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Abstract—Cyber resilience plays an important role in dealing 

with cybersecurity and business continuity uncertainty in the 

post-COVID-19 era. The fundamental problem of cyber 

resilience is the complexity of real-world problems. Therefore, it 

is necessary to reduce the complexity of real-world problems to 

be simple and easy to analyze through cyber resilience model. 

The first part is the representational model by utilizes world 

models. It utilizes the stochastic nature of latent data to generate 

log-likelihood values by data-generating process. The second part 

is the inference model. This concludes the observation of log-

likelihoods using a self-supervised anomaly detection approach. 

This is related to optimizing decision boundary in anomaly 

detection, which is achieved by supervising two competing 

hypotheses based on bias-variance alignment and likelihood 

ratios. The optimization operates a dynamic threshold supervised 

by a supervisory signal from the underlying structure of log-

likelihoods. The paper contributes by conducting research on the 

cyber resilience model from the perspective of statistical machine 

learning. It enhances the representational modeling of world 

models with the Gaussian mixture model for multimodal 

regression (GMMR). Additionally, it examines the issue of 

misleading log-likelihood for out-of-distribution inputs caused by 

the generalization error and optimizes decision boundary in 

minimizing the generalization error with a new metric named the 

harmonic likelihood ratio (HLR). Finally, it aims to boost the 

performance of anomaly detection using self-supervised learning. 
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I. INTRODUCTION 

In the post-COVID-19 era, cyber resilience plays an 
important role in dealing with cybersecurity and business 
continuity uncertainty. The problems and methodology for 
cyber resilience, especially in the scope of small and medium 
enterprises (SMEs), have been described systematically in the 
cyber resilience progression model [5], [6]. The model helps 
SMEs prioritize cyber resilience proposing the natural 
evolution of implementation. It designed to be more flexible 
based on available resources. It focuses on insights into 
operationalizing cyber resilience strategies by describing ten 
domains. One of the ten domains is detection processes and 
continuous monitoring has been chosen as the central domain 
[4]. In description, it is explained that there are two strategies 
for this domain: actively monitor the company's assets and 
define a detection process that specifies when to escalate 
anomaly into incidents [5], [6]. This description allows self-
supervised anomaly detection technology that works fully 
automatically to detect and monitor processes. 

The cyber resilience model that will be studied refers to 
technical architectures in [4]. The technical architecture was 
built on five layers. The five layers were services, data, 
generative models, data analysis, and resilience scale [4]. Each 
layer had different structures and functions but was part of a 
system. The technical architectures are necessarily simplified 
without changing the fundamental architecture so that the 
complexity of the problem is reduced and more focused on 
anomaly detection. The fundamental architecture that 
continues to go is Gaussian mixture models (GMMs), one of 
the first-generation generative models with high flexibility in 
handling data distribution, statistical modeling, and inference. 
GMMs are the fundamental architecture of cyber resilience 
with the underlying structure of a probabilistic model 
approach [4]. However, GMMs fail if applied directly as the 
basis of cyber resilience model. GMMs fail in high-
dimensional data. GMMs can be used for density estimation 
but the perfect density model cannot guarantee anomaly 
detection [23]. Also, GMMs work in an unsupervised setting 
that often produces high false positive rates in a dynamic 
system [28]. The paper studies GMMs as a reliable generative 
model for anomaly detection. 

The cyber resilience model designed by a two-part model: 
the representational model in layers 1 to 3, which play a role 
in data collection, and the inference model in layers 4 and 5, 
which play a role in data analysis. The complexity of real-
world problems of cyber resilience encapsulated by data 
collection and analysis as the key of a data-driven approach. 
The paper studies critically the problems of the 
representational and inference model to set up the appropriate 
cyber resilience model, such as misleading log-likelihood, the 
bias-variance alignment, and two competing hypotheses. 

As the core of the representational model, the world model 
[14] that lies in layer 2 takes the principal role in data-
generating process to strengthen a data-driven approach.  
Hence, it needs to be enhanced to become part of the 
representational model that meet the requirements for data 
collection in a new setting. That is different from it utilized 
previously. For developing the data-generating process, the 
world model needs to avoid generating misleading log-
likelihood [3]. Also, it needs to be integrated in a supervised 
setting [11], [12] to align the self-labeling problem of an 
unsupervised learning algorithm [1], [28]. 

The inference model in layers 4 and 5 focuses more on 
inferring the observed samples with data analysis directed by 
anomaly detection. The concept of anomaly detection explains 
that samples can be distinguished into normal and anomaly 
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samples [28], [35] with a two-class decision boundary [1], [8] 
determined by two competing hypotheses [33], [41]. The 
factual problem is aligning a two-class decision boundary with 
two competing hypotheses so that the model can perform 
anomaly detection properly, which will be studied in this 
paper. 

II. REVIEW OF EXISTING TECHNIQUES 

One fundamental study as the basis of cyber resilience 
model is anomaly detection [4]. Anomaly detection, in this 
case, is similar tasks to novelty detection (ND) [1], one-class 
classification (OCC) [29], and out-of-distribution (OOD) [8], 
[27], [33], [41]. An anomaly is an observation that deviates 
significantly from some concepts of normality [35]. This 
definition is also suitable for ND, OCC, and OOD [16], [35]. 
If the distribution of normal instances is P, an anomaly is a 
sample drawn from any distribution other than P. Furthermore, 
ND has a new region of P; OCC has a one-class decision 
boundary of P; OOD has fine-grained P during training [28], 
[35]. Thus, there is a shared concept between anomaly 
detection and ND, OCC, OOD. 

The cyber resilience model represents a cyber resilience 
system as a technical framework to measure the resilience 
scale. The resilience scale denotes a scale of the service 
resilience against cyber threats. In the domain of cyber 
resilience, numerous services like Domain Name System 
(DNS), firewall, web services, resource planning, and supply 
chain are required to explore anomaly detection for 
monitoring the continuity of services. It is necessary for one 
specific service to bring about the model as suggested in [4] 
which points to DNS. This choice is reasonable because DNS 
used by most services and applications of the Internet, even 
critical infrastructures of the Internet. Also, DNS provides an 
authentic data distribution of anomalies by the system so that 
anomaly detection works in factuality. DNS is the hierarchical 
name system that uses the globally distributed database and 
stores the information about every Internet domain [39]. DNS 
information is stored on DNS servers and can be accessed 
anytime based on user queries. DNS is like a phone book. It 
contains addresses that make it easier for users to access the 
Internet in cyberspace. Each address has a unique identity and 
is different from one another. This identity is called an 
Internet Protocol (IP) address. DNS translates these numbers 
into names because IP addresses are complicated for users to 
remember. DNS is made simple to solve IP address resolution 
issues, however, it does not come with a security proficiency 
by nature [4]. Therefore, a DNS measurement method is 
needed to enable security proficiency by design. 

DNS measurement methods are categorized into two 
types: passive and active DNS. Passive DNS [39] allows 
observation of DNS ecosystem limited to clients, resolver 
servers, authoritative servers and the networks between the 
three. Active DNS allows observing a global hierarchical DNS 
ecosystem. It involves very large DNS networks. It does not 
pay attention to the complete contents of the query and 
response from a particular client, so it has difficult to apply for 
data collection and analysis. The mechanism for DNS queries 
only supports one type of query. One query of the domain 
name and one response of an IP address. Other lookup keys 

must be converted to domain names before being used in DNS 
queries. Thus, passive DNS provides advantages over active 
DNS in reconstructing specific queries/responses useful for 
anomaly detection. 

Passive DNS, as a local representative of the active DNS 
ecosystem, contributes to efficient traffic data collection. 
Many DNS traffic analysis uses passive DNS including 
anomaly detection. The earlier DNS anomaly detection is 
based on supervised model. The model produce high 
precision, low false positive rates, and efficient anomaly 
detection in specific patterns [28]. However, the model depend 
on training data. The ability to recognize anomaly patterns 
depends on the anomaly patterns that have been trained during 
training time [16], [28], [35]. The trained anomaly patterns are 
limited to the capacity of datasets. While DNS ecosystem is 
always evolving, threats to DNS security never stop, and DNS 
resilience needs to be monitored continuously. Therefore, 
supervised models are less suitable for DNS traffic anomaly 
detection in dynamic real world environments. 

Since DNS traffic is dynamic, unsupervised model is 
inherently suitable for anomaly detection. Labeling normal 
and anomaly traffic are not necessary during training time. 
The model accepts all types of unlabeled traffic and classify it 
with certain rules into two classes that can distinguish normal 
or anomaly traffic. The model does not depend on training 
data [16], [28], [35]. The ability to recognize anomaly patterns 
does not depend on the trained anomaly patterns during 
training time. The model can recognize new anomaly patterns 
using a classifier algorithm. However, the model often 
produces high false positive rates and fails to recognize 
patterns from the genuine labeled data [28]. The model's 
ability to recognize normal and anomaly patterns is not as 
precise as the supervised model because there is no strong 
connection between the model and the genuine labeled data 
[28]. In this model, the genuine labeled data is not defined. 
Normal and anomaly labels are not explicitly defined. 

