
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

669 | P a g e

www.ijacsa.thesai.org

Deep Learning-Based Network Security Threat

Detection and Defense

Jinjin Chao1*, Tian Xie2
College of Information Engineering, Jiaozuo University, Jiaozuo 454000, Henan, China1

College of Artificial Intelligence, Jiaozuo University, Jiaozuo 454000, Henan, China2

Abstract—This paper introduces deepnetguard, an innovative

deep learning algorithm designed to efficiently identify potential

security threats in large-scale network traffic.deepnetguard

achieves automated feature learning by fusing basic, statistical,

and behavioral features through a multi-level feature extraction

strategy, and is capable of identifying both short-time patterns

and long-time dependencies. To adapt to the dynamic network

environment, the algorithm introduces a dynamic weight

adjustment mechanism that allows the model to self-optimize the

importance of features based on real-time traffic changes. In

addition, deepnetguard integrates auto-encoder (ae) and

generative adversarial network (gan) technologies to not only

detect known threats, but also recognize unknown threats. By

applying the attention mechanism, deepnetguard enhances the

interpretability of the model, enabling security experts to track

and understand the key factors in the model's decision-making

process. Experimental evaluations show that deepnetguard

performs well on multiple public datasets, with significant

advantages in accuracy, recall, precision, and f1 scores over

traditional ids systems and other deep learning models,

demonstrating its strong performance in cyber threat detection.

Keywords—Network security; threat detection; defense;

multilevel feature extraction; dynamic weight adjustment

mechanism; interpretability

I. INTRODUCTION

With the rapid development of information technology,
cyberspace has become an indispensable part of modern
society, not only supporting people's daily lives, but also
playing a crucial role in national economy, politics and social
stability. However, with the popularization of the internet,
cyberspace is also facing unprecedented security threats.
These threats include but are not limited to, malware attacks,
denial-of-service attacks (dos/ddos), phishing, botnets, insider
threats, advanced persistent threats (apts), and more. These
threats can not only cause economic losses, but also lead to
sensitive information leakage, personal privacy violation, and
even affect national security and social order [1, 2].

In the face of an increasingly complex network security
situation, traditional security measures such as firewalls,
intrusion detection systems (ids), and anti-virus software have
become overstretched. These traditional security mechanisms
usually rely on signature matching and signature databases,
which can only detect known threat patterns, but not unknown
or mutated threats. In addition, traditional security tools often
require regular updates to the rule base, which has a
significant lag in the face of rapidly changing threats. To make
matters worse, modern cyber attackers often exploit zero-day

vulnerabilities, which are not yet publicized and thus cannot
be protected in a timely manner [3, 4].

Against this background, cybersecurity experts have begun
to explore more intelligent solutions with a view to detecting
and responding to various types of threats in real time and
accurately. Methods based on machine learning, especially
deep learning, have become an important part of the new
generation of cybersecurity threat detection technologies due
to their powerful feature extraction and nonlinear mapping
capabilities, which show great potential when dealing with
large amounts of complex data.

Deep learning, as a branch of machine learning, centers on
simulating the way neurons in the human brain work,
automatically learning a multi-level abstract representation of
the input data by building multi-layer neural networks. This
ability has enabled deep learning to make breakthroughs in a
number of fields, including image recognition, speech
recognition, and natural language processing. Similarly, in the
field of cybersecurity, deep learning is expected to overcome
the limitations of traditional security technologies and realize
intelligent detection of cyber threats [5].

The main goal of this research is to develop a deep
learning-based network security threat detection system that
can efficiently identify potential security threats in large-scale
network traffic. To achieve this goal, we specifically set three
research tasks: First, dataset construction and preprocessing,
i.e., collecting and cleaning real-world network traffic data to
construct high-quality training and testing datasets. Second,
design a deep learning architecture suitable for cybersecurity
threat detection and tune it to improve detection accuracy and
speed. Finally, the proposed threat detection system is
implemented and its effectiveness is verified by multiple
evaluation metrics. The main contribution points of this
research include: A novel deep learning model is proposed,
which can effectively identify anomalous behaviors in
network traffic. Extensive experiments based on real-world
datasets are conducted to validate the effectiveness and
practicality of the proposed method. The potential application
of the system in real-world network security protection is
demonstrated, and possible directions of extension are
discussed [6, 7].

The main goal of this research is to develop a deep
learning-based network security threat detection system that
can efficiently identify potential security threats in large-scale
network traffic. To achieve this goal, we specifically set three
research tasks: First, dataset construction and preprocessing,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

670 | P a g e

www.ijacsa.thesai.org

i.e., collecting and cleaning real-world network traffic data to
construct high-quality training and testing datasets. Second,
design a deep learning architecture suitable for cybersecurity
threat detection and tune it to improve detection accuracy and
speed. Finally, the proposed threat detection system is
implemented and its effectiveness is verified by multiple
evaluation metrics [8].

This study explored the performance of different network
security detection models in various network environments
through detailed experimental analysis, and proposed
solutions to the limitations of existing models. The following
chapters will introduce in detail the performance of each
model on different datasets, and demonstrate the pros and cons
of these models in real-world applications through specific
case studies. Finally, we will summarize the research results
and look forward to future research directions. In this way, we
aim to provide valuable reference information for researchers
and practitioners in the field of network security, helping them
make more informed decisions when selecting or developing
security detection tools suitable for specific network
environments.

