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Abstract—The stability and reliability of the electric grid 

strongly depend on the ability to schedule and forecast the energy 

output of all sources. Even though the share of photovoltaic 

installation in the energy mix is continuously increasing, they 

have one major drawback: their dependence on different 

environmental parameters, such as solar irradiance, ambient 

temperature, cloudiness, etc., which have a highly variable 

nature. Six machine learning algorithms are compared in this 

study, regarding their ability to forecast the power generation of 

a rural rooftop photovoltaic installation using different 

combinations of the input data. The features selected for 

investigation are solar radiation, ambient temperature, and wind 

speed, obtained from a meteorological station, as well as two 

additional time-based variables – the time of the day and the 

month of the year. During the validation and testing phases, four 

models performed better – artificial neural network (ANN), k-

Nearest neighbor (kNN), Decision tree (DT), and Random Forest 

(RF), with ANN achieving the best results in all cases. The 

optimal combination of input data includes solar radiation, 

ambient temperature, wind speed, and hour of the day, though 

the difference with the other scenarios was small. The optimal 

ANN model achieved R2, MAE, and RMSE of 0.995, 6.71 Wh, 

and 13.7 Wh, respectively. The results obtained in this study 

indicate that the yield of PV installations located in rural areas 

could be forecasted with high probability using a limited number 

of meteorological data. 
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I. INTRODUCTION 

Renewable energy technologies have greatly developed 
during the last decades, with photovoltaics holding the largest 
share. Many reasons exist for this, such as their low 
maintenance costs [1, 2], abundant availability of solar energy 
[3], the possibility for building integration [4], relatively easy 
installation, reliability [4], etc. However, one major drawback 
could be defined for PV installations: their strong dependence 
on weather conditions and especially on solar radiation, which 
has a highly variable nature. For this reason, the output of 
photovoltaic power in a stations changes wide range over time 
and is generally difficult to forecast. One of the options to deal 
with this problem is the application of energy storage systems, 
allowing energy charging during daylight hours and using it 
according to the requirements of the load profile [5, 6]. 
However, with the current development of energy storage 

technologies, this approach is still too expensive and its return 
on investment is too low without government incentives and 
subsidies [7]. Furthermore, the batteries’ life expectancy is still 
relatively low, which requires additional investment during the 
PV park operation for battery replacement [8]. 

Reducing power uncertainties in the electric grid is a major 
task, which is required to ensure its energy balance. Therefore, 
forecasting the output of photovoltaic installations is crucial for 
maximizing the economic benefit and ensuring customers 
receive electric energy of acceptable quality and reliability [9]. 
The power production of PV installations depends on many 
environmental factors, such as solar irradiance, cloudiness, 
ambient temperature, wind speed [10, 11, 12], and even 
relative humidity and rainfall. [13, 14]. Moreover, when a 
photovoltaic installation is installed in an urban or suburban 
environment, additional factors affecting power production are 
introduced or enhanced, such as soiling [15, 16], shading [17, 
18], panel degradation [19, 20], etc. 

Different forecasting approaches exist mostly based on 
statistical methods (ARIMA, ARCH, GARCH) and machine 
learning methods, even though physical and hybrid approaches 
are also used [21, 22]. Machine learning has many applications 
in the renewable energy field, such as yield forecasting [23], 
condition monitoring [24], fault detection [25, 26], PV cell 
degradation [27], MPPT tracking [28], energy management 
[29], etc. When it comes to PV yield or power forecasting, 
different machine learning regression algorithms are used, such 
as Support Vector Machine (SVM), Linear regression (LR), 
Random Forest (RF), Regression tree (RT), etc. For example, 
in study [30] the global horizontal irradiance and atmospheric 
temperature were used, obtained from a meteorological station 
with a 5-minute timeframe. Several regression models were 
investigated, such as Gaussian process regression (GPR), LR, 
RT, and SVM. All models achieved similar performance, with 
R2 varying between 92% and 96%, yet the RT achieved the 
highest score. Similarly, in the study [31] the 5 min horizontal 
global radiation and ambient temperature in Berlin were used 
as input data for a machine learning algorithm. It predicted the 
generated AC energy of a photovoltaic installation and 
achieved a coefficient of determination of 0.87. 

A study for Jordan used nine features to predict the power 
of a PV installation: irradiation, air temperature, module 
temperature, as well as several time-based features – day of the 
week, month number, day type, week number, hour of the day 
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and year type [32]. RF achieved the highest performance, 
closely followed by Bagging-REFTree. In study [33], the 
possibility of forecasting PV energy output in numerous 
regions with limited plant-specific data was investigated. The 
authors enriched the features by adding 1-hour-lagged 
meteorological data and tested different machine-learning 
regression methods, such as Kernel Ridge and RF. The models 
achieved a normalized root mean square error (NRMSE) of 3% 
in the case of lagged power used as input, corresponding to a 1-
h time horizon.  