A machine learning algorithm that makes use of the 
structure within data for self-labeling is self-supervised model 
[16], [32]. Self-supervised model has been designed as a 
hybrid approach of supervised and unsupervised models. The 
model produces pseudo-labels, but the model directs pseudo-
labels to follow the underlying structure of the genuine labeled 
data. Anomaly detection can utilizes self-supervised model 
based on likelihood ratios [32], [33], [41]. Likelihood ratios 
can manage the relationship between supervised and 
unsupervised models. Likelihood ratios have signal to measure 
the performance of regression and classification functions in a 
supervised setting [19], [22], [25], [37]. Likelihood ratios also 
have signal to control self-labeling in an unsupervised setting 
[1], [2], [19], [21], [33], [41]. 

III. METHODOLOGY 

Cyber resilience plays an important role in facing business 
continuity uncertainty. Outside of business matters, business 
continuity uncertainty can be affected by data uncertainty in 
data collection and analysis. Various sources, such as noisy 
data, incomplete data, sampling errors, measurement errors 
generalization errors, and anomalies, which will cause data 
uncertainty. It is necessary to manage data uncertainty to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

555 | P a g e  

www.ijacsa.thesai.org 

improve the reliability of data collection and analysis. One of 
the approaches chosen to address the problem of data 
uncertainty is to study anomaly detection in more depth. It has 
several indicators that will be used to obtain reliable data 
collection and analysis. The indicators are bias, variance, and 
likelihood ratios. 

This section explains the research methodology of cyber 
resilience model, consist of the representational model to 
realize reliable data collection using data-generating process 
and the inference model to realize reliable data analysis based 
on likelihood ratios. Process flow diagram of the methodology 
as seen in Fig, 1. 

 
Fig. 1. Process flow diagram of the methodology. 

A. Characteristics of Raw Datasets 

The raw dataset is a collection of data from a network 
capture-based DNS logger. The raw dataset was taken from 
November 2018 to February 2020 on DNS servers 
(dnsanalyzer.info) amount 1,000 samples (Sx). The tool used 
to collect the raw dataset is GoPassiveDNS [26]. 

The raw dataset contains three feature vectors (X): TTL 
(x1), latency (x2), and throughput (x3). The K-Means algorithm 
was used to collect data for classifying positive and negative 
classes from the raw dataset. The negative class have fine 
grain structure with two type subdistributions: the sample 
variance of subdistributions in one standard deviation (inliers) 
and the sample variance of subdistributions more than two 
standard deviations (outliers). Inliers of the negative class 
represent DNS normal. Inliers of the negative class have the 
lowest anomaly level in the resilience scale. The positive class 
have fine grain structure with three type subdistributions: the 
sample variance of subdistributions in one standard deviation 
(inliers), the sample variance of subdistributions more than 
two standard deviations (outliers), and anomaly. Anomaly 
refers to the response of RCODE more than 0 (zero) by 
GoPassiveDNS. RCODE more than 0 indicates DNS failure 
[26]. Otherwise, RCODE equal to 0 indicates DNS normal. 
The anomaly subdistribution have the highest anomaly level in 
the resilience scale. 

The raw dataset exhibit different data characteristics 
named the generator of in-distribution, which is the source of 
normal datasets, and the generator of out-of-distribution, 
which is the source of anomaly datasets. The raw dataset 
needs to be further processed to generate reliable datasets. 

TABLE I.  CHARACTERISTICS OF RAW DATASETS 

Datasets In distribution Out-of-distribution 

Classes Negative Positive 

Types Inlier Outlier Inlier Outlier Anomaly 

Variances ≤68% >95% ≤68% >95% - 

RCODE 0 0 0 0 >0 

Subdistributions 1 2 3 4 5 

Samples 500 25 75 200 200 

Anomaly levels 1 2 3 4 5 

Table I presents two sources of raw datasets: In-
distribution (ID) and out-of-distribution (OOD). The ID 
dataset comes from the generator of in-distribution. The OOD 
dataset comes from the generator of out-of-distribution. 
Conceptually, the two generators should produce different two 
sources of datasets and naturally not overlap each other. 
However, in practice, the two generators cannot avoid 
producing two overlapping datasets. 

Table I explains that the overlap occurs due to the two 
approaches taken in data collection. The first approach, data 
collection uses DNS sensors. The sensors are limited in 
representing data from the real world with only three feature 
vectors. The sensors are also limited in responding accurately 
to RCODE. Furthermore, the sensors can only classify DNS 
events by default based on the value of RCODE. 

TABLE II.  DNS RESPONSE CODE 

RCODE Message Description 

0 NOERROR DNS query completed successfully 

1 FORMERR DNS query format error 

2 SERVFAIL Server failed to complete the DNS request 

3 NXDOMAIN Domain name does not exist 

4 NOTIMP Function not implemented 

5 REFUSED The server refused to answer for the query 

6 YXDOMAIN Name that should not exist, does exist 

7 XRRSET RRset that should not exist, does exist 

8 NOTAUTH Server not authoritative for the zone 

9 NOTZONE Name not in zone 

Table II defines the DNS response code which have been 
implemented in GoPassiveDNS [26]. It describes RCODE 
values of the various types of DNS events that occur most 
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frequently. Refers to Table I that RCODE produces high false 
negative rates. Subdistribution 1, 2, 3, and 4 are classified as 
DNS normal even though some are DNS failure according to 
K-Means. In contrast, the second approach, data collection 
uses K-Means to classify two different datasets. Table I shows 
that K-Means produce high false positive rates. 
Subdistribution 3, 4, and 5 are classified as the positive class 
even though some are the negative class according to RCODE. 
The problem of the first approach is that normal and anomaly 
labeling in the raw dataset is based on RCODE even though 
many failure functions cannot be recognized by RCODE. The 
second approach uses the algorithm of machine learning. The 
K-Means is the simplest unsupervised learning algorithm for 
basic self-labeling. It can be utilized to classify the raw dataset 
into two classes on a specific rule. 

It is a similarity between the two approaches. None of 
anomaly samples in subdistribution 5 that has been classified 
by the first approach are part of normal samples that has been 
classified by the second approach. In other words, anomaly 
samples from the first approach is the same as anomaly 
samples from the second approach. So, it is concluded that the 
classification of one sample as anomaly and another sample as 
not anomaly is true. However, there are anomaly samples 
from the second approach that are not anomaly samples from 
the first approach such as samples in subdistribution 3 and 4. 
Therefore, the first approach is not able to recognize new 
patterns of anomaly other than those already recognized by 
RCODE. This urges the use of machine learning algorithms to 
better recognize new patterns of anomalies. Meanwhile, the 
second approach is able to recognize new patterns of anomaly 
other than those already recognized by the first approach. 
However, not all of the new anomaly patterns of the second 
approach are true due to the limitations of K-Means based on 
a specific shape of the decision boundary and no training to do 
for anomaly samples. 

B. Data Collection 

The representational model are useful in improving the 
reliability of data collection. The reliability of data collection 
is improved by modeling the raw dataset into latent samples 
(Zx), a sequence of latent samples (Zy), and a density of latent 
samples (logl). 

 
Fig. 2. Process flow diagram of data collection. 

Fig. 2 describes process flow diagram of data collection 
which consists of five steps. The first step is initial data 
collection which produces raw datasets as 1,000 samples (Sx). 
The samples are a data distribution of 200 data points so raw 
datasets are 200,000 data points in size. The samples are 
designed as a data distribution to understand the underlying 
generator of datasets through latent variable models. The 
samples have parameters from a data distribution that show 
the principal component of datasets. 

The second step classifies positive (Xp) and negative (Xn) 
classes from raw datasets using the K-Means algorithm. The 
positive class are samples that assert the presence of anomaly. 
The negative class are samples that assert the absence of 
anomaly. The K-Means algorithm succeeded in classifying 
raw datasets into 525 negative samples and 475 positive 
samples from selected samples. 

In the third step, each class is divided into two 
subdistributions, namely inliers and outliers, so that in total 
there are four subdistributions plus one specific 
subdistribution produced by DNS sensors as the ground truth 
of anomaly samples. So the total becomes five 
subdistributions, each of 500, 25, 75, 200, and 200 selected 
samples respectively. Inliers and outliers are formed using an 
outlier detection technique [42]. 

The fourth step as the key of reliable data collection is 
processes that generate data specifically event, memory, and 
density processes. The three processes set up the data-
generating process properly. A detailed explanation of each 
process is in the following subsection. Furthermore, one 
sample subdistribution differs from another. It estimated by 
the Expectation-Maximization (EM) algorithm [9]. 

