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Abstract—This paper introduces deepnetguard, an innovative 

deep learning algorithm designed to efficiently identify potential 

security threats in large-scale network traffic.deepnetguard 

achieves automated feature learning by fusing basic, statistical, 

and behavioral features through a multi-level feature extraction 

strategy, and is capable of identifying both short-time patterns 

and long-time dependencies. To adapt to the dynamic network 

environment, the algorithm introduces a dynamic weight 

adjustment mechanism that allows the model to self-optimize the 

importance of features based on real-time traffic changes. In 

addition, deepnetguard integrates auto-encoder (ae) and 

generative adversarial network (gan) technologies to not only 

detect known threats, but also recognize unknown threats. By 

applying the attention mechanism, deepnetguard enhances the 

interpretability of the model, enabling security experts to track 

and understand the key factors in the model's decision-making 

process. Experimental evaluations show that deepnetguard 

performs well on multiple public datasets, with significant 

advantages in accuracy, recall, precision, and f1 scores over 

traditional ids systems and other deep learning models, 

demonstrating its strong performance in cyber threat detection. 
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I. INTRODUCTION 

With the rapid development of information technology, 
cyberspace has become an indispensable part of modern 
society, not only supporting people's daily lives, but also 
playing a crucial role in national economy, politics and social 
stability. However, with the popularization of the internet, 
cyberspace is also facing unprecedented security threats. 
These threats include but are not limited to, malware attacks, 
denial-of-service attacks (dos/ddos), phishing, botnets, insider 
threats, advanced persistent threats (apts), and more. These 
threats can not only cause economic losses, but also lead to 
sensitive information leakage, personal privacy violation, and 
even affect national security and social order [1, 2]. 

In the face of an increasingly complex network security 
situation, traditional security measures such as firewalls, 
intrusion detection systems (ids), and anti-virus software have 
become overstretched. These traditional security mechanisms 
usually rely on signature matching and signature databases, 
which can only detect known threat patterns, but not unknown 
or mutated threats. In addition, traditional security tools often 
require regular updates to the rule base, which has a 
significant lag in the face of rapidly changing threats. To make 
matters worse, modern cyber attackers often exploit zero-day 

vulnerabilities, which are not yet publicized and thus cannot 
be protected in a timely manner [3, 4]. 

Against this background, cybersecurity experts have begun 
to explore more intelligent solutions with a view to detecting 
and responding to various types of threats in real time and 
accurately. Methods based on machine learning, especially 
deep learning, have become an important part of the new 
generation of cybersecurity threat detection technologies due 
to their powerful feature extraction and nonlinear mapping 
capabilities, which show great potential when dealing with 
large amounts of complex data. 

Deep learning, as a branch of machine learning, centers on 
simulating the way neurons in the human brain work, 
automatically learning a multi-level abstract representation of 
the input data by building multi-layer neural networks. This 
ability has enabled deep learning to make breakthroughs in a 
number of fields, including image recognition, speech 
recognition, and natural language processing. Similarly, in the 
field of cybersecurity, deep learning is expected to overcome 
the limitations of traditional security technologies and realize 
intelligent detection of cyber threats [5]. 

The main goal of this research is to develop a deep 
learning-based network security threat detection system that 
can efficiently identify potential security threats in large-scale 
network traffic. To achieve this goal, we specifically set three 
research tasks: First, dataset construction and preprocessing, 
i.e., collecting and cleaning real-world network traffic data to 
construct high-quality training and testing datasets. Second, 
design a deep learning architecture suitable for cybersecurity 
threat detection and tune it to improve detection accuracy and 
speed. Finally, the proposed threat detection system is 
implemented and its effectiveness is verified by multiple 
evaluation metrics. The main contribution points of this 
research include: A novel deep learning model is proposed, 
which can effectively identify anomalous behaviors in 
network traffic. Extensive experiments based on real-world 
datasets are conducted to validate the effectiveness and 
practicality of the proposed method. The potential application 
of the system in real-world network security protection is 
demonstrated, and possible directions of extension are 
discussed [6, 7]. 

