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Abstract—With the rapid development of the Internet of 

Things, the security issues of its network environment have 

gradually attracted attention. To enable faster and more accurate 

identification and detection of malicious traffic attacks in the 

Internet of Things, an optimized malicious traffic detection 

algorithm based on fusion of temporal and spatial features is 

proposed. This method improves the feature extraction 

performance of traffic data and increases the accuracy of traffic 

detection. The test results showed that the comprehensive 

performance of the fusion algorithm was superior to the other 

four algorithms used for comparison. On the KDD99-CUP 

dataset, the F1 of the feature fusion algorithm reached 93.16%, 

while the F1 of algorithms 1-4 were 81.36%, 67.89%, 90.56%, 

and 92.24%, respectively. On the test set, 182 traffic samples 

were accurately identified, including 139 correctly identified 

malicious traffic and 43 correctly identified normal traffic, with 

recognition accuracy of 98.73% and 97.65%, respectively. 

Experimental results revealed that the use of fused feature 

extraction in traffic detection systems could improve detection 

efficiency and accuracy, providing a safer and more reliable 

guarantee for the interaction process of the Internet of Things 

network, and safeguarding the rapid development and 

application of the Internet of Things. 
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I. INTRODUCTION 

With the rapid development of the Internet, the Internet of 
Things (IoT) has also been widely used in a series of 
intelligent building systems such as smart cities, smart offices 
and smart homes [1-2]. However, because some IoT devices 
are directly exposed to the Internet, they face more security 
problems than other network interaction methods [3]. IoT 
based network attacks may affect communication quality, and 
even cause signal loss, network paralysis, and other 
phenomena, seriously threatening users' privacy and security 
[4]. For traditional anomaly traffic detection techniques, due 
to the concealment and complexity of existing IoT network 
attacks, and the fact that traffic attacks exhibit different 
characteristics with different network environments, there are 
problems with imbalanced traffic datasets and difficult feature 
extraction [5]. These issues have increased the difficulty of 
designing malicious traffic identification algorithms. In 
current traffic detection systems, the main focus is on 
identifying and analyzing a single type of traffic to achieve 
abnormal alerts. However, due to the different types and 
characteristics of attacks, and some attacks being of unknown 

types, the accuracy of traffic detection systems is not ideal, 
making it difficult to predict unknown attacks. To solve the 
above problems, a traffic detection algorithm based on 
temporal feature fusion is proposed, and malicious traffic 
analysis and detection in the IoT are completed on this basis. 

II. RELATED WORKS 

In today's era of rapid development of information 
technology, network traffic analysis has become an important 
means to ensure network security, optimize network 
performance, and improve user experience. Furthermore, with 
the explosion of Internet users and the popularization of 
various network applications, the complexity and diversity of 
network traffic are also increasing. Therefore, in-depth 
analysis of the characteristics and detection methods of 
malicious traffic is of great importance for network 
management and security protection. Yang H et al. proposed a 
fast strategy hill-climbing learning method to optimize the 
power allocation for malicious traffic detection in intelligent 
malicious traffic controllers. Therefore, the malicious traffic 
detection system could quickly achieve the optimal strategy 
when the malicious traffic model was unknown. The test 
results showed that the transmission rate of this malicious 
traffic detection method increased by 12.28% compared to the 
original, which made the malicious traffic detection system 
perform better [6]. Salem A et al. proposed an adaptive 
adaptation scheme that could make the detection of malicious 
traffic techniques constructive for legitimate users and 
destructive for eavesdroppers. Based on the average symbol 
error probability in different scenarios, this method used a 
finite rate to represent the overall retention rate. Malicious 
traffic detection technology could achieve an additional gain 
of 17dB in transmission signal-to-noise ratio and a gain of 
10dB in total secrecy rate [7]. Su N et al. used joint design to 
transmit and receive beamforming and destructive malicious 
traffic techniques to weaken the eavesdropping signals of 
eavesdropping radar in wireless networks. The experimental 
results showed that this technology performed better than dual 
function radar network technology in terms of secure 
transmission [8]. Many radars and networks work in a 
coordinated manner, but Du Z et al. proposed using a non 
coordinated approach to study the impact of malicious 
network traffic on radar target detection. The study solved the 
maximum likelihood estimation in homogeneous clutter to 
optimize detection performance. Through verification, it was 
found that the improved target detection system showed 
significant improvement in performance in network 
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environments with high levels of malicious traffic [9]. 
Hosseinali J et al. proposed an improved adaptive algorithm to 
address the issue of malicious attacks on high-power ranging 
devices. The algorithm optimized power allocation for each 
reliable subcarrier, while subcarriers subjected to highly 
malicious traffic were deactivated. This adaptive technology 
could reduce the bit error rate to 10-7 under malicious traffic 
in high-power ranging devices, improving the reliability of 
network systems [10]. In the scenario of multi-user and 
multi-transceiver simultaneous network, to eliminate 
malicious traffic on reconfigurable intelligent surfaces, the 
Jiang T team proposed an alternating projection algorithm, 
which took the solution obtained by the algorithm approaching 
0 as the initial value for subsequent optimization, and changed 
the phase of the reconfigurable surface components 
accordingly. Tests showed that the improved algorithm could 
detect malicious traffic on reconfigurable surfaces within the 
experimental range [11]. 