TABLE III.  EM AS A SAMPLE CLASSIFIER  

 subd2 subd3 subd4 

subd1 1.419 2.949 5.026 

subd5 5.423 3.893 1.816 

DI 4.004 0.944 3.210 

abbreviations: subd = subdistribution, DI = difference index 

Table III explains the process of classifying normal and 
anomaly samples using EM. Two polars are defined as the 
centroids of normal and anomaly classes. Subdistribution 1 
with the lowest anomaly level selected as the polar of normal 
class. Subdistribution 5 with the highest anomaly level 
selected as the polar of anomaly class. The smaller difference 
between a subdistribution and two polars defines the label of 
subdistribution. As subdistribution 2 and 3 are closer to 
subdistribution 1 than 5, subdistribution 2 and 3 are classified 
as normal class. As well subdistribution 4 is closer to 
subdistribution 5 than 1, subdistribution 4 is classified as 
anomaly class. It can be seen that K-Means and EM are the 
same in classifying subdistribution 1, 2, 4, and 5 but different 
in classifying subdistribution 3. K-Means classify 
subdistribution 3 as anomaly class while EM classify 
subdistribution 3 as normal class. K-Means classify patterns 
with a specific shape for all subdistributions, while EM 
classifies patterns dynamically following the underlying 
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structure of each subdistribution. It seems EM is more flexible 
than K-Means. EM is not limited by shape but depends on 
unobserved latent variables performed properly by data-
generating process. 

The output of data-generating process is primary datasets 
(logl) that consist of 1,000 samples treated as a population of 
observation. The samples come from five subdistributions of 
raw datasets, each of 500, 25, 75, 200, and 200 respectively. 
In the last step, the observation sample is generated as a 
random variable of normal and anomaly samples. One 
hundred random variables configure the observed samples that 
are taken randomly from the population. Be appointed, the 
sample size is 10% of the population provided for any 
observation. The data-generating process will consider data 
collection more appropriate as required. 

C. The Event Process 

The event process is the first part of data-generating 
process. It encodes DNS events into a latent variable model. It 
reproduces the idea from the world model [14] that pattern 
recognition was performed indirectly through a latent variable 
model. The model in latent space provides more advantages 
than in data space. The pattern encoded as a principal 
component is more concise. The principal component has 
information sufficiency that can be further encoded in another 
process smoothly, so it is easier to analyze in the next part of 
data-generating process. VAEs take the task of encoding for a 
latent variable model. 

Variational autoencoders (VAEs) are an artificial neural 
network architecture in which the latent space has good 
properties to enable generative processes [21] utilizing 
stochastic backpropagation [34]. It plays a role in 
transforming data distribution in data space (X) into data 
distribution in latent space (Zx) by the latent variable model. It 
recognizes the characteristic of data distribution through EM 
by estimating the joint distribution between X and Zx [9]. EM 
will maximize the similarity between the two. If the joint 
distribution Zx is a close approximation of X, then Zx will be 
indistinguishable from X. Analysis of compressed data 
distribution produces a principal component. This is called 
dimensionality reduction. Principal components in latent space 
are more ready to use to recognize the behavior of data 
distribution than feature vectors in data space. It summarize 
the pattern of data distribution without eliminating the 
principal information substance. 

VAEs use two neural networks: encoder (generative 
model) and decoder (variational approximation) [21]. The 
encoder part transforms samples of discrete data distribution 
from DNS events into continuous latent variables by taking 
the characteristic of probability distribution. In this case, 
probability distribution as the core of a latent variable model 
that has two parameters: mean (μ) and standard deviation (Σ). 
The mean represents the expected value of DNS events, and 
the standard deviation represents the variability of DNS 
events. The type of probability distribution to generate the 
latent sample is Gaussian distribution. So, a latent variable 
model may be called a Gaussian model. The use of VAE 
encoder as a generator of latent samples refers to the vision 
model of world models [14]. 

One important component of neural networks that 
quantifies the difference between the predicted and actual 
outputs is the loss function. There are two loss functions for 
VAEs: Mean Square Error (MSE) and Kullback–Leibler 
Divergence (KLD). These two loss functions are standard for 
measuring how fit a model explains the data. The decoder part 
reconstructs latent samples into the predicted outputs (S'x). In 
the experiment, the decoder part is only needed at training to 
measure how fit a Gaussian model has been encodes DNS 
events by comparing the difference between the predicted and 
actual outputs (S'x-Sx). Flow diagram of VAEs as seen in Fig. 
3. 

 
Fig. 3. Flow diagram of VAEs for the event process. 

The performance of training can be evaluated from 
training and testing loss. Suppose the loss gets smaller for 
larger epochs, the loss shift convergence to a specific value, 
testing loss is smaller than training loss, that are indicating 
that VAE training has achieved appropriate performance tasks. 
Latent variables at training are set to μ + Σ × ε. The ε is 
random noise added to the latent variable so that the loss will 
always converge to a specific value [21], [34]. Some of the 
reasons testing loss is smaller than training loss are that at 
training: (1) the latent variable overloaded with random noise, 
whereas, at testing, it does not, (2) testing loss measured after 
training, and (3) training loss measured for all epochs while 
testing loss measured once after completing the training 
epoch. However, training and testing loss are limited to 
optimizing the loss function in estimating the difference 
between the actual (Sx) and predicted (S'x) DNS events and 
not optimizing model parameters. The model parameter is 
optimized by the architecture of encoder and decoder, 
hyperparameter tuning, and using more flexible prior 
distributions. This means that the model parameter of training 
is better than those of testing because it is used as a reference 
for testing. The performance of VAEs training as seen in Fig. 
5(a). 

VAEs are built with one input layer for three feature 
vectors, two hidden layers, each with sizes 64 and 16, and one 
output layer for training purpose only. One data distribution of 
the input layer come from two hundred data points. One latent 
sample is composed of two hundred latent vectors, in other 
words, the two hundred dimensions of Zx. Then, a µ vector of 
length two hundreds and a Σ vector of length also two 
hundreds, so the VAE parameters are four hundreds. In these 
configuration, two hundred latent vectors are a good sample 
size to reduce the log-likelihood of sampling errors. The 
observed samples need to be ensured to be independent (one 
discrete data of DNS events does not depend on other discrete 
data of DNS events in the same data distribution) and 
identically distributed (in one data distribution of DNS events, 
the probability distribution of data distribution is the same). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

558 | P a g e  

www.ijacsa.thesai.org 

Consequently, a latent sample which generated by the model 
meets the criteria of independent and identically distributed 
(i.i.d) as a stochastic random sample, making it well-suited for 
addressing an observation sample of DNS events in latent 
space. 

D. The Memory Process 

The memory process is the second part of data-generating 
process that play a role in encoding a sequence of latent 
samples from the event process into a latent dynamics model. 
A latent sample which is the output of the event process does 
not have the sequence because it is an i.i.d sample. 
Meanwhile, one observation consists of many latent samples 
to form a sequence. The event process needs to be extended 
with another process called the memory process so that it can 
encode the sequence. Hence, the memory process is an 
extended event process. 

Mixture density-recurrent neural networks (MDRNNs) are 
one specific neural network architecture that combines 
mixture density networks (MDNs) and recurrent neural 
networks (RNNs) to build a latent dynamics model. MDNs 
encode the output of a neural network parametrize a mixture 
of Gaussian distribution, which can model general conditional 
probability densities [2]. RNNs are an artificial neural network 
architecture of dynamic models that have been used to 
generate sequences [13], [15]. Dynamic models simplified 
representations of real-world problems by algorithms, such as 
dynamic models of signal processing, automatic speech 
recognition (ASR), and time-series forecasting. As a sequence 
generator, MDRNNs encode a sequence of latent samples Zx 
generated by a Gaussian model to latent samples Zy generated 
by a latent dynamics model. The use of MDRNNs as a 
sequence generator refers to the memory model of world 
models [14]. 

RNNs are used as the forefront of a sequence generator. 
RNNs have a recurrent layer (a cell) to remember its previous 
inputs by internal memory. A recurrent layer works with 
iterative sampling from the output, then feeding in the sample 
as input at the next step [13]. The problem with standard 
RNNs is that it is used only for basic sequential data tasks and 
cannot be used to store information about previous inputs for a 
very long time [13]. Hence, a type of RNNs called long short-
term memory networks (LSTMs) [15] was designed to address 
the problem of standard RNNs. LSTMs can be used for 
advanced sequential data and artificial long-time lag tasks 
[15], such as tasks to predict a sequence of latent samples, and 
then store information in internal memory with memory cells 
and gating mechanisms for long-term. Memory cells store 
information from the previous step and use it to update the cell 
output for the current step. Gating mechanisms remove 
unimportant information, store new information, and encode 
information from the cell state to the output layer. 