Three types of forecasting exist when it comes to 
photovoltaic output: short-term, medium-term, and long-term 
[34]. In study [35], a predictive model for PV power generation 
in Korea was presented, based on a recurrent neural network 
(RNN) and meteorological data. Four predictive features were 
selected: air temperature, relative humidity, solar radiation, and 
wind speed. Error rates of 13.8% and 13.2% were reported, 
respectively for the single- Long Short-Term Memory (LSTM) 
and multi-LSTM models. In another study, nine input 
parameters were used to train an artificial neural network that 
forecasts the output of a photovoltaic installation – global 
horizontal irradiance, global diffuse radiance, ambient 
temperature, precipitation, wind speed, air pressure, sunshine 
duration, relative humidity, and surface temperature [36]. The 
reported error rates vary between 72.64% and 0.74% for low 
and high insulation values, respectively. In study [37] the 24 h 
PV yield was forecasted using solar radiation and ambient 
temperature as input data. The authors proposed an artificial 
neural network (ANN) Multi-Layer Perceptron (MLP) model, 
which achieved an R2 between 96% and 99% for sunny days 
and between 0.88% and 92% for cloudy days. Similarly, in 
[38] ultra-short PV power forecasting was investigated based 
on neural networks and four features – global horizontal 
irradiance, wind speed, ambient temperature, and relative 
humidity. The different models achieved an R2 between 0.889 
and 0.967 in the validation phase and between 0.910 and 0.971 
in the testing phase. 

Some studies have also compared the performance of the 
machine learning and deep learning approaches. In [39] the 
temperature of the PV surface, the solar irradiance, and the 
wind speed were used to predict the power output of a rooftop 
photovoltaic installation in Russia. A comparison between 
ANN and regression models showed the first had better 
performance with error rates between 0% and 30% for the 
different days. Similarly, in study [40] the power of a PV 
installation in Egypt was forecasted using three models – RF, 
Facebook Prophet, and LSTM. The features used are different 
components of the solar irradiance, wind speed at 10 m, 
temperature at 2 m, and sun height. The best-performing model 
was Prophet with R2=0.93, which was confirmed by its mean 
square error (MSE) and MAE coefficients. In study [23] were 
used seven machine learning algorithms for short-term 
prediction of photovoltaic generation - extreme gradient 
boosting algorithm (XGB), support vector regressor (SVR), 
random forest (RF), classic MLP, and three LSTM-based 
models. Their achieved R2 values varied from 0.90 to 0.91 for 
15-minute-ahead forecasting, from 0.88 to 0.89 for 30-minute-
ahead forecasting, and from 0.86 to 0.89 for 1-hour-ahead 
forecasting. 

However, one of the key factors for forecasting the PV 
yield is the availability of reliable predictions for solar 
radiation. This task can also be implemented using either 
machine or deep learning. In study [41] different machine 
learning algorithms were evaluated in their ability to forecast 
solar radiation and ambient temperature, which are considered 
to have the highest impact on the PV output. Similarly, in study 
[42] predictions of the hourly solar radiation were made for 
time horizons h+1 and h+6 in Odeillo, France. They were 
based on ANN and RF models and the past solar radiations as 
input data. The RF algorithm achieved better results at 
forecasting the global horizontal irradiation with an NRMSE of 
19.65% for the h+1 timeframe and 27.78% for the h+6 
timeframe. 

Other studies combined the forecasting of solar energy and 
PV power. In study [43], the MLP ANN method to forecast the 
PV power was used with a 10-minute discretization step. The 
authors investigated two scenarios – one with measured solar 
irradiance data and the other with predicted one. The precision 
of the models was estimated using different errors. The best-
performing scenario achieved a 7% error for a scenario, which 
relies on three days of previous solar radiation data. Similarly, 
in study [44] two hybrid models were investigated for PV 
power forecasting. A statistical model for estimating solar 
radiation and a physical or statistical (ANN) model for 
estimating output power were trained. The ANN-based model 
achieved lower relative root mean square error, varying from 
3.59% to 8.65% for 3 days ahead forecasting and from 5.25% 
to 11.85% for 6 days ahead forecasting. 

The analysis of previous studies shows that a wide range of 
input data is used for forecasting photovoltaic power. Basic 
meteorological data, such as solar irradiance, ambient 
temperature, wind speed, relative humidity, rainfall, and 
cloudiness is used, as well as some parameters of the PV 
installations, such as module temperature and yield. Additional 
time-based features are often added, such as day of the week, 
month number, day type, week number, hour of the day, year 
type, etc. Previous authors have reported different accuracies of 
the existing models, which can be explained by the influence of 
local factors, such as shading, soiling, etc., and the chosen 
features. Furthermore, there isn’t an obvious winner amongst 
the used approaches, such as machine learning and deep 
learning.  

The agricultural sector has a great potential for creating 
additional value with the help of energy from photovoltaic 
installations. Such applications include powering of irrigation 
systems [45], animal farms [46,47], etc., and are commonly 
rooftop mounted. Rural areas are characterized with lack of 
high-rise buildings and other artificial objects, which could 
potentially influence the energy production of photovoltaics by 
creating shadings. Considering the above mentioned, it is 
important to investigate the possibilities for precise forecasting 
of the output PV power under such conditions. 

