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Abstract—The escalating challenge of waste management, 

particularly in developed nations, necessitates innovative 

approaches to enhance recycling and sorting efficiency. This 

study investigates the application of Convolutional Neural 

Networks (CNNs) for landfill waste classification, addressing the 

limitations of traditional sorting methods. We conducted a 

performance comparison of five prevalent CNN models—VGG-

16, InceptionResNetV2, DenseNet121, Inception V3, and 

MobileNetV2—using the newly introduced "RealWaste" dataset, 

comprising 4,752 labeled images. Our findings reveal that 

EfficientNet achieved the highest average testing accuracy of 

96.31%, significantly outperforming other models. The analysis 

also highlighted common challenges in accurately distinguishing 

between metal and plastic waste categories across all models. 

This research underscores the potential of deep learning 

techniques in automating waste classification processes, thereby 

contributing to more effective waste management strategies and 
promoting environmental sustainability. 
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I. INTRODUCTION 

The increase in waste generation, particularly in developed 
countries, poses a significant challenge to effective waste 
management and recycling efforts. By 2050, it is projected that 
developed nations will experience a 19% increase in per capita 
daily waste production, emphasizing the critical need for more 
efficient waste management strategies [1]. Traditional waste 
sorting methods, such as manual sorting and visual inspection, 
have limitations in terms of subjectivity, scalability, and labor 
requirements [1]. To address these challenges, the integration 
of deep learning techniques, particularly Convolutional Neural 
Networks (CNNs), into waste sorting processes can enhance 
automation and improve waste classification based on its 
features [2], [3]. 

CNNs are a class of deep learning models that excel in 
processing visual data, making them well-suited for tasks like 
waste classification [3]. These networks automatically extract 
relevant information from input data through their layers, with 
convolutional layers specifically extracting spatial features 
from images, making CNNs highly efficient for image-related 
tasks [4]. By leveraging advanced technologies like deep 
learning, waste sorting processes can be optimized, recycling 
rates can be increased, and a more sustainable waste 
management system can be achieved [5]. 

Automated waste classification systems, powered by deep 
learning models like CNNs, have become essential for 
addressing the global waste problem and promoting sustainable 

development [6]. These systems offer a more objective and 
scalable approach to waste sorting compared to traditional 
methods, contributing to more efficient recycling processes and 
waste management overall [7]. The incorporation of deep 
learning methods in waste classification not only streamlines 
the sorting process but also plays a crucial role in achieving 
environmental sustainability by reducing waste and promoting 
recycling efforts [8]. 

In conclusion, the adoption of deep learning techniques, 
particularly CNNs, in waste classification is pivotal for 
enhancing automation, improving waste sorting accuracy, and 
ultimately aiming to create a waste management system that is 
more effective and sustainable in light of the rising amount of 
garbage produced worldwide. 

This paper presents a performance comparison of five 
common CNN pre-trained models applied on a dataset called 
“RealWaste” and provides a critical analysis of the results to 
see the impact of the quality of the dataset and more detailed 
classes of the waste. Hence, the main contributions of this 
paper are as follows: 

 Provide a performance comparison of five common 
CNN models in landfill waste classification. 

 Evaluate the performance of the selected models when 
the type of material over different items is important to 
be detected. 

 Employ transfer learning and fine-tune the learning 
process using the scheduling of the learning rate. 

 Achieve superior classification accuracy compared to 
previous work. 

The remainder of this paper is structured as follows: 
Section II discusses the related works. The RealWaste dataset 
and the proposed models for evaluation are detailed in Section 
III and Section IV. Section V discusses the results and 
outcomes, and Section VI concludes the paper. 