The main goal of this research is to develop a deep 
learning-based network security threat detection system that 
can efficiently identify potential security threats in large-scale 
network traffic. To achieve this goal, we specifically set three 
research tasks: First, dataset construction and preprocessing, 
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i.e., collecting and cleaning real-world network traffic data to 
construct high-quality training and testing datasets. Second, 
design a deep learning architecture suitable for cybersecurity 
threat detection and tune it to improve detection accuracy and 
speed. Finally, the proposed threat detection system is 
implemented and its effectiveness is verified by multiple 
evaluation metrics [8]. 

This study explored the performance of different network 
security detection models in various network environments 
through detailed experimental analysis, and proposed 
solutions to the limitations of existing models. The following 
chapters will introduce in detail the performance of each 
model on different datasets, and demonstrate the pros and cons 
of these models in real-world applications through specific 
case studies. Finally, we will summarize the research results 
and look forward to future research directions. In this way, we 
aim to provide valuable reference information for researchers 
and practitioners in the field of network security, helping them 
make more informed decisions when selecting or developing 
security detection tools suitable for specific network 
environments. 

II. RELATED WORK 

A. Overview of traditional network security threat detection 

techniques 

Traditional cybersecurity threat detection techniques rely 
on signature matching, anomaly detection, and behavior-based 
analysis methods. Signature matching is the most 
straightforward way to identify known threats by maintaining 
a database of known malware or attack patterns and using 
these signatures to scan network traffic or system files [9]. 
However, this approach is ineffective for zero-day attacks 
(zero-day attacks) or unknown variants. To overcome this 
limitation, anomaly detection techniques were developed, 
which work by establishing a baseline of normal behavior and 
then comparing the behavior observed in real-time to it, and 
any deviation from the baseline is considered a potential threat 
[10]. Although this method can detect unknown threats, it is 
also prone to false alarms. 

Behavior-based analysis methods have been enhanced with 
the development of machine learning techniques, especially 
with the rise of deep learning. Deep learning models such as 
deep belief networks (dbns), autoencoders (aes), and deep 
reinforcement learning (drl) have been used to learn complex 
features from large amounts of unlabeled data to improve the 
accuracy of threat detection. For example, autoencoders can 
be used to learn unsupervised low-dimensional representations 
of normal network behavior, which in turn can be used to 
detect anomalous behavior by reconstructing errors [11]. Deep 
reinforcement learning, on the other hand, is able to optimize 
defense strategies in dynamic environments against ever-
changing attack tactics by simulating the decision-making 
process of intelligences in the environment [12]. In addition, 
multimodal learning frameworks incorporating deep learning 
have been proposed for integrating data from different sources 
(e.g., logs, traffic, emails, etc.) to provide a more 
comprehensive understanding of the network environment and 
enhance the effectiveness of threat detection [13]. By 
leveraging the powerful generalization capabilities of deep 

learning, these techniques are able to not only detect known 
threats, but also identify new types of attacks, which improves 
the overall level of protection for network security. 

B. Application of Deep Learning in Cyber Security 

Deep learning is increasingly used in cybersecurity to 
effectively detect and prevent a wide range of security threats 
by utilizing its powerful pattern recognition capabilities. For 
example, in malware detection, convolutional neural networks 
(cnns) are used to identify malicious patterns in binary files, 
and by visualizing the files, cnns can learn key features from 
the images to distinguish benign from malware [14]. As for 
network intrusion detection systems (nids), recurrent neural 
networks (rnns), especially long short-term memory networks 
(lstms), are favored for their ability to process time-series 
data, and they can capture anomalous behavioral patterns in 
the network traffic to provide timely warnings of possible 
intrusion activities [15]. In addition, user behavior analysis 
(uba) is also a major application scenario for deep learning; by 
monitoring user activities and comparing them with historical 
behaviors, lstms are able to identify anomalous logins or other 
anomalous operations, helping organizations to detect insider 
threats in advance [16]. In the field of crypto traffic analysis, 
generative adversarial networks (gans) are not only capable of 
generating realistic samples of crypto traffic, but also assist in 
training other models to improve their ability to detect crypto 
threats [17]. 

Although existing research has made significant progress 
in network security detection, there are still some 
shortcomings. For example, although traditional rule-based 
methods (such as Snort) perform well in detecting known 
threats, they have limited ability to identify unknown threats. 
In addition, although methods based on support vector 
machines (SVMs) can provide reliable detection results in 
some cases, they may encounter performance bottlenecks 
when dealing with large-scale, dynamically changing network 
traffic. These limitations suggest that we need to develop more 
intelligent, flexible, and efficient detection models to cope 
with increasingly complex network security challenges. 