II. RELATED WORK

A. Overview of traditional network security threat detection

techniques

Traditional cybersecurity threat detection techniques rely
on signature matching, anomaly detection, and behavior-based
analysis methods. Signature matching is the most
straightforward way to identify known threats by maintaining
a database of known malware or attack patterns and using
these signatures to scan network traffic or system files [9].
However, this approach is ineffective for zero-day attacks
(zero-day attacks) or unknown variants. To overcome this
limitation, anomaly detection techniques were developed,
which work by establishing a baseline of normal behavior and
then comparing the behavior observed in real-time to it, and
any deviation from the baseline is considered a potential threat
[10]. Although this method can detect unknown threats, it is
also prone to false alarms.

Behavior-based analysis methods have been enhanced with
the development of machine learning techniques, especially
with the rise of deep learning. Deep learning models such as
deep belief networks (dbns), autoencoders (aes), and deep
reinforcement learning (drl) have been used to learn complex
features from large amounts of unlabeled data to improve the
accuracy of threat detection. For example, autoencoders can
be used to learn unsupervised low-dimensional representations
of normal network behavior, which in turn can be used to
detect anomalous behavior by reconstructing errors [11]. Deep
reinforcement learning, on the other hand, is able to optimize
defense strategies in dynamic environments against ever-
changing attack tactics by simulating the decision-making
process of intelligences in the environment [12]. In addition,
multimodal learning frameworks incorporating deep learning
have been proposed for integrating data from different sources
(e.g., logs, traffic, emails, etc.) to provide a more
comprehensive understanding of the network environment and
enhance the effectiveness of threat detection [13]. By
leveraging the powerful generalization capabilities of deep

learning, these techniques are able to not only detect known
threats, but also identify new types of attacks, which improves
the overall level of protection for network security.

B. Application of Deep Learning in Cyber Security

Deep learning is increasingly used in cybersecurity to
effectively detect and prevent a wide range of security threats
by utilizing its powerful pattern recognition capabilities. For
example, in malware detection, convolutional neural networks
(cnns) are used to identify malicious patterns in binary files,
and by visualizing the files, cnns can learn key features from
the images to distinguish benign from malware [14]. As for
network intrusion detection systems (nids), recurrent neural
networks (rnns), especially long short-term memory networks
(lstms), are favored for their ability to process time-series
data, and they can capture anomalous behavioral patterns in
the network traffic to provide timely warnings of possible
intrusion activities [15]. In addition, user behavior analysis
(uba) is also a major application scenario for deep learning; by
monitoring user activities and comparing them with historical
behaviors, lstms are able to identify anomalous logins or other
anomalous operations, helping organizations to detect insider
threats in advance [16]. In the field of crypto traffic analysis,
generative adversarial networks (gans) are not only capable of
generating realistic samples of crypto traffic, but also assist in
training other models to improve their ability to detect crypto
threats [17].

Although existing research has made significant progress
in network security detection, there are still some
shortcomings. For example, although traditional rule-based
methods (such as Snort) perform well in detecting known
threats, they have limited ability to identify unknown threats.
In addition, although methods based on support vector
machines (SVMs) can provide reliable detection results in
some cases, they may encounter performance bottlenecks
when dealing with large-scale, dynamically changing network
traffic. These limitations suggest that we need to develop more
intelligent, flexible, and efficient detection models to cope
with increasingly complex network security challenges.

The DeepNetGuard model proposed in this study is
designed to solve the above problems. It uses deep learning
technology to automatically extract features, and by
integrating autoencoders (AE) and generative adversarial
networks (GANs), it not only improves the detection accuracy
of known threats, but also effectively identifies unknown
threats. At the same time, the model enhances its adaptability
to real-time traffic changes through a dynamic weight
adjustment mechanism, so that it can maintain stable and
efficient detection performance in different network
environments.

III. RESEARCH METHODOLOGY

A. Problem Modeling

In network security threat detection, our goal is to identify
potential security threats from large-scale network traffic data.
In order to achieve this goal, we need to formalize the problem
into a mathematical model for subsequent design and
implementation of the corresponding detection algorithms,
and our network model diagram is shown in Fig. 1 [18, 19].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

671 | P a g e

www.ijacsa.thesai.org

First, we need to define how to represent network traffic
data. Suppose we have a series of network traffic records, each

of which can be represented as a vector
1 2[, , ,]nx x x x ,

where x i represents the i th feature in the traffic record. These

features can include source ip address, destination ip address,
protocol type (tcp, udp, etc.), packet size, timestamp, and port
number [20].

Server

Industrial Intrusion

Inspection

Switches

Core

Switches

Mirror Interface

Listening

Interface
Management

Interface

Management

Terminal

Switch

Fig. 1. Security threat detection and defense.

Assuming that we have m network traffic records, the
entire dataset can be represented as a matrix

1 2[, , ,]T

m X x x x .

For each traffic record, we need a label iy to indicate

whether this record contains threats. If the record contains

threats, then 1iy . Otherwise 0iy . Thus, the entire set

of labels can be represented as a vector 1 2[, , ,]T

my y y y

[21] .