Practically, LSTMs need MDNs for modeling advanced 
sequential data. LSTMs and MDNs are compatible with each 
other. MDNs consist of two components: a feed-fordward 
neural network and a mixture model [2]. The output layer of 
LSTMs is the final layer of a feed-fordward neural network 
and a fully connected layer that connects all units in the layer 

directly to every unit in the previous layer, so it can be utilized 
as an interface between LSTMs and MDNs. 

MDNs can smoothly encode the outputs of LSTMs to form 
the parameters of a mixture model, generally with Gaussian 
models for each mixture component [2], [10]. These 
parameters are mean (μ), standard deviation (Σ), and weight 
(π). The mean represents the expected value of DNS events, 
the standard deviation represents the variability of DNS 
events, and the weight represents mixing each Gaussian 
distribution of DNS events into a mixture distribution. These 
parameters involve shaping probability density functions 
(PDFs) for each mixture component and categorical 
distribution from the mixture weights [2], [10]. Additionally, 
there are two reasons why LSTMs require MDNs: different 
mixture components represent different stochastic events and 
different situations [10]. In other words, MDNs are able to 
model different stochastic events and situations for any DNS 
events in Gaussian models for each mixture component. 
Therefore, LSTMs and MDNs can seamlessly work together 
in MDRNNs. Flow diagram of MDRNNs as seen in Fig. 4. 

 

Fig. 4. Flow diagram of MDRNNs for the memory process. 

One observation consists of some latent samples. In a 
sequence, one latent sample is related to other latent samples. 
MDRNNs training recognize the underlying generator of a 
sequence by making relationships between one sample and 
another using a time-series regression approach. Some 
samples are treated as independent variables, while the 
dependent variable is taken from the independent variable 
itself which has been shifted in a sequence. In this case, the 
independent variable is Zx while Zy is constructed from 
shifted Zx with a sequence length of four. 

LSTMs have been applied to realize this time-series 
regression. Because LSTMs can memorize previous input, 
then for each latent sample, MDNs would encode the output 
of LSTMs into a mixture component that was a combination 
of individual distributions in the form of a mixture 
distribution. To identify that MDRNNs training has been able 
to recognize the underlying generator of a sequence, it was 
evaluated using the logsumexp function. The logsumexp 
function is a smooth approximation to the maximum function 
in a logarithmic scale. This provides a numerically stable 
estimation of PDFs for each sequence and sample. The 
logsumexp is used to measuring the similarity between the 
sequence and sample by maximizing the log-likelihood. 

MDRNNs are built with one input layer, a single hidden 
LSTM layer, the output layer of LSTMs as the input of 
MDNs, a sequence length is four at training time, and a 
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mixture distribution from three Gaussian distributions as a 
mixture model. Three Gaussian distributions were chosen 
because the input distribution is not complex, it only consists 
of three feature vectors. One data distribution of the input 
layer comes from two hundred latent vectors. A single hidden 
layer with sixteen units is enough to perform computations on 
the input which consists of two hundred latent vectors. MDNs 
aim to model a sequence of latent samples that can be drawn 
from one of several possible distributions with a certain 
probability. Several possible distributions come from three 
Gaussian distributions. Each parameter of three Gaussian 
distributions needs two hundred vectors, so MDNs 
parameterize 3×3×200 = 1,800 parameters. These parameters 
will generate two hundred latent vectors as the output of 
MDRNNs (Zy). MDRNNs training uses the data of VAEs 
training so that the performance of MDRNNs training follows 
of VAEs training such as shown in Fig. 5. 

a. The performance of VAEs training b.  The performance of MDRNNs 
training 

Fig. 5. The performance of VAEs and MDRNNs training. 

E. The Density Process 

The density process is the last part of data-generating 
process that play a role in producing the density (logl) from a 
sequence of latent samples. The density process works to 
enhance the density of the memory process. The memory 
process is designed to encode a sequence of latent samples, 
not the density. It is not sufficient to produce reliable density 
because a standard MDN as part of the memory process is 
prone to mode collapse [25]. Mode collapse happens when a 
standard MDN fail to generate data samples from the 
underlying probability distribution of Zx. It will turn 
multimodal learning [38] into unimodal so that all of the 
generated samples are very similar [25]. To overcome the 
problem, a joint distribution was built on Zx and Zy, denoted 
p(Zx, Zy). In this case, Zx and Zy represent the input and 
target variables respectively. The relationship between the 
input and target variables has been initialized by LSTMs in the 
memory process through time-series regression. It is the 
conditional distribution, which is the probability that Zy 
happens given Zx has happened, denoted p(Zy|Zx). It is 
created to build a more proper regression that is the joint 
probability density functions (joint PDFs). All the statistical 
information of the input and target variables is stored in the 
joint PDFs [37]. Furthermore, learning the joint PDFs of the 
input and target variables is a form of supervised learning 
[12]. It is a statistical approach to transform from 
unsupervised learning of the event process, denoted p(Zx), 
into supervised learning of the density process, denoted p(Zx, 

Zy). The joint PDFs and the conditional distribution are the 
statistical basis for multimodal regression. 

An important factor in the joint PDFs is to predict target 
variables from input variables. A type of supervised learning 
algorithm that has been used to predict target variables from 
input variables as part of the joint PDFs is Gaussian mixture 
regression (GMR) [11], [12], [20], [36], [37], [40]. GMR is a 
regression approach that models probability distributions of 
latent samples from the event process and the memory process 
into multimodal regression using Gaussian mixture models 
(GMMs). It can be used to predict distributions of variables 
Zy by computing the conditional distribution p(Zy|Zx). The 
first process in GMR is to learn the joint PDFs through EM, 
then compute the conditional distribution to predictions. 
Training is the same procedure as in GMMs [11]. 

GMMs and GMR can seamlessly work together called the 
Gaussian mixture model for multimodal regression (GMMR), 
which applies two functions in one: the prediction function 
and the score function. The prediction function to predict 
target variables from input variables, this is the role of GMR. 
The score function to estimate the new joint PDFs of the input 
and class label, this is the role of GMMs. The realization of 
GMMR is in two steps. Step 1 is to predict target variables Zr 
from input variables (Zx, Zy) or Zxy using the prediction 
function. This target variable Zr is also used to predict class 
labels. Step 2 is to produce log-likelihood (logl) from bivariate 
data (Zx, Zr) or Zxr using the score function. Therefore, 
GMMR specifically is designed to enhance the reliability of 
the log-likelihood estimation produced by world models [14]. 
Flow diagram of GMMR as seen in Fig. 6. 

 
Fig. 6. Flow diagram of GMMR for the density process. 

In step 1, GMMR has utilized the mixture of experts 
(MoE) [20] for developing the GMR prediction. MoE gives a 
simple approach to combine parametric and nonparametric 
regression methods by taking the analytic advantages of 
parametric and the flexibility of nonparametric [12], [19], 
[37]. The parametric method has been realized by a mixture of 
linear models [36] and the nonparametric method has been 
realized with divide-and-conquer principles [20]. In fact, the 
model log-likelihood function disregards the global data 
density [32], because the global maximum that indicates the 
global data density does not smoothly regress all local 
maxima. Then, MoE replaces a single global model with a 
weighted sum of local models (experts) [11], [12], [20], [40] 
to achieve the stability of multimodal regression as follows: 

p(Zx, Zy) = ∑ πkNk(Zx, Zy|μ(Zxyk), Σ(Zxyk))
K
k=1  (1) 

p(Zy|Zx) = ∑ π(Zy|Zxk)Nk(Zy|μ(Zy|Zxk), Σ(Zy|Zxk))
K
k=1     (2) 
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Eq. (1) is the joint PDFs of GMMs via the EM algorithm 
[9]. Nk(Zx, Zy|μ(Zxyk), Σ(Zxyk)) are Gaussian distributions 
with means μ(Zxyk), covariances Σ(Zxyk), five Gaussian 
components (K=5). Weights πk ∈ [0, 1] are priors that sum up 
to one. EM is an iterative method for fitting GMMs to the 
negative class label of latent samples (Zx, Zy) or Zxy in an 
OCC setting. Eq. (2) is GMR model via the MoE to predict 
distributions of variables Zr by computing the conditional 
distribution p(Zy|Zx). The conditional distribution of each 
Gaussian distribution is N(Zx,Zy|μ(Zxy),Σ(Zxy)) then the 
conditional distribution of a mixture of Gaussian distributions 
is Nk(Zy | μ(Zy | Zxk), Σ(Zy | Zxk)) with means μ(Zy|Zxk) and 
covariances Σ(Zy|Zxk). Weights π(Zy|Zxk) ∈ [0, 1] are priors 
that sum up to one. 

