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Abstract—Object detection is a fundamental task in gesture 

recognition, involving identifying and localising human hand or 

body gestures within images or videos amidst varying 

environmental conditions. To address the inadequate recognition 

rate of gesture detection algorithms in intricate surroundings 

caused by issues such as inconsistent illumination, background 

colors resembling skin tones, and diminutive gesture scales, a 

gesture recognition approach termed HD-YOLOv5s is presented. 

An adaptive Gamma image enhancement preprocessing technique 

grounded in Retinex theory is employed to mitigate the effects of 

lighting variations on gesture recognition efficacy. A feature 

extraction network incorporating an adaptive convolutional 

attention mechanism (SKNet) is developed to augment the 

network's feature extraction efficacy and mitigate background 

interference in intricate situations. A novel bidirectional feature 

pyramid architecture is implemented in the feature fusion 

network to fully leverage low-level features, thereby minimizing 

the loss of shallow semantic information and enhancing the 

detection accuracy of small-scale gestures. A cross-level 

connection strategy is employed to enhance the model's detection 

efficiency. To assess the efficacy of the suggested technique, 

experiments were performed on a custom dataset featuring 

diverse lighting intensity fluctuations and the publicly available 

NUS-II dataset with intricate backdrops. The recognition rates 

attained were 99.5% and 98.9%, respectively, with a detection 

time per frame of about 0.01 to 0.02 seconds. 

Keywords—Gesture recognition; Yolov5; object detection; 

attention mechanism; bidirectional feature pyramid 

I. INTRODUCTION 

With the continuous development of human-computer 
interaction (HCI) technology, people's lives are becoming 
increasingly intelligent [1-2]. Traditional HCI methods rely on 
contact-based devices such as a mouse, keyboard, and joystick. 
However, with the advancement of technologies like voice 
recognition and gesture recognition, contactless interaction has 
become one of the main research directions. Gesture 
recognition, as a form of body language, is simple, direct, and 
convenient. It enables HCI in various fields such as in-vehicle 
cabin control, aerospace, smart homes, and intelligent 
education, making it a research hotspot in HCI technology. For 
example, using gesture recognition in smart homes allows for 
remote control with simple gestures, greatly enhancing 
convenience in people's lives. However, in practical 
applications, gesture recognition algorithms still face many 
challenges in complex environments due to factors like 
lighting, background, distance, and skin tone. Gestures can be 
categorized as either static or dynamic, where dynamic gestures 

can be viewed as a sequence of interrelated static gestures. 
Therefore, static gesture recognition serves as a fundamental 
basis for studying dynamic gestures and their applications. This 
paper focuses on static gesture recognition. Gesture recognition 
[3] technology has undergone multiple phases of development 
to date. Conventional gesture recognition is often investigated 
via sensor-based techniques or computer vision methodologies. 
Gesture recognition reliant on sensors generally necessitates 
hardware devices to gather and interpret gesture data, like 
wearable data gloves, Leap Motion, and Kinect. While these 
approaches are rapid and precise and exhibit less sensitivity to 
fluctuations in intricate external surroundings, they depend on 
hardware devices, which may be cumbersome and costly to 
utilize. Gesture identification based on computer vision 
predominantly uses depth cameras, color spaces (RGB [4], 
HSV [5], YCbCr [6]), or skin color detection to delineate the 
gesture area. Following segmentation, recognition approaches 
such as template matching [7] and support vector machines 
(SVM) [8-9] are employed. These approaches depend on 
manually crafted feature extraction, rendering them vulnerable 
to external influences and leading to diminished robustness and 
suboptimal identification rates. 

In recent years, the advent of deep learning has prompted 
numerous academics to implement deep learning techniques for 
gesture detection in intricate contexts, with the objective of 
enhancing recognition accuracy. For instance, the Yu et al. [10] 
utilized a skin color model to identify gesture regions and 
applied convolutional neural networks (CNN) for feature 
extraction and detection. This approach is susceptible to 
fluctuations in lighting and skin color in complicated situations, 
diminishing its generalizability and robustness. The Diba et al. 
[11] directly utilized CNN to identify motions from raw photos; 
however, when the image features analogous skin and 
background hues, the CNN is unable to extract pertinent 
information, resulting in elevated false detection rates. The 
swift advancement of deep learning-based object detection 
algorithms has led many academics to recognize that utilizing 
these techniques for gesture recognition in intricate contexts 
can enhance performance. For example, the Gao et al. [12] 
employed the Faster R-CNN algorithm for gesture 
identification, utilizing Gaussian filters for image pre-
processing. The Fan et al. [13] used neural networks with the 
SSD (single shot multibox detector) to extract essential points 
in motions. Despite enhancements in gesture recognition [14] 
in tough conditions such lighting and skin tone fluctuations, the 
substantial model sizes and prolonged detection times hinder 
real-time identification in intricate environments. To tackle this 
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issue, Huang et al. [3] enhanced the YOLO (You Only Look 
Once) algorithm and introduced the DSN algorithm for gesture 
detection, employing CNN for recognition. This system 
improved recognition rates under uneven lighting and skin-tone 
background interference while enhancing detection speed, 
attaining real-time target detection. Nonetheless, it exhibited 
subpar performance in identifying little actions inside intricate 
settings. 

In terms of recognition accuracy, speed, and real-time 
performance, the YOLOv5 algorithm, which was recently 
introduced, surpasses other algorithms in the YOLO series. 
Although the YOLOv5 model has demonstrated satisfactory 
performance on extensive public datasets, it is still necessary to 
make specific enhancements in order to optimize the model's 
performance for specific target objects based on the 
characteristics of the selected datasets. For instance, the 
detection capability of small objects such as traffic lights was 
enhanced by Premaratne et al. [15] and colleagues through the 
modification of the backbone convolution network and the 
construction of a feature fusion network. The following 
challenges are presented when the YOLOv5 model is explicitly 
applied to gesture recognition in complex environments, 
despite the significance of high gesture recognition rates: 

 The algorithm's generalization and robustness are 
subpar when recognizing gestures in uneven lighting. 