The malicious traffic detection performance of network 
systems is largely influenced by algorithms. Some scholars 
have conducted more in-depth research and experiments on 
the optimization of deep learning algorithms. Lin J et al. 
proposed an improved genetic algorithm based on four 
quadrant photodetectors to improve the accuracy and stability 
of visible light positioning. This algorithm enabled the 
detector to locate the measurement point based on the received 
illuminance value. The average positioning error of the 
positioning system using optimization algorithms was 
4.023cm [12]. Mahmoud B et al. proposed a hybrid model of 
deep learning algorithm and tabu search to achieve balanced 
coverage of all targets in sensor networks. The optimized 
algorithm required the use of multiple sensors for coverage. 
Several experiments showed that this fusion algorithm 
outperformed algorithms based on automatic learning [13]. To 
extend the lifespan of wireless sensor networks, Rajan L et al. 
proposed a new optimization algorithm based on the grey wolf 
algorithm using Na deep learning algorithm, which selected 
the optimal cluster head under constraints such as separation 
distance and energy consumption. Compared to the classical 
grey wolf algorithm and particle swarm optimization 
algorithm, the improved grey wolf algorithm improved overall 
performance by 28.6% and 31.5%, respectively [14]. Shaikh 
M et al. proposed using optimized deep learning algorithms to 
achieve higher accuracy in the calculation of parameters for 
overhead transmission lines. This optimization algorithm was 

applied to single-phase and three-phase transmission lines, 
achieving optimal solutions for the vast majority of 
benchmark functions. The accuracy and computational 
efficiency of the optimized deep learning algorithm had been 
improved [15]. 

In conclusion, despite the numerous inferences and 
experiments conducted by scholars on optimizing detection 
algorithms and enhancing traffic detection performance, the 
intricate neural network structure inherent to deep learning 
algorithms results in a slow convergence speed and a notable 
decline in detection accuracy. To further enhance the 
performance of malicious traffic detection, an optimized 
malicious traffic detection algorithm based on the fusion of 
temporal and spatial features is proposed. This is achieved 
through the use of a mixed sampling and variational 
autoencoder data augmentation algorithm, which enables more 
intelligent and efficient detection results in complex 
environments. 