II. LITERATURE REVIEW 

Table I presents the top accuracies achieved by different 
datasets in waste classification tasks. It includes datasets such 
as RealWaste and DiversionNet, Waste dataset, Custom 
dataset, Sekar's waste classification, OrgalidWaste, Waste 
Classification data, and the proposed work using RealWaste. 
The accuracy values range from 49.69% to 99.43%, 
highlighting the varying performance levels of the datasets in 
accurately classifying waste materials. 
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TABLE I. COMPARATIVE ANALYSIS OF DATASETS AND TOP 

ACCURACIES IN WASTE CLASSIFICATION 

Ref. Dataset Top Accuracy 

[9] 
RealWaste and 

DiversionNet 

49.69% using 

DiversionNet and  

89.19% using RealWaste 

[10] Waste dataset 70% 

[11] Custom dataset 99.43% 

[12] 
Sekar's waste 

classification 

80.88% 

[13] OrgalidWaste 88.42% 

[14] 
Waste Classification  

data 

96.7% 

Our proposed work RealWaste 
96.31% 

In study [9], the authors propose a new dataset called 
RealWaste and evaluate the performance of five deep learning 
models (VGG-16, InceptionResNetV2, DenseNet121, 
Inception V3, and MobileNetV2) for waste classification using 
the “RealWaste” dataset and the existing “DiversionNet” 
dataset. The classification accuracy for the “DiversionNet” 
dataset was limited to 49.69% for the “RealWaste” dataset, the 
models were able to achieve much higher classification 
accuracy where Inception V3, reached 89.19% classification 
accuracy on the full spectrum of labels required for accurate 
waste modeling. 

In research [10], the authors use a custom CNN model 
architecture with four and five convolution layers to classify 
four categories of solid waste including plastic, glass, organic, 
and paper materials. They use a “Waste dataset” that contains 
100 RGB images for each category. The five-layer DCNN 
architecture achieved a 70% accuracy rate in distinguishing the 
different waste types, while the four-layer architecture had a 
61.67% accuracy rate. Plastic waste was the most challenging 
to classify accurately, with 37% and 56.7% accuracy rates in 
the four-layer and five-layer architectures, respectively. The 
key limitations were around classification accuracy, 
particularly for plastic waste, as well as the need for further 
optimization and exploration of a broader range of waste types 
and real-world application considerations. 

In study [11], the authors use a custom CNN model with 
two, six, and eight convolutional layers with a custom dataset 
of 878 carrot images captured in-house, which they 
preprocessed and augmented to train and evaluate their 
proposed CNN models. The authors found that the eight 
convolutional layers model with the mixed pooling layer 
achieved the best performance, reaching 99.43% accuracy in 
classifying regular and irregular carrot shapes on 24x24 pixel 
images. The study was conducted using a dataset of 878 carrot 
images, which may be considered a relatively small dataset for 
training deep learning models. Also, the study was conducted 
in a controlled laboratory setting using images captured under 
specific lighting conditions. The authors acknowledge that 
while the proposed CNN-based approach showed promising 
results in the laboratory setting, further research and real-world 
validation would be needed to fully assess the practical 
applicability and limitations of the system. 

In study [12], the authors developed a bespoke 5-layer 
CNN architecture and trained it on two different image 
resolutions (80x45 and 225x264 pixels) of the augmented 
“Sekar's waste classification” dataset consisting of 25,077 
images of organic (13,966) and recyclable (11,111) waste 
objects. The research aims to explore the possibility of training 
an efficient lightweight model with high accuracy and less 
computational demand compared to standard CNN 
architectures. The smaller model (80.88%) outperformed the 
larger model (76.19%), but the larger model seems more 
generalizable based on the observed behavior of loss and 
accuracy during training, validation, and testing. The key 
limitations include the data paucity and limited categories. 

In study [13], the authors use various CNN models for 
waste classification, including AlexNet, GoogLeNet, 
EfficientNet-B0, and ResNet-50 with a transfer learning 
approach. Also, they use a custom four-layer CNN. They used 
a dataset called “OrgalidWaste” which comprises 
approximately 5,600 images categorized into four waste 
classes: organic, glass, metal, and plastic. The performance 
evaluation of the models in the study was based on accuracy 
and cross-entropy loss observed during training, validation, and 
testing. The VGG16 model achieved the highest accuracy of 
88.42%, outperforming other CNN architectures like VGG19, 
Inception-V3, and ResNet50. The study highlighted the need to 
further enhance classification accuracy for practical 
deployment despite the promising results obtained. 