 When skin tones blend with background colors, high 
false detection rates occur. 

 The algorithm experiences high miss rates and low 
recognition accuracy when recognizing gestures at a 
distance or on a small scale. 

To address the current challenges in gesture recognition, 
such as missed detection, false detection, and low recognition 
rates caused by uneven lighting, skin-tone backgrounds, small-
scale gestures, and complex environments, this paper proposes 
an improved YOLOv5-based gesture recognition method, HD-
YOLOv5s.  The main contribution of this paper is as follows: 

 First, an adaptive Gamma image enhancement method 
is used to pre-process the dataset, mitigating the effects 
of lighting variations in complex environments on 
gesture recognition.  

 To tackle background interference in complex 
environments, the attention mechanism module SK 
from the dynamic selection network is incorporated into 
the final feature extraction layer of the feature extraction 
network.  

 This allows for adaptive adjustment of the convolution 
kernel size for different scales of images, which helps in 
extracting effective features and improving feature 
extraction capabilities.  

 Finally, the PANet structure in the feature fusion 
network is replaced with an adjusted bidirectional 
feature pyramid structure (BiFPN), which improves the 
recognition rate of small-scale gestures in complex 
environments. 

II. YOLOV5S NETWORK STRUCTURE 

YOLOv5 is a neural network architecture employed for 
object detection. As network depth and weights increase, 
YOLOv5 is categorized into four variants: YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x. The YOLOv5s model 
is the smallest and exhibits the highest inference speed among 
these options. The YOLOv5 architecture comprises three 
components: the feature extraction network (Backbone), the 
feature fusion network (Neck), and the detection network 
(Prediction). 

A. Feature Extraction Network (Backbone) 

The Backbone comprises the CSPDarknet, Focus, and SPP 
(Spatial Pyramid Pooling) modules, which primarily operate to 
extract high (deep), intermediate, and low (shallow) level 
features from images. The backbone network of YOLOv5 is 
CSPDarknet53. In contrast to the Darknet53 network, the C3X 
module partitions the feature mappings of the base layer into 
two segments and subsequently integrates them via partial local 
cross-layer fusion. This not only mitigates the problem of 
excessive computation due to duplicated gradient information 
during network optimization, but also guarantees precision 
while diminishing computational burden. The Focus module 
enhances feature extraction efficiency by segmenting and 
recombining input feature maps within the backbone network, 
hence reducing the number of network layers. This significantly 
decreases computational burden and enhances detection 
velocity while preserving precision. The SPP module is 
incorporated following the CSPDarknet53 architecture to 
extract prominent characteristics from photos. The SPP 
architecture enhances the receptive field of the prediction box, 
addresses the alignment discrepancy between the target box and 
the feature map, and guarantees both effective feature 
extraction and the operational speed of the network. 

B. Feature Fusion Network (Neck) 

The fundamental components of the Neck are feature 
pyramid networks (FPN) [16] and path aggregation networks 
(PAN) [17], which primarily enhance the model's capacity to 
recognize objects across various scales. Deep feature maps 
possess enhanced semantic features but diminished localization 
information, whereas shallow feature maps have superior 
localization information but reduced semantic features. FPN 
segments the feature maps into various scales and integrates 
them. It transmits profound semantic information to the 
superficial layers, augmenting semantic representation across 
various scales.
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Fig. 1. HD-YOLOv5s network structure.

Conversely, PAN conveys superficial localization data to 
the deeper layers, enhancing localization proficiency across 
various scales. The PANet feature pyramid architecture 
incorporates a bottom-up pathway structure in addition to the 
Feature Pyramid Network (FPN) [18-19]. FPN improves object 
detection by integrating characteristics from both deep and 
shallow layers, particularly enhancing the identification of 
small objects. Object identification involves pixel-level 
categorization, and shallow features, which often capture edges 
and forms, are essential for this process. The bottom-up path 
architecture effectively employs shallow layer characteristics 
for segmentation. Incorporating this upgrade into FPN, PANet 
enables deep feature maps to leverage the extensive localization 
information from shallow layers, hence enhancing the detection 
of huge objects. 

C. Detection Network (Prediction) 

Traditional neural networks only input the deepest layer of 
network features into the detection layer, leading to the loss of 
small object features as they are passed from lower layers to 
higher layers. This results in difficulty in recognizing small 
objects and a low detection rate. YOLOv5 adopts a multi-scale 
detection method, dividing the feature maps into three scales 
through 32x, 16x, and 8x down sampling. By utilizing different 
receptive fields, larger feature maps detect small objects and 

smaller feature maps detect large objects, overcoming the 
limitations of top-layer features. 

III. HD-YOLOV5 NETWORK STRUCTURE 

The gesture recognition technique introduced in this 
research, HD-YOLOv5s, represents an enhancement of the 
YOLOv5s model. Fig. 1 illustrates the architecture of the HD-
YOLOv5s model, whereas Fig. 2 depicts the configuration of 
each module within the HD-YOLOv5s model. In Fig. 1, the 
newly incorporated features relative to the original YOLOv5s 
model are distinguished by various colors. 

A. Feature Extraction Network with SKNet 

In complex background environments, gesture targets may 
be small in size or have backgrounds similar in color to skin, 
which makes it challenging to recognize targets of varying 
scales. This requires higher feature extraction capabilities from 
the network model. Attention mechanisms can enhance the 
network's ability to express model features by strengthening 
important features and weakening general features. Therefore, 
this paper adopts an attention mechanism to enhance the 
network's feature extraction capability. 

The selective kernel neural network (SKNet) employs an 

adaptive selection method.
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Fig. 2. HD-YOLOv5 module structure.