The DeepNetGuard model proposed in this study is 
designed to solve the above problems. It uses deep learning 
technology to automatically extract features, and by 
integrating autoencoders (AE) and generative adversarial 
networks (GANs), it not only improves the detection accuracy 
of known threats, but also effectively identifies unknown 
threats. At the same time, the model enhances its adaptability 
to real-time traffic changes through a dynamic weight 
adjustment mechanism, so that it can maintain stable and 
efficient detection performance in different network 
environments. 

III. RESEARCH METHODOLOGY 

A. Problem Modeling 

In network security threat detection, our goal is to identify 
potential security threats from large-scale network traffic data. 
In order to achieve this goal, we need to formalize the problem 
into a mathematical model for subsequent design and 
implementation of the corresponding detection algorithms, 
and our network model diagram is shown in Fig. 1 [18, 19]. 
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First, we need to define how to represent network traffic 
data. Suppose we have a series of network traffic records, each 

of which can be represented as a vector
1 2[ , , , ]nx x x x  , 

where x i  represents the i  th feature in the traffic record. These 

features can include source ip address, destination ip address, 
protocol type (tcp, udp, etc.), packet size, timestamp, and port 
number [20]. 
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Fig. 1. Security threat detection and defense. 

Assuming that we have m  network traffic records, the 
entire dataset can be represented as a matrix

1 2[ , , , ]T

m X x x x . 

For each traffic record, we need a label iy  to indicate 

whether this record contains threats. If the record contains 

threats, then   1iy  . Otherwise   0iy  . Thus, the entire set 

of labels can be represented as a vector 1 2[ , , , ]T

my y y y

[21] . 

Our goal is to construct a classifier : {0,1}nf   that 

outputs a binary classification result of the presence or 
absence of a threat based on a given traffic record x  [22, 23]. 

To train this classifier, we need to define a loss function L  

to measure the difference between the model predictions and 
the actual labels. Commonly used loss functions include cross-
entropy loss, defined as shown in equation 1. 

( ( ; ), ) log( ( ; )) (1 )log(1 ( ; ))L f y y f y f      x x x (1) 

Where ( ; )f x  is the output probability of the classifier 

and  are the parameters of the model [24]. 

In order to find the optimal parameter *  , we need to 

minimize the average value of the loss function L  over all the 

training samples as in Eq. (2) [25]. 

*

1

1
arg min ( ( ; ), )

m

i i

i

L f y
m

 


  x         (2) 
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In addition, in order to prevent overfitting, we can also add 

the regularization term ( )R   to penalize larger parameter 

values to obtain the final objective function as shown in Eq. 

(3). Where  is the regularization intensity factor [26, 27]. 

*

1

1
arg min ( ( ; ), ) ( )

m

i i

i

L f y R
m

   


  x     (3) 

B. Modeling Ideas 

Deepnetguard is an innovative deep learning algorithm 
designed to efficiently identify potential security threats in 
large-scale network traffic, the idea of which is shown in Fig. 
2. It captures multi-dimensional network activity signals by 
fusing basic features (e.g., ip addresses and ports), statistical 
features (e.g., traffic patterns), and behavioral features (e.g., 
login attempts) through a multi-level feature extraction 
strategy. Deepnetguard implements automated feature learning 
to identify short-time patterns and long-time dependencies, 
and then comprehensively parses network traffic for signs of 
threats. In order to adapt to the dynamic network environment, 

the algorithm introduces a dynamic weight adjustment 
mechanism, which allows the model to self-optimize the 
importance of features based on real-time traffic changes, 
improving the flexibility and accuracy of detection [28, 29]. 

C. Modeling Framework 

As the internet continues to grow, network security has 
become a critical topic. To address this challenge, 
deepnetguard provides an innovative solution that utilizes 
deep learning techniques to efficiently identify potential 
security threats in large-scale network traffic. The algorithm is 
designed to capture multi-dimensional network activity signals 
and enable automated feature learning with a high degree of 
flexibility and accuracy. 