This study aims to investigate the influence of different 
features on the performance of machine learning and deep 
learning models for forecasting the yield of PV installations 
located in rural areas.  
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II. MATERIALS AND METHODS 

A. Data Acquisition 

This study relies on two data sources: a mid-scale PV park 
and a dedicated meteorological station. They are located in the 
village of Staro Selo, near the city of Tutrakan, Bulgaria, 
coordinates 43°59'11"N 26°32'49"E (Fig. 1). 

 
Fig. 1. Geographic location of the experimental facility. 

The photovoltaic park is installed on the roof of a building 
and its total power is 68.040 kWp. It is built of 378 
monocrystalline modules SPV180M-24 by Sinski PV Co., Ltd. 
(Wuxi, Jiangsu, China). They are characterized by 180 Wp 
peak power, 14.1% efficiency, 45V open-circuit voltage, and 
5.3 A short-circuit current under standard testing conditions. 
The orientation of the PV modules has an azimuth angle of 3° 
and an angle of inclination of 30°. The installation also 
contains 9 Sunny Mini Central 6000TL single-phase grid-
connected inverters by SMA Solar Technology AG (Niestetal, 
Germany). Their key characteristics are 97.7% efficiency, 1 
MPPT with four inputs, and an MPP voltage range of 333 V to 
500 V. The inverters are connected to the internet via a Sunny 

WebBox and all data is stored on the SunnyPortal platform 
with a 1-hour time step. 

The meteorological data is collected using a Sunny Sensor 
box by SMA Solar Technology AG (Niestetal, Germany), 
which includes: 

- A solar radiation sensor with a measuring range 0÷1500 
W/m2 and an accuracy of 8%. 

- A temperature sensor with a measuring range -30÷80 
°C and an accuracy of 0.5°C. 

- An anemometer with a measuring range of up to 40 m/s 
and an accuracy of 0.5%. 

It is installed near the PV panels and similarly to the 
inverter, transmits data to the SunnyPortal platform via the 
Sunny WebBox with a 1-hour time step. 

B. Methodology for Data Processing and Data Analysis 

In this study, we have applied a data analysis methodology, 
which includes the following steps (Fig. 2): data preparation, 
feature preparation and engineering, model optimization, and 
features evaluation. 

1) Step 1. Data preparation: In this step, the data is 

extracted from the cloud platform. The four datasets are 

exported in Microsoft Excel format and are merged into a 

single file with five columns – timestamp, energy yield, solar 

radiation, temperature, and wind speed. During the merging 

process, special attention should be paid to the correspondence 

of the timestamps of the records. 

 
Fig. 2. Overview of the methodology used. 

Next, the created dataset is analyzed for inconsistencies, 
such as: 

- Empty or invalid values; 

- The solar radiation is non-zero, while the PV yield is 
zero and vice-versa. 

All records with such inconsistencies are removed from the 
dataset. Finally, the available data is divided into 
training/validation and testing datasets. 

2) Step 2. Features preparation and engineering: In this 

step, the main features of the machine learning are selected. 

As previous authors have stated, the factors with the highest 

influence on the energy yield of photovoltaic installations are 

solar radiation, ambient temperature, and wind speed [22, 48]. 

Therefore, they are selected as the main features for model 

training. Secondary features, which are known to be correlated 

with solar radiation are the “month of the year” and the “hour 

of the day”. They are extracted from the timestamp of the 

datasets using Microsoft Excel’s “Month” and “Hour” 

functions. This way the “month of the year” feature takes 

values from 1 to 12 and the “hour of the day” feature takes 

values from 0 to 23.  

3) Step 3. Model optimization: This step aims to obtain 

the optimal parameters of each of the selected machine-

learning models, using all available features. In this study, we 
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have chosen the Orange Data Mining v3.36 tool, developed by 

the University of Ljubljana (Ljubljana, Slovenia) [49]. The 

reason for choosing it is the wide range of available 

components for training regression models, evaluation and 

comparison, modification of the input and output data, etc. 
The goal is to train regression models, which can forecast 

the photovoltaic energy yield using the available features, i.e. 
the output of the models should be the predicted energy. Based 
on the results of previous studies, the following machine-
learning algorithms are selected for evaluation: 

- Decision tree (DT) – builds regression organized as a 
tree structure. 

- Random forest (RF) – works by creating numerous DTs 
during the training phase. Each tree is constructed using 
a random subset of the dataset to measure a random 
subset of features in each partition. It can be used for 
both classification and regression tasks. Overfitting is a 
common problem that may worsen the model 
performance, which is commonly dealt with by adding 
enough trees in the forest. 

- K-nearest neighbor (kNN) – a supervised machine 
learning algorithm that can be used for classification 
and regression tasks. It requires more time and memory 
and is commonly useful with smaller datasets. 

- Artificial neural network (ANN) – a set of algorithms 
designed for recognizing patterns in data. They are 
modeled after the structure and function of the human 
brain and have shown acceptable results in all spheres 
of science. 