The advantage resides in its consideration of several 
convolutional kernels, enabling neurons to select the suitable 
kernel size according to input information of varying scales, so 
efficiently modifying the receptive field size. This allows the 
network to concentrate on significant features. Conversely, 
conventional convolutional networks often employ a singular 
convolutional kernel per layer, and throughout feature 
extraction, the kernel size remains constant at each layer, 
resulting in a static receptive field. The dimensions of the 
receptive field directly affect the scale of the features, and the 
features derived from conventional convolutional networks are 
generally more homogeneous, which imposes specific 
constraints. Structures such as Inception incorporate numerous 
convolutional kernels to accommodate multi-scale pictures; 
however, the weights of these kernels remain constant, and 
post-training, the parameters are immutable. This leads to the 
indiscriminate utilization of all multi-scale information. 
Undoubtedly, employing a dynamic selection method such as 
SKNet offers greater advantages. 

SKNet, an enhancement of the SENet network, incorporates 
multi-branch convolutional networks, dilated convolutions, and 
group convolutions. It examines the interactions among 
channels while also addressing the function of convolutional 
kernels. SKNet enables the network to prioritize channels 
beneficial for recognition during feature extraction and 
autonomously identifies the ideal convolutional operator, hence 
enhancing recognition performance. SKNet operates through 
three phases: splitting, fusing, and selecting, as illustrated in 
Fig. 3. 

The specific steps are as follows: 

1) Split: Given an input feature 𝑋 ∈ 𝑅𝐺×𝑍×𝐶 , two 

convolution operations are performed with convolutional 

kernels of sizes 3×3 and 5×5, resulting in two outputs: �̃�: 𝑋 →
�̃� ∈ 𝑅𝐺×𝑍×𝐶  and �̂�: 𝑋 → �̂� ∈ 𝑅𝐺×𝑍×𝐶 . To further improve 

efficiency, dilated convolution with a dilation rate of 2 is used 

in place of the 5×5 convolution. 

2) Fuse: To adaptively adjust the receptive field size, the 

two branch results are first fused by element-wise summation, 

expressed as follows: 

𝑉 = �̃� + �̂�   (1) 

Secondly, use the global pooling operation on the integrated 
information to obtain the global information, as shown in the 
following formula: 

𝑇𝑐 = 𝐹hQ(𝑉𝑐) =
1

𝐺×𝑍
∑  𝐺

𝑖=1 ∑  𝑍
𝑗=1 𝑉𝑐(𝑖, 𝑗)     (2) 

In the formula, 𝐹hQ represents the global average pooling 

operation function, 𝑇𝑐 represents the output of the 𝑐  channel, 
and 𝑉𝑐(𝑖, 𝑗) represents the coordinates of the 𝑐 channel. 𝐺 Is the 
height of the feature map, and 𝑍 is the width of the feature map, 
where i and j are the coordinate values for the height and width 
of the feature map, respectively. 

Finally, 𝑇𝑐is reduced in dimension by the fully connected 

layer to obtain 𝑈, as follows: 

𝑈 = 𝐹fc(𝑇) = 𝛿(𝛽(𝑍𝑇))   (3) 

𝑑 = max (
𝑐

𝑟
, 𝐿)   (4) 
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Fig. 3. SKNet network structure.

In the equation, 𝐹fc denotes the fully connected operation 
function, δ signifies the non-linear activation function, 𝛽 
represents the batch normalization (BN) layer, and d indicates 
the fully connected layer regulated by the reduction ratio. L 

represents the minimum value of d, where 𝑍 ∈ R𝑑×𝑐，𝑈 ∈
R𝑑×1. 

3) Selection: First, the channel attention is generated, and 

then adaptive selection of information at different scales is 

made, as expressed below: 

{
𝑎𝑐 =

e𝐴𝑐𝑈

e𝑐𝐴𝑐+e𝐵𝑐𝑈

𝑏𝑐 =
e𝑐𝑈

e𝜀𝑈
+ e𝐵𝑐𝑈

        (5) 

In the formula, 𝐴, 𝐵 ∈ R𝑐×𝑑 , 𝑎𝑐 , 𝑏𝑐 represent the attention 

vectors corresponding to �̃� and �̂�   respectively, where 𝐴𝑐 
represents the 𝑐 row and 𝑎𝑐 represents the c element of 𝑎. 

Finally, the features output by the two branches are 
weighted and fused to obtain 𝑉𝑐, as follows: 

𝑊𝑐 = 𝑎𝑐�̃�𝑐 + 𝑏𝑐�̂�𝑐 ; 𝑎𝑐 + 𝑏𝑐 = 1  (6) 

In,  𝑊 = [𝑊1, 𝑊2, ⋯ , 𝑊𝑐], 𝑊𝑐 ∈ R𝐺×𝑍. 

SKNet is a lightweight embedded module composed of 
multiple SK (Selective Kernel) convolutional units. In this 
paper, the SK convolution layer is added to the C3 module at 
the end of the HD-YOLOv5s backbone network, enabling the 
network to focus more on extracting effective features. The 
process is as follows: the initial feature map size is set to 
640×640×3, and the channel scaling factor is set to 0.5. After 
one Focus operation and four CBS operations, the output 
feature map size of the final C3 module is 20×20×512, which 
is used as the input for the SK module. 

First, the feature map is passed through two convolution 
kernels, 3×3 and 5×5, using grouped convolution, outputting 
two feature maps of different scales, each with 512 channels, 

denoted as �̃� and �̂�. Then, the results of the two branches are 
added element-wise. After global average pooling, the output is 
a 1×1×512 feature map. Next, after two fully connected layers 
for dimensionality reduction and expansion, a feature map of 

size 1×1×d is obtained. This is then dynamically and adaptively 
adjusted using the softmax activation function, automatically 
selecting the optimal convolution operators a and b, which 
control the receptive field feature maps of the two branches. 