Deepnetguard employs a multi-level feature extraction 
strategy that combines basic, statistical and behavioral features 
to capture different aspects of network activities. This is 
shown in Table I [30]. 
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Fig. 2. Deepnetguard. 
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TABLE I.  SUMMARY OF NETWORK DATA ANALYSIS CHARACTERISTICS 

Feature category Descriptive Typical example 

Basic features 
Includes basic information about network communication, usually extracted directly from the 
packet header. 

- ip address  

- port number  
- protocol type (tcp, udp, 

icmp, etc.) 

Statistical 

characteristic 

Characteristics obtained by statistical analysis of network traffic reflecting communication patterns 

and traffic characteristics. 

- packet size distribution  

- packet delivery frequency  
- session duration 

Behavioral 

characteristics 

Reflects patterns of user behavior in network activities involving specific application layer 
interactions. 

- number of login attempts  

- document access modalities  

- request type (get, post) 

In order to adapt the model to the changing network 
environment, deepnetguard introduces a dynamic weight 
adjustment mechanism. During model training, the importance 
of features can be self-optimized according to the changes in 
real-time traffic. This adjustment is realized by introducing a 

learnable weight matrix dynW  as shown in Eq. (4) 

adjusted dyn combined F W F                     (4) 

Among them, combinedF  is the integrated feature vector 

after integrating the extracted features from cnn and lstm, 
which is a weight matrix dynamically adjusted according to 
the training data. 

Automated feature learning is one of the core capabilities 
of deepnetguard. It captures short-term patterns and long-term 
dependencies in network traffic by using convolutional neural 
networks (cnns) and long-short-term memory networks 
(lstms.) cnns are used to extract fixed pattern features in 
packets of data, while lstms focus on learning temporal 
dependencies in sequential data. 

For cnn feature extraction, define the convolution kernel

cnnW  and the bias term cnnb  , and the convolution operation 

can be expressed as Eq. (5). 

( * )cnn cnn base cnnf F W x b                     (5) 

Where f  is usually a nonlinear activation function such as 

relu. The state update equation for lstm is shown in Eq. (6)-
(10). 

1( )t xi t hi t ii x h b   W W                    (6) 

1( )t xf t hf t ff x h b   W W                (7) 

1 1tanh( )t t t t xc t hc t cc f c i x h b      W W        (8) 

1( )t xo t ho t oo x h b   W W                 (9) 

tanh( )t t th o c                                   (10) 

Deepnetguard integrates auto-encoder (ae) and generative 
adversarial network (gan) techniques to detect known and 

unknown threats. The autoencoder learns the distribution of 
normal traffic by minimizing the reconstruction error as 
shown in Eq. (11). 

( )
( ) 2

1

1
| | ||

m i
i

adjusted

i

E
m 

  F F                     (11) 

Where F  is the reconstructed feature vector. Anomalous 

traffic is considered to exist when the reconstruction error 
exceeds a certain threshold. 

Gan discovers potential security threats by adversarial 

training of a generator G  and a discriminator D . The 

generator tries to generate realistic network traffic samples, 
while the discriminator tries to distinguish real traffic from 
generated traffic. 

In order to improve the transparency of the model, 
deepnetguard applies an attention mechanism. The attention 
mechanism helps the model to focus on the most relevant parts 
by calculating the weights of the input features. The attention 
weight  is calculated as shown in Eq. (12). 

 ( tanh( ))T

att adjusted attsoftmax  a W F b (12) 

Where a  is the learnable vector, and attW  and attb  are 

the weights and biases of the attention layer. The attention 
weighting feature can be expressed as Eq. (13). 

 att adjusted F F (13) 

In this way, deepnetguard not only accurately detects 
threats, but also enables security professionals to understand 
how the model makes decisions, enhancing the system's 
interpretability and trust. 

D. Interpretability 

Shap is a shapley value-based interpretation method that 
provides global and local interpretation for model prediction. 
In deepnetguard, shap is mainly used in the following ways: 

Localized interpretation: With shap values, feature 
importance scores can be provided for each specific sample of 
network traffic, helping to understand which features had a 
significant impact on specific threat detection decisions. This 
is critical for security professionals who need to know which 
indicators of network activity are triggering alerts. 
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Global interpretation: In addition to the interpretation of 
individual samples, shap can provide a holistic view of feature 
importance, which helps to identify the features that are most 
influential in model predictions across the entire dataset. This 
global view aids in feature engineering and model 
optimization. 