In step 2, GMMR has utilized EM [9] for developing the 
score function. EM has a role for fitting GMMs to the negative 
class label of latent samples (Zx, Zr) or Zxr in an OCC setting 
again. The joint PDFs are used to store the statistical 
information of the input and target variables such in Eq. (3). 
The target variable is assumed class labels. In this case, class 
labels for the global model are missing, then EM is used to 
compute the parameters of each mixture component and 
estimate the maximum log-likelihood of GMMs as the score 
function such in (4). 

p(Zx, Zr) = ∑ πkNk(Zx, Zr|μ(Zxrk), Σ(Zxrk))
K
k=1  (3) 

logl = log p(Zx, Zr)       (4) 

Fig. 7 demonstrates GMMR with five local models, which 
yield the predicted outcome Zr_pred in the output space y-axis 
when conditioning by Zx on the input space x-axis. GMMR 
has worked well to combine linear and non-linear models. The 
key model of GMMR is p(Zy|Zx) which produces p(Zx, Zy) 
from p(Zx) that can be well represented by a set of Gaussians 
[36] so that GMMR can be analyzed easily using a mixture of 
linear models. For this reason, the evaluation of GMMR is 
carried out on the linear regression model. It is linear in the 
parameters. The linearity of parameters is shown by a linear 
relationship between the predictor (Zx), observed outcome 
(Zy), predicted outcome (Zr) in performing local regression 
[19], [20], [36] at the query point on demand. The query point 
on demand using: (1) the nearby training observations [19], 
(2) a nested sequence of regions [20], and (3) a small set of 
close points [36], to build a mixture of linear models. From 
global regression into local regression referred to as a 
memory-based procedure [19] of experts and gates. It can 
predict the outcome according to the memory of experts, each 
expert specializes in one local regression, and the gate defines 
the regions where the memory of an individual expert are 
trustworthy. 

 

Fig. 7. GMMR with five local models. 

The mechanism of GMMR with the local models has been 
explained specifically in hierarchical mixtures of experts 
(HME) [20]. The mechanism works on a set of experts and 
gates collaborating to solve a nonlinear function by dividing 
the input space into a nested sequence of regions [20], [40]. 
The experts learn the simple parameterized surfaces in these 
partitions of these regions, and the gate makes a soft split of 
the input space. The simple parameterized surface in both 
experts and gates can be learned using the EM algorithm [9]. 

The common metric to evaluate a regression model is root 
mean squared error (RMSE) and R-squared (R2) [22]. RMSE 
is a function of the model residuals which is the difference 
between Zr_true and Zr_pred: in [0, ∞], the smaller the better. 
R2 can be interpreted as the proportion of the variance in 
Zr_pred which is explained by the model: in [−∞, 1], the 
closer to 1 the better. R2 is a measure of correlation, not 
accuracy [22]. The other metric is mean absolute error (MAE) 
which is the average of the absolut difference between Zr_true 
and Zr_pred: in [0, ∞], the smaller the better. The performance 
of GMMR for three selected models is shown in Table IV. 

TABLE IV.  MEASURING PERFORMANCE OF GMMR 

Model RMSE↓ R2↑ MAE↓ 

1 0.0022 0.9752 0.0010 

2 0.0010 0.9928 0.0009 

3 0.0011 0.9926 0.0009 

F. The Bias-Variance Alignment 

The center point of cyber resilience model is in GMMs 
which build the fundamentals of representational and 
inference models. GMMs work on a probabilistic model to 
estimate maximum log-likelihood via the EM algorithm [9]. 
GMMs are a simple generative model that utilizes a mixture of 
Gaussian distributions to build a weighted sum of PDFs but 
GMMs have high flexibility in the predictive and inference 
modeling. The weakness is that GMMs fail in high-
dimensional data [4]. To address the problem, the three 
methods take into account. The first method, dimensionality 
reduction to summarize important information from feature 
vectors into latent samples. The method uses VAEs for 
analyzing latent samples and MDRNNs for generating 
sequences of latent samples. The second method, multimodal 
regression to transform the non-linear function of latent 
samples into a mixture of linear models so that latent samples 
are easier to analyze just using linear regression but more 
stable in handling the density with local regression. The 
method uses MoE to combine parametric and nonparametric 
estimates of the model for a regression function. The third 
method, decision boundary optimization to conclude log-
likelihood. The method uses the bias-variance alignment 
described in this subsection and likelihood ratios described in 
the next subsection. 

The bias-variance tradeoff and alignment have similarities 
in decomposing the generalization error into bias and 
variance. The bias-variance tradeoff is often used to analyze 
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the generalization error in a regression setting [19], [22], while 
the bias-variance alignment is more suitable used to analyze 
the generalization error in a classification setting [7]. 
Quantitative measures of the generalization error in regression 
are derived from the mean squared error (MSE) which also 
can be calculated by squaring RMSE. The expected test MSE 
can be decomposed into bias and variance [19], [22] as 
follows: 

E[MSE] = σ2 + (model bias)2 + model variance (5) 

The first part (σ2) is an irreducible error. It cannot be 
eliminated in predictive modeling. It shows intrinsic noise in 
the model due to unknown variables. The second part is the 
squared bias of the model. It shows the relationship between 
the predictor (Zx) and the outcome (Zr_true and Zr_pred) of 
the model. High bias means the model is unable to relate 
accurately between the predictor and the outcome, Zr_pred is 
very different from Zr_true that indicates underfitting. The 
third part is the model variance. It shows the sensitivity of 
predictive modeling to different datasets. High variance means 
the model learns more about the noise than the underlying 
patterns in datasets. More fitting in training data but poor in 
testing data indicates overfitting. The expected test MSE 
simultaneously achieves low bias and low variance. 

Eq. (5) also works to multimodal regression via MoE. The 
variance model of multimodal regression can be expressed as 
the sum of two parts: the first part is related to the variance of 
the expert networks and the second part is related to the 
covariance of the expert networks [18]. This shows that a 
model that can be analyzed using a regression function means 
it can also be analyzed using bias-variance tradeoff, including 
GMMR. 

TABLE V.  TWO SAMPLES FOR CLASSIFICATION 

Model N(Zn) N(Zp) H 

1 10 90 Hp 

2 50 50 Hp 

3 90 10 Hp 

1 10 90 Hn 

2 50 50 Hn 

3 90 10 Hn 

Table V describes two samples for classification. The 
samples size is one hundred for one observation. Positive 
samples denoted Zp and the size denoted N(Zp). Negative 
samples denoted Zn and the size denoted N(Zn). The 
hypothesis of classification models denoted H. There are two 
hypotheses: a positive hypothesis (Hp) and a negative 
hypothesis (Hn). A positive hypothesis is an observation that 
tests log-likelihood in an expected finding of the presence of 
an anomaly if the hypothesis is true. Quantitative measures of 
the presence of an anomaly are indicated by the positive 
likelihood ratio (PLR). Low log-likelihood is an instance from 

the presence of an anomaly. A negative hypothesis is an 
observation that tests log-likelihood in an expected finding of 
the absence of an anomaly if the hypothesis is true. 
Quantitative measures of the absence of an anomaly are 
indicated by the negative likelihood ratio (NLR). High log-
likelihood is an instance from the absence of an anomaly. 

The idea of using two samples for classification is 
motivated by the one-class classification method that suffered 
spurious detection [29] and perfect density models that could 
not guarantee anomaly detection [23]. One-class classification 
in the density process aims to learn a one-class decision 
boundary by GMMR that minimizes false positive rate (FPR) 
[35]. In this problem, the underlying patterns of negative 
samples is well-recognized by the model. However, because 
positive samples were not trained on the model, the model did 
not know the underlying patterns of positive samples. As a 
consequence, it suffers from spurious detection. The next 
problem, even though the data-generating process produces 
reliable log-likelihood, it does not mean that low log-
likelihood is identical to the presence of an anomaly and vice 
versa. If the inference model of log-likelihood is not well-
defined, high log-likelihood may be interpreted as the 
presence of an anomaly [8], [27]. The low and high log-
likelihood of the representational model need to be proven 
quantitatively as the decision boundary that discriminates the 
two [33]. Therefore, anomaly detection using a single-sample 
distributional test is impossible [41]. The existency of positive 
and negative samples is a must for developing two competing 
hypotheses [33], [41]. The samples may be derived from 
ground truth or without. The model will learn from the 
samples and justified by two competing hypotheses. However, 
one-class classification is still required to define initial 
assumptions about the samples before modeling two 
competing hypotheses. 

 
Fig. 8. The bias-variance alignment. 

