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Abstract—Plant disease diagnosis at an early stage enables 

farmers, gardeners and agricultural experts to manage and 

control the spread of illnesses in a timely and suitable manner. The 

traditional methods of plant disease diagnosis are expensive and 

might need significant manpower and advanced level machinery. 

In addition to that, conventional methods, such as visual 

inspections are prone to subjectivity, time constraints and error 

susceptibility. In comparison to that, computer based methods 

such as machine learning is accurately predicting plant diseases 

underscore the need for a transformative approach. However, by 

focusing solely on visualized contents and thermal images, these 

methods overlook the potential insights hidden within customer-

posted images that may leads to low accuracy. This study is an 

attempt to addresses these gaps by proposing an alternative 

methodology which relies on a hybrid deep learning framework 

called CCNET. The core CCNET is the utilization of the 

superiorities of Convolutional Neural capsule network models to 

get better architecture for plant diseases diagnosis. The proposed 

CCNET effectively amalgamates the strengths of convolutional 

layers for spatial feature extraction and the sequential modelling 

capabilities of CNN and CapsNet for capturing temporal 

dependencies within image data. The performance of the CCNET 

has been evaluated through rigorous experimentation. The 

outcomes underscore the remarkable prowess of the proposed 

model with the accuracy of 94%. When it compared to the 

conventional methods, the CCNET surpasses all of them in terms 

of precision, recall, F-Score, and accuracy. 

Keywords—CapsNet; classification; CNN; feature extraction; 

plant disease; thermal images 

I. INTRODUCTION 

The agricultural industry holds immense significance for 
numerous nations globally, serving as a crucial source of 
sustenance, materials and energy to support the expanding 
population. Apart from its economic value, agriculture plays a 
pivotal role in addressing pressing global issues such as climate 
change, ensuring food security, and promoting sustainable 

development. As per the Food and Agriculture Organization of 
the United Nations (FAO), agriculture engages over one billion 
individuals worldwide and contributes approximately 3% to the 
overall global gross domestic product (GDP) [1]. 

 However, this sector encounters noteworthy obstacles, 
including the imperative to augment food production to fulfill 
the rising needs of the world's growing inhabitants. While 
concurrently mitigating the environmental impact associated 
with agricultural practices. Additionally, the prevalence of plant 
diseases poses a substantial menace to agricultural productivity, 
leading to crop losses that range from 10% to 40% on a global 
scale [2]. Plant diseases can cause extensive damage to crop, 
resulting in significant economic losses for farmers worldwide. 
Fig. 1 shows the typical leave disease that effect the production 
of plant. As per the Food and Agriculture Organization (FAO) 
of the United Nations, plant diseases account for the annual loss 
of approximately 20–40% of global crop production [3]. An 
efficient and effective plant disease management system is 
therefore essential for ensuring the sustainability and 
productivity of the agriculture sector. 

 

Fig. 1. Leaf disease example adopted from study [5]. 
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The conventional farm management practices rely on human 
experts to monitor plants in the field for signs of disease, which 
can be time-consuming, labor-intensive and prone to errors. 
However, visual symptoms of plant diseases usually appear 
several days after infection, indicating that the illness has 
already disseminated and the quality of yield has declined, 
leading to significant losses in productivity [4]. Most of the 
disease control process usually adopted appropriate control 
measures, such as the utilization of resilient crop strains, farming 
techniques and chemical treatments. But due to the increasing 
number of diseases and expensive chemical, this job become 
quiet hectic and time consuming. 

Alternative to the conventional methods, Smart farm 
management practices, which rely on vision technology and 
machine learning, have revolutionized plant disease 
management by allowing for early detection and prevention of 
crop losses. According to a study [6], smart farm management 
practices have led to increased agricultural productivity and 
improved food security in many countries. These technologies 
are particularly useful in remote areas where access to expert 
knowledge and resources is limited. By implementing these 
practices, farmers can detect plant diseases before visual 
symptoms appear, ultimately increasing crop yields and 
contributing to the overall economic growth of the country. 