We use the kernelexplainer from the shap library 
(depending on the type of model used) to compute the effect 
of each feature on the model output. For a given input x  , the 
shap value can be defined as in Eq. (14) 

{ }

| | !(| | | | 1)!
[ [ ( ) | ( )] [ ( )]]

| | !
i S S

S F i

S F S
E f X do X x E f X

F




 
  

‚

(14) 

Where F  is the set of features, S  is the subset of features, 

and
i  is the shap value of the feature i . The shap value 

indicates the magnitude of the contribution of each feature to 
the prediction result of a particular sample. 

Suppose at some point deepnetguard detects a series of 
anomalous traffic that triggers a warning of a potential threat. 
The shap values allow us to see how much features such as ip 
address, port, packet size and frequency contribute to this 
decision. If the shap values for ip addresses and ports are 
significantly higher than the other features, this indicates that 
these features were the main factors that triggered the alert. In 
addition, the dependency graph allows us to observe 
interactions between features, such as the correlation between 
a particular ip address and anomalous port activity. 

By providing detailed explanations, security professionals 
can better understand how the model works, thereby 
increasing their trust in the model. Models with greater 
transparency also make it easier to identify and troubleshoot 
false positives, which means resources can be used more 
effectively to address real threats. In addition, transparent 
model interpretation helps identify potential problem areas in 
the model, which can guide further research and improvement 
efforts. Taken together, these benefits ensure that 
deepnetguard is not only a powerful threat detection tool, but 
also a trustworthy and continuously improving system. 

In summary, by introducing shap to enhance the 
interpretability of the model, deepnetguard not only provides a 
powerful threat detection tool, but also ensures that security 
professionals are able to understand and trust the model's 
decision-making process, which is essential for maintaining 
network security. 

IV. EXPERIMENTAL DESIGN 

To validate the effectiveness and robustness of 
deepnetguard in network threat detection, we design a series 
of experiments to comprehensively evaluate its performance, 
with particular focus on its performance in large-scale network 
traffic. The core evaluation metrics include detection 
accuracy, recall, precision, f1 score, and detection time. 
Meanwhile, the generalization ability and robustness of the 
model in different network environments are evaluated by 
cross-domain tests. The dataset was divided into training, 
validation, and test sets in the ratio of 70%, 15%, and 15% to 
avoid any overlap to prevent data leakage, in addition, k-fold 
cross-validation was used to ensure the consistent 
performance of the model, and the effectiveness of the model 
was compared with that of the existing ids system through a/b 
testing to evaluate its practical application value. 

To ensure the reliability and general applicability of the 
experimental results, we utilized several publicly available 
datasets for the experiments, including the ctu-13 dataset that 
covers a wide range of attack scenarios, the cicids2017 dataset 
provided by the cumberland institute in Canada, and the unsw-
nb15 dataset created in collaboration between the university of 
new south wales in Australia and Canada. Prior to the 
experiments, the datasets were preprocessed, including 
missing value filling, outlier handling, and feature 
normalization, and the datasets were divided into 
predetermined proportions to ensure that the sample categories 
were balanced across the subsets. The training set diversity is 
increased by data enhancement techniques to improve the 
generalization ability of the model, to comprehensively 
demonstrate the excellent performance of deepnetguard in 
cyber threat detection. 

V. RESULTS 

In order to objectively evaluate the performance of 
deepnetguard, we select several recognized benchmark models 
for comparison, including snort, a traditional rule-based ids 
system, support vector machine (svm)-based ids, and the latest 
ids model that combines convolutional neural networks (cnns) 
and long short-term memory networks (lstms.) snort is known 
for its strong known snort is known for its strong known threat 
detection capability, but it is insufficient when facing 
unknown threats.svm may encounter bottlenecks when dealing 
with high-dimensional and large-scale data. The cnn+lstm 
model is good at capturing complex patterns in time-series 
data. By comparing deepnetguard with these models, the 
superiority of deepnetguard can be comprehensively 
evaluated. 
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Fig. 3. Model performance comparison - detection accuracy. 

