small and medium
enterprises," 4th International Conference on Smart Sensors and
Application (ICSSA), pp. 114-119, 2022.

[5] J. F. Carías, M. Borges, L. Labaka, S. Arrizabalaga, and J. Hernantes,
"Systematic approach to cyber resilience operationalization in smes,"
IEEE Access, vol. 8, pp. 174200-174221, 2020.

[6] J. F. Carías, S. Arrizabalaga, L. Labaka, and J. Hernantes, "Cyber
resilience progression model," Applied Sciences, vol. 10, iss. 21, pp.
7393, 2020.

[7] L. Chen, M. Lukasik, W. Jitkrittum, C. You, and S. Kumar, "On bias-
variance alignment in deep models," International Conference on
Learning Representations, 2024.

[8] H. Choi, E. Jang, and A.A. Alemi, "WAIC, but why? Generative
ensembles for robust anomaly detection," arXiv, abs/1810.01392, 2018.

[9] A.P. Dempster, N.M. Laird, and D.B. Rubin, "Maximum likelihood
from incomplete data via the em," Journal of the Royal Statistical
Society, Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977.

[10] K.O. Ellefsen, C.P. Martin, and J. Tørresen, "How do mixture density
rnns predict the future?," ArXiv, abs/1901.07859, 2019.

[11] A. Fabisch, "gmr: Gaussian mixture regression," Journal of Open Source
Software, vol. 6, no. 62, pp. 3054-3057, 2021.

[12] Z. Ghahramani, and M.I. Jordan, "Supervised learning from incomplete
data via an em approach," Neural Information Processing Systems, 1993.

[13] A. Graves, "Generating sequences with recurrent neural networks,"
ArXiv, abs/1308.0850, 2013.

[14] D.R. Ha, and J. Schmidhuber, "World models," ArXiv, abs/1803.10122,
2018.

[15] S. Hochreiter, and J. Schmidhuber, "Long short-term memory," Neural
Computation, vol. 9, pp. 1735-1780, 1997.

[16] H. Hojjati, T.K. Ho, and N. Armanfard, "Self-supervised anomaly
detection: A survey and outlook," ArXiv, abs/2205.05173, 2022.

[17] J.D. Hunter, "Matplotlib: A 2D graphics environment," Computing in
Science & Engineering, vol. 9, no. 3, pp. 90-95, 2007.

[18] R.A. Jacobs, "Bias/variance analyses of mixtures-of-experts
architectures," Neural Computation, vol. 9, pp. 369-383, 1997.

[19] G.M. James, D.M. Witten, T.J. Hastie, and R. Tibshirani, An
introduction to statistical learning with applications in r, Second Edition,
Springer Texts in Statistics, 2021.

[20] M.I. Jordan, and R.A. Jacobs, "Hierarchical mixtures of experts and the
em algorithm," Neural Computation, vol. 6, pp. 181-214, 1993.

[21] D.P. Kingma, and M. Welling, "Auto-encoding variational Bayes,"
ArXiv, abs/1312.6114, 2013.

[22] M. Kuhn, and K. Johnson, Applied predictive modeling, Springer, 2013.

[23] C.L. Lan, and L. Dinh, "Perfect density models cannot guarantee
anomaly detection," Entropy, vol. 23, no. 12, 2020.

[24] A. J. Larner, The 2x2 matrix: Contingency, confusion and the metrics of
binary classification, Second Edition, Springer, 2024.

[25] O. Makansi, E. Ilg, O. Çiçek, and T. Brox, "Overcoming limitations of
mixture density networks: A sampling and fitting framework for
multimodal future prediction," IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7137-7146, 2019.

[26] P. Martin, GoPassiveDNS: Network-based dns logging in go, GitHub
repository, https://github.com/Phillipmartin/gopassivedns, 2016.

[27] E.T. Nalisnick, A. Matsukawa, Y.W. Teh, D. Görür, and B.
Lakshminarayanan, "Do deep generative models know what they don't
know?," International Conference on Learning Representations, 2019.

[28] G. Pang, C. Shen, L. Cao, and A. Van Den Hengel, "Deep learning for
anomaly detection: A review," ACM Computing Surveys, vol. 54, no. 2,
pp. 1-38, Research Collection School Of Computing and Information
Systems, 2022.

[29] J. Park, J. Moon, N. Ahn, and K. Sohn, "What is wrong with one-class
anomaly detection?," ICLR 2021 Workshop on Security and Safety in
Machine Learning Systems, 2021.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L.
Fang, J. Bai, and S. Chintala, "Pytorch: An imperative style, high-
performance deep learning library," 33rd Conference on Neural
Information Processing Systems, 2019.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, G. Louppe, P. Prettenhofer, R. Weiss, R.J. Weiss, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay, "Scikit-learn: Machine learning in python", Journal of
Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[32] P. Poklukar, "Seeing the whole picture instead of a single point: Self-
supervised likelihood learning for deep generative models," 2nd
Symposium on Advances in Approximate Bayesian Inference, 2019.

[33] J. Ren, P.J. Liu, E. Fertig, J. Snoek, R. Poplin, M.A. DePristo, J.V.
Dillon, and B. Lakshminarayanan, "Likelihood ratios for out-of-
distribution detection," 33rd Conference on Neural Information
Processing Systems, 2019.

[34] D.J. Rezende, S. Mohamed, and D. Wierstra, "Stochastic
backpropagation and approximate inference in deep generative models,"
International Conference on Machine Learning, 2014.

[35] L. Ruff, J.R. Kauffmann, R.A. Vandermeulen, G. Montavon, W. Samek,
M. Kloft, T.G. Dietterich, and K. Muller, "A unifying review of deep
and shallow anomaly detection," Proceedings of the IEEE, vol. 109, no.
5, pp. 756-795, 2020.

[36] F. Stulp, and O. Sigaud, "Many regression algorithms, one unified
model: A review," Neural networks: the official journal of the
International Neural Network Society, vol. 69, pp. 60-79, 2015.

[37] H.G. Sung, Gaussian mixture regression and classification, PhD thesis,
Rice University, 2014, unpublished,

[38] M. Suzuki, and Y. Matsuo, "A survey of multimodal deep generative
models," Advanced Robotics, vol. 36, pp. 261-278, 2022.

[39] F. Weimer, "Passive dns replication," 17th annual FIRST conference on
computer security incident, 2005.

[40] S.E. Yüksel, J.N. Wilson, and P.D. Gader, "Twenty years of mixture of
experts," IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, pp. 1177-1193, 2012.

[41] L.H. Zhang, M. Goldstein, and R. Ranganath, "Understanding failures in
out-of-distribution detection with deep generative models," Proceedings
of machine learning research, vol. 139, pp. 12427-12436, 2021.

[42] Y. Zhao, Z. Nasrullah, and Z. Li, "Pyod: A python toolbox for scalable
outlier detection," Journal of Machine Learning Research, vol. 20, pp. 1-
7, 2019.

[43] D. Ziou, "Pythagorean centrality for data selection," ArXiv,
abs/2301.10010, 2023.