Our goal is to construct a classifier : {0,1}nf that

outputs a binary classification result of the presence or
absence of a threat based on a given traffic record x [22, 23].

To train this classifier, we need to define a loss function L

to measure the difference between the model predictions and
the actual labels. Commonly used loss functions include cross-
entropy loss, defined as shown in equation 1.

((;),) log((;)) (1)log(1 (;))L f y y f y f x x x (1)

Where (;)f x is the output probability of the classifier

and are the parameters of the model [24].

In order to find the optimal parameter * , we need to

minimize the average value of the loss function L over all the

training samples as in Eq. (2) [25].

*

1

1
arg min ((;),)

m

i i

i

L f y
m

 x (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

672 | P a g e

www.ijacsa.thesai.org

In addition, in order to prevent overfitting, we can also add

the regularization term ()R to penalize larger parameter

values to obtain the final objective function as shown in Eq.

(3). Where is the regularization intensity factor [26, 27].

*

1

1
arg min ((;),) ()

m

i i

i

L f y R
m

 x (3)

B. Modeling Ideas

Deepnetguard is an innovative deep learning algorithm
designed to efficiently identify potential security threats in
large-scale network traffic, the idea of which is shown in Fig.
2. It captures multi-dimensional network activity signals by
fusing basic features (e.g., ip addresses and ports), statistical
features (e.g., traffic patterns), and behavioral features (e.g.,
login attempts) through a multi-level feature extraction
strategy. Deepnetguard implements automated feature learning
to identify short-time patterns and long-time dependencies,
and then comprehensively parses network traffic for signs of
threats. In order to adapt to the dynamic network environment,

the algorithm introduces a dynamic weight adjustment
mechanism, which allows the model to self-optimize the
importance of features based on real-time traffic changes,
improving the flexibility and accuracy of detection [28, 29].

C. Modeling Framework

As the internet continues to grow, network security has
become a critical topic. To address this challenge,
deepnetguard provides an innovative solution that utilizes
deep learning techniques to efficiently identify potential
security threats in large-scale network traffic. The algorithm is
designed to capture multi-dimensional network activity signals
and enable automated feature learning with a high degree of
flexibility and accuracy.

Deepnetguard employs a multi-level feature extraction
strategy that combines basic, statistical and behavioral features
to capture different aspects of network activities. This is
shown in Table I [30].

Basic

features

Statistical

features

Behavioral

features

Multi-level feature extraction

Automated feature learning

Dynamic weight adjustment

Integrated Auto-

Encoder (AE)

Generative Adversarial

Network (GAN)

Attention Mechanisms

Network Attacks Normal Access

Classification Functions

Fig. 2. Deepnetguard.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

673 | P a g e

www.ijacsa.thesai.org

TABLE I. SUMMARY OF NETWORK DATA ANALYSIS CHARACTERISTICS

Feature category Descriptive Typical example

Basic features
Includes basic information about network communication, usually extracted directly from the
packet header.

- ip address

- port number
- protocol type (tcp, udp,

icmp, etc.)

Statistical

characteristic

Characteristics obtained by statistical analysis of network traffic reflecting communication patterns

and traffic characteristics.

- packet size distribution

- packet delivery frequency
- session duration

Behavioral

characteristics

Reflects patterns of user behavior in network activities involving specific application layer
interactions.

- number of login attempts

- document access modalities

- request type (get, post)

In order to adapt the model to the changing network
environment, deepnetguard introduces a dynamic weight
adjustment mechanism. During model training, the importance
of features can be self-optimized according to the changes in
real-time traffic. This adjustment is realized by introducing a

learnable weight matrix dynW as shown in Eq. (4)

adjusted dyn combined F W F (4)

Among them, combinedF is the integrated feature vector

after integrating the extracted features from cnn and lstm,
which is a weight matrix dynamically adjusted according to
the training data.

Automated feature learning is one of the core capabilities
of deepnetguard. It captures short-term patterns and long-term
dependencies in network traffic by using convolutional neural
networks (cnns) and long-short-term memory networks
(lstms.) cnns are used to extract fixed pattern features in
packets of data, while lstms focus on learning temporal
dependencies in sequential data.

For cnn feature extraction, define the convolution kernel

cnnW and the bias term cnnb , and the convolution operation

can be expressed as Eq. (5).

(*)cnn cnn base cnnf F W x b (5)

Where f is usually a nonlinear activation function such as

relu. The state update equation for lstm is shown in Eq. (6)-
(10).

1()t xi t hi t ii x h b W W (6)

1()t xf t hf t ff x h b W W (7)

1 1tanh()t t t t xc t hc t cc f c i x h b W W (8)

1()t xo t ho t oo x h b W W (9)

tanh()t t th o c (10)

Deepnetguard integrates auto-encoder (ae) and generative
adversarial network (gan) techniques to detect known and

unknown threats. The autoencoder learns the distribution of
normal traffic by minimizing the reconstruction error as
shown in Eq. (11).

()
() 2

1

1
| | ||

m i
i

adjusted

i

E
m

 F F (11)

Where F is the reconstructed feature vector. Anomalous

traffic is considered to exist when the reconstruction error
exceeds a certain threshold.