The development and adoption of new technologies, 
including the use of computer science and artificial intelligence, 
can be better attempt that helps in the timely identification and 
control of plant diseases. Vision technology, which is widely 
used in modern smart farm management practices, has the 
potential to address some of these challenges by processing and 
analysing images of infected plants to identify disease patterns 
[7]. However, this approach is limited in that it does not 
accomplish early detection, presuming that plants are still in the 
incubation phase prior to the disease's manifestation [8]. This 
highlights the need for alternative approaches that can detect 
diseases at an early stage, before visible symptoms appear, to 
prevent significant crop losses and increase productivity. 

However, the variations of diseases at different of plants and 
temperature discrepancies in the infected plants that are 
imperceptible to the human eye may require more sophisticated 
mechanism [9]. The application of thermal imaging as depicted 
in Fig. 2, in plant disease management has emerged as a 
promising approach for early detection and control of diseases. 
By recording the temperature of plants, thermal imaging enables 
the identification of temperature changes that can indicate the 
presence of disease. These temperature changes are a result of 
internal chemical alterations that occur in plants following 
disease inoculation. Analysing these temperature variations 
allows for the early detection of diseases before visible 
symptoms manifest.

 

Fig. 2. The Geo-informatics-based view of plant thermal images. 

It is concluded that thermal imaging and machine learning 
technologies have the potential to revolutionize plant disease 
management and increase crop productivity by predicting and 
preventing the spread of plant diseases. This research addresses 
the above discussed gaps by proposing an alternative 
methodology that is based on hybrid deep learning model called 
CCNET. The core CCNET is the utilization of the superiorities 
of Convolutional Neural Network-Gated Recurrent, 
Bidirectional Long Short-Term Memory and Conditional 
Random Field models to get better architecture for plant diseases 
diagnosis from thermal images. The proposed CCNET 
effectively amalgamates the strengths of convolutional layers 
for spatial feature extraction and the sequential modelling 
capabilities of CNN and CapsNet for capturing temporal 
dependencies within image data. 

A. Research Contribution 

The key contribution of the proposed research are as follows: 

1) The proposed CCNET is an attempt to efficiently 

diagnosing plant disease by using thermal images that perform 

detection at early stage before visible symptoms appear that is 

not tackled in the previous literature to prevent significant crop 

losses. 

2) The utilization of advance level deep learning methods 

such as CNN and CapsNet provide better identification as 

compared to machine learning algorithms that are based on 

static similarity measures. 

3) Experimental evaluation on thermal imaging and 

comparative analysis with benchmark methods has proved that 

the performance of proposed CCNET surpasses the existing 

works by obtaining an accuracy of 94 %. 

The rest of the paper is organized as follows: An overview 
of the relevant research is presented in Section II. The proposed 
CCNET is briefly described in Section III. The experimental 
evaluation and discussion has been discussed in Section IV. The 
conclusion and future work are given in Section V. 

II. RELATED WORK 

The utilization of digital images for the categorization of 
plant diseases presents a significant hurdle. However, 
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advancements in machine learning techniques, particularly deep 
learning, have facilitated the identification, detection, and 
diagnosis of plant diseases. In the article [10], a combined model 
is proposed that merges two pre-trained convolutional neural 
networks (CNNs), specifically VGG16 and VGG19, to classify 
images of healthy and diseased leaves for the purpose of 
diagnosing plant diseases. CNNs are employed due to their 
capacity to overcome the technical intricacies associated with 
the classification of plant diseases. Nonetheless, CNNs pose a 
challenge in terms of hyper parameters, necessitating manual 
identification of specific architectures to attain optimal 
performance. To tackle this challenge, the paper utilizes the 
orthogonal learning particle swarm optimization (OLPSO) 
algorithm to optimize the hyper parameters by determining the 
optimal values instead of relying on traditional trial and error 
methods. 