III. METHODS AND MATERIALS 

A. Flow Detection Algorithm Integrating Temporal and 

Spatial Features 

When faced with malicious traffic attacks, intrusion 
detection systems can use detection algorithms that 
continuously learn traffic information characteristics to 
identify them. When attacked, the detection system can 
determine the traffic attack behavior [16]. The process of 
traffic detection mainly consists of network status detection 
and traffic detection. The former is to detect the operating 
status of network and host and monitor the fluctuation of 
network system in real time, while the latter is to extract the 
characteristics of traffic data and complete the detection and 
analysis. The characteristics of traffic data can be analyzed 
from both temporal and spatial dimensions. For the temporal 
dimension, there is correlation between historical traffic data, 
while for the spatial dimension, there is local spatial 
correlation between traffic characteristics [17]. By integrating 
these two different types of features, traffic detection can 
simultaneously capture feature information from different 
dimensions, identify different traffic activities, and make the 
results of detection algorithms more accurate and reliable. The 
architecture of the data traffic detection system is depicted in 
Fig. 1. 
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Fig. 1. The architecture of data traffic detection system. 
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In Fig. 1, the system mainly includes a data collection and 
analysis module, a local traffic processing module, and a cloud 
network traffic detection module. A traffic detection method 

based on temporal and spatial feature fusion has been 
proposed, and the main detection process is shown in Fig. 2. 
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Fig. 2. Main process of detection. 

Probability can be mainly divided into parametric 
estimation and nonparametric estimation, mainly used to 
estimate the potential probability density function of target 
information that is invisible [18]. The condition for parameter 
estimation is that the target information needs to follow a 
probability distribution and its parameters are unknown, so the 
corresponding parameters need to be solved through known 
data. Non parameter estimation requires the target information 
to have a probability density function, which is solved through 
observation data. Although it is mainly data-driven and does 
not require a probability distribution, its computational 
complexity is relatively high. If the one-dimensional random 

variable is the probability density function x  of ( )f x  can 

be represented by Eq. (1). 

   
0

( ) lim
2

  


h

F x h F x h
f x

h
      (1) 

In Eq. (1), x  represents a one-dimensional random 

variable, h  is the bandwidth width parameter,  F x  is the 

probability distribution function, and the definition of  F x  

can be seen in Eq. (2). 

  ( ) F x P X x        (2) 

Frequency estimation probability can be applied to the 
dataset. If a one-dimensional random variable has n  samples 

 1 2 3, , ,...., nx x x x , its probability distribution function  F̂ x  

can also be expressed as Eq. (3). 

 ˆ 
k

F x
n

         (3) 

In Eq. (3), k represents the number of samples smaller 

than x , and the number of samples is set as m , thus 
obtaining the estimated equation for the probability density 

function  f̂ x  as shown in Eq. (4). 

 ˆ
2


m

f x
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        (4) 

If a uniformly distributed function is defined as ( )K x , the 

estimation of the probability density function can also be 
called a kernel function, which can be represented by Eq. (5). 
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Multidimensional kernel density estimation can be 
obtained through univariate kernel density estimation. If a 
p -dimensional continuous random variable x  is set, its 

multidimensional kernel density estimation equation can be 
represented by Eq. (6). 
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Among them, K  is a multidimensional kernel function, 
and H  is a symmetric bandwidth matrix. Analysis Eq. (6) 
shows that the influencing factors of kernel density estimation 
are mainly determined by the selection of kernel function K  

and the size of bandwidth width h . When the cloud receives 

data information, it needs to first enhance the data before 
completing data feature extraction and fusion. The process 
flow of the data collection and analysis module can be seen in 
Fig. 3. 
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Fig. 3. Data collection and analysis module process. 

The extracted and fused feature information will be used 
for known attack detection. If the detection result is abnormal 
traffic, further determination of the specific type of abnormal 
attack is required. If it is detected as normal traffic, further 
unknown attack detection will be carried out to prevent the 
IoT from being attacked by unknown traffic. The encoder is 
mainly composed of an input layer and a fully connected layer. 
Set the n  dimensional feature vector received by the system 
as x , compress x  to obtain a low dimensional latent space 
z  of m  dimension, set the neural network parameters of the 

encoder as f, and the compression function as ()h , then the 

encoder can be expressed as Eq. (7). 