Fig. 8 describes the bias-variance alignment. The bias-
variance alignment plays a role in decision boundary 
optimization to conclude log-likelihood. GMMR as part of 
data-generating process that produces log-likelihood is not 
free from the generalization error. The generalization error 
causes the estimated log-likelihood to shift from the true log-
likelihood. This is called misleading and weak log-likelihood. 
However, the bias-variance tradeoff does not completely 
explain the phenomenon in a classification setting [7] as 
follows: 
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(model bias)2 ≈ model variance  (6) 

Eq. (6) about the phenomenon, which is different from 
bias-variance tradeoff in general that models of low capacity 
have high bias but low variance and vice versa. While in Eq. 
(6) shows the flexibility of bias-variance tradeoff. The model 
that has high bias does not tend to have low variance or vice 
versa. Eq. (6) suggests that the bias-variance alignment is 
specific to large neural networks. Meanwhile, for the small 
model as in Fig. 8 shows the same results that bias and 
variance are aligned at a sample level although squared bias 
does not approximately equal variance, as seen in a full and 
not-full concave curve of optimal likelihood ratios. It means 
that the effect of bias-variance tradeoff does not lost at all in a 
classification setting. Fig. 8 shows that decision boundary in a 
classification setting has optimized by bias-variance 
alignment. The relation between decision boundary and bias-
variance alignment is as follows: 

aligned_logl = logl-B×μ(Ze)×logl    (7) 

T = μ(aligned_logl)-V×Σ(aligned_logl)     (8) 

y_pred = {
1, aligned_logl < T
0, aligned_logl ≥ T

  (9) 

In Eq. (7), aligned_logl has related to a bias factor (B) and 
the mean of the predictors at testing time μ(Ze). Meanwhile, a 
decision boundary threshold (T) has related to a variance 
factor (V), means μ(aligned_logl), and standard deviations 
Σ(aligned_logl). Eq. (7) shows that log-likelihood needs to be 
aligned so that it shifts closer to the true log-likelihood, then 
aligned_logl performs as a parameter in determining the 
variability of thresholds together with a variance factor. 

In Eq. (9), the threshold T creates a decision boundary that 
classifies log-likelihood into two classes: low log-likelihood if 
aligned_logl < T and high log-likelihood if aligned_logl ≥ T. 
Low log-likelihood being labeled positive samples (predicted 
positive/PP) and high log-likelihood being labeled negative 
samples (predicted negative/PN). Eq. (9) applies if the bias-
variance alignment has achieved the optimal likelihood ratio. 

G. Likelihood Ratios 

A likelihood (L) is the relative probability of the observed 
data given a hypothesis parameter value [3]. It refers to the 
probability or density of a sample under a distribution [41]. It 
is related to the observed data, statistical models, and 
statistical hypotheses. It indicates the hypothesis for the 
goodness of fit of a model to the observed data. With these 
roles, the data-generating process is designed to produce the 
likelihood datasets that construct hypothesis. A hypothesis is a 
prediction for the observed data that can be tested for truth. 
Hypothesis testing is an important step to ensure that a model 
being built fits the observed data. Together with the observed 
data, statistical models, and statistical hypotheses are actual 
components to be able to draw inferences. The likelihood ratio 
(LR) is the ratio of two likelihoods for parameter values for 
two different hypotheses H1 over H2 given the observed data x 
[3] that can be written as follows: 

LR = L(H1|x)/L(H2|x) = P(x|H1)/P(x|H2)    (10) 

The likelihood ratio LR represents and measures statistical 
evidence. The LR is not a probability but a relative measure of 
evidence for competing two hypotheses. The likelihood of a 
hypothesis H given the observed data x (L(H|x)) is 
proportional to the probability of the observed data x under a 
hypothesis H (P(x|H)). L(H|x) builds a likelihood model. As a 
consequence, the LR builds a model to represent statistical 
evidence. Then, the LR model performs as an evidence 
measure for the observed data. Two different evidences will 
be measured: evidence from ground truth datasets (y_true) as 
explained in the subsection III.B and evidence from the bias-
variance alignment (y_pred). 

In the LR, hypotheses can be easily derived from the 
model and vice versa. Eq. (7) represents the observed data in a 
model and (9) is the hypothesis of the model. Eq. (9) 
formulates the positive hypothesis H1 (align_logl<T) and the 
negative hypothesis H2 (align_logl≥T). In contrast, the 
hypotheses formulated in (9) together with ground truth 
datasets build a new model, as seen in Fig. 9(b). The LR 
model measures statistical evidence by support, denoted S. 
Statistical evidence for two hypotheses on the graded scale 
can be seen in Table VI. 

TABLE VI.  INTERPRETING SUPPORT [3] 

LR (1/LR) Support (log LR) Interpretation H1 over H2 

1 (1.00) 0 No evidence 

2.7 (0.37) 1 Weak evidence 

7.4 (0.14) 2 Moderate evidence 

20 (0.05) 3 Strong evidence 

55 (0.02) 4 Extremely strong evidence 

Table VII shows likelihood intervals or support intervals 
and their corresponding frequentist confidence intervals (CI) 
for the standard Gaussian distribution. Similar to confidence 
intervals, likelihood intervals describe the accuracy and 
reliability of estimation obtained from the observed data. 
Likelihood intervals measure the level of confidence in the 
estimation that expected parameters fall within a certain range. 
Likelihood intervals are a need to interpret likelihood clearly 
that the likelihood evidence points are confidence within a 
certain range. 

TABLE VII.  LIKELIHOOD INTERVALS [3] 

S LR 1/LR % CI 

1.6 4.95 0.202 92.6 

2 7.39 0.135 95.4 

3 20.09 0.050 98.6 

4 54.60 0.018 99.5 

5 148.4 0.007 99.8 

6 403.4 0.0025 99.95 

7 1096.6 0.0009 99.98 

8 2981.0 0.0003 99.99 
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The LR is about the relative strength of evidence for two 
competing hypotheses. In contrast, the frequentist approach 
use of type I and type II errors allows one to specify the 
probability of rejecting the null hypothesis when it is true, and 
of not rejecting it when it is false [3]. The LR was built to test 
two hypotheses: predicted label as an outcome and true label 
as a reference standard. The two hypotheses compete to 
measure the relative strength of evidence. 

In this paper, a competition is performed by considering 
ground truth datasets as a reference standard to test the 
hypothesis in (9) as predicted label. It will produce the 
outcome of a test: (1) y_pred=1 for a positive label, (2) 
y_pred=0 for a negative label, and (3) the relative strength of 
evidence for the observed data. Therefore, the outcome of a 
test by the LR is not to reject or not reject the null hypothesis 
(H0 or H2). If the relative strength of evidence is not 
misleading and not weak, the hypothesis may be accepted. 

The 2×2 contingency table describes a matrix format used 
to display a frequency distribution of two variables with the 
vertical columns denoting instances of reference standard, or 
true label and the horizontal rows denoting instances of 
outcome of a test, or predicted label [24]. The relative strength 
of evidence is measured using the 2×2 contingency table as 
seen in Fig. 9. 

     align_logl<T align_logl≥T   y_true=1 y_true=0 

y_pred=1 TP FP  y_pred=1 TP FP 

y_pred=0 FN TN y_pred=0 FN TN 

a. The 2×2 contingency table to 
evaluate the performance indicator of a 

model 

 b. The 2×2 contingency table 
to assess the relative strength 

indicator of evidence 

Fig. 9. The 2×2 contingency table for binary classification. 

Table VIII defines a measure factor in the 2×2 contingency 
table and its derivative. The limitation in the evidential 
approach is that no observed values are zero [3]. The 
generalization error controlled by the bias-variance alignment 
is only a reducible error part not all error conditions [19], [22]. 
A measure factor of TPR, TNR, FPR, and FNR is an error-
based measure. A measure factor, such as TPR or TNR, has a 
test's ability to detect correctly a condition when it is present 
and to rule it out correctly when it is absent. A measure factor, 
such as FPR or FNR, has a test's propensity to detect 
incorrectly a condition when it is absent and not to detect it 
correctly when it is present [24]. Therefore, a measure factor 
of TP, TN, FP, and FN is considered to be not zero. 

PLR measures the change in pre-test to post-test odds and 
diagnostic gain. It also combines information about TPR and 
FPR [24]. If a sample from population tested positive, PLR 
represents the relative strength of evidence that a sample is an 
anomaly given a positive test result. However, the relative 
evidence of PLR also depends on the explicit prior in the 
Bayesian approach which is not discussed in this paper. To 
reduce uncertainty due to factors that influence it, PLR utilizes 
information from NLR. 