Gan discovers potential security threats by adversarial

training of a generator G and a discriminator D . The

generator tries to generate realistic network traffic samples,
while the discriminator tries to distinguish real traffic from
generated traffic.

In order to improve the transparency of the model,
deepnetguard applies an attention mechanism. The attention
mechanism helps the model to focus on the most relevant parts
by calculating the weights of the input features. The attention
weight is calculated as shown in Eq. (12).

 (tanh())T

att adjusted attsoftmax a W F b (12)

Where a is the learnable vector, and attW and attb are

the weights and biases of the attention layer. The attention
weighting feature can be expressed as Eq. (13).

 att adjusted F F (13)

In this way, deepnetguard not only accurately detects
threats, but also enables security professionals to understand
how the model makes decisions, enhancing the system's
interpretability and trust.

D. Interpretability

Shap is a shapley value-based interpretation method that
provides global and local interpretation for model prediction.
In deepnetguard, shap is mainly used in the following ways:

Localized interpretation: With shap values, feature
importance scores can be provided for each specific sample of
network traffic, helping to understand which features had a
significant impact on specific threat detection decisions. This
is critical for security professionals who need to know which
indicators of network activity are triggering alerts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

674 | P a g e

www.ijacsa.thesai.org

Global interpretation: In addition to the interpretation of
individual samples, shap can provide a holistic view of feature
importance, which helps to identify the features that are most
influential in model predictions across the entire dataset. This
global view aids in feature engineering and model
optimization.

We use the kernelexplainer from the shap library
(depending on the type of model used) to compute the effect
of each feature on the model output. For a given input x , the
shap value can be defined as in Eq. (14)

{ }

| | !(| | | | 1)!
[[() | ()] [()]]

| | !
i S S

S F i

S F S
E f X do X x E f X

F

‚

(14)

Where F is the set of features, S is the subset of features,

and
i is the shap value of the feature i . The shap value

indicates the magnitude of the contribution of each feature to
the prediction result of a particular sample.

Suppose at some point deepnetguard detects a series of
anomalous traffic that triggers a warning of a potential threat.
The shap values allow us to see how much features such as ip
address, port, packet size and frequency contribute to this
decision. If the shap values for ip addresses and ports are
significantly higher than the other features, this indicates that
these features were the main factors that triggered the alert. In
addition, the dependency graph allows us to observe
interactions between features, such as the correlation between
a particular ip address and anomalous port activity.

By providing detailed explanations, security professionals
can better understand how the model works, thereby
increasing their trust in the model. Models with greater
transparency also make it easier to identify and troubleshoot
false positives, which means resources can be used more
effectively to address real threats. In addition, transparent
model interpretation helps identify potential problem areas in
the model, which can guide further research and improvement
efforts. Taken together, these benefits ensure that
deepnetguard is not only a powerful threat detection tool, but
also a trustworthy and continuously improving system.

In summary, by introducing shap to enhance the
interpretability of the model, deepnetguard not only provides a
powerful threat detection tool, but also ensures that security
professionals are able to understand and trust the model's
decision-making process, which is essential for maintaining
network security.

IV. EXPERIMENTAL DESIGN

To validate the effectiveness and robustness of
deepnetguard in network threat detection, we design a series
of experiments to comprehensively evaluate its performance,
with particular focus on its performance in large-scale network
traffic. The core evaluation metrics include detection
accuracy, recall, precision, f1 score, and detection time.
Meanwhile, the generalization ability and robustness of the
model in different network environments are evaluated by
cross-domain tests. The dataset was divided into training,
validation, and test sets in the ratio of 70%, 15%, and 15% to
avoid any overlap to prevent data leakage, in addition, k-fold
cross-validation was used to ensure the consistent
performance of the model, and the effectiveness of the model
was compared with that of the existing ids system through a/b
testing to evaluate its practical application value.

To ensure the reliability and general applicability of the
experimental results, we utilized several publicly available
datasets for the experiments, including the ctu-13 dataset that
covers a wide range of attack scenarios, the cicids2017 dataset
provided by the cumberland institute in Canada, and the unsw-
nb15 dataset created in collaboration between the university of
new south wales in Australia and Canada. Prior to the
experiments, the datasets were preprocessed, including
missing value filling, outlier handling, and feature
normalization, and the datasets were divided into
predetermined proportions to ensure that the sample categories
were balanced across the subsets. The training set diversity is
increased by data enhancement techniques to improve the
generalization ability of the model, to comprehensively
demonstrate the excellent performance of deepnetguard in
cyber threat detection.

V. RESULTS

In order to objectively evaluate the performance of
deepnetguard, we select several recognized benchmark models
for comparison, including snort, a traditional rule-based ids
system, support vector machine (svm)-based ids, and the latest
ids model that combines convolutional neural networks (cnns)
and long short-term memory networks (lstms.) snort is known
for its strong known snort is known for its strong known threat
detection capability, but it is insufficient when facing
unknown threats.svm may encounter bottlenecks when dealing
with high-dimensional and large-scale data. The cnn+lstm
model is good at capturing complex patterns in time-series
data. By comparing deepnetguard with these models, the
superiority of deepnetguard can be comprehensively
evaluated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

675 | P a g e

www.ijacsa.thesai.org

Fig. 3. Model performance comparison - detection accuracy.