 ,z h x         (7) 

The decoder consists of a fully connected layer and an 
output layer. Nonlinear computation can be used to reconstruct 
the low dimensional representation of m  dimensional latent 

space as z  into n  as the eigenvector x . If the x̂  neural 

network parameters of the decoder are set to   and the 

reconstruction function is set to ()g , the decoder can be 

expressed as Eq. (8). 

ˆ ( , )x g z         (8) 

The autoencoder compresses the input by using the 
encoder to obtain a low dimensional latent space, which 
preserves the effective features of the input data and enables 
the decoder to complete the reconstruction process of the 
original input data. The optimization objective can be 
represented by Eq. (9). 

,

1

ˆ, arg min ( , )  


 
n
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In Eq. (9), ix  is the original feature vector input to the 

autoencoder, and ˆ
ix  is the reconstructed feature vector 

output by the autoencoder. The function for measuring vector 

differences is set as ()L , which can generally be measured 

using the mean square loss function. The loss function can be 
expressed as Eq. (10). 

1
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The compression network is represented by z , and the 
reconstruction loss of the input layer u  and output layer v  
can be used as a low dimensional representation of the input 
features, as expressed in Eq. (11). 

 

 

_ ,cos _
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u educlidean loss ine loss

v z u
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When extracting traffic features, the extraction process can 
be completed through time and space. Temporal feature 
extraction mainly targets multiple traffic data, while spatial 
feature extraction targets individual traffic data, and there are 
significant differences between these two extraction methods 
[19]. A feature fusion encoder is proposed by studying the 
fusion extraction method of temporal and spatial features. It is 
mainly divided into bidirectional attention temporal encoder 
and asymmetric multi-scale spatial encoder. The former is 
mainly responsible for extracting temporal features from 
spatial features, while the latter is responsible for extracting 
spatial features from raw traffic data. Through two different 
extraction methods, different dimensional fusion effects are 
achieved. The structure of the feature fusion encoder can be 
seen in Fig. 4. 
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Fig. 4. Structure of fusion encoder. 

B. Analysis and Detection of Malicious Traffic in the IoT 

For malicious traffic anomaly detection, the balance 
between the number of normal and abnormal data in the 
dataset cannot be achieved, so its performance cannot be 
measured solely by accuracy. Accuracy and recall are two 
important measurement indicators [20]. If the accuracy is set 
to Acc , its calculation can be represented by Eq. (12). 




  

TP TN
Acc

FN TN FP TP
       (12) 

In Eq. (7), TP  represents the number of normal traffic 

samples detected by the detection model as normal, and TN  

represents the number of abnormal traffic samples detected by 
the model as abnormal. FN  indicates the total number of 

samples is represented by the number of normal abnormal 
traffic samples detected by the detection model, and FP  

represents the number of normal samples detected as abnormal. 
The sum of these four types of samples is the total number of 
samples. If the accuracy of the detection is Pre , the 

calculation equation is shown in Eq. (13). 

Pr 


TP
e

TP FP
        (13) 

The recall rate represents the proportion of correct 
predictions in the normal records of the predictive model. If 

Rec  is used to represent the recall rate, its expression is 

shown in Eq. (14). 

Re 


TP
c

FN TP
        (14) 

The relationship between accuracy and recall is quite 
conflicting. If the accuracy is increased by raising the 
threshold during detection, the recall rate will decrease. 
Therefore, when evaluating the performance of detection 
models, it is necessary to comprehensively evaluate the 

accuracy and recall rates for a more accurate assessment. If 

F  represents the weighted harmonic of precision and recall, 

its expression can be seen in Eq. (15). 

2

(1 )(Pr *Re )

( *Pr ) Re










e c
F
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In Eq. (15), in general, the value of   is 1. After 

determining the evaluation criteria for detection performance, 
the interaction design between the traffic detection system and 
external modules is first completed. When the traffic detection 
system is attacked, the corresponding attack behavior can be 
detected, and the message can be transmitted to other 
functional modules through alarm information [21]. The 
architecture of Dbus is client service, which is a simple and 
fast communication method that supports point-to-point 
communication and can send messages to specific processes in 
a directed manner. Research has chosen Dbus as the 
mechanism for message notification to facilitate information 
exchange between the detection system and the external 
environment. The relationship between the system and 
external modules can be seen in Fig. 5. 