In Fig. 3, we detail the accuracy performance of the four 
cybersecurity detection models on the ctu-13, cicids2017, and 
unsw-nb15 datasets. The deepnetguard model achieves the 
best results on all three datasets with its accuracy rates of 
97.5%, 96.3%, and 98.2%, showing its the cnn+lstm model 
follows with accuracy rates of 96.8%, 95.9%, and 97.1%, 
proving the potential of deep learning technology in the field 

of cybersecurity. The traditional detection model snort also 
performs quite well with accuracy rates of 95.0%, 94.1% and 
93.5%, showing its stable application value. In contrast, the 
svm-based model has slightly lower accuracy rates of 93.2%, 
91.5% and 92.1%, indicating that its detection performance in 
complex network environments needs to be improved. 

 

Fig. 4. Comparison of model performance - recall rate. 

Based on the data in Fig. 4, we can see the performance of 
the four models in terms of recall. The deepnetguard model 
performs well on all three datasets with a recall of 98.0%, 
97.2%, and 98.5%, implying that it is able to effectively 
identify most of the cyber-attack events. The cnn+lstm model 
has a recall of 97.3%, 96.0%, and 97.6%, again showing its 

effectiveness in capturing cyber threats. The snort model has 
recall rates of 94.5%, 93.2% and 92.8%, indicating that it is 
able to cover the attack events well. The svm-based model, on 
the other hand, has the lowest recall rates of 92.0%, 90.5% 
and 91.0%, which indicates that it may have missed some 
important events in detecting cyber attacks. 
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Fig. 5. Model performance comparison – accuracy. 

Fig. 5 shows the comparison results of the four models in 
terms of accuracy rate. The deepnetguard model tops the list 
with accuracy rates of 97.3%, 96.1%, and 97.8%, indicating 
its high accuracy in the detection process. The cnn+lstm 
model also performs well, with accuracy rates of 97.0%, 
96.0%, and 97.4%, showing its good detection capability. The 

accuracy rates of the snort model are 95.5%, 94.3% and 
93.9%, indicating its advantage in avoiding false alarms. The 
accuracy rates of svm-based model are 93.5%, 91.8% and 
92.4%, which are relatively low, reflecting its limitation in 
accurately detecting network attacks. 

TABLE II.  MODEL PERFORMANCE COMPARISON - F1 SCORES 

Mould Ctu-13 f1 score Cicids 2017 f1 score Unsw-nb15 f1 score 

Deepnetguard 97.8% 96.7% 98.0% 

Snort 95.2% 93.6% 93.1% 

Svm-based 92.8% 91.0% 91.7% 

Cnn+lstm 97.1% 95.9% 97.5% 

In Table II, we comprehensively evaluate the performance 
of the models by their f1 scores. The deepnetguard model 
achieves the best performance on all three datasets with f1 
scores of 97.8%, 96.7%, and 98.0%, showing a good balance 
between accuracy and recall. The f1 scores of the cnn+lstm 

model are 97.1%, 95.9%, and 97.5%, again demonstrating its 
excellent overall performance. The f1 scores for the snort 
model are 95.2%, 93.6% and 93.1%, showing its stable but not 
optimal performance. The svm-based model has the lowest f1 
scores of 92.8%, 91.0% and 91.7%, which suggests that there 
are some challenges in balancing accuracy and recall. 

TABLE III.  MODEL PERFORMANCE COMPARISON - DETECTION TIME 

Mould Ctu-13 detection time (ms) Cicids2017 detection time (ms) Unsw-nb15 detection time (ms) 

Deepnetguard 2.5 2.7 2.6 

Snort 1.2 1.3 1.3 

Svm-based 3.0 3.2 3.1 

Cnn+lstm 2.8 3.0 2.9 

Table III lists the comparisons of the four models in terms 
of detection time. The detection times of deepnetguard model 
are 2.5ms, 2.7ms and 2.6ms, showing its efficient detection 
ability. The detection times of cnn+lstm model are 2.8ms, 
3.0ms and 2.9ms, which are slightly higher than deepnetguard, 

but still in the fast response range. The snort model has the 
shortest detection time of 1.2ms, 1.3ms and 1.3ms, proving its 
advantage in real-time detection. The svm-based model, on the 
other hand, has the longest detection time of 3.0ms, 3.2ms and 
3.1ms, which may limit its application in real-time network 
monitoring. 