Finally, the two branches are weighted and fused as 𝑊 = �̃� ×
𝑎 + �̂� × 𝑏 = 20 × 20 × 512 to produce the output of this 
network layer, allowing the network to focus more on the 
gesture information that is useful for recognition. 

Abhishesh Pal et al. [20] and Prabu Selvam et al. [21] was 
integrated SKNet into YOLOv3 and SSD networks, enhancing 
the feature extraction capability and improving the mean 
average precision (mAP) of the networks to varying degrees. 
Therefore, SKNet is added to the HD-YOLOv5s algorithm 
proposed in this paper to improve the network's detection 
performance. 

B. Feature Fusion Network 

This work focuses on hand gesture recognition, 
encompassing small and varied-sized objects. The YOLOv5s 
network model employs the PANet (Path Aggregation 
Network) architecture to tackle the challenge of multi-scale 
input. Nonetheless, because to the disparate resolutions of the 
gesture region features, PANet frequently amalgamates 
features indiscriminately while integrating various input 
features. This may nevertheless result in false positives and 
overlooked detections, particularly with little objects. This 
research proposes utilizing a modified weighted bidirectional 
feature pyramid network (BiFPN) to supplant PANet for feature 
fusion, hence augmenting the model's detection efficiency and 
expanding the network's capability to identify hand gesture 
targets across varying scales. 

The Google Brain team introduced BiFPN in the 
EfficientDet object detection algorithm [22], characterized by 
efficient bidirectional cross-scale connections and weighted 
feature fusion. The BiFPN feature fusion technique assigns 
weights to features derived from the bidirectional feature 
pyramid and aggregates them pixel-wise, while the original 
YOLOv5s algorithm concatenates features along the channel 
dimension. This study integrates the bidirectional feature 
pyramid network (BiFPN) into the feature fusion network of the 
YOLOv5s model, employing channel-wise concatenation for 
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feature fusion and implementing cross-level cascade to 
augment the network's feature fusion efficacy. Fig. 4 illustrates 
the feature fusion network of the original YOLOv5s method. In 
the diagram, C𝑖(𝑖 = 2 ∼ 5)represents the multi-scale features 
extracted by the feedforward network. F represents the C33 
operator, Qi represents the output features, where 2× refers to 
two-fold up sampling achieved via bilinear interpolation, and 
0.5× refers to down sampling. The features of different scales 
{C2, C3, C4, C5}, extracted by the backbone network, are input 
into the feature fusion network. With the original image 
resolution set to 640×640, after bidirectional cross-scale 
connections and weighted feature fusion, three different scale 
features {Q3, Q4, Q5} are obtained as the detection layers of 
YOLOv5s, with resolutions of 20 × 20, 40 × 40, 80 × 80, 
respectively. 

 

Fig. 4. Feature fusion network of the original YOLOv5s algorithm. 

The specific improvements are as follows: 

 To enhance the accuracy of small object detection, 
this paper proposes a feature fusion method that fully 
utilizes low-level features. It makes full use of the Q2 
feature by incorporating high-resolution Q2 information 
into the feature fusion process. By establishing a 
connection between the small object detection feature 
Q3 and the previous level feature C2, it alleviates the 
loss of the F3 feature caused indirectly by network down 
sampling, thus further improving the network's 
supervision ability over small objects. 

 To improve the model's efficiency, while performing 
bidirectional feature fusion from top to bottom and 
bottom to top, a cross-scale lateral connection is added 
between the input and output nodes at the same scale. 
This cross-level connection allows surface-level details, 
edge information, and contour information to be 
integrated into the deeper layers of the network, 
enabling precise edge regression of the target without 
increasing computational costs. This reduces the feature 
loss caused by having too many layers. The improved 
feature fusion network structure is shown in Fig. 5. 

In Fig. 5, the dashed lines represent cross-level connections. 
Cross-level connections refer to adding a skip connection 
between the input and output nodes at the same scale. Since 

they are at the same level, this allows for more feature fusion 
without significantly increasing computational cost. As shown 
in Fig. 5, to reduce computation and shorten inference time, 
cross-level weighted fusion was not applied to the low-level Q2 
feature. Instead, cross-level weighted fusion was used only 
when obtaining the Q3 and Q4 features for final detection. The 
low-level Q2 feature was fully utilized by introducing high-
resolution feature information into the feature fusion process, 
improving the model's performance in small object detection 
and enhancing the backbone network's learning ability for 
target detection across different scale gesture regions. 

The weighted feature fusion uses a fast normalization fusion 
formula, as shown in Eq. (7). The normalization process is 
achieved by dividing each weight by the sum of all weights, 
with the normalized weights constrained between [0, 1], which 
improves GPU processing speed and reduces additional time 
costs. 

𝑂 = ∑  𝑖
𝑍𝑖

𝜀+∑  𝑗  𝑍𝑗
⋅ 𝐼𝑖     (7) 

 
Fig. 5. Improved feature fusion network. 

C. Image Enhancement Preprocessing 

During the collection of gesture datasets, issues such as 
uneven lighting or background colors similar to skin tones often 
occur. These issues can degrade image quality, affecting the 
model's ability to recognize gestures and leading to missed or 
incorrect detections. To address these problems, this paper 
introduces an adaptive contrast adjustment image enhancement 
method based on the original network, specifically an adaptive 
Gamma enhancement algorithm improved from the Retinex 
(Retina and Cortex) theory [22-23]. This algorithm is effective 
in addressing uneven lighting, providing better contrast, 
naturalness, and efficiency. Common image enhancement 
algorithms, such as histogram equalization and Retinex, tend to 
cause over-enhancement, color distortion, and halo effects 
during the enhancement process [24]. 