After receiving relevant information, the local processing 
module completes the processing of information data, alarms 
and related records. When data information is received from 
the data acquisition module and the data analysis module, 
appropriate numerical and normalization processing of the 
feature data is required. The preprocessed information is sent 
to the cloud processing module, and after analysis and 
recognition by the cloud processing module, it is sent back to 
the local processing module [22]. The local processing module 
completes the parsing and judgment. If it is judged as normal 
traffic, it waits for the next traffic information from the data 
collection and analysis module. If it is judged as malicious 
attack traffic, a security alarm will be triggered and the traffic 
event will be sent to the corresponding module for recording. 
The process flow of the local processing module can be seen 
in Fig. 6. 
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The cloud network traffic detection module is mainly 
responsible for analyzing and judging traffic information. The 
traffic detection system can be divided into three parts: data 
collection and analysis, local processing, and cloud network 
traffic detection. The data collection and analysis module is 
mainly responsible for parsing traffic packets, attacking and 
updating traffic messages, and extracting and sending traffic 
characteristics. The collection and parsing of data packets is 

the process of parsing the data packets captured by the 
gateway and generating the specified data format. The 
statistics and updates of traffic messages involve updating 
traffic information. The process of generating traffic 
information features mainly involves transforming the parsed 
traffic into features such as address, number of packets, 
duration, port number, etc. 
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Fig. 5. Relationship between system and external modules. 
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Fig. 6. Flow chart of data local processing module. 

IV. RESULTS 

A. Performance Testing of Traffic Monitoring Algorithms 

To verify the consistency between the original traffic 
information and the generated traffic information features 
based on feature fusion detection, the experiment analyzed the 
fitting situation before and after balancing from two aspects: 
actual forwarded data packets and packet length. The feature 
probability density distribution of the dataset was shown in 
Fig. 7. 

In Fig. 7, the horizontal axis represented features, while 
the vertical axis represented the corresponding probability 
density. From Fig. 7(a), when the actual number of forwarded 
packets was less than 10, the probability density values of 

both the original data traffic and the preprocessed data traffic 
fluctuated between 0 and 0.4. When the number of forwarded 
packets was 2 and 5, the corresponding probability density 
could reach its maximum value. The probability densities of 
the original data traffic were 0.31 and 0.32, respectively, and 
the probability densities of the preprocessed generated data 
traffic were 0.38 and 0.35, respectively. In Fig. 7(b), when the 
probability density of the original data flow reached its 
maximum value of 0.45, the probability density of the 
generated data flow also reached its maximum value of 0.35. 
By observing the traffic feature distribution of the original 
data and the generated data, the feature distribution of the 
dataset was basically consistent before and after balancing. 
The data preprocessing method used in the study could ensure 
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that the data features remained consistent before and after 
processing. The experiment referred to the single class support 
vector machine detection algorithm, autoencoder detection 
algorithm, and isolated forest detection algorithm as detection 
algorithms 1-3, respectively. The feature fusion detection 
algorithm proposed in the study was trained on traffic data on 
both IoTID20 and XIoTID datasets. The IoTID20 dataset was 
based on smart home environments and mainly collected data 
from terminal IoT devices corresponding to smart speakers, 
smartphones, and smart cameras. In simulated attack scenarios, 
smart speakers and smart cameras were targeted. This dataset 
contained 83 rich features, with over 70% of the features 
scoring over 0.5, which could improve the classification 
ability of detection algorithms and techniques and reduce 
training time. The XIoTID dataset contained 19 categories, 
with the majority accounting for 55.24% and the minority 
accounting for over 0.01%, respectively. From this, the 
comparison of training effects of different algorithms can be 
obtained as shown in Fig. 8. 