Ideally the PLR value is 1/NLR [3], but in practice, the 
PLR value is sometimes greater than 1/NLR so that the 

relative strength of evidence for the observed data is less 
properly. It is necessary to combine PLR and NLR for a single 
test value as the performance indicator of a model and the 
relative strength indicator of evidence. Basically, PLR and 
NLR are the ratio of paired measures [24]. Hence the 
approach taken is based on the harmonic mean method [43] to 
combine PLR and NLR that gets a new measure factor, 
namely, the harmonic likelihood ratio (HLR): 

HLR = 2×PLR/(1+(PLR×NLR))  (11) 

TABLE VIII.  A MEASURE FACTOR IN THE 2×2 CONTINGENCY TABLE AND 

ITS DERIVATIVE 

Term Denoted Formula Description 

True positive TP TP > 0 Correct predictions of anomaly 

True negative TN TN > 0 Correct predictions of normal 

False positive FP FP > 0 Incorrect predictions of anomaly 

False negative FN FN > 0 Incorrect predictions of normal 

True positive 

rate 

TPR TP/(TP+FN) The rate of an anomaly sample 

tested positive  

True negative 

rate 

TNR TN/(TN+FP) The rate of a normal sample 

tested negative 

False positive 

rate 

FPR 1-TNR The rate of a normal sample 

tested positive 

False negative 
rate 

FNR 1-TPR The rate of an anomaly sample 
tested negative 

Positive 

likelihood ratio 

PLR TPR/FPR The ratio of an anomaly sample 

tested positive and a normal 
sample tested positive 

Negative 
likelihood ratio 

NLR FNR/TNR The ratio of an anomaly sample 
tested negative and a normal 

sample tested negative 

The idea of a self-supervised binary classifier is to utilize 
the structure within data from the samples (logl) to build a 
supervisory signal for the classifier. A supervisory signal 
comes from the underlying structure of the samples realized in 
producing two samples using (7), (8), and (9). A supervisory 
signal first finds the bias B and variance V that give the 
maximum likelihood ratios of the two samples. For simplicity, 
the bias B is assumed to be 10 refers to the B value in the 
description of the bias-variance alignment in Fig. 8 and the 
variance V is tried to find iteratively within a certain range on 
the PLR or HLR value is the maximum, denoted _PLR_ and 
_HLR_. This maximum value indicates the relative strength of 
evidence for two samples that the classifier has worked to 
classify the two samples properly. 

The performance evaluation of classifiers involves three 
models, two groups of observation, and five indicators. 
Classification is designed in two stages. The first stage is 
about training samples with a one-class classification method 
for fine-grained negative samples from subdistributions 1, 2, 
and 3. Three types of training samples were realized with a 
negative sample size of 10, 50, and 90, respectively. Training 
samples were taken from ground truth datasets randomly. 
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Training samples were the initial assumptions about the prior 
distribution implicitly (the implicit prior). The second stage is 
about testing samples with a binary classification method for 
fine-grained negative samples from subdistributions 1, 2, and 
3 and positive samples from subdistributions 4, and 5. Ninety-
nine types of testing samples were realized with a negative 
sample size from 1 to 99 and a positive sample size from 99 to 
1, respectively. Testing samples were taken from ground truth 
datasets randomly. The second stage applies (7), (8), and (9). 

Table IX shows that 4 out of 5 performance indicators of 
the group of observation _HLR_ are better than the group of 
observation _PLR_. This proves that HLR as a single test 
value of performance indicators has worked well to evaluate 
the performance of binary classifier even though the absence 
of the explicit prior. This correspond to the result of the area 
under the receiver operating characteristic (AUROC). While 
the area under the precision-recall curve (AUPRC) is almost 
the same. 

TABLE IX.  THE METRIC TO EVALUATE THE PERFORMANCE OF BINARY 

CLASSIFIERS 

Model Model 1 Model 2 Model 3 

Group _PLR_ _HLR_ _PLR_ _HLR_ _PLR_ _HLR_ 

V 1.148 0.576 1.556 0.741 1.352 0.683 

T 3.815 5.127 3.868 5.114 3.908 5.067 

PLR↑ 36.128 22.432 36.664 20.053 37.811 22.591 

NLR↓ 0.207 0.076 0.211 0.082 0.200 0.079 

HLR↑ 11.608 16.072 11.041 14.805 10.966 15.492 

AUROC↑ 0.894 0.941 0.895 0.938 0.897 0.938 

AUPRC↑ 0.922 0.935 0.927 0.931 0.926 0.939 

IV. EXPERIMENTAL RESULTS 

The study in this paper was conducted using an 
experimental method. The experiment was conducted in four 
stages. The first stage was an experiment with raw datasets 
that produce ground truth datasets: true or to be true positive 
(TP) samples and true or to be true negative (TN) samples 
using the K-Means and EM algorithms. 

The second stage was an experiment with the LR as the 
performance indicator of a model (HLR). The experiment uses 
data-generating process to produce the logl. The bias-variance 
alignment enhances likelihood by shifting the logl closer to 
true likelihood thereby producing the LR model. An indication 
that the logl closer to true likelihood if the LR model is not 
misleading and not weak refers to Table VI. The LR model 
constructs two hypotheses: a positive hypothesis (H1) and a 
negative hypothesis (H2). A measure factor HLR facilitates the 
resolution of two hypotheses to obtain the variance V properly 
based on the underlying structure of the two samples. The 
variance V is proper if the HLR has reached its maximum 
within a certain range of variance. Together with the bias B, 

the variance V constructs a supervisory signal for the classifier 
by a threshold T. Referring to (9), the LR model produces 
predicted datasets: predicted positive (PP) samples and 
predicted negative (PN) samples. In the LR, two samples 
present two models and two hypotheses. Otherwise, two 
models and two hypotheses represent two samples. 

The third stage was an experiment with the LR as the 
relative strength indicator of evidence (S). Evidence comes 
from ground truth and predicted datasets which construct two 
hypotheses: a primary hypothesis (H1) and a null hypothesis 
(H0). Once again, a measure factor HLR makes it easier to 
resolve two hypotheses to get the relative strength of evidence. 

The fourth stage was an experiment to build up a self-
supervised anomaly detection (AD) approach. The resilience 
scale (RS) and anomaly score (AS) can be written as follows: 

RS = 2×IPN×S/(IPN+S)       (12) 

AS = 4-RS   (13) 

In (12), the support S is the natural logarithm of a measure 
factor HLR. It assumes the highest relative strength of 
evidence is 4 that refers to Table VI. Also, the highest index of 
PN is 4, because PN is in the range of 0 to 100, the index of 
PN (IPN) is PN/25. So that the IPN and S have the same ratio 
from 0 to 4, then both variables can be estimated smoothly 
using a harmonic mean method [43] to derive (12). Eq. (13) 
assumes the resilience scale and anomaly score are 
complements to the support S. 

The experiments were realized using a Python 
programming language, a deep learning library Pytorch [30] to 
implement an artificial neural network, a Python module 
Scikit-learn [31] to implement a machine learning model, a 
Python library gmr [11] to implement a mixture of experts, a 
Python toolbox PyOD [42] for benchmarking anomaly 
detection methods, and a 2D graphics package Matplotlib [17] 
for the visualization of observational and experimental results. 

TABLE X.  THE LOG-LIKELIHOOD SCORE OF EACH SUBDISTRIBUTION 

subd 1 2 3 4 5 

Zx -1.238 -1.199 -1.281 -1.372 -1.475 

Zxy -1.217 -1.193 -1.233 -1.278 -1.335 

Zxr 5.078 5.104 5.057 4.985 4.921 

Zxr, B=5 6.211 5.514 4.726 3.652 2.712 

Zxr, B=10 7.344 5.925 4.395 2.318 0.502 

Zxr, B=15 8.477 6.335 4.064 0.985 -1.707 

Table X presents the log-likelihood score of each 
subdistribution for some latent variables and the bias factor 
that affects the log-likelihood score. The latent variable Zx is 
the latent samples generated by VAEs. The latent variable Zxy 
is the latent samples generated by VAEs and MDRNNs also 
known as world models [14]. The latent variable Zxr is the 
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latent samples generated by VAEs, MDRNNs, and GMMR 
also called the representational model. 

Table X proves that the log-likelihood score of Zx and Zxy 
is too low, below zero. GMMR can increase the log-likelihood 
score significantly from Zxy to Zxr. However, the log-
likelihood score generated by GMMR is not strong enough to 
be used as evidence. The log-likelihood scores of one 
subdistribution and the others are difficult to distinguish as 
normal and anomaly classes. It shows that the classification of 
the two samples is not clear. The reason is that the latent 
samples are generated by the model, while a model is not free 
from the generalization error. 

In Table X, the bias factor B as one of a supervisory signal 
straightens the weak evidence by shifting the log-likelihood 
score closer to the true classification of the two samples. A 
higher B value has implications for a higher log-likelihood 
score of subdistributions 1, and 2 and a lower log-likelihood 
score of subdistributions 3, 4, and 5. This simple experiment 
explains that subdistributions 1, and 2 tend to be samples of 
normal class and subdistributions 3, 4, and 5 tend to be 
samples of anomaly class. 