In Fig. 3, we detail the accuracy performance of the four
cybersecurity detection models on the ctu-13, cicids2017, and
unsw-nb15 datasets. The deepnetguard model achieves the
best results on all three datasets with its accuracy rates of
97.5%, 96.3%, and 98.2%, showing its the cnn+lstm model
follows with accuracy rates of 96.8%, 95.9%, and 97.1%,
proving the potential of deep learning technology in the field

of cybersecurity. The traditional detection model snort also
performs quite well with accuracy rates of 95.0%, 94.1% and
93.5%, showing its stable application value. In contrast, the
svm-based model has slightly lower accuracy rates of 93.2%,
91.5% and 92.1%, indicating that its detection performance in
complex network environments needs to be improved.

Fig. 4. Comparison of model performance - recall rate.

Based on the data in Fig. 4, we can see the performance of
the four models in terms of recall. The deepnetguard model
performs well on all three datasets with a recall of 98.0%,
97.2%, and 98.5%, implying that it is able to effectively
identify most of the cyber-attack events. The cnn+lstm model
has a recall of 97.3%, 96.0%, and 97.6%, again showing its

effectiveness in capturing cyber threats. The snort model has
recall rates of 94.5%, 93.2% and 92.8%, indicating that it is
able to cover the attack events well. The svm-based model, on
the other hand, has the lowest recall rates of 92.0%, 90.5%
and 91.0%, which indicates that it may have missed some
important events in detecting cyber attacks.

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

DeepNetGuard Snort SVM-based CNN+LSTM

CTU-13 Accuracy CICIDS2017 Accuracy UNSW-NB15 Accuracy

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

DeepNetGuard Snort SVM-based CNN+LSTM

Recall Rate CTU-13 Recall Rate CICIDS2017 Recall Rate UNSW-NB15

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

676 | P a g e

www.ijacsa.thesai.org

Fig. 5. Model performance comparison – accuracy.

Fig. 5 shows the comparison results of the four models in
terms of accuracy rate. The deepnetguard model tops the list
with accuracy rates of 97.3%, 96.1%, and 97.8%, indicating
its high accuracy in the detection process. The cnn+lstm
model also performs well, with accuracy rates of 97.0%,
96.0%, and 97.4%, showing its good detection capability. The

accuracy rates of the snort model are 95.5%, 94.3% and
93.9%, indicating its advantage in avoiding false alarms. The
accuracy rates of svm-based model are 93.5%, 91.8% and
92.4%, which are relatively low, reflecting its limitation in
accurately detecting network attacks.

TABLE II. MODEL PERFORMANCE COMPARISON - F1 SCORES

Mould Ctu-13 f1 score Cicids 2017 f1 score Unsw-nb15 f1 score

Deepnetguard 97.8% 96.7% 98.0%

Snort 95.2% 93.6% 93.1%

Svm-based 92.8% 91.0% 91.7%

Cnn+lstm 97.1% 95.9% 97.5%

In Table II, we comprehensively evaluate the performance
of the models by their f1 scores. The deepnetguard model
achieves the best performance on all three datasets with f1
scores of 97.8%, 96.7%, and 98.0%, showing a good balance
between accuracy and recall. The f1 scores of the cnn+lstm

model are 97.1%, 95.9%, and 97.5%, again demonstrating its
excellent overall performance. The f1 scores for the snort
model are 95.2%, 93.6% and 93.1%, showing its stable but not
optimal performance. The svm-based model has the lowest f1
scores of 92.8%, 91.0% and 91.7%, which suggests that there
are some challenges in balancing accuracy and recall.

TABLE III. MODEL PERFORMANCE COMPARISON - DETECTION TIME

Mould Ctu-13 detection time (ms) Cicids2017 detection time (ms) Unsw-nb15 detection time (ms)

Deepnetguard 2.5 2.7 2.6

Snort 1.2 1.3 1.3

Svm-based 3.0 3.2 3.1

Cnn+lstm 2.8 3.0 2.9

Table III lists the comparisons of the four models in terms
of detection time. The detection times of deepnetguard model
are 2.5ms, 2.7ms and 2.6ms, showing its efficient detection
ability. The detection times of cnn+lstm model are 2.8ms,
3.0ms and 2.9ms, which are slightly higher than deepnetguard,

but still in the fast response range. The snort model has the
shortest detection time of 1.2ms, 1.3ms and 1.3ms, proving its
advantage in real-time detection. The svm-based model, on the
other hand, has the longest detection time of 3.0ms, 3.2ms and
3.1ms, which may limit its application in real-time network
monitoring.