On the IoTID20 dataset in Fig. 8(a), as the number of 
iterations increases, the accuracy of the four detection 
algorithms gradually improved and eventually stabilized. The 
feature fusion detection algorithm proposed in the study 
showed an increase in accuracy from the initial 77% to 98.3% 
after the 40th iteration. At this point, the accuracy of the 
compared detection algorithms 1, 2, and 3 was 95.7%, 94.2%, 
and 88.2%, respectively. After increasing the number of 
iterations to 50, the accuracy of the four algorithms remained 
basically unchanged. On the XIoTID dataset in Fig. 8(b), the 
accuracy of the four algorithms reached stability after the 45th 
iteration. At the 60th iteration, the accuracy of the feature 
fusion algorithm was the highest, at 84.2%. At this time, the 
accuracy of detection algorithms 1-3 were 79.5%, 76.8%, and 

82.6%, respectively. The aforementioned outcomes may be 
attributed to the proposed spatial and temporal feature fusion 
methodology, which enabled the comprehensive integration of 
the original feature map and the deep feature map, and 
facilitates a thorough examination of the interrelationship 
between historical data from both temporal and spatial 
perspectives. This approach enhanced the informativity of the 
extracted feature data and markedly improved the detection 
performance. To conduct a more accurate analysis of the 
detection performance of feature fusion algorithms, the deep 
autoencoder algorithm was added to the existing comparison 
algorithms as comparison Algorithm 4 in the experiment. The 
accuracy, precision, recall, and F1 of each algorithm were 
recorded and analyzed. The comparison results could be seen 
in Fig. 9. 

From Fig. 9, the comprehensive performance of the fusion 
algorithm was superior to the other four algorithms. On the 
KDD99-CUP dataset in Fig. 9(a), the F1 of the feature fusion 
algorithm could reach 93.16%, while the F1 of algorithms 1-4 
were 81.36%, 67.89%, 90.56%, and 92.24%, respectively. On 
the MTA-KDD dataset in Fig. 9(b), the accuracy of the fusion 
algorithm was 92.91%, the recall rate was 88.12%, and the F1 
was 91.54%, still higher than other algorithms. In Fig. 9(c), 
Algorithm 2 had the lowest F1 on the N-BaIoT dataset, at 
65.02%, while the feature fusion algorithm had the highest F1, 
at 98.21%. On the MedBIoT dataset in Fig. 9(d), the recall rate 
of the feature fusion algorithm was 95.08%, and the F1 was 
97.33%, which was the highest among the five algorithms. 
The above results were due to the tendency of the research 
method to lead to precise resolution of feature roots in 
low-dimensional feature spaces, thereby optimizing the fitting 
effect of the data distribution. 
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Fig. 7. Distribution of feature probability density in the dataset. 
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Fig. 8. Comparison of training effects of different algorithms. 
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Fig. 9. Performance comparison of various algorithms. 
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B. IoT Malicious Traffic Detection Experiment 

In the experiment on accuracy and model training time, the 
training steps were set to 600, and the automatic encoding 
detection model and single classification detection model were 
selected as controls. The comparison of accuracy and training 
time of the three models can be seen in Fig. 10. 

In Fig. 10(a), when the training steps of the three models 
were less than 60, the difference in accuracy among the three 
models was small, and the accuracy of the feature fusion 
detection model was also below 0.8. As the number of training 
steps gradually increased, the accuracy of the three models 
begun to show significant differences. The detection accuracy 
of the feature fusion detection model proposed in the study 
was significantly higher than that of the other two models. 
When the training steps were 500, the accuracy of the feature 

fusion model reached 0.98, while at this time, the accuracy of 
the automatic encoding detection model and the single 
classification detection model were 0.91 and 0.84, respectively. 
In Fig. 10(b), there was not much difference in training time 
among the three models. The training time of the feature 
fusion detection model was slightly shorter than the other two 
detection models. After calculation, it was known that the 
average training time of the feature fusion detection model 
was reduced by 14.3% compared to the automatic encoding 
detection model and 17.43% compared to the single 
classification detection model. To verify the detection time of 
the model in the face of traffic attacks, the control model 
remained unchanged and the traffic quantity was divided into 
small-scale and large-scale tests. The comparison of traffic 
detection time for the three models was shown in Fig. 11. 
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Fig. 10. Comparison of accuracy and training time. 
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Fig. 11. Comparison of traffic detection time for various models. 