- Support vector machine (SVM) – a selective classifier 
formally defined by dividing the hyperplane. The SVM 
algorithm intends to find a hyperplane in an N-
dimensional space that classifies the data points. 

- Linear regression (LR) – computes the linear 
relationship between the dependent variable and one or 
more independent features by fitting a linear equation to 
observed data. 

The output of the abovementioned regression models is 
additionally modified (if required), to make sure no energy 
production is forecasted during the dark hours of the day: 

𝐸𝑝𝑟𝑒𝑑.𝑚 = {
𝐸𝑝𝑟𝑒𝑑;  𝑆𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 ≥ 0

0;  𝑆𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 < 1       
 (1)

During this step, the parameters of each model are changed 
and their performance is assessed with the help of a 5-fold 
cross-validation. Several statistical metrics are used that allow 
to evaluate the difference between the original and the 
predicted values: 

- Coefficient of determination (R2) - it takes values 
between 0 and 1 and shows how well a model predicts 
the outcome: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖

,  (2)

where, 𝑦𝑖  and 𝑦𝑖̂  are the ith samples of the actual and 
predicted variables and 𝑦̅ is the mean of the actual values. It is 
known that when multiple regression models are evaluated, it 
is better to use the adjusted R2 metric, which penalizes the 
additional features. However, this is true only when the number 
of records is relatively low. When the number of records is 
significantly higher than the number of features, R2 and the 
adjusted R2 have insignificant differences. That is why in this 
study the application of R2 is considered appropriate. 

- Mean square error (MSE) – measures the average 
squared difference between the actual and the predicted 
values with extra penalty to large errors: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   

- Root mean square error (RMSE) – measures the 
average magnitude of the errors in the prediction and is 
the square root of MSE: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 . 

- Mean absolute error (MAE) – measures the average 
magnitude of the errors in the prediction and is useful 
when large errors should not be given extra penalty: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1 .  

- Non-zero mean absolute error (NZMAE) – measures 
the average magnitude of the errors in the prediction 
using only the non-zero records. This metric gives more 
accurate results, as excludes nighttime records, where 
no energy is generated and no error is expected. 

This step is repeated numerous times with different 
parameters of each regression model until a peak R2 value is 
achieved. 

4) Step 4. Features evaluation: This step aims to evaluate 

the influence of the selected features on the performance of 

the trained models. The following variants are considered: 

- Variant 1. Only solar radiation; 

- Variant 2. Solar radiation and ambient temperature; 

- Variant 3. Solar radiation, ambient temperature, and 
wind speed; 

- Variant 4. Solar radiation, ambient temperature, wind 
speed, and hour of the day; 

- Variant 5. Solar radiation, ambient temperature, wind 
speed, hour of the day, and month of the year. 

For each of the abovementioned variants: 

- The training dataset is modified to include only the 
corresponding features. This is implemented directly in 
the Orange Data Mining software, by selecting the 
necessary columns from the Files component. 

- The six models are trained again with the selected 
features. 
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- The testing dataset is modified similarly to the training 
one. 

- The trained models are applied to the testing dataset and 
the metrics from Step 3 are evaluated. 

Next, the evaluated metrics are compared and the 
performance of each model with the different feature variants 
is obtained. The optimal variant and model are determined. 

Other than the hourly generated energy, another important 
parameter of photovoltaic installations is the cumulative daily 
generated energy. Therefore, during this phase is also 
estimated the cumulative energy production for each of the 
testing days according to: 

𝐸𝐷 = ∑ (𝐸𝐻)23
𝑖=0 ,   (6)

where, 𝐸𝐻 is the hourly energy production. The estimated 
daily energy productions can be compared to each other to 
identify problems where a model’s predictions are dominantly 
above or below the actual values. 

III. RESULTS AND DISCUSSION 

The datasets were prepared using data obtained in the 
period from 4 January 2020 to 20 December 2022. Previous 

studies have recommended the datasets for accurate PV 
forecasting to be at least 1 full year [38], therefore the used 
data conforms to this recommendation. Following the proposed 
methodology, four datasets were exported with 1 h timestep: 
specific yield in kWh/kWp, solar radiation in W/m2, ambient 
temperature in °C, and wind speed in m/s. Thereafter, they 
were merged, and all records with missing, incomplete, or 
inconsistent data were removed. The data was split into 
training and testing datasets as follows: 

- The training data includes 13781 records from 4 
January 2020 to 31 July 2021; 

- The testing data includes 3394 records from 1 August 
2021 to 20 December 2021.  

Next, the two additional features (“month of the year” and 
“hour of the day”) were added to the datasets. A sample from 
the prepared training dataset is shown in Fig. 3. The first 
column (Timestamp) is not used as a feature but is kept as 
metadata for easier analysis. The last column contains the 
target variable (the specific energy yield, produced by the PV 
installation for 1 h), which should be forecasted. 

 
Fig. 3. A sample from the prepared training data. 

Next, the training and testing procedure were implemented 
in Orange Data Mining, as shown in Fig. 4. According to step 3 
of the methodology, the optimal parameters of the six machine 

learning algorithms were obtained experimentally using all 
available features so that their R2 values were as close to 1 as 
possible. Their optimal parameters are summarized in Table I. 