In study [14], the authors use convolutional neural 
networks (CNNs) and faster region-based convolutional neural 
networks (R-CNNs) to classify e-waste. The proposed system 
aims to facilitate communication between individuals 
requesting WEEE pickup and waste collection companies, 
enabling efficient collection planning based on the identified 
type and size of the e-waste items. They used a dataset called 
“Waste Classification data” containing 24,705 images of 
refrigerators, washing machines, and monitors/TVs. The 
geometric transformations were used as data augmentation 
with 13 transformations such as rotation, color transformation, 
zoom, and blur. The proposed CNN model achieved an 
average accuracy of 90-96.7% and the faster R-CNN network 
provided slightly lower accuracy, around 90% on average, but 
had the advantage of being able to detect and determine the 
size of the objects in the images. The key limitations were 
around the limited e-waste categories. 

III. DATASET 

The study leveraged the newly developed landfill waste 
dataset, "RealWaste," which comprises 4,752 raw and fully 
labeled RGB images. This dataset was meticulously collected 
during the biannual residential waste audit at the Wollongong 
Waste and Resource Recovery Centre’s landfill [9]. The 
collection process involved capturing images of various waste 
items as they were sorted, ensuring a representative sample of 
the types of materials commonly found in residential waste. 

Fig. 1 shows samples of RealWaste images with their label. 
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(a) (b) (c) (d) 

Fig. 1. Sample images from the dataset for: (a) Cardboard; (b) Food 

Organics; (c) Glass; (d) Metal. 

The RealWaste dataset includes samples across nine 
distinct labels representing different landfill waste categories 
including Cardboard, Food Organics, Glass, Metal, 
Miscellaneous Trash, Paper, Plastic, Textile Trash and 
Vegetation. 

An analysis of the dataset reveals that it exhibits some 
degree of imbalance in the distribution of images across the 
labels. Table Ⅱ presents the count and percentage of images for 
each label, highlighting the variations. 

TABLE II.  LABELS AND IMAGE COUNT IN DATASET  

Label Images Count 
Percentage Of Each 

Label in The Dataset 

Cardboard 461 9.69% 

Food Organics 411 8.65% 

Glass 420 8.83% 

Metal 790 16.62% 

Miscellaneous Trash 495 10.41% 

Paper 500 10.51% 

Plastic 921 19.38% 

Textile Trash 318 6.69% 

Vegetation 436 9.17% 

This imbalance may pose challenges for model training, 
particularly in ensuring that the model generalizes well across 
all categories. The predominance of plastic images, for 
instance, could lead to bias in classification outcomes if not 
adequately addressed. 

IV. METHODOLOGY 

This section addresses a significant gap in waste 
classification literature, focusing on dataset limitations and 
inadequate labeling in waste auditing studies. To enhance the 
accuracy and practicality of waste classification models, data is 
preprocessed and augmented for use by the pre-trained CNN 
models EfficientNet, GoogLeNet, ResNet-152, ShuffleNet, and 
VGG-19. The objectives include evaluating the use of clean 
material datasets for training models in real waste 
classification, comparing dataset approaches by training on real 
waste samples, and identifying the best model for waste 
classification in real-world scenarios. 

As shown in Fig. 2, the proposed methodology consists of 
the following main steps: 

 Data Splitting: The dataset was split into training, 
validation, and testing subsets using a standard split 
ratio, where 50% of the data was used for training, 20% 
for validation, and 30% for testing. This ensures that the 
model is trained on a diverse set of data, validated on a 
separate subset, and finally tested on unseen data [15]. 

 Hyperparameter tuning: Hyperparameters–such as 
batch size, learning rate, number of epochs, momentum, 
and learning rate decay–are set. These hyperparameters 
play a crucial role in the training process and should be 
carefully chosen through experimentation and 
validation [16]. 

 Training and Validation: Each model is trained and 
validated using a stochastic gradient descent optimizer. 
Additionally, the use of automatic mixed precision 
(auto-cast) is considered to accelerate training without 
sacrificing model accuracy. Furthermore, a learning rate 
scheduler is employed to adjust the learning rate during 
training [17]. 