In another work, specifically focuses on charcoal rot, a 
fungal disease that affects soybean crops globally and is 
transmitted through soil [11]. In their study, the authors propose 
a unique 3D deep convolutional neural network (DCNN) that 
directly incorporates hyper spectral data and provides 
meaningful physiological explanations through model 

interrogation. Their proposed model achieves an impressive 
classification accuracy of 95.73% and an infected class F1 score 
of 0.87 when analysing hyper spectral images of both inoculated 
and mock-inoculated stem samples. By employing an 
explainable deep learning model, the study not only achieves 
high accuracy but also provides valuable physiological insights 
into the model's predictions, thereby increasing confidence in 
the reliability of these predictions. 

The work of study [12] provide a comprehensive overview 
of the existing literature on neural network techniques that are 
employed for processing image data in the detection of crop 
diseases. They claim that predictions are particularly relevant for 
precision agriculture and research applications that utilize 
automated phenotyping platforms. The goal of this survey is to 
enhance the performance and accuracy of deep learning in 
detecting plant diseases, with the potential to significantly 
impact sustainable agriculture. Hyper spectral imaging has 
emerged as a potent tool for plant disease identification, but its 
effectiveness heavily relies on the choice of deep learning 
models. Convolutional neural networks (CNNs) have been 
identified as the most promising models for diagnosing and 
predicting crop infections. 

TABLE I.  COMPARATIVE ANALYSIS OF THE EXISTING RESEARCH METHODS 

Reference Methodology Data Set Accuracy Limitations 

[15] 
Support Vector 

Machines (SVM) 
Thermal images 90% 

The study was only conducted on wheat crops under moisture stress 
conditions, which limits the generalizability of the findings to other crops 

and growing conditions. 

[16] 

Support vector machine 

(SVM), Gaussian kernel 
and Random Forest 

High-resolution 

thermal image 
82% 

Only evaluates model accuracy for detecting decline, not effectiveness of 

management interventions, and is geographically specific. 

[17] 
Feature weighted 

random forest (FWRF) 
27 olive orchards 92% 

Study's insights on olive orchards affected by Xf and Vd outbreaks in 

2011-2017 Italy and Spain may not apply to other regions or timeframes. 

[18] 
Multiple Linear 

Regression (MLR) 

IoT-sensed crop 

Dataset 
91% 

Restricted to blister blight in tea plants, doesn't address other diseases, and 

relies on IoT sensor accuracy for environmental data. 

[19] 
Dual-stream hierarchical 

bilinear pooling model 
Field-obtained dataset 84.71% 

The study only demonstrates accuracy in identifying plants and diseases 

on a specific field dataset, with uncertain generalizability to other crops 
or datasets. 

[20] 14-DCNN 

147,500 images of 58 

different healthy and 
diseased plant lea. 

91.79% 
Does not discuss the real-world application and the limitations that the 

proposed model may face when deployed in the actual environment. 

 

Gadekallu et al. [13] emphasizes the importance of ensuring 
a consistent supply of healthy food for the growing global 
population, as well as the economic significance of agriculture 
in developing countries. To overcome these challenges, their 
study focuses on harnessing the power of machine learning 
models to classify tomato diseases, with the aim of proactively 
addressing agricultural crises. Their research utilized a publicly 
available dataset from plant-village to train and evaluate their 
model. They employed a hybrid approach that combines 
dimensionality reduction method. The extracted features were 
then fed into a deep neural network for the classification of 
tomato diseases. To demonstrate the effectiveness of their 
proposed model, they compared their work with traditional 
machine learning techniques, showcasing its superior 
performance in terms of accuracy and loss rate metrics. 