Fig. 10 gives three indicators of the cyber resilience 
model: the predicted negative PN, the support S, and the 
resilience scale RS. The predicted negative PN about two 
samples needed in a likelihood ratio model. One sample 
represents a reference standard used as an example (ground 
truth datasets). The other sample represents the observed data 
(predicted datasets). Ground truth and predicted datasets 
construct a likelihood ratio model. In the context of cyber 
resilience, the samples that need to be monitored are the 
predicted negative (PN) as part of the predicted datasets. PN is 
the total number of elements labeled as belonging to the 
negative class. PN is true negative (TN) + false negative (FN). 
True negative (TN) is as part of the ground truth datasets 
while false negative (FN) indicates incorrect predictions of the 
negative class. So, FN is the difference between PN and TN. 
The PN indicator proves the relationship between PN and the 
number of negative samples N(Zn), TN, FN. 

The support S about the relative strength indicator of 
evidence. Two samples in a likelihood ratio model construct 
two competing hypotheses. A measure factor HLR makes it 
easier to resolve two competing hypotheses to get the support 
S. From the experiment, it is known that the support S is not 
affected by the number of negative samples linearly in the 
training and testing phases except for extreme numbers, such 
as less than 10 or more than 90 if the sample size is 100. As a 
consequence, the number of negative samples of 10 has met 
the requirement as training data. 

The resilience scale RS about the resilience scale of the 
service. It is the indicator to measure the behavior of cyber 
resilience model. The cyber resilience model requires two data 

to realize (12): the predicted negative (PN) and the support 
(S). Because RS derives from the PN and S, which refers to 
Table VI, the resilience scale RS also has an interpretation that 
refers to Table VI. 

 
Fig. 10. The cyber resilience model. 

Referring to this experimental results, it is known that the 
cyber resilience model is identical to a likelihood ratio model 
(LRM). A likelihood ratio model is effectively carried out 
based on anomaly detection. In anomaly detection, two 
samples are clearly defined. LRM summarizes complete 
information about the observed data, statistical models, and 
statistical hypotheses of DNS events. It identifies the 
individual and group behavior of each sample shown by the 
PN and S indicator. 

The PN indicator can be used to estimate the status of the 
data. High PN shows that DNS events are normal and low PN 
shows otherwise. In addition, LRM provides information 
about the stability of the model in predicting the observed 
data. The stability of the model can be seen from the S 
indicator. A high S shows that the model has the ability to 
predict the data normally and a low S shows otherwise. 
Furthermore, the two indicators are used to test the hypothesis 
of DNS events. A high anomaly score or low resilience scale 
indicates a DNS anomaly. A low anomaly score or high 
resilience scale indicates a DNS normal. Table VI will help 
interpret both in a more understandable form. Therefore, the 
anomaly score AS is a complement to the resilience scale RS 
as has been formulated in (13). 

Anomaly detection is designed using a specific binary 
classification task to build a reliable anomaly detection 
method in dealing with dynamic models. The binary 
classification task goes through two stages. The first stage is 
fitting data using regression to obtain the initial value of the 
relationship between the model and the genuine labeled data 
(the implicit prior) and the second stage classifies the log-
likelihood by a decision boundary threshold to define high and 
low log-likelihoods. The complete differences between some 
anomaly detection methods (PyOD) and the tested method 
(LRM) in the experiment can be seen in Table XI. 
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TABLE XI.  THE DIFFERENCE OF PYOD AND LRM IN THE EXPERIMENT 

PyOD LRM 

Input from the log-likelihood score of 
latent samples (logl) about 100 

samples 

Input from latent samples (Zxr) about 
2×200×100 latent samples 

Fitting and predicting in classification Fitting in regression  
Predicting in classification 

Fitting is done on the negative 

samples 

Fitting is done on the negative latent 

samples 

Predictors are the negative and 

positive samples 

Predictors for regression are the 

negative latent samples 

Predictors for classification are the 
negative and positive samples 

Not using latent samples but directly 
using the log-likelihood score as the 

observed samples 

For each latent sample, the maximum 
log-likelihood score is taken as the 

observed samples 

Some anomaly detection methods that have been 
compared: Angle-Based Outlier Detection (ABOD), Isolation 
Forest (IForest), K-Nearest Neighbors (KNN), and One-Class 
Support Vector Machines (OCSVM). The methods represent 
four different anomaly detection methods that have been 
implemented in PyOD [42]. The results of the benchmarking 
show that LRM has high performance and stability as an 
anomaly detection method as seen in Table XII. 

TABLE XII.  BENCHMARKING THE FOUR METHODS AND LRM 

Model Indicator ABOD IForest KNN OCSVM LRM 

 
1 

HLR↑ 6.003 14.236 14.236 17.626 17.626 

AUROC↑ 0.856 0.933 0.933 0.944 0.944 

AUPRC↑ 0.984 0.993 0.993 0.994 0.994 

 

2 
HLR↑ 10.212 13.458 13.458 13.458 32.441 

AUROC↑ 0.910 0.930 0.930 0.930 0.970 

AUPRC↑ 0.928 0.943 0.943 0.943 0.980 

 

3 
HLR↑ 10.862 10.124 10.124 9.478 19.203 

AUROC↑ 0.961 0.956 0.956 0.950 0.994 

AUPRC↑ 0.794 0.778 0.778 0.763 0.955 

V. DISCUSSION AND FUTURE WORK 

Two samples can be well-modeled with the LR model so 
that the interpretation of the observed data is more objective, 
depending only on the data itself. It is relevant to be used for 
anomaly detection. It is also relevant to be used for normal 
detection (resilience). Based on a self-supervised anomaly 
detection approach, self-labeling in a dynamic model can be 
realized with measurable supervision. Self-labeling directed 
by a supervisory signal consisting of a bias factor B, a 
variance factor V, and a threshold T. The evaluation of 
regression and classification models with results as follows: 
RMSE=0.0014, R2=0.9869, MAE=0.0009 for fitting 3 
regression models at training time and HLR=15.456, 
AUROC=0.939, AUPRC=0.935, S=2 (2.738) with the S-2 
likelihood interval for 297 (3×99) classification models at 
testing time. It means that the LR model does not generally 

produce misleading and weak log-likelihood. In this LR, the 
relative strength of evidence is defined by a primary 
hypothesis that models self-labeling and a null hypothesis that 
models a standard reference of the samples. In the experiment, 
it has been proven that a primary hypothesis is accepted, S=2 
with a 95% confidence level. 

The difference index (DI) of likelihood in the EM as a 
sample classifier is the difference between a subdistribution 
classified as positive and negative samples. The larger DI, the 
larger the disjoint support between the distribution of positive 
and negative samples.  In Table III, subdistribution 2 has a DI 
of 4.004, subdistribution 3 has a DI of 0.944, and 
subdistribution 4 has a DI of 3.210. It means the difference 
index of subdistribution 3 is small, then the disjoint support is 
also small. As a consequence, subdistribution 3 is less reliable 
as a standard reference of samples. 

To address the problem of misleading and weak log-
likelihood required aligning bias-variance and optimizing 
likelihood-ratios. In Table X, the bias factor B has been 
worked properly for subdistributions 1, 2, 4, and 5 but not for 
subdistribution 3. This is correlated with the analysis of Table 
III that the disjoint support of subdistribution 3 is small so 
subdistribution 3 produces anomaly interpretation: some parts 
tend to be negative samples and others tend to be positive 
samples. 

Referring to the facts in Table III and X, it is necessary 
that a null hypothesis may need to be redesign. A null 
hypothesis represents ground truth datasets as examples of 
positive and negative samples that declare a reference standard 
of the observed samples in two competing hypotheses. The 
next study focused on enhancing the ground truth datasets, 
especially to address the problem of subdistribution 3 that 
produces a stronger relative strength indicator of evidence. 
Furthermore, predictive modeling only relies on examples of 
positive and negative samples from those trained to the model 
as the implicit prior. 

VI. CONCLUSION 

There is a relationship between the cyber resilience and 
likelihood ratio models. The likelihood ratio model (LRM) is 
useful in building the cyber resilience model. It meets the 
requirements needed to realize the representational and 
inference models in practice. The representational model has 
been realized with likelihood maximization inside data-
generating process and the inference model has been realized 
with likelihood ratios inside two competing hypotheses. In the 
representational model, the Gaussian mixture model for 
multimodal regression (GMMR) enhances the ability of world 
models produces log-likelihood. The log-likelihood needs to 
be aligned by the bias-variance factor to be worthy of being 
used as evidence. In the inference model, evidence from 
ground truth datasets and evidence from the model build two 
competing hypotheses to handle anomaly detection tasks in 
self-supervised settings. Evidence from the model has been 
labeled through a self-labeling technique that supervised by 
three supervisory signals: a bias factor, a variance factor, and a 
threshold to optimize decision boundary in minimizing the 
generalization error of predictive modeling with the harmonic 
likelihood ratio (HLR). 
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