 
Fig. 4. Implementation of the training and testing methodology in orange data mining. 
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TABLE I.  PARAMETERS OF THE OPTIMAL MODELS 

Model Parameters 

Random forest 

Number of trees: 6 
Number of attributes considered at each split: not checked 

Replicable training: checked 

Balance class distribution: not checked 
Limit depth of individual trees: not checked 

Do not split subsets smaller than: not checked 

K nearest neighbor 

Number of neighbors: 5 

Metric: Euclidean 
Weight: Uniform 

Artificial neural network 

Neurons in hidden layers: 20 

Activation: ReLu 
Solver: L-BFGS-B 

Regularization, α=0: 

Maximal number of iterations: 300 
Replicable training: checked 

Linear regression 
Fit intercept: checked 

Regularization: No regularization 

Decision tree 

Induce binary tree: not checked 

Min number of instances in leaves: 12 

Do not split subsets smaller than: not checked 

Limit the maximal tree depth to: not checked 
Stop when majority reaches: 95% 

Support vector machine 

SVM type: SVM 

Cost (C): 1.40 
Regression loss epsilon (ε): 0.10 

Kernel: Linear 

Numerical tolerance: 0.0010 
Iteration limit: 20 000 

The model is validated using 5-fold cross-validation, which 
means that 20% of the records are randomly chosen for 
validation and the remaining 80% are used for training. The 
results from the models’ training and validation are 
summarized in Table II, ordered decreasingly by their R2 value. 
The best-performing algorithm is the ANN, RMSE, and MAE, 
with R2 respectively 0.995, 18.3, and 7.5. 

TABLE II.  COMPARISON OF THE MODELS’ VALIDATION PERFORMANCE 

Model MSE RMSE MAE R2 

ANN 336 18.3 7.50 0.995 

RF 383 19.6 6.94 0.994 

kNN 390 19.8 7.31 0.994 

DT 411 20.3 7.74 0.994 

LR 952 30.9 18.7 0.985 

SVM 1041 32.3 15.5 0.984 

The order of the next three models is disputable for the 
following reasons: 

- The RF has the second-best R2 equal to 0.994; however, 
its MAE (6.94) is the lowest. In other words, if we 
choose the optimal model based on its MAE then the 
RF model performs slightly better than the trained 
ANN.  

- The kNN model has the same R2 as RF, and its MAE 
(7.31) is also lower than ANN’s. 

- The DT has the same R2 as RF and kNN, and almost the 
same MAE (7.74). 

In general ANN, RF, kNN, and DT perform almost equally 
well in our study. The other two models (LR and SVM) 
perform slightly worse, though their R2 values are still 
impressive – 0.985 and 0.984, respectively. However, their 
MAE metrics are more than twice as bad (18.7 and 15.5, 
respectively), which means their forecasts contain more errors. 
This is also indicated by their RMSE metrics (30.9 and 32.3, 
respectively), which penalize large errors. 

Next, according to the developed methodology, the 
performance of the models was evaluated for the different 
feature variants. For each one the corresponding features were 
selected from the training and testing datasets and the models 
were retrained and reevaluated with the testing dataset. The 
results from Variants 1, 2, 3, 4, and 5 are summarized in Table 
III, Table IV, Table V, Table VI, and Table VII, respectively. 

TABLE III.  RESULTS FROM THE TESTING OF VARIANT 1 (ONLY SOLAR 

RADIATION) 

Model MSE RMSE MAE NZMAE R2 

ANN 567 23.8 10.2 21.2 0.990 

DT 638 25.3 10.8 22.6 0.989 

kNN 691 26.3 11.3 23.7 0.988 

RF 838 29.0 12.6 26.6 0.986 

LR 985 31.1 13.8 28.8 0.983 

SVM 1021 32.0 13.8 28.9 0.983 
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TABLE IV.  RESULTS FROM THE TESTING OF VARIANT 2 (SOLAR 

RADIATION AND AMBIENT TEMPERATURE) 

Model MSE RMSE MAE NZMAE R2 

ANN 323 18.0 6.41 13.4 0.994 

kNN 352 18.8 6.72 14.3 0.994 

DT 347 18.6 6.83 14.3 0.994 

RF 406 20.1 7.15 15.2 0.993 

LR 930 30.0 13.5 28.3 0.984 

SVM 1022 32.0 13.9 28.9 0.983 

TABLE V.  RESULTS FROM THE TESTING OF VARIANT 3 (SOLAR 

RADIATION, AMBIENT TEMPERATURE, AND WINDSPEED) 

Model MSE RMSE MAE NZMAE R2 

ANN 314 17.7 6.12 12.8 0.995 

kNN 358 18.9 6.61 14.1 0.994 

DT 355 18.8 6.90 14.5 0.994 

RF 383 19.6 6.84 14.5 0.993 

LR 930 29.9 13.60 28.4 0.984 

SVM 1025 32.0 13.86 28.9 0.983 

TABLE VI.  RESULTS FROM THE TESTING OF VARIANT 4 (SOLAR 

RADIATION, AMBIENT TEMPERATURE, WINDSPEED, AND HOUR OF THE DAY) 