88.00%

89.00%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

DeepNetGuard Snort SVM-based CNN+LSTM

CTU-13 Accuracy CICIDS2017 Accuracy Rate UNSW-NB15 Accuracy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

677 | P a g e

www.ijacsa.thesai.org

TABLE IV. MODEL PERFORMANCE COMPARISON - CROSS DOMAIN TESTING

Mould
Ctu-13 to cicids2017 declining accuracy

rate

Cicids2017 to unsw-nb15 declining accuracy

rates

Unsw-nb15 to ctu-13 decrease in

accuracy

Deepnetguard 1.2% 1.9% 0.7%

Snort 1.5% 2.3% 1.3%

Svm-based 2.5% 3.0% 2.1%

Cnn+lstm 1.5% 2.2% 1.0%

Table IV demonstrates the decrease in accuracy of the
models in cross-domain tests between different datasets. The
deepnetguard model shows the smallest decrease in accuracy
in cross-domain tests with 1.2%, 1.9% and 0.7%, indicating its
good generalization ability. The cnn+lstm model's accuracy
decreases with 1.5%, 2.2% and 1.0%, which also shows its
robustness on different datasets. The accuracy of the snort
model decreases to 1.5%, 2.3%, and 1.3%, indicating its fair
performance in cross-domain detection. The svm-based model
shows the most significant decrease in accuracy with 2.5%,

3.0%, and 2.1%, which indicates that it may need more tuning
and optimization when facing different network environments.

A. Case Studies

Case 1: Intra-enterprise network environment

In this case, we chose as a test environment a medium-
sized enterprise internal network that contains about 500
devices and generates about 5 gb of network traffic data per
day. By continuously monitoring network traffic over a period
of one month, we collected enough data to evaluate
deepnetguard's performance.

TABLE V. ENTERPRISE INTERNAL NETWORK ENVIRONMENT TESTING PERFORMANCE

Mould Accuracy Recall rate Accuracy F1 score Detection time (ms)

Deepnetguard 97.0% 98.1% 97.5% 97.8% 2.4

Snort 94.5% 93.5% 94.8% 94.1% 1.3

Svm-based 92.0% 91.5% 92.5% 92.0% 3.0

Cnn+lstm 96.5% 97.0% 96.8% 96.9% 2.8

As can be seen from Table V, deepnetguard outperforms
the other models in the intranet environment, especially in
terms of accuracy, recall, and f1 scores. Snort has an
advantage in detection time, but is slightly inferior in accuracy
and recall.

Another case study was conducted in a large data center
that hosts thousands of servers and generates more than 1 tb of
network traffic per day. Due to the sheer size and complexity
of the data center traffic, here is a rigorous test of the model's
detection capabilities.

TABLE VI. DATA CENTER NETWORK ENVIRONMENT TESTING PERFORMANCE

Mould Accuracy Recall rate Accuracy F1 score Detection time (ms)

Deepnetguard 98.2% 98.5% 98.3% 98.4% 2.6

Snort 93.0% 92.5% 93.5% 93.0% 1.5

Svm-based 91.0% 90.5% 91.5% 91.0% 3.2

Cnn+lstm 97.5% 97.8% 97.6% 97.7% 3.0

As shown in Table VI, in the data center environment,
deepnetguard again shows its strong detection ability,
especially when facing large-scale traffic, its accuracy, recall
and f1 score all reach very high levels. Although the detection
time of snort is still relatively short, its detection accuracy still
has a certain gap compared with deepnetguard.

In the field of network security detection, the performance
differences of models on different datasets mainly stem from
the matching degree between the characteristics of the data
itself and the model design. This paper compares the
performance of four network security detection models
(DeepNetGuard, CNN+LSTM, Snort, and SVM-based

models) on three public datasets (CTU-13, CICIDS2017, and
UNSW-NB15) to show the differences in model performance
and their applicability.

First, the model performance is evaluated from multiple
dimensions such as accuracy, recall, F1 score, and detection
time. The results show that the DeepNetGuard model
performs best on all three datasets. Its high accuracy (97.5%-
98.2%), high recall (98.0%-98.5%), and high F1 score
(97.8%-98.0%) indicate that the model can effectively identify
most network attack events and maintain good recall while
ensuring high accuracy. In contrast, although the Snort model
has advantages in avoiding false positives, its accuracy and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

678 | P a g e

www.ijacsa.thesai.org

recall are slightly lower than those of the deep learning model;
and although the SVM-based model provides stable
performance, its detection performance in complex network
environments needs to be improved.

Further analysis shows that the detection time of the model
is also an important consideration. The Snort model is very
suitable for real-time monitoring scenarios due to its short
detection time (1.2ms-1.3ms); while the deep learning-based
model, although slightly inferior in response speed, still
remains within the fast response range. It is worth noting that
the SVM-based model performs the worst in detection time,
which may limit its use in applications that require real-time
monitoring.

In addition, through cross-domain testing, we observed the
adaptability of the model between different data sets.
Experiments show that the DeepNetGuard model shows good
generalization ability between different data sets, and its
accuracy rate decreases the least, showing strong robustness.
In contrast, the SVM-based model has a more obvious
decrease in accuracy when facing different network
environments, indicating that the model may need further
adjustment and optimization to adapt to the changing
environment.

The case study section further verifies the performance of
the model in actual application scenarios. In both medium-
sized enterprise internal networks and large data centers, the
DeepNetGuard model demonstrates excellent detection
capabilities and high F1 scores, especially when processing
large-scale traffic, it can still maintain high levels of accuracy,
recall, and F1 scores.