The Retinex-based adaptive Gamma enhancement 
algorithm adapts to the brightness level of different regions of 
an image, reducing the brightness in overexposed areas and 
increasing it in underexposed areas. This helps minimize over-
enhancement issues during image processing, resulting in better 
contrast. Moreover, this algorithm retains more detailed 
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information after adaptive correction, reducing color distortion 
and halo effects. Additionally, when processing images with 
uneven lighting, the algorithm can adjust the Gamma parameter 
adaptively based on the distribution characteristics of the 
lighting component, saving the time required for manually 
setting the Gamma value. The main steps of this image 
enhancement algorithm are as follows: 

 Use the Retinex theory to separate the brightness 
component and reflection component of the image. 

𝑅𝑐(𝑥, 𝑦) =
𝐼𝑢(𝑥,𝑦)

𝐿(𝑥,𝑦)
, 𝑐 ∈ {𝑟, ℎ, 𝑏}  (8) 

where, 𝑅𝑐(𝑥, 𝑦) represents the separated reflection 
component, 𝐼𝑢(𝑥, 𝑦)  represents the brightness of each RGB 
channel, and 𝐿(𝑥, 𝑦)represents the brightness component of the 
image. 

 Apply the adaptive Gamma correction algorithm to the 
brightness component. 

𝐿en(𝑥, 𝑦) = 𝐿(𝑥, 𝑦)𝛾(𝑥,𝑦)         (9) 

𝛾(𝑙) = 1 − ∑  𝑙
𝜈=0  

𝑄𝜔(𝑣)

𝑇𝑞
     (10) 

𝑇𝑞 = ∑  𝑙
𝑖=0  𝑄𝜔(𝑙)   (11) 

where, 𝐿en(𝑥, 𝑦) is the corrected brightness component, 

𝛾(𝑥, 𝑦)is the coefficient matrix, ∑𝑣=0
𝐿  𝑄𝜔(𝑣)is the cumulative 

distribution function of the brightness component, and 𝑄𝜔(𝑙) is 
the distribution function of the brightness values. 

𝑄𝜔(𝑙) =
𝑄(𝑙)−𝑞min

𝑝max−𝑞min
     (12) 

𝑄(𝑙) =
𝑛𝑙

𝑛𝑞
   (13) 

where, 𝑄(𝑙) is the probability density function of the 
brightness component, 𝑛𝑙 represents the number of pixels with 
a corresponding brightness, and 𝑛𝑞 represents the total number 

of pixels in the brightness component. 

 By merging 𝐿en(𝑥, 𝑦) and 𝑅𝑐(𝑥, 𝑦)the final enhanced 
image 𝐼en

𝑐 (𝑥, 𝑦)  is obtained, restoring the original 
image's color and details. 

𝐼en
𝑐 (𝑥, 𝑦) = 𝑅𝑐(𝑥, 𝑦) ⋅ 𝐿en(𝑥, 𝑦), 𝑐 ∈ {𝑟, h, 𝑏}          (14) 

The experimental comparison of the corrected images is 
shown in Fig. 6. 

 
Fig. 6. Comparison of images before and after Gamma correction 

Experimental results show that correcting images with 
uneven lighting not only significantly improves the clarity of 
the pre-processed images but also increases the diversity of 
lighting conditions in the dataset. By performing lighting 
enhancement pre-processing on the dataset, the quality of 
gesture images is improved, which in turn increases the 
accuracy and recall rate of gesture recognition. The flowchart 
of the HD-YOLOv5s gesture recognition method with the 
added image enhancement algorithm is shown in Fig. 7. 

 
Fig. 7. Flowchart of the HD-YOLOv5s gesture recognition method.

IV. EXPERIMENTAL DETAIL AND RESULTS ANALYSIS 

A. Gesture Dataset Preparation 

This paper uses the NUS-II dataset [25], which contains 
2,750 samples divided into 10 categories. The dataset was 
collected from 40 participants of different hand shapes and 

ethnicities in various complex indoor and outdoor 
environments. The gesture images in this dataset vary in size, 
dimension, and skin tone, with complex backgrounds, meeting 
the research criteria of this paper. Some examples from the 
dataset are shown in Fig. 8. 
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Fig. 8. NUS-II dataset examples. 

A custom gesture dataset was collected using an infrared 
camera, capturing the gestures of five participants under 
different lighting conditions and at various distances. Each 
participant performed seven different gestures, including 
numerical gestures 0-5 and the "OK" gesture. To augment the 
dataset, data augmentation techniques such as flipping, scaling, 
and shifting were applied to the images. The expanded dataset 
contains 300 samples per class, resulting in a total of 2,100 
images. 

 
Fig. 9. Custom dataset examples. 

The gesture datasets used in this paper are formatted 
according to the VOC dataset format. For the custom dataset, 
images in JPEG format were manually annotated using the label 
image tool. The 2,100 samples were then split into a training set 
and a test set at a 9:1 ratio. Some examples from the custom 
dataset are shown in Fig. 9. 

B. Evaluation Metrics 

To better assess the model's detection performance before 
and after the comparative experiments, the evaluation metrics 
commonly used in mainstream object detection algorithms 
were adopted. The specific detection metrics used in this paper 
are as follows: 

1) Precision (P): The proportion of correctly predicted 

targets out of all predicted targets. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (15) 

Recall (R): The proportion of targets predicted correctly by 
the model among all true targets. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (16) 

In the formula: 

 TP (True Positives) refers to the number of correctly 
recognized gesture images. 

 FP (False Positives) refers to the number of incorrectly 
identified gesture images. 

 FN (False Negatives) refers to the number of missed 
gesture images. 