Model MSE RMSE MAE MZMAE R2 

ANN 299 17.3 5.71 11.9 0.995 

kNN 357 18.9 6.65 14.2 0.994 

DT 358 18.9 6.93 14.6 0.994 

RF 372 19.3 6.56 14.1 0.993 

LR 930 30.5 13.6 28.4 0.984 

SVM 1022 32.0 13.9 28.9 0.983 

TABLE VII.  RESULTS FROM THE TESTING OF VARIANT 5 (SOLAR 

RADIATION, AMBIENT TEMPERATURE, WINDSPEED, HOUR OF THE DAY, AND 

MONTH OF THE YEAR) 

Model MSE RMSE MAE NZMAE R2 

ANN 335 18.3 6.44 13.4 0.994 

kNN 367 19.2 6.65 13.7 0.994 

DT 373 19.3 6.93 14.0 0.994 

RF 436 20.9 6.56 14.1 0.993 

LR 936 30.6 16.2 28.4 0.984 

SVM 1023 32.0 14.0 28.9 0.983 

If we take a look at the obtained coefficients of 
determination, several things can be noticed: 

- The ANN models have the best performance in all five 
variants of the input features with R2 ranging between 
0.990 and 0.995; 

- The RF, kNN and DT models return very close results 
in all cases with R2 between 0.986 and 0.994; 

- The SVM and the LR models have the worst 
performance in all cases, although it is not significantly 
worse. They are practically the same in all five variants; 
i.e., if these algorithms are selected, solar radiation can 
be used as the only feature. 

All models in all variants achieved excellent coefficients of 
determination, ranging between 0.983 and 0.995. At first 
glance, the last statement means that there is not any significant 
difference between the six algorithms. That is why a closer 
look should be taken at the other metrics. For Variant 1 (Table 
III) the ANN model achieved an MAE of 10.2 Wh/kWh/h, 
which means that for the investigated testing period (3394 
hours or approximately five months) the expected cumulative 
error is 34.6 kWh/kWp. However, if only the non-zero records 
are accounted for, as no error is expected during the dark hours 
of the day, the NZMAE metric is 21.2 Wh/kWh/h, i.e. 
approximately twice as high as MAE. For the worst-
performing model (SVM) the MAE and NZMAE are 13.8 
Wh/kWp/h and 28.0 Wh/kWhp/h, respectively, corresponding 
to a cumulative error of 46.837 kWh/kWp.  

For Variant 2, ANN’s MAE and NZMAE reach 6.41 
Wh/kWp/h and 13.4 Wh/kWp/h, respectively (i.e., a 
cumulative error of 21.8 kWh/kWp), and for Variant 3 – 6.12 
Wh/kWp/h and 12.8 Wh/kWp/h, respectively (a cumulative 
error of 20.8 kWh/kWp). The best performance was achieved 
for Variant 4, where ANN’s MAE and NZMAE reached 5.71 
Wh/kWp/h and 11.9 Wh/kWp/h (a cumulative error of 19.4 
kWh/kWp), while for Variant 5 the score was slightly worse. 

If the RMSE metric is analyzed, which adds a penalty to 
higher errors, once again the optimal value is achieved by the 
ANN model with Variant 4 – 17.3 Wh/kWp/h and the lowest 
by the SVM model, which is 32.0 Wh/kWp/h for all five 
variants. 

For a better understanding of the precision of the trained 
models, the worst-case (Variant 1) and best-case (Variant 4) 
models are further compared. In Fig. 5 statistics about the total 
daily absolute error of the models for Variant 1 is presented. 
The minimal daily errors for the different models vary between 
0.6 (SVM) and 4.0 (kNN) Wh/kWp/Day. The maximum daily 
errors vary between 523 (ANN) and 711 (LR) Wh/kWp/Day. 
The average daily error is the lowest for DT (169.973 
Wh/kWp/Day and the highest for SVM (218.508 
Wh/kWp/Day). The cumulative daily error for the investigated 
period is the lowest for DT (24136 Wh/kWh) and the highest 
for SVM (31028.2 Wh/kWh). 

Similarly, in Fig. 6 the total daily absolute errors for 
Variant 4 (best-case) are presented. It is interesting to notice 
that the maximal daily errors are higher in this situation and 
vary between 596 (kNN) and 767 (RF) Wh/kWp/Day. 
Nevertheless, the cumulative errors for the investigated period 
are significantly lower for all algorithms except SVM and LR. 
The lowest cumulative error was achieved by ANN (10813 
Wh/kWp) and the highest again by SVM (31045.4 Wh/kWp). 
Similarly, the lowest average daily error was achieved by ANN 
(76.82 Wh/kWp/Day) and the highest again by SVM (218.63 
Wh/kWp/Day). 
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Fig. 5. Cumulative absolute daily errors of the 6 models for Variant 4 of the selected features: dark blue vertical line – mean value; thin blue – standard 

deviation; yellow line – the median; blue highlighted area – the values between the first and the third quartile. 