 Model Evaluation: Each model uses metrics such as 
accuracy, precision, recall, F1 score, receiver operating 
characteristic curve, and confusion matrix analysis. 
These metrics provide a comprehensive understanding 
of the model’s performance, such as correctly 
classifying instances, handling imbalanced classes, and 
discriminating between classes [18]. 

 
Fig. 2. The proposed methodology. 

A. Data Preprocessing and Augmentation 

CNNs typically require input images to be of a fixed size to 
avoid issues with model training and performance. Variations 
in image dimensions can be addressed by resizing images 
before inputting them into the CNN. This can be done using 
techniques like Bicubic interpolation, which involves 
averaging 16 neighboring pixels to determine pixel values in 
the resized image [19], [20]. Data augmentation techniques, 
which improve models' ability to generalize and perform well 
on diverse datasets and solve unbalanced dataset issues such 
as: 

 Color Jitter which introduces random variations in the 
hue and saturation levels of images to augment the 
dataset. The hue indicates the range of random hue 
adjustments applied to the image, while saturation 
represents the range of random saturation adjustments. 
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 Randomly rotates images within the specified range of 
degrees. 

The incorporation of augmented images with diverse 
textures and appearances enhanced the diversity and richness 
of the dataset. As a result, this contributed to an improved 
generalization of models and enhanced their performance 
across all classes. Each image in the dataset was used to 
generate two new images: The first was generated by adding 
Color Jitter with a hue value of 0.05 and a saturation of 0.05 to 
the original image. The second was generated by applying 
random rotations to images in the dataset with a range from 0 
to 180 degrees. 

B. The Selected Models 

The CNN models including EfficientNet, GoogLeNet, 
ResNet-152, ShuffleNet, and VGG-19 were selected for this 
experimental study to analyze the performance in classifying 
landfill waste due to their proven capabilities in image 
classification tasks.  EfficientNet is renowned for its efficiency 
in balancing model size and accuracy. GoogLeNet introduces 
the inception module for feature extraction. ResNet-152 
utilizes residual connections to tackle the vanishing gradient 
problem. ShuffleNet emphasizes computational efficiency 
through channel shuffling. VGG-19 is acknowledged for its 
deep architecture with small convolutional filters [21], [22], 
[23]. The strengths of these models in image classification 
position them as ideal candidates for accurately classifying 
landfill waste: 

 EfficientNetV2, introduced in 2021 by Tan and Le, 
improves training speed and parameter efficiency 
compared to the original EfficientNet. It addresses slow 
training with larger image resolutions by combining 
MBConv and Fused-MBConv blocks through neural 
architecture search and model scaling. This 
optimization enhances training efficiency [24]. 

 GoogLeNet: GoogLeNet developed by Google in 2015, 
is a deep convolutional neural network for image 
classification. It uses multiple convolutional layers with 
different filter sizes and pooling operations to extract 
features at various scales. The architecture consists of 
19 layers, featuring inception modules for feature 
extraction, auxiliary classifiers to address the vanishing 
gradient issue and overfitting, and ensuring 
computational efficiency. It also includes max-pooling 
layers, an average pooling layer, a dropout layer, and a 
linear layer for the final output [25]. 

 ResNet-152: ResNet-152 was introduced in 2015 by 
Microsoft. It is part of the ResNet (short for Residual 
Network) family of models, known for their deep 
structure and the use of residual connections. ResNet-
152 specifically has 152 layers, making it a very deep 
network, and it has been widely used for various 
computer vision tasks, such as image classification and 
object detection [26]. 

 ShuffleNet V2: Introduced in 2018 as an evolution of 
the original ShuffleNet, focuses on enhancing 
computational efficiency and model performance. By 

integrating channel shuffling and pointwise group 
convolutions, it improves performance while preserving 
computational efficiency. These elements enhance its 
effectiveness in feature extraction and representation 
learning. With 164 layers, ShuffleNet V2 incorporates 
operations like depthwise separable convolutions, 
concatenation, and channel shuffling to facilitate 
efficient information exchange and feature extraction 
within the network [27], [28]. 