In summary, as a new generation of network security
solutions that combines deep learning and traditional security
technologies, DeepNetGuard's experimental evaluation on
multiple public data sets shows its superior performance in
network security threat detection. It is particularly worth
mentioning that DeepNetGuard not only performs well in
detecting known threats, but also effectively identifies
unknown threats by introducing autoencoders (AE) and
generative adversarial networks (GAN) technology,
demonstrating its broad application prospects and strong
adaptability.

VI. CONCLUSION

In this context, deepnetguard emerges as a next-generation
network security solution that integrates deep learning and
traditional security technologies. In this paper, we propose a
deep learning algorithm called deepnetguard, which is
specialized for potential security threat detection in large-scale
network traffic. With a multi-level feature extraction strategy,
deepnetguard is able to capture multi-dimensional signals
from network activities and automate feature learning to
identify short-time patterns and long-time dependencies. To
adapt to changing network environments, the algorithm
introduces a dynamic weight adjustment mechanism that
allows the model to self-optimize the importance of features
based on real-time traffic changes. In addition, deepnetguard
integrates auto-encoder (ae) and generative adversarial
network (gan) techniques, which not only improves the

detection of known threats, but also effectively recognizes
unknown threats. By introducing an attention mechanism,
deepnetguard also enhances the interpretability of the model,
enabling security experts to better understand the key factors
in the model's decision-making process to validate the
effectiveness of the detection results. Deepnetguard has
demonstrated its superior performance in cyber threat
detection through experimental evaluations on multiple
publicly available datasets. Compared with traditional rule-
based ids systems (e.g., snort) and other deep learning models,
deepnetguard demonstrates significant advantages in terms of
accuracy, recall, precision, and f1 score. In particular,
deepnetguard's detection capability is fully validated in both
internal and data center network environments, demonstrating
its broad applicability and robustness in different application
scenarios. In addition, through cross-domain testing, we found
that deepnetguard has good generalization ability and can
maintain stable detection performance in different network
environments.

In future work, we will continue to optimize the
DeepNetGuard model and explore more feature extraction
methods and technology combinations to further improve the
detection efficiency and accuracy of the model. At the same
time, we plan to expand the scale of experiments and collect
more types of data sets for testing to ensure the reliability and
stability of the model in various complex network
environments. In addition, we will also conduct in-depth
research on the interpretability of the model so that security
experts can better understand the decision-making process of
the model and enhance the transparency and trust of the
system. The ultimate goal is to build a comprehensive,
intelligent and trustworthy network security protection system.

REFERENCES

[1] N. Abdi, A. Albaseer, and M. Abdallah, "The Role of Deep Learning in
Advancing Proactive Cybersecurity Measures for Smart Grid Networks:
a Survey," IEEE Internet of Things Journal, vol. 11, no. 9, pp. 16398–
421, 2024.

[2] X. M. Liu, L. H. Xie, Y. P. Wang, J. Zou, J. B. Xiong, Z. B. Ying, and
A. V. Vasilakos, "Privacy and Security Issues in Deep Learning: a
Survey," IEEE Access, vol. 9, pp. 4566–4593, 2021.

[3] K. A. Alissa, F. S. Alrayes, K. Tarmissi, A. Yafoz, R. Alsini, O.
Alghushairy, et al., "Planet Optimization with Deep Convolutional
Neural Network for Lightweight Intrusion Detection in Resource-
Constrained IoT Networks," Applied Sciences-Basel, vol. 12, no. 17, p.
15, 2022.

[4] S. A. Bakhsh, M. A. Khan, F. Ahmed, M. S. Alshehri, H. Ali, and J.
Ahmad, "Enhancing IoT Network Security Through Deep Learning-
Powered Intrusion Detection System," Internet of Things, vol. 24, p. 36,
2023.

[5] F. S. Alrayes, M. Zakariah, M. Driss, and W. Boulila, "Deep Neural
Decision Forest (DNDF): a Novel Approach for Enhancing Intrusion
Detection Systems in Network Traffic Analysis," Sensors, vol. 23, no.
20, p. 41, 2023.

[6] E. L. Lydia, C. Santhaiah, M. Altafahmed, K. V. Kumar, G. P. Joshi,
and W. Cho, "An Equilibrium Optimizer with Deep Recurrent Neural
Networks Enabled Intrusion Detection in Secure Cyber-Physical
Systems," Aims Mathematics, vol. 9, no. 5, pp. 11718–34, 2024.

[7] K. Roshan, A. Zafar, and S. B. Ul Haque, "Untargeted white-box
adversarial attack with heuristic defense methods in real-time deep
learning-based network intrusion detection system," Computer
Communications, vol. 218, pp. 97–113, 2024.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

679 | P a g e

www.ijacsa.thesai.org

[8] S. Y. Wu, B. Wang, Z. L. Wang, S. H. Fan, J. H. Yang, and J. Li, "Joint
prediction on security event and time interval through deep learning,"
Computers & Security, vol. 117, p. 12, 2022.

[9] Q. Y. Lin, R. Ming, K. L. Zhang, and H. B. Luo, "Privacy-enhanced
intrusion detection and defense for cyber-physical systems: a deep
reinforcement learning approach," Security and Communication
Networks, vol. 2022, p. 9, 2022.