2) Average Precision (AP): The precision value for a single 

category in the dataset, with a range from 0 to 1. Since using 

the 11-point interpolation sampling method can lead to a loss of 

precision, this paper adopts the AP calculation method 

introduced after VOC 2010, defined as follows: 

𝐴𝑃 = ∫  
1

0
 𝑃smooth (𝑟)d𝑟    (17) 

𝑃smooth (𝑟) = max
𝑟′𝑟′⩾𝑟

 𝑃(𝑟′)                    (18) 

In the equation, average precision (AP) is the mean of the 
precision values over the Precision-Recall (P-R) curve. The P-
R curve is a graphical representation of recall values on the 
horizontal axis and precision values on the vertical axis, 
creating a curve on the coordinate plane. The P-R curve is 
initially smoothed by utilizing all real recall values as 
thresholds. For each threshold when the recall r′ surpasses a 
specified value, the maximum accuracy value is designated as 

𝑃smooth (𝑟). The ultimate AP value is determined by integrating 

the area beneath the smoothed curve. 

3) Mean Average Precision (mAP): The mean of the 

Average Precision (AP) values over all categories in the dataset, 

sometimes referred to as the recognition rate. The formula for 

computation is presented in Eq. (19), where k represents the 

total number of target categories detected. 

𝑚𝐴𝑃 =
1

𝑘
∑  𝑘

𝑖=1 𝐴𝑃𝑖   (19) 

C. Experimental Setup 

All comparative experiments in this study were performed 
on a Windows 10 operating system with an NVIDIA GTX970 
GPU. The experimental setup comprised the deep learning 
framework PyTorch 1.10.0, CUDA version 10.2, and cuDNN 
version 8.2.4. The learning rate was established at 0.01 to 
facilitate rapid convergence in localized areas, while the batch 
size was determined to be 16 to enhance training efficiency. 

D. Result Analysis 

1) Comparative experiments: To address the low 

recognition rate of small-scale gestures in complex 

environments, this paper improved the feature fusion network 

of the YOLOv5s model. The accuracy and parameter counts of 

mainstream feature fusion networks, including FPN, PANet, 
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and BiFPN, were compared to select the best-performing multi-

scale fusion network. 

As shown in Table I, FPN only performs unidirectional 
feature fusion from top to bottom, resulting in low detection 
accuracy. PANet, which adds a bottom-up path to FPN, 
integrates strong localization information from lower-level 
features and shows significant improvement in detection 
accuracy. BiFPN further enhances PANet by adding 
bidirectional cross-scale connections. Although the parameter 
count of BiFPN increases by 13.2% compared to PANet, the 
computational cost (FLOPs) remains nearly unchanged, and the 
mAP value increases by 1.4 percentage points. Therefore, 
adding cross-scale connections enables the network to fuse 
more features without significantly increasing computational 
costs, making its detection accuracy superior to other networks. 

TABLE I. COMPARISON OF FEATURE FUSION NETWORK PERFORMANCE 

Feature Fusion Network mAP/% M/106 FLOPs/109 

FPN 94.5 6.52 15.2 

PANet 95.9 7.03 15.9 

BiFPN 97.3 8.1 16.3 

To better demonstrate the advantages of the improved 
model in this paper, a comparison was made with several 
classic object detection algorithms, including the two-stage 
model Faster R-CNN, and the one-stage models SSD, 
YOLOv3, and YOLOv5s. All models were trained and 
validated using the NUS-II dataset, as shown in Table II. 

TABLE II. COMPARISON BETWEEN MAINSTREAM TARGET DETECTION 

ALGORITHMS AND THE PROPOSED METHOD 

Model 
mAP/

% 

M/10

6 

Model 

size/106 

Inference 

time/ms 

Faster R-

CNN 94.5 60.1 159 44 

SSD 92.3 24.2 92.1 20.73 

YOLOv3 93.9 61.9 235 16.06 

YOLOv5s 95.9 7.03 15.9 9.07 

HD-
YOLOv5s 99.5 13.6 17.8 10.51 

From Table II, it can be seen that the sizes of the Faster R-
CNN, SSD, and YOLOv3 models are 6 to 10 times larger than 
that of the HD-YOLOv5s model, and the number of parameters 
is 3 to 10 times that of HD-YOLOv5s. Therefore, HD-
YOLOv5s can be considered a lightweight network compared 
to these models. The size of the HD-YOLOv5s model is not 
significantly different from that of YOLOv5s, although HD-
YOLOv5s adds a feature layer to the original YOLOv5s feature 
fusion network, resulting in increased computational 
complexity and a 1.44 ms. slower inference time than 
YOLOv5s. Nonetheless, the detection accuracy has increased 
by 3.6 percentage points relative to YOLOv5s. HD-YOLOv5s 

surpasses Faster R-CNN, SSD, and YOLOv3 in detection 
accuracy and inference speed, achieving detection speeds for a 
single frame image between 0.01 and 0.02 seconds, thereby 
fulfilling the real-time criteria for gesture recognition. To 
comprehensively confirm the efficacy of the gesture 
recognition approach presented in this research, it was 
compared with alternative gesture recognition methods 
utilizing the public NUS-II dataset, with the experimental 
findings displayed in Table III. 

TABLE III. COMPARISON BETWEEN MAINSTREAM GESTURE 

RECOGNITION ALGORITHMS AND THE PROPOSED METHOD 

References Recognition method mAP/% 

Wang et al. [26] Bayesian attention + multi-class SVM 93.7 

Yi Li et al. [27] Skin color detection + CNN 95.6 

Yi Tan et al.[28] Deep convolutional neural network 96.2 

Fatma M. et al.[29] 

Dual channel convolutional neural 

network (DC-CNN) + Softmax 

classifier 

98 

Proposed Model HD-YOLOv5s 99.5 

During the segmentation and detection phase, gestures were 
classified directly, resulting in a recognition rate of 96.2%. 
Fatma M. et al. [29] introduced a gesture identification 
technique utilizing a dual-channel convolutional neural 
network (DC-CNN), wherein the gesture picture and edge 
image were input independently into two distinct channels. 
Following the pooling processes, the characteristics were 
integrated in the fully connected layer to derive more profound 
categorization insights, yielding a recognition rate of 98.0%. 
From these results, the subsequent conclusions may be inferred: 

 Yi Li et al. [27] employed gesture segmentation and skin 

color detection techniques, which are susceptible to 

contextual influences, resulting in diminished recognition 

rates in intricate settings. This paper presents a method that 

enhances feature extraction by incorporating image 

enhancement pre-processing and integrating the SKNet 

attention module into the feature extraction network, 

thereby augmenting the model's generalization and 

robustness in complex environments, which results in 

improved gesture recognition rates.  