 
Fig. 6. Cumulative absolute daily errors of the 6 models for Variant 1 of the selected features: dark blue vertical line – mean value; thin blue – standard 

deviation; yellow line – the median; blue highlighted area – the values between the first and the third quartile. 

Furthermore, the following examples of the actual and 
predicted hourly PV yields with high errors are demonstrated: 

- Example 1: Hourly data forecasts of one of the days 
with the worst cumulative absolute error of the ANN 

model in Variant 1 (4 August 2022) and the 
corresponding predictions in Variant 4 (Fig. 7). 

- Example 2: Hourly data forecasts of one of the days 
with the worst cumulative absolute error of the ANN 
model in Variant 4 (27 November 2022) and the 
corresponding predictions in Variant 1 (Fig. 8). 
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(a)                                                                                                                  (b) 

Fig. 7. Sample data from 4 August 2022 for Variant 1 (a) and Variant 4 (b) of the used features. 

  
(a)                                                                                                                 (b) 

Fig. 8. Sample data from 27 November 2022 for Variant 1 (a) and Variant 4 (b) of the used features. 

Both examples show that the higher errors occur mostly on 
days with varying cloudiness. This behavior is expected, 
because of the increased errors when estimating the average 
hourly solar radiation introduced by the period of 
discretization. Nevertheless, in both situations, the obtained 
forecasts by the ANN model are slightly better in Variant 4, 
compared to Variant 1, in which only solar radiation is used as 
a feature. Other examples are presented in Fig. 9(a) and Fig. 
9(b), where the actual and forecasted values from 25 
September to 27 September 2022 are shown, representing the 
models from Variants 1 and Variant 4, respectively. In this 
case, no significant deviations are observed from the actual 
values and this refers to both variants of the features used. The 
maximum absolute difference of the ANN model from the 
observed values does not surpass 50 Wh/kWp/h for Variant 1 
and 36 Wh/kWp/h for Variant 4. 

Finally, predicted vs. actual scattered graphs were prepared 
for all six models with Variant 4 of the selected features, which 
should provide a clear understanding of their performance. 
They are presented in Fig. 10, where the models are ordered in 
the decreasing order of their coefficient of determination.  

The following observations could be made: 

- One anomaly with all 6 models could be noticed, most 
likely caused by a maintenance procedure or some 
technical fault with the PV installation. 

- The best performance of the ANN models is also 
confirmed by the lowest scattering of the predicted vs. 
actual points [(Fig. 10(a)]. 

- The kNN [(Fig. 10(b)] and DT [(Fig. 10(c)] models 
perform almost as well as ANN; however, several 
points are separated slightly from the main group, 
which explains their lower score.  

- Two of the points of the RF model [(Fig. 10(d)] are 
significantly separated from the main group. However, 
if these records are excluded from the testing dataset, 
the RF model could be a contender for the top spot. 

- The performance of the LR [(Fig. 10(e)] and SVM 
[(Fig. 10(f)] models is significantly worse, and it can be 
noticed that their predicted vs. actual graph can be 
better approximated with a polynomial, rather than a 
straight line. 
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(a) 

 
(b) 

Fig. 9. Sample data from the daylight hours of 25-27 September 2022 for variant 1 (a) and variant 4 (b). 

   
                                                      (a)                                                                         (b)                                                                   (c) 

   
                                                         (d)                                                                     (e)                                                                     (f) 

Fig. 10. Comparison between actual and predicted specific yields for the six models with variant 4 of the features: a) ANN; b) kNN; c) DT; d) RF; e) LR; f) SVM. 
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The performance of the trained models could be compared 
with that achieved in previous studies. In [32] different 
machine learning algorithms for forecasting the power of a PV 
installation were evaluated using eight features. The best-
performing model was RF, which achieved an R2 of 0.95 and 
an MAE of 68.7 W. Similarly, in study [30] different machine-
learning models using ambient temperature and solar irradiance 
as features were compared. The Fine tree model achieved the 
highest R2 and RMSE, 0.959 and 5.83 W, respectively. 

If compared with studies relying on deep learning, our 
results are also ranked very well. In study [35] several 
meteorological parameters, the day, and time were used as 
features to predict the PV yield. The multiple LSTM neural 
network achieved an RMSE of 37.1 Wh and an error rate of 
13.2%; however, no MAE and R2 were reported. Similarly, in 
[40] solar irradiance, windspeed, ambient temperature, and the 
Sun height were used as input data to predict the PV power. 
The optimal model was Facebook Prophet, which achieved an 
R2 of 0.93, an MAE of 8.77 W, and an RMSE of 3.28 W. 

A significantly different approach was used in study [23], 
where the previous PV yield was used as input data for ANN 
models to predict the 1-hour-ahead yield. The optimal model 

achieved R2, MAE, and RMSE of 0.89, 13.4 Wh, and 27.5 Wh, 
respectively. A similar approach in [43], where the 3 days 
ahead solar radiation was used, led to an MAE of 0.00 kW and 
a RMSE of 35.4 kW with a MLP ANN; though no info was 
provided about the coefficient of determination. 