[10] M. K. Roshan and A. Zafar, "Boosting robustness of network intrusion
detection systems: a novel two-phase defense strategy against untargeted
white-box optimization adversarial attack," Expert Systems with
Applications, vol. 249, p. 20, 2024.

[11] R. Sultana, J. Grover, and M. Tripathi, "Intelligent defense strategies:
comprehensive attack detection in VANET with deep reinforcement
learning," Pervasive and Mobile Computing, vol. 103, p. 18, 2024.

[12] R. H. Hwang, M. C. Peng, C. W. Huang, P. C. Lin, and V. L. Nguyen,
"An unsupervised deep learning model for early network traffic anomaly
detection," IEEE Access, vol. 8, pp. 30387–30399, 2020.

[13] M. Sewak, S. K. Sahay, and H. Rathore, "Deep reinforcement learning
in the advanced cybersecurity threat detection and protection,"
Information Systems Frontiers, vol. 25, no. 2, pp. 589–611, 2023.

[14] S. Kim, S. Yoon, J. H. Cho, D. S. Kim, T. J. Moore, F. Free-Nelson, and
H. Lim, "DIVERGENCE: Deep reinforcement learning-based adaptive
traffic inspection and moving target defense countermeasure
framework," IEEE Transactions on Network and Service Management,
vol. 19, no. 4, pp. 4834–4846, 2022.

[15] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. H. Han, M. M. Iqbal,
and K. J. Han, "Enhanced network anomaly detection based on deep
neural networks," IEEE Access, vol. 6, pp. 48231–48246, 2018.

[16] D. Q. Li and Q. M. Li, "Adversarial deep ensemble: Evasion attacks and
defenses for malware detection," IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3886–3900, 2020.

[17] R. T. Feng, S. Chen, X. F. Xie, G. Z. Meng, S. W. Lin, and Y. Liu, "A
performance-sensitive malware detection system using deep learning on
mobile devices," IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 1563–1578, 2021.

[18] K. Koo, D. Moon, J. H. Huh, S. H. Jung, and H. Lee, "Attack graph
generation with machine learning for network security," Electronics, vol.
11, no. 9, p. 25, 2022.

[19] Z. H. Lv, D. L. Chen, B. Cao, H. B. Song, and H. B. Lv, "Secure deep
learning in defense in deep-learning-as-a-service computing systems in
digital twins," IEEE Transactions on Computers, vol. 73, no. 3, pp. 656–
668, 2024.

[20] S. T. Mehedi, A. Anwar, Z. Rahman, K. Ahmed, and R. Islam,
"Dependable intrusion detection system for IoT: A deep transfer learning
based approach," IEEE Transactions on Industrial Informatics, vol. 19,
no. 1, pp. 1006–1017, 2023.

[21] H. M. Rouzbahani, H. Karimipour, and L. Lei, "Multi-layer defense
algorithm against deep reinforcement learning-based intruders in smart
grids," International Journal of Electrical Power & Energy Systems, vol.
146, p. 10, 2023.

[22] S. Mohan, A. Annadurai, and K. Gunaseelan, "An efficient spoofing
attack detection using deep learning-based physical layer security
technique," Defence Science Journal, vol. 74, no. 4, pp. 526–534, 2024.

[23] P. Tian, Z. Y. Chen, W. Yu, and W. X. Liao, "Towards asynchronous
federated learning based threat detection: a DC-Adam approach,"
Computers & Security, vol. 108, p. 16, 2021.

[24] S. Salmi and L. Oughdir, "Performance evaluation of deep learning
techniques for DoS attacks detection in wireless sensor network,"
Journal of Big Data, vol. 10, no. 1, p. 25, 2023.

[25] Y. Liu, C. Tantithamthavorn, L. Li, and Y. P. Liu, "Deep learning for
Android malware defenses: a systematic literature review," ACM
Computing Surveys, vol. 55, no. 8, p. 36, 2023.

[26] B. H. Tang, J. F. Wang, Z. K. Yu, B. H. Chen, W. H. Ge, J. Yu, and T.
T. Lu, "Advanced persistent threat intelligent profiling technique: a
survey," Computers & Electrical Engineering, vol. 103, p. 21, 2022.

[27] K. M. Abuali, L. Nissirat, and A. Al-Samawi, "Advancing network
security with AI: SVM-based deep learning for intrusion detection,"
Sensors, vol. 23, no. 21, p. 19, 2023.

[28] O. Kuznetsov, D. Zakharov, E. Frontoni, and R. Maranesi, "AttackNet:
Enhancing biometric security via tailored convolutional neural network
architectures for liveness detection," Computers & Security, vol. 141, p.
12, 2024.

[29] D. S. Rao and A. J. Emerson, "Cyberattack defense mechanism using
deep learning techniques in software-defined networks," International
Journal of Information Security, vol. 23, no. 2, pp. 1279–1291, 2024.

[30] F. Q. Zuo, D. M. Zhang, L. Li, Q. He, and J. X. Deng, "GSOOA-
1DDRSN: Network traffic anomaly detection based on deep residual
shrinkage networks," Heliyon, vol. 10, no. 11, p. 23, 2024.