88.00%

89.00%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

DeepNetGuard Snort SVM-based CNN+LSTM

CTU-13 Accuracy CICIDS2017 Accuracy Rate UNSW-NB15 Accuracy



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

677 | P a g e  

www.ijacsa.thesai.org 

TABLE IV.  MODEL PERFORMANCE COMPARISON - CROSS DOMAIN TESTING 

Mould 
Ctu-13 to cicids2017 declining accuracy 

rate 

Cicids2017 to unsw-nb15 declining accuracy 

rates 

Unsw-nb15 to ctu-13 decrease in 

accuracy 

Deepnetguard 1.2% 1.9% 0.7% 

Snort 1.5% 2.3% 1.3% 

Svm-based 2.5% 3.0% 2.1% 

Cnn+lstm 1.5% 2.2% 1.0% 

Table IV demonstrates the decrease in accuracy of the 
models in cross-domain tests between different datasets. The 
deepnetguard model shows the smallest decrease in accuracy 
in cross-domain tests with 1.2%, 1.9% and 0.7%, indicating its 
good generalization ability. The cnn+lstm model's accuracy 
decreases with 1.5%, 2.2% and 1.0%, which also shows its 
robustness on different datasets. The accuracy of the snort 
model decreases to 1.5%, 2.3%, and 1.3%, indicating its fair 
performance in cross-domain detection. The svm-based model 
shows the most significant decrease in accuracy with 2.5%, 

3.0%, and 2.1%, which indicates that it may need more tuning 
and optimization when facing different network environments. 

A. Case Studies 

Case 1: Intra-enterprise network environment 

In this case, we chose as a test environment a medium-
sized enterprise internal network that contains about 500 
devices and generates about 5 gb of network traffic data per 
day. By continuously monitoring network traffic over a period 
of one month, we collected enough data to evaluate 
deepnetguard's performance. 

TABLE V.  ENTERPRISE INTERNAL NETWORK ENVIRONMENT TESTING PERFORMANCE 

Mould Accuracy Recall rate Accuracy F1 score Detection time (ms) 

Deepnetguard 97.0% 98.1% 97.5% 97.8% 2.4 

Snort 94.5% 93.5% 94.8% 94.1% 1.3 

Svm-based 92.0% 91.5% 92.5% 92.0% 3.0 

Cnn+lstm 96.5% 97.0% 96.8% 96.9% 2.8 

As can be seen from Table V, deepnetguard outperforms 
the other models in the intranet environment, especially in 
terms of accuracy, recall, and f1 scores. Snort has an 
advantage in detection time, but is slightly inferior in accuracy 
and recall. 

Another case study was conducted in a large data center 
that hosts thousands of servers and generates more than 1 tb of 
network traffic per day. Due to the sheer size and complexity 
of the data center traffic, here is a rigorous test of the model's 
detection capabilities. 

TABLE VI.  DATA CENTER NETWORK ENVIRONMENT TESTING PERFORMANCE 

Mould Accuracy Recall rate Accuracy F1 score Detection time (ms) 

Deepnetguard 98.2% 98.5% 98.3% 98.4% 2.6 

Snort 93.0% 92.5% 93.5% 93.0% 1.5 

Svm-based 91.0% 90.5% 91.5% 91.0% 3.2 

Cnn+lstm 97.5% 97.8% 97.6% 97.7% 3.0 

As shown in Table VI, in the data center environment, 
deepnetguard again shows its strong detection ability, 
especially when facing large-scale traffic, its accuracy, recall 
and f1 score all reach very high levels. Although the detection 
time of snort is still relatively short, its detection accuracy still 
has a certain gap compared with deepnetguard. 

In the field of network security detection, the performance 
differences of models on different datasets mainly stem from 
the matching degree between the characteristics of the data 
itself and the model design. This paper compares the 
performance of four network security detection models 
(DeepNetGuard, CNN+LSTM, Snort, and SVM-based 

models) on three public datasets (CTU-13, CICIDS2017, and 
UNSW-NB15) to show the differences in model performance 
and their applicability. 