In Fig. 11(a), when the number of attack traffic was small, 
the average detection time of the feature fusion detection 
model was relatively stable, and slowly increased with the 
increase of attack traffic. During the process of increasing the 
number of attack traffic from 10 to 60, the average detection 
time fluctuated between 2ms and 2.3ms. The growth rate of 
autoencoder detection models was relatively large, with the 
average detection time increasing from the initial 2.1ms to 
7.8ms as the number of attack traffic increases. In Fig. 11(b), 
as the number of attack traffic increased significantly, the 

average detection time of the three detection models also 
increased significantly. When the number of attack traffic was 
500, the average detection time of the feature fusion detection 
model was 12ms. When the number of attack traffic increased 
to 3000, the average detection time also increased to 23ms. At 
this time, the average detection time of the automatic encoding 
detection model and the single classification detection model 
were 43ms and 37ms, respectively. The malicious traffic 
detection time of the feature fusion detection model was 
shorter and the detection efficiency was higher than the other 
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two types of detection models. To further verify the detection 
performance of the feature fusion detection model, 400 
samples were selected for the experiment. 40% of the samples 
were used as the test model, and 60% of the samples were 
used as the training model. The analysis and recognition 
results of the fusion detection model on traffic types were 
shown in Fig. 12. 
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Fig. 12. Analysis and identification results of traffic types by fusion detection 

model. 

In Fig. 12, the probability of correctly identifying the 
traffic samples used as training models was relatively high. 
Calculations showed that the accuracy of identifying 
malicious traffic on the training set was 96.89%. On the test 
set, 182 traffic samples were accurately identified, including 
139 correctly identified malicious traffic and 43 correctly 
identified normal traffic, with recognition accuracy of 98.73% 
and 97.65%, respectively. Experimental results showed that 
both the training set for identifying attack traffic types and the 
test set for analyzing and judging traffic sample types had 
excellent performance, with high recognition rates and 
accuracy for traffic. It also proved that the detection algorithm 
that integrated temporal and spatial features could efficiently 
and reliably extract and judge traffic data features, with strong 
stability in detection and recognition. 

To scientifically validate the performance of research 
methods, the latest malicious traffic detection algorithms were 
introduced for comparative experiments, namely 
convolutional neural networks and bidirectional gated space 
recurrent units (CNN-BiGSRU) based on convolutional neural 
networks and bidirectional gated space recurrent units, 
improved k-nearest neighbor based on cost sensitivity 
(IKN-CS) based on cost sensitivity, stacking and multi feature 
fusion (SMFF) based on multiple feature fusion, and a hybrid 
model based on deep learning algorithms and tabu search 
(DLTS). From this, the performance comparison of different 
malicious traffic detection algorithms can be obtained, as 
shown in Table I. 

According to Table I, the research method had the best F1 
score, accuracy, precision, and recall results, which were 
99.2%, 99.5%, 99.6%, and 99.7%, respectively. In addition, 
the latest mainstream malicious traffic detection algorithms 
performed well, with all indicators exceeding 95%. The 
performance of the SMFF method was the worst, which may 
be due to the fact that the dataset used for testing contained 
normal and malicious traffic that were not of the same 
magnitude. However, this method was more suitable for 
detecting normal and malicious traffic of the same order of 
magnitude, but in practical application scenarios, normal and 

abnormal traffic were usually unbalanced. In summary, 
compared with mainstream methods, the research method still 
maintained excellent detection performance. 