In study [50] was used a hybrid machine learning model, 
combining variational mode decomposition (VMD), whale 
optimization algorithm (WOA), and long short-term memory 
neural network (LSTM) to forecast power. The study relied on 
the ambient temperature, relative humidity, global and diffuse 
horizontal radiation to achieve an R2 of 0.997. 

The above-mentioned is summarized in Table VIII and 
allows us to conclude that our results position themselves very 
well. Out of the papers that provided a coefficient of 
determination, we achieved the second-best results with an R2 
of more than 99%, and were outperformed only by the hybrid 
model, proposed in study [50]. Similarly, the MAE we 
achieved is the lowest, compared to the previous studies; 
however, in terms of RMSE, our optimal models are ranked 
3rd. The last information indicates that the models trained in 
this study returned several wrongly forecasted values, which 
differ significantly from the actual ones. 

TABLE VIII.  COMPARISON OF THE ACHIEVED RESULTS WITH THOSE OF PREVIOUS STUDIES 

Article Regression model Features Target R2 MAE RMSE 

Alhmoud et al [32] RF 
Irradiation, air temperature, module temperature, day 
of the week, month number, day type, week number, 

hour of the day, and year type 

PV power in W 0.95 68.7 W N/A 

Zulkifly et al. [30] Fine tree Ambient temperature, solar irradiance PV power in W 0.96 34.9 W 5.83 W 

Park et al [35] Multiple LSTM ANN 
Ambient temperature, humidity, direct solar radiation, 

diffuse solar radiation, wind speed, day, and time 
PV yield in Wh N/A N/A 37.1 Wh 

Allam et al [40] Facebook Prophet 
Solar irradiance, wind speed, ambient temperature, sun 

height 
PV power in W 0.93 8.77 W 3.28 W 

Cantillo-Luna et al 

[23] 
ConvLSTM1D ANN Lagged PV yield 

1 h ahead PV 

yield in Wh 
0.89 13.4 Wh 27.5 Wh 

Stoyanov and 

Draganovska [43] 
MLP ANN 3 days ahead solar radiation 

PV power in 

kW 
N/A 0.00 kW 35.4 kW 

Hou et al [50] 
A hybrid VMD, WOA 

and LSTM model 

Ambient temperature, relative humidity, global and 

diffuse horizontal radiation 

PV power in 

kW 
0.997 15.247 19.753 kW 

Ours 

ANN 

kNN 

DT 
RF 

Solar radiation, wind speed, ambient temperature 
Specific PV 

yield in Wh 

0.995 

0.994 

0.994 
0.993 

5.71 Wh 

6.65 Wh 

6.93 Wh 
6.56 Wh 

17.3 Wh 

18.9 Wh 

18.9 Wh 
19.3 Wh 

 

IV. CONCLUSIONS 

The performance of different machine learning algorithms 
(ANN, kNN, DT, RF, LR, and SVM) for forecasting the yield 
of a rural photovoltaic installation was evaluated in this study. 
An almost complete hourly dataset from 2020 and 2021 was 
used and divided into training/validation and testing datasets. 
Five combinations of the input features (solar radiation, 
ambient temperature, wind speed, hour of the day, and month 
of the year) were evaluated.  

During the 5-fold cross-validation step the ANN achieved 
the highest R2 (0.995), closely followed by RF, kNN, and DT 
(0.994). LR and SVM returned a lower coefficient of 
determination (0.985 and 9.984, respectively), though it is not 
significantly lower. During the testing stage, the worst results 
were achieved with solar radiation as the only feature, and the 

best results with solar radiation, ambient temperature, wind 
speed, and hour of the day. In all cases, the ANN model had 
the highest performance in terms of R2, MAE, RMSE, and 
NZMAE, though once again it was very closely followed by 
kNN, DT, and RF.  

The obtained results allow us to conclude that when a PV 
installation is located in a rural or ruruban area, which is 
characterized by a lack of significant shadings influencing its 
operation: 

- the optimal combination of features for forecasting the 
output power is solar radiation, ambient temperature, 
wind speed, and hour of the day; 

- the optimal models are ANN, kNN, DT, and RF; 

- in case of limited availability of meteorological data, it 
is acceptable (in terms of forecasting errors) to use solar 
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radiation and ambient temperature or only solar 
radiation data as features. 

The results obtained in this study could be useful to energy 
experts and farm owners, who are trying to maximize their 
profit and added value. However, it should not be forgotten 
that with such an approach the models also need reliable input 
data, such as solar radiation, ambient temperature, and wind 
speed. Therefore, it is also important to investigate the 
influence of the forecasted feature errors on the precision of the 
trained models, i.e. if a certain error is added to the 
meteorological data, what absolute and relative difference will 
it create. Moreover, in the present paper, we accepted that the 
PV installation produces only active power, which is not 
always the case. The presence of reactive consumers in the 
industry might be a significant problem when PV installations 
produce only active power and require a thorough 
investigation. The abovementioned problems were not 
addressed in this study and are an object for future research. 
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