 Yi Tan et al. [28] identified gestures by direct classification 

or by augmenting network layers. This framework can 

mitigate the effects of inconsistent illumination and intricate 

backdrops, enhancing the model's adaptability to 

complicated surroundings. Nonetheless, its performance in 

recognizing small-scale movements is merely mediocre. 

This research presents an approach that, through the 

development of an innovative feature fusion network, 

augments the model's capacity to identify small-scale 

 gestures from considerable distances, hence enhancing 

gesture recognition rates. 
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Fig. 10. Training curves of each model.

2) Ablation experiment: To verify the effectiveness of each 

improvement module in the YOLOv5s network model, an 

ablation experiment will be conducted based on the YOLOv5s 

model, comparing the performance of different improved 

models. As shown in Table IV, '—' indicates not used, and '√' 

indicates used. 

Table IV indicates that the mAP value of the enhanced 
network model HD-YOLOv5s attained 99.5%. In Improved 
Model 1, the SKNet attention mechanism was incorporated into 
the original backbone extraction network. The parameter count 
(M) remained rather stable, while the mAP enhanced by 1.5 
percentage points in comparison to the previous model. SKNet, 
as a lightweight embedded module, produces more rational 
weight coefficients by autonomously picking the ideal operator, 
hence augmenting the network's feature extraction capability 
while maintaining a steady parameter count. 

Improved Model 2 incorporated a novel bidirectional 
feature pyramid network (BiFPN) into the original feature 
fusion network. In comparison to the BiFPN in Table I, which 
has three levels of fusion feature layers, the BiFPN enhanced 
with low-level features exhibits superior fusion capability. By 
fully leveraging the low-level P2 characteristics, the model's 
efficacy in small item recognition was enhanced. In contrast to 
Improved Model 3, which has four detection layers, Improved 
Model 2 omits low-level features in the bidirectional feature 
fusion, leading to a 0.3 percentage point reduction in mAP, 
while decreasing the computational load by 0.5% and the 
parameter count by 4.9%. Consequently, to alleviate 
computational burden and decrease inference duration, 
bidirectional feature fusion was not utilized for the low-level P2 
features in this study. 

TABLE IV. PERFORMANCE COMPARISON OF EACH IMPROVED MODEL 

Model 

F
e
a

tu
re

 l
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y

er
 

D
e
te
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ti
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y

er
 

G
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S
K

N
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B
iF

P
N

 

m
A

P
/%

 

M
/1

0
6
 

F
L

O
P

s/
1
0

9
 

YOLOv5s 3 3 — — — 95.9 7.03 15.9 

Improved 
model 1 

3 3 — √ — 97.4 7.24 16.2 

Improved 

model 2 
4 3 — — √ 98 13.5 17.8 

Improved 
model 3 

4 4 — √ √ 98.3 14.2 17.9 

Improved 

model 4 
4 3 — √ √ 99.3 13.6 17.9 

HD-
YOLOv5s 

4 3 √ √ √ 99.5 13.6 17.9 

TABLE V. DETECTION PERFORMANCE OF DIFFERENT GESTURE 

CATEGORIES ON THE NUS-II TEST SET 

Model YOLOv5s HD-YOLOv5s 

Gesture a 0.958 0.985 

Gesture b 0.963 0.990 

Gesture c 0.941 0.980 

Gesture d 0.973 0.992 

Gesture e 0.958 0.988 

Gesture f 0.960 0.989 

Gesture g 0.974 0.990 
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Gesture h 0.952 0.973 

Gesture i 0.970 0.988 

Gesture j 0.962 0.985 

TABLE VI. DETECTION PERFORMANCE OF DIFFERENT GESTURE 

CATEGORIES ON THE CUSTOM TEST SET 

Model YOLOv5s HD-YOLOv5s 

Gesture 0 0.954 0.993 

Gesture 1 0.969 0.982 

Gesture 2 0.947 0.991 

Gesture 3 0.966 0.995 

Gesture 4 0.963 0.978 

Gesture 5 0.965 0.990 

Gesture OK 0.970 0.980 

 

 

 
Fig. 11. Recognition effect under different lighting conditions. 

Enhanced Model 4 integrated the attention mechanism and 
the refined feature fusion module into the network. In 
comparison to Improved Model 2, the computational burden 
and parameter count exhibited no growth, while the mean 
Average Precision (mAP) rose by 1.3 percentage points. The 

mAP improved by 3.4 percentage points relative to the previous 
model. The enhanced HD-YOLOv5 model utilized Gamma 
image enhancement preprocessing on the dataset during the 
input phase, attaining a mAP value of 99.5%, representing a 3.6 
percentage point increase compared to the original YOLOv5s 
network. 

Fig. 10 illustrates the training result curves for the different 
models prior to and following enhancement on the custom 
training set. The iterations were established at 200, the learning 
rate at 0.01, and the momentum factor at 0.937. In Fig. 10(a), 
the horizontal axis denotes the training epochs, whereas the 
vertical axis indicates the mAP value at an IOU of 0.5. The 
performance of the enhanced models surpasses that of the pre-
enhancement ones. In Fig. 10(b), the enhanced HD-YOLOv5s 
model exhibited a more rapid convergence and a reduced loss 
value relative to the YOLOv5 model, signifying superior 
convergence capabilities of the improved model. 