TABLE I. PERFORMANCE COMPARISON OF DIFFERENT MALICIOUS 

TRAFFIC DETECTION ALGORITHMS 

Algorithm 
F1 

value/% 
Accuracy/% Precision/% Recall/% 

Feature fusion 

algorithm 
99.2 99.5 99.6 99.7 

DLTS 98.3 98.3 97.2 98.1 

CNN-BiGSRU 97.9 98.1 98.4 97.6 

IKN-CS 96.6 97.5 96.7 96.4 

SMFF 95.8 96.4 96.3 95.7 

V. DISCUSSION 

To solve the problem of massive IoT data being vulnerable 
to attacks, an optimized malicious traffic detection algorithm 
is studied and designed, which integrates temporal and spatial 
features and enhances algorithm performance through mixed 
sampling and variational autoencoder data. 

Tests on the IoTID20 dataset revealed that the accuracy of 
all four detection algorithms increased with the number of 
iterations and eventually stabilized. After the 40th iteration, 
the accuracy of the research algorithm increased from the 
initial 77% to 98.3%. The accuracy results of the XIoTID 
dataset were as follows, and the research method achieved the 
highest accuracy of 84.2% at the 60th iteration. Tang D et al. 
proposed a low-frequency DDOS attack detection algorithm 
based on multifeature fusion and sperm donation neural 
network, which could accurately detect DDOS attacks similar 
to normal traffic. The research results showed that fusing 
various network features into a feature map to represent the 
state of the network could effectively help improve the 
performance of the detection algorithm [23]. The above 
findings were consistent with this study due to the fact that the 
feature fusion algorithm integrally considered the correlation 
of the historical data before and after, which enriched the 
information content of the extracted feature data. 

Compared with the current state-of-the-art malicious 
traffic detection methods, the results showed that the research 
method had the best F1 score, accuracy, precision, and recall 
rate, corresponding to 99.2%, 99.5%, 99.6%, and 99.7%, 
respectively. In addition, the latest mainstream malicious 
traffic detection algorithms perform well, with all indicators 
exceeding 95%. Liu Z et al. proposed a Bayesian 
meta-learning technique for the detection of encrypted 
malicious traffic to solve the problem of small sample size. 
The experimental results showed that when the sample size of 
malicious traffic was reduced to 100, the detection accuracy of 
the research model was 96.35% [24]. The study demonstrated 
that the accuracy of 98.3% can be achieved even with a 
limited sample size through the incorporation of a data 
augmentation processing method based on mixed sampling 
and variational autoencoder. This approach could effectively 
enhance the accuracy of research methods. 

In summary, the research method can effectively improve 
the security level of IoT access devices, and ensure the 
security of information data processing and protection. 
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VI. CONCLUSION 

To improve the detection capability of traffic detection 
systems for malicious traffic and achieve real-time security 
checks on IoT devices to achieve system security protection, 
an optimized malicious traffic detection algorithm was 
proposed. This research analyzed and identified traffic data by 
integrating temporal and spatial features, and used hybrid 
sampling and variational autoencoders to improve algorithm 
performance. As a result, in both the KDD99-CUP dataset and 
the XIoTID dataset, the performance of the proposed feature 
fusion algorithm was the highest, with an F-value of 93.16% 
in the former dataset and the highest accuracy of 84.2% in the 
latter dataset. Compared with the latest algorithms, the 
research method had the best F1, accuracy, precision, and 
recall results, which were 99.2%, 99.5%, 99.6%, and 99.7%, 
respectively. It also performed well against the latest 
mainstream malicious traffic detection algorithms, with all 
metrics exceeding 95%. Experimental results showed that the 
detection accuracy and efficiency of the IoT malicious traffic 
detection model based on feature fusion are high. However, 
the study only analyzed and identified normal and abnormal 
traffic, without conducting more in-depth identification and 
classification of abnormal traffic. Future research will further 
analyze the identified abnormal traffic to distinguish the types 
of unknown traffic attacks and achieve more favorable 
warning effects. 
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