 VGG19: VGG19, a deep convolutional neural network 
that comprises 19 layers, was developed in 2014. It is 
known for its simplicity and effectiveness in image 
recognition tasks. The network architecture consists of a 
series of convolutional layers that are followed by max 
pooling layers and culminates in three fully connected 
layers [29]. 

C. Hyperparameters and Optimization Technique 

Hyperparameters are parameters that govern the learning 
process and dictate the values of the model parameters 
acquired by a learning algorithm. The use of the prefix “hyper” 
indicates the significance of the parameters in determining both 
the learning process and resulting model parameters [30]. 
Specifically, hyperparameters are settings or configurations 
that are not learned from the data but are set before training the 
model, and in the proposed methodology, the following 
hyperparameters were used: learning rate, loss function, 
number of epochs, and batch size. 

Optimizers are essential for adjusting model weights and 
learning rates to minimize errors or maximize efficiency. For 
instance, stochastic gradient descent is a popular optimization 
algorithm in deep learning, a variation of gradient descent. It 
minimizes loss functions by training models. Unlike traditional 
gradient descent, stochastic gradient descent computes 
gradients using data subsets, known as "mini-batches," making 
it faster and more scalable for large datasets. This approach 
accelerates convergence, especially beneficial for handling 
extensive datasets [31], [32]; therefore, it was used in the 
proposed methodology. The objective function 𝑓(𝑥), which is 
the average loss function, is given by the following equation: 

𝑓(𝑥)  =  
1

𝑛
∑ 𝑓𝑖 (𝑥)𝑛

𝑖=1   

where n is the number of input data taken from the training 
dataset. The gradient of the objective function is computed for 
each iteration of the training phase by the following equation: 

∇𝑓(𝑥)  =  
1

𝑛
∑ ∇𝑓𝑖(𝑥)𝑛

𝑖=1   

The stochastic gradient descent algorithm reduces the 
computational cost at each iteration by randomly shuffling the 
training data to ensure that the mini-batches used for 
computing the gradients are representative of the entire dataset 
and compute the gradient ∇𝑓𝑖 (𝑥) to update x by the following 
equation [33]: 

x ←  𝑥 − 𝜂∇𝑓𝑖 (𝑥)  

where 𝜂 is the learning rate. 
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D. Evaluation Metrics 

Various evaluation metrics were utilized to appraise the 
performance of the selected models, including the confusion 
matrix, accuracy, F1 score, precision, recall, and receiver 
operating characteristic (ROC) curve [34]. The confusion 
matrix evaluates the classification performance of the CNN 
model by juxtaposing actual and predicted values. In this 
matrix, rows correspond to actual values while columns 
represent predicted values. The results obtained from this 
evaluation encompass four potential outcomes: True Positive 
(TP) - denoting correct prediction of the positive class, False 
Positive (FP) - indicating incorrect prediction of the positive 
class, True Negative (TN) - signifying accurate prediction of 
the negative class, and False Negative (FN) - representing 
erroneous prediction of the negative class [35]. 

Accuracy refers to the extent to which the model effectively 
categorizes all instances within a dataset. It is computed by 
dividing the total number of correct predictions by the overall 
number of predictions made [36]. The following equation 
calculates accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
  

The F1 score is a numerical measure of the balance 
between precision and recall [37]. It is calculated by taking the 
harmonic mean of precision and recall using the following 
equation: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗ 
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

Where precision is the ratio of true positives to the sum of 
true positives and false positives, measuring the accuracy of 
positive predictions. Recall, on the other hand, is the proportion 
of true positives to the sum of true positives and false 
negatives, indicating the ability to identify actual positives 
accurately. 