The utilization of automated approaches, such as machine 
learning and deep learning, for the prediction of plant species 
and diseases has been explored in the work of study [14]. In 
addition to this they also proposed a novel multi-task learning 
strategy, which leverages shared representations between these 

related tasks to enhance overall performance. Their proposed 
approach utilizes a multi-input network that incorporates raw 
images and transferred deep features extracted from a pre-
trained deep model to predict both the plant's type and disease. 
An end-to-end multi-task model is developed, enabling the 
simultaneous execution of multiple learning tasks by integrating 
Convolutional Neural Network (CNN) features and transferred 
features. This approach has the potential to address the 
challenges associated with plant species and disease prediction 
by providing accurate predictions, reducing the time and cost 
required for manual prediction, and guiding decision-making 
processes in the context of sustainable agriculture. 

From the above discussion, it has been concluded that, 
instead of traditional diagnosis methods that are hectic, 
expensive, and time-consuming, machine learning models 
perform better disease diagnosis. However, the detection of 
diseases at an early stage is still challenging. By foreseeing and 
halting the development of plant illnesses, thermal imaging, and 
machine learning technologies hold the promise of 
revolutionizing plant disease management and boosting 
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agricultural output. This research tries to fills the gaps of 
previously mentioned literature by giving an improved 
architecture by utilizing the advantages of Convolutional Neural 
Network-Gated Recurrent, Bidirectional Long Short-Term 
Memory, and Conditional Random Field models. 

III. MATERIALS AND METHODS 

This section discusses the proposed CCNET's core 
methodology, which is composed of data collection, pre-
processing, feature extraction, and final classification. Fig. 3 
depicts the diagrammatic flow of the proposed CCNET. 

 

Fig. 3. The CCNET architecture for plant disease detection.

A. Data Collection and Description 

In this research, thermal image-based datasets that are 
publicly available on the Kaggle repository have been used. The 
first dataset, DS-I, encompasses roughly 87,000 RGB images of 
plant leaves, categorized into 38 distinct health-related classes. 
Offline augmentation techniques were employed during its 
construction to ensure both authenticity and diversity. A 
separate collection comprising 33 test images was also 
established solely for predictive purposes. Another dataset that 
is DS-II, has 1132 images that focus on corn and maize leaf 
disease, derived from reputable sources like Plant Village and 
Plant Doc, meticulously tailored to address issues related to corn 
or maize leaf diseases. 

The last dataset is DS-III, which contains 1401 images of 
rice leaf diseases. This dataset holds particular significance for 
regions characterized by low to lower-middle-income 
economies, where rice is crucial to food security. This dataset 
serves as a comprehensive compilation of crop leaf images, 
offering researchers in the agricultural science domain an 
opportunity to utilize it for further examination and exploration. 
The availability of such a dataset can facilitate the development 
of robust and precise models, aiding in the detection and 
classification of crop diseases and empowering farmers to 
identify such diseases at an early stage, thereby mitigating 
potential crop yield losses. 

B. Pre-processing 

After the formation of the dataset, the very next phase is the 
pre-processing. Algorithm 1 outlines the proposed pre-

processing procedure. Initially, images are resized to a 
consistent dimension of 256x256 pixels. Pixel values are 
normalized via min-max normalization, representing pixel (x, 
y). Each image is randomly rotated within a defined angle range, 
and random horizontal or vertical flips are applied. A random 
zoom transformation is also employed. Additionally, images are 
converted to grayscale. Data is then organized into batches and 
shuffled using a randomized seed for training randomness 
assurance. 

Algorithm 1: The Data Pre-Processing 

def preprocess_image(image): 

 resized = resize(image, (256, 256)) 

 normalized = (resized - np.min(resized)) / (np.max(resized) - 
np.min(resized)) 

 rotated = rotate(normalized, random.uniform(-30, 30)) 

 flipped = np.fliplr(rotated) if random.choice([True, False]) else 
np.flipud(rotated) 

 zoomed = zoom(flipped, random.uniform(0.8, 1.2)) 

 grayscale = rgb2gray(zoomed) 

 return grayscale 

random.seed(42) 

preprocessed_data = [preprocess_image(image) for image in 
original_data] 

random.shuffle(preprocessed_data) 

batches = [preprocessed_data[i:i+batch_size] for i in range(0, 
len(preprocessed_data), batch_size)] 
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By applying these pre-processing steps, the dataset is 
prepared in a format that can be effectively utilized for training 
deep learning models. Resizing the images ensures that the 
models can handle images of different sizes, while 
normalization and data augmentation techniques help enhance 
the dataset's diversity and reduce overfitting [21]. Finally, 
batching and shuffling the data enable efficient model training. 