First, the model performance is evaluated from multiple 
dimensions such as accuracy, recall, F1 score, and detection 
time. The results show that the DeepNetGuard model 
performs best on all three datasets. Its high accuracy (97.5%-
98.2%), high recall (98.0%-98.5%), and high F1 score 
(97.8%-98.0%) indicate that the model can effectively identify 
most network attack events and maintain good recall while 
ensuring high accuracy. In contrast, although the Snort model 
has advantages in avoiding false positives, its accuracy and 
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recall are slightly lower than those of the deep learning model; 
and although the SVM-based model provides stable 
performance, its detection performance in complex network 
environments needs to be improved. 

Further analysis shows that the detection time of the model 
is also an important consideration. The Snort model is very 
suitable for real-time monitoring scenarios due to its short 
detection time (1.2ms-1.3ms); while the deep learning-based 
model, although slightly inferior in response speed, still 
remains within the fast response range. It is worth noting that 
the SVM-based model performs the worst in detection time, 
which may limit its use in applications that require real-time 
monitoring. 

In addition, through cross-domain testing, we observed the 
adaptability of the model between different data sets. 
Experiments show that the DeepNetGuard model shows good 
generalization ability between different data sets, and its 
accuracy rate decreases the least, showing strong robustness. 
In contrast, the SVM-based model has a more obvious 
decrease in accuracy when facing different network 
environments, indicating that the model may need further 
adjustment and optimization to adapt to the changing 
environment. 

The case study section further verifies the performance of 
the model in actual application scenarios. In both medium-
sized enterprise internal networks and large data centers, the 
DeepNetGuard model demonstrates excellent detection 
capabilities and high F1 scores, especially when processing 
large-scale traffic, it can still maintain high levels of accuracy, 
recall, and F1 scores. 

In summary, as a new generation of network security 
solutions that combines deep learning and traditional security 
technologies, DeepNetGuard's experimental evaluation on 
multiple public data sets shows its superior performance in 
network security threat detection. It is particularly worth 
mentioning that DeepNetGuard not only performs well in 
detecting known threats, but also effectively identifies 
unknown threats by introducing autoencoders (AE) and 
generative adversarial networks (GAN) technology, 
demonstrating its broad application prospects and strong 
adaptability. 

VI. CONCLUSION 

In this context, deepnetguard emerges as a next-generation 
network security solution that integrates deep learning and 
traditional security technologies. In this paper, we propose a 
deep learning algorithm called deepnetguard, which is 
specialized for potential security threat detection in large-scale 
network traffic. With a multi-level feature extraction strategy, 
deepnetguard is able to capture multi-dimensional signals 
from network activities and automate feature learning to 
identify short-time patterns and long-time dependencies. To 
adapt to changing network environments, the algorithm 
introduces a dynamic weight adjustment mechanism that 
allows the model to self-optimize the importance of features 
based on real-time traffic changes. In addition, deepnetguard 
integrates auto-encoder (ae) and generative adversarial 
network (gan) techniques, which not only improves the 

detection of known threats, but also effectively recognizes 
unknown threats. By introducing an attention mechanism, 
deepnetguard also enhances the interpretability of the model, 
enabling security experts to better understand the key factors 
in the model's decision-making process to validate the 
effectiveness of the detection results. Deepnetguard has 
demonstrated its superior performance in cyber threat 
detection through experimental evaluations on multiple 
publicly available datasets. Compared with traditional rule-
based ids systems (e.g., snort) and other deep learning models, 
deepnetguard demonstrates significant advantages in terms of 
accuracy, recall, precision, and f1 score. In particular, 
deepnetguard's detection capability is fully validated in both 
internal and data center network environments, demonstrating 
its broad applicability and robustness in different application 
scenarios. In addition, through cross-domain testing, we found 
that deepnetguard has good generalization ability and can 
maintain stable detection performance in different network 
environments. 

In future work, we will continue to optimize the 
DeepNetGuard model and explore more feature extraction 
methods and technology combinations to further improve the 
detection efficiency and accuracy of the model. At the same 
time, we plan to expand the scale of experiments and collect 
more types of data sets for testing to ensure the reliability and 
stability of the model in various complex network 
environments. In addition, we will also conduct in-depth 
research on the interpretability of the model so that security 
experts can better understand the decision-making process of 
the model and enhance the transparency and trust of the 
system. The ultimate goal is to build a comprehensive, 
intelligent and trustworthy network security protection system. 
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