The ROC curve evaluates a CNN model's ability to 
distinguish labels by examining the true positive rate (TPR) 
and false positive rate (FPR) at different thresholds. It assesses 
the model's accuracy in classification by graphing TPR against 
FPR at various threshold levels [38]. The TPR and FPR are 
calculated using the following equations: 

𝑇𝑃𝑅 = 
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑁)
  

𝐹𝑃𝑅 =  
𝐹𝑃 

(𝐹𝑃 + 𝐹𝑁)
  

V. RESULTS AND DISCUSSIONS 

A. Experimental Setup 

The original dataset was cleaned, preprocessed, and 
enhanced as outlined in Section III to prepare it for training 
CNN models. The image quantity was increased to 19,008 
labeled images, with each label representing around 3% of the 
dataset, totaling 9 unique labels. One-hot encoding was utilized 
for label encoding. Various hyperparameters such as learning 
rate, loss function, epochs, batch size, optimizer, momentum, 
learning rate decay, and weight initialization were set for 
training the CNN models as shown in Table III. The selected 

models' weights were initialized by loading pre-trained weights 
from ImageNet, enhancing their performance and efficiency 
while reducing the need for extensive training on the dataset. 

TABLE III. HYPERPARAMETERS AND THEIR VALUES TUNING 

Hyperparameters Value 

Learning rate 0.001 

Loss function Cross-entropy loss 

Number of epochs 50 

Batch sizes 64 

Optimizer Stochastic gradient descent 

Momentum 0.9 

Learning rate decay 0.0005 

Weight initialization Transfer learning 

All experiments were carried out locally on a computer 
with the following specifications: 

 Processor: AMD Ryzen 9 5900HX, 3301 MHz, 8 
Core(s), 16 Logical Processor(s). 

 Physical Memory (RAM): 32.0 GB. 

 Graphics Card: NVIDIA GeForce RTX 3080 Laptop 
GPU. 

B. Models Training Performance 

All models were trained using the same dataset and with 
hyperparameter values as listed in Table Ⅲ to analyze the 
learning behavior of each model. Table Ⅳ presents the average 
training and validation accuracy, as well as the average training 
and validation loss for various models including EfficientNet, 
GoogLeNet, ResNet-152, ShuffleNet, and VGG-19. ResNet-
152 has the highest average training among the models listed, 
with a value of 99.07%. 

TABLE IV. HYPERPARAMETERS AND THEIR VALUES TUNING 

# Model 

Average 

Training 

Accuracy 

Average 

Validation 

Accuracy 

Average 

Training 

Loss 

Average 

Validation 

Loss 

1 EfficientNet 98.82% 95.57% 0.036 0.174 

2 GoogLeNet 98.93% 92.93% 0.035 0.234 

3 ResNet-152 99.07% 94.63% 0.029 0.198 

4 ShuffleNet 92.83% 86.42% 0.270 0.430 

5 VGG-19 97.94% 91.22% 0.063 0.343 

ShuffleNet has the lowest average training accuracy at 
92.83% but still demonstrates strong performance. EfficientNet 
and GoogLeNet demonstrate competitive performance in terms 
of accuracy and loss, while VGG-19 shows slightly lower 
accuracy, but relatively lower loss compared to ResNet-152. 

Overall, the analysis shows that ResNet-152 performs 
exceptionally well in terms of both accuracy and loss, while 
ShuffleNet appears to face challenges in generalizing to 
validate data. This comparative analysis can provide valuable 
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insights for selecting the most suitable model based on specific 
performance criteria. 

Fig. 3 to Fig. 7 visualize the loss values and average 
accuracy percentage for all models per epoch. 

  
(a) (b) 

Fig. 3. EfficientNet training performance: (a) Losses values per epoch (b) 

Average accuracy percentage values per epoch. 

  
(a) (b) 

Fig. 4. GoogLeNet training performance: (a) Losses values per epoch (b) 

Average accuracy percentage values per epoch. 

  
(a) (b) 

Fig. 5. ResNet-152 training performance: (a) Losses values per epoch (b) 

Average accuracy percentage values per epoch. 

  
(a) (b) 

Fig. 6. ShuffleNet training performance: (a) Losses values per epoch (b) 

Average accuracy percentage values per epoch. 

  
(a) (b) 

Fig. 7. VGG-19 training performance: (a) Losses values per epoch (b) 

Average accuracy percentage values per epoch. 

C. Models Testing Performance 

Table Ⅴ provides a comprehensive overview of the 
performance metrics including accuracy, precision, recall, and 
F1 score for different models. Among these models, 
EfficientNet stands out with the highest Average Testing 
Accuracy of 96.31%, highlighting its effectiveness in 
classification tasks. This exceptional performance can be 
attributed to Efficient Net’s sophisticated architecture that 
incorporates compound scaling and efficient model scaling 
methods, allowing it to achieve superior accuracy. 