C. Feature Extraction 

There exist too many deep learning models that are used for 
image based feature extraction. However, convolutional neural 
networks (CNNs) are the most demanding due to their 
exceptional ability to capture hierarchical patterns and spatial 
dependencies in images [22-26]. In the proposed CCNET, the 
CNN model starts with the convolution operation, where the dot 
product is calculated between input image patches and adaptable 
filter weights, uncovering specific attributes within localized 
areas as shown in Fig. 4. Subsequently, the Pooling operation 
comes into play, particularly Max pooling. This technique is 
renowned for its efficiency, selectively highlighting the highest 
value within a predefined window, distilling the essential 
information while retaining the core of the data. The process 
culminates with flattening, a transformative step that 
restructures pooled feature maps into a streamlined one-
dimensional vector. This sequence effectively transforms raw 
images into compact yet enriched features, crucial for 
subsequent analytical processes. 

 

Fig. 4. The feature extraction workflow using CNN. 

D. Classification 

In comparison to the traditional CNN, Capsule Networks 
(CapsNet), is an alternative architecture for image classification. 
CapsNet was introduced by Geoffrey Hinton and his colleagues 
in 2017 [27-34] and was designed to address some of the 
limitations of CNNs, especially when it comes to handling 
spatial hierarchies, pose variations, and viewpoint changes. The 
CapsNet is a layered network in which the first layer of a 
Capsule Network typically consists of primary capsules. Each 
primary capsule is responsible for detecting a particular visual 
feature along with it numeric values in an image. Instead of 
using convolutional layers like CNNs, Capsule Networks use a 
combination of convolutional layers and capsules. These 
capsules output a vector representing a specific feature's 
presence along with its pose information. Whereas the pose 
estimation layer handles variations in the pose (position, 
orientation, etc.) of the detected features. Each capsule outputs 
a vector representing the probability of the feature's presence 
and pose parameters (such as position and orientation). The 
architecture is shown in Fig. 5. 

 

Fig. 5. The typical CapNet architecture for thermal image classification. 

One of the key innovations of CapsNet is the routing 
algorithm. This algorithm aims to find the agreement between 
capsules in one layer and capsules in the subsequent layer. It 
ensures that capsules with similar features and poses "agree" 
with their predictions. This process helps to establish a more 
coherent and dynamic representation of hierarchical features. In 
addition to this, dynamic routing involves iterative updates of 
the coupling coefficients between capsules in different layers. 
This process encourages capsules that agree to have higher 
coupling coefficients, while capsules that disagree have lower 
coefficients. It allows the network to learn better feature 
hierarchies and spatial relationships. The final layer of capsules 
is used for classification. Each capsule in this layer represents a 
specific class, and the length of the capsule's output vector 
indicates the probability of the image belonging to that class. 

IV. EXPERIMENTAL RESULTS 

This section thoroughly examines the experimental analysis 
and evaluates the proposed methodology. The proposed CCNET 
has been evaluated on three different datasets already discussed 
in the data collection section. It has also been compared with 
three baseline techniques and five machine learning models to 
test its accuracy and efficiency through a series of rigorous 
experiments. 

A. Baseline Method 

The following baseline reference models have been 
considered for comparison and evaluation of efficiency. 

1) Banerjee et al. [24]: This study employed thermal 

imaging technology to capture images of wheat crop canopies 

and aimed to estimate the leaf area index (LAI) under varying 

moisture stress conditions. Their method was based on 

Maximum Likelihood Estimation, Box Classifier, and Support 

Vector Machines. 