V. RESULTS AND DISCUSSION 

This study utilizes the publicly available NUS-II dataset 
[30] for training, with validation findings presented in Table V. 
The NUS-II dataset, while encompassing a variety of intricate 
backgrounds, contains a limited number of gesture photos 
across different lighting situations. To enhance the verification 
of the universality and robustness of the new technique, 
validation experiments were undertaken on a bespoke dataset 
encompassing diverse illumination situations. The validation 
outcomes are presented in Table VI. The HD-YOLOv5s model 
demonstrated a notable enhancement in recognition accuracy 
on the custom dataset. This illustrates that the enhanced 
algorithm exhibits strong performance across diverse 
complicated backgrounds and increases resilience to 
interference. 

To verify the feasibility of the improved HD-YOLOv5s 
model, several gesture images from the test set were selected 
for testing. Fig. 11 compares the gesture recognition results 
between the YOLOv5s and HD-YOLOv5s models under 
different lighting conditions. Fig. 11(a) and 11(b) show the 
recognition results in strong and weak lighting environments, 
while Fig. 11(c) shows the recognition results under uneven 
lighting. In these comparisons, the left images are from the 
YOLOv5s model, and the right images are from the HD-
YOLOv5s model. The results show that the improved HD-
YOLOv5s model achieves varying degrees of improvement in 
gesture recognition accuracy under different lighting 
conditions. In Fig. 11(c), the left image misclassifies the "OK" 
gesture and part of the windowsill as gestures "5" and "0," 
whereas the right image correctly identifies them with higher 
accuracy. 

Fig. 12 compares the recognition results of the models 
before and after improvement in situations where the 
background color is similar to skin tone. Fig. 12(a) and 12(b) 
display the recognition of gestures in simple and complex 
backgrounds, respectively. In Fig. 12(a), the performance 
difference between the original and improved models is 
minimal in a simple background. However, in Fig. 12(b), the 
improved model achieves significantly higher accuracy in a 
complex background, showing a substantial improvement in 
recognizing gestures with backgrounds close to skin color. 

YOLOv5

s 
HD-YOLOv5s 

(a) Strong light with recognition rate 96-100% for one finger 

YOLOv5s HD-YOLOv5s 

(b) Weak light with recognition rate 95-99% for two fingers 

YOLOv5

 
HD-YOLOv5s 

(c) Uneven lighting with recognition rate 95-99% for three  

fingers 
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Fig. 12. Recognition effect when the background is close to skin color. 

 

 

 

Fig. 13. Recognition effect of small-scale gestures in complex environments. 

Fig. 13 shows the recognition performance of the models 
before and after improvement for small-scale gestures in 
complex environments. Fig. 13(a), 13(b), and 13(c) represent 
the detection of small gestures at a distance in different complex 
scenarios. Especially in Fig. 13(a), under uneven lighting and a 
complex background, the improved model shows a clear 
improvement in recognizing small gestures. 

In summary, the improved HD-YOLOv5s model 
outperforms the original YOLOv5s model in recognition 
performance. The YOLOv5s model performs poorly in 
complex environments with uneven lighting or skin-tone-like 
backgrounds, leading to misdetections and weak performance 
in recognizing small gestures at a distance. In contrast, the HD-
YOLOv5s model can accurately recognize gestures in complex 
environments with a higher recognition rate and resolves the 
original model's issue of low accuracy in detecting small 
gestures. The performance improvement of the improved model 
is not due to any single method but results from overall 
enhancements in feature extraction and feature fusion 
capabilities. 

VI. CONCLUSION 

This study presents a gesture recognition methodology, HD-
YOLOv5s, which attains great precision even in intricate 
settings, hence enhancing human-computer interface 
technology. The adaptive Gamma image enhancement 
technique grounded in Retinex theory was employed to 
preprocess the dataset. The SKNet adaptive convolutional 
attention mechanism model was subsequently integrated into 
the feature extraction network to augment its feature extraction 
capabilities. The modified BiFPN structure was incorporated 
into the feature fusion network, enhancing the network's 
capacity to identify tiny objects.  The experimental findings 
indicate that HD-YOLOv5s attained a mAP value of 99.5%. In 
comparison to the Faster R-CNN, SSD, and YOLOv3 models, 
the suggested technique identifies a single image in about 0.01 
to 0.02 seconds. The model is compact and efficient, satisfying 
the real-time demands of gesture recognition in intricate 
situations. Accuracy increased by 3.6 percentage points vs to 
the previous YOLOv5s model. Furthermore, in comparison to 
other prevalent gesture recognition algorithms, our model 
demonstrates superior generalization and robustness. 
Validation trials performed on a proprietary dataset and the 
NUS-II public dataset with intricate backgrounds attained 
identification rates of 99.5% and 98.9%, respectively.  This 
research presents an enhanced network model that 
demonstrates superior recognition ability and resilience against 
challenges such as inconsistent lighting, backdrops resembling 
skin tones, and diminutive gesture sizes. It fulfills the real-time 
demands of gesture recognition in intricate situations. Effective 
static gesture identification is a crucial basis for the 
examination of dynamic gestures and their applications. The 
results indicate that this technique exhibits strong robustness 
and real-time efficacy in intricate situations. This technology is 
intended for future application in dynamic gesture tracking 
amongst complicated background variations to resolve 
challenges associated with low identification rates, hence 
improving its utility in human-computer interaction domains. 

YOLOv5s HD-YOLOv5s 

(a) Simple background with 96-98% recognition rate 

YOLOv5s HD-YOLOv5s 

(b) Complex background with 93-99 recognition 

rate 

YOLOv5s HD-YOLOv5s 

(a) Uneven lighting with 88-90% recognition rate 

YOLOv5s HD-YOLOv5s 

(b) Simple background with 95-98% recognition rate 

YOLOv5s HD-YOLOv5s 

(c) Complex background with 93-99% recognition rate 
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