TABLE V. HYPERPARAMETERS AND THEIR VALUES TUNING 

# Model 

Average 

Testing 

Accuracy 

Average 

Precision 

Average 

Recall 

Average F1 

Score 

1 EfficientNet 96.31% 0.9342 0.9631 0.9643 

2 GoogLeNet 94.25% 0.8965 0.9425 0.9432 

3 ResNet-152 95.49% 0.9183 0.9549 0.9555 

4 ShuffleNet 89.11% 0.8113 0.8911 0.8924 

5 VGG-19 92.91% 0.8727 0.9291 0.9296 

ResNet-152 and GoogLeNet also demonstrate strong 
performance with accuracy rates of 95.49% and 94.25% 
respectively. ResNet-152, known for its deep architecture with 
residual connections, excels in capturing intricate features 
within the data, leading to high precision, recall, and F1 scores. 
On the other hand, Google Net’s inception modules and 
efficient use of parameters contribute to its competitive 
performance across all metrics. 

ShuffleNet and VGG-19, while slightly lower in accuracy 
compared to the top performers, still exhibit respectable results. 
Shuffle Net’s emphasis on computational efficiency through 
channel shuffle operations enables it to achieve a balance 
between accuracy and resource utilization. VGG-19, with its 
deeper architecture comprising multiple convolutional layers, 
maintains a strong performance across precision, recall, and F1 
score metrics. 

D. Models Performance Analysis 

To gain a deeper understanding of the models’ 
classification performance, a detailed analysis was conducted 
using the AUC, as shown in Fig. 8. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 8. AUC values for different Labels across various models including (a) 

EfficientNet (b) GoogLeNet (c) ResNet-152 (d) ShuffleNet and (e) VGG-19. 

EfficientNet demonstrates strong performance across most 
classes with consistently high AUC values, particularly 
excelling in classes such as Food Organics and Vegetation 
where it achieved AUC scores of 0.99. This suggests that 
EfficientNet is effective in distinguishing these classes from 
others with high accuracy. GoogLeNet also performs well 
overall, with notable AUC scores for classes such as Glass and 
Vegetation. However, it shows slightly lower performance 
compared to EfficientNet in some classes like Metal and 
Miscellaneous Trash. ResNet-152 showcases consistent 
performance across various classes, with competitive AUC 
values for most categories. It performs particularly well in 
distinguishing classes like Cardboard and Paper. ShuffleNet 
exhibits varying performance across different classes, with 
lower AUC scores for categories such as Miscellaneous Trash 
and Textile Trash compared to other models. VGG-19, similar 
to GoogLeNet, demonstrates strong performance in classes like 
Glass and Vegetation but shows lower AUC values for 
categories like Miscellaneous Trash and Textile Trash. 

In summary, EfficientNet stands out as a top performer in 
this analysis, followed closely by ResNet-152 and GoogLeNet. 
These models show effectiveness in classifying diverse classes 
accurately, with variations in performance observed across 
different models and classes. 

Also, the confusion matrix was utilized to analyze the 
model's classification performance in correctly classifying 

different waste categories and reveal the presence of false 
negatives and false positives. Fig. 9 to Fig. 13 visualize the 
confusion matrix for the five models. 

 
Fig. 9. Confusion Matrix for EfficientNet model in classifying landfill 

waste. 

 
Fig. 10. Confusion Matrix for GoogLeNet model in classifying landfill waste. 

 
Fig. 11. Confusion Matrix for ResNet-152 model in classifying landfill waste. 
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Fig. 12. Confusion Matrix for ShuffleNet model in classifying landfill waste. 

 
Fig. 13. Confusion Matrix for VGG-19 model in classifying landfill waste. 