2) Poblete et al. [25]: They employed a Feature Weighted 

Random Forest (FWRF) classification model on olive orchards 

affected by specific outbreaks (Xf and Vd) in a limited 

timeframe and region might restrict the generalizability of its 

findings to other areas and time periods. 

3) Zhiyan Liu [26]: This study focused on IoT-sensed crop 

fields, specifically addressing blister blight in tea plants with 

the utilization of multiple linear regression (MLR). 
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B. Results 

Fig. 6 shows a comprehensive overview of the experimental 
results of CCNET on three distinct datasets—DS-I, DS-II and 
DS-III. On DS-I, the CCNET achieved 0.92 accuracy, 0.91 
precision and 0.90 recall indicating that the model is enough 
capable to correctly predict plant disease. Whereas for DS-II, the 
accuracy remains high at 0.93, signifying the model's consistent 

ability to make accurate predictions across different datasets. In 
the last, the accuracy on DS-III is 0.94, indicating that the model 
remains robust in different plant health contexts. Whereas, the 
precision score is 0.92, suggesting that the model effectively 
predicts plant diseases without excessive false positives. Based 
on this measure, the predicted ROC curve is also demonstrated 
in Fig. 7 to clearly mention the superiority of CCNET. 

 
DS-I     DS-II 

 
DS-III 

Fig. 6. Experimental results of CCNET in terms of precision, recall and accuracy. 

 
DS-I      DS-II 

 
DS-III 

Fig. 7. ROC curves on DS 1, DS II and DS III. 
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Fig. 8. Comparison of CCNET with machine learning models. 

Fig. 8 presents a comprehensive comparative analysis 
between the proposed CCNET techniques and with standard 
machine learning model. The graphical values show that 
CCNET achieves a remarkable performance with 0.92 
precision, 0.93 recall, 0.91 F1-Score and 0.94 Accuracy. This 
results shows that the CCNET gets a significant fraction of 
correctly identified positive instances in relation to the total 
actual positive instances. 

In the last experiment, a thorough comparison of the CCNET 
with baseline methods was conducted by using DS-I, DS-II and 
DS-III to assess the accuracy. The graphical demonstration at 
Fig. 9 shows the superiority of the CCNET by beating the 
baseline with the variation of 6%, 7% and 9% respectively. 

 
Fig. 9. Experimental analysis of CCNET with baseline models. 

V. CONCLUSION 

Plant disease diagnosis at early stages enables farmers to 
manage and control the spread of diseases in a timely and 
appropriate manner. Traditional methods for diagnosing plant 
diseases are costly and may necessitate a large number of 
personnel and sophisticated equipment. In addition, 
conventional methods, including visual inspections, are subject 

to subjectivity, time constraints, and error susceptibility. 
Whereas, the machine learning models based solution are 
limited to thermal images and leads to poor accuracy. In this 
research, a new model CCNET based on deep learning model 
has been proposed. The key steps of CCNET are data collection 
of thermal images, feature extraction and CapsNet based final 
classification. The evaluation of CCNET has been performed on 
three different datasets. The experimental results and 
comparative analysis provides a compelling evidence of the 
significant potential CCNET. The results demonstrate that the 
CCNET gets high accuracy with the value of 0.94, 0.93 and 0.92 
on three different datasets and beat the base line methods with 
the variation of 6%, 7% and 9%. Looking forward, future 
research should concentrate on integrating multiple imaging 
modalities, such as hyperspectral or multispectral data, to further 
heighten disease detection accuracy. Expanding the training 
dataset to encompass a broader range of diseases and addressing 
class imbalances will bolster the model's generalization and 
robustness. Additionally, incorporating contextual information, 
developing interpretability techniques, and optimizing the 
model for real-time implementation are pivotal areas for 
advancement. 
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