The confusion matrix for all models shows that the model's 
performance reveals notable confusion among various waste 
labels, particularly between metal and plastic categories. For 
EfficientNet, the model achieved a high accuracy rate of 
92.41% in correctly identifying metal objects but misclassified 
four items as plastic. The accuracy of the plastic label was 
slightly lower at 84.78%, with six items mistakenly classified 
as metal and one item as cardboard. For GoogLeNet, the 
model's performance metrics show a similar trend with notable 
confusion between metal and plastic categories. Similarly, the 
ResNet-152 model exhibited challenges in distinguishing 
between metal and plastic categories, leading to 
misclassification. VGG-19 model's performance also indicated 
confusion between metal and plastic labels, impacting the 
accuracy of classification. In summary, all models struggled 
with distinguishing between metal and plastic waste categories, 
highlighting a common challenge across the different models 
in accurately classifying these materials. The difficulty in 
distinguishing between metal and plastic waste categories in 
the models could be attributed to several factors: 

 Multi-Structured Shapes and Textures: Both metal and 
plastic items have varied shapes and textures, which 

further complicates the classification problem for the 
models. 

 Data Variability: The reason why models fail to 
differentiate between waste materials made of metal 
and those that are made of plastic may partly be 
attributed to the lack of diversity in examples used 
during training concerning these two classes. 

To address the challenges faced by models in accurately 
classifying metal and plastic waste, several strategies can be 
implemented: 

 Diverse Data Sources: Where the current dataset is 
established, further research could explore the 
utilization of other sources of images taken in different 
surroundings and conditions of light. This would help 
create a more comprehensive dataset that captures a 
wider range of metal and plastic items. 

 Improved Image Augmentation: While augmentation 
has been done, checking out advanced augmentation 
techniques, such as changes in brightness, contrast, and 
adding artificial noise, might yield a better 
generalization performance across different conditions. 

E. Comparison with State-of-the-Art 

To ensure an unbiased comparison, we have chosen to 
evaluate our work by benchmarking it against other studies that 
have utilized the same dataset. This approach allows for a fair 
assessment of the effectiveness and performance of our 
methodology within the context of the specific dataset, 
promoting a more accurate evaluation of our contributions in 
the field. 

In study [9], they achieved an accuracy of 49.69% using 
DiversionNet and 89.19% using RealWaste. The accuracy of 
using RealWaste was notably higher compared to 
DiversionNet, indicating the effectiveness of RealWaste in the 
classification process. However, our work demonstrated a 
higher accuracy of 96.31% using the RealWaste dataset. It 
showed a significant improvement in accuracy compared to 
Work 1's results with RealWaste. 

In summary, our proposed work exhibited superior 
performance in waste classification using the RealWaste 
dataset compared to study [9], showcasing advancements in 
accuracy and potentially innovative approaches in the 
classification process. 

VI. CONCLUSION 

Incorporating deep learning techniques, especially 
Convolutional Neural Networks (CNNs), into waste 
classification processes is crucial for enhancing automation, 
improving waste sorting accuracy, and striving towards a more 
sustainable and efficient waste management system amidst the 
escalating global waste production. The performance 
evaluation of five common CNN pre-trained models on the 
RealWaste dataset not only demonstrated advancements in 
accuracy but also highlighted potential innovative approaches 
in waste classification methodologies. This study contributes to 
the continuous enhancement of waste management strategies 
and the promotion of environmental sustainability through the 
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utilization of cutting-edge technologies like deep learning. 
Notably, EfficientNet emerged as the top performer with the 
highest Average Testing Accuracy of 96.31%, underscoring its 
effectiveness in classification tasks. Additionally, the 
performance of five well-known CNN pre-trained models was 
compared in this research using the RealWaste dataset as a test. 
The evaluation aimed to understand the impact of the dataset 
quality and the inclusion of more detailed waste classes, 
shedding light on the importance of data quality in achieving 
accurate waste classification outcomes. By addressing these 
aspects, the research contributes to advancing waste 
management practices and fostering environmental 
sustainability through advanced deep-learning methodologies. 
Looking ahead, future work will focus on expanding the 
dataset to include more diverse samples and exploring 
advanced data augmentation techniques to address class 
imbalances. These efforts aim to further enhance model 
robustness and improve waste classification systems, 
ultimately contributing to more effective waste management 
practices and fostering environmental sustainability. 
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