
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

Reliable Logistic Regression for Credit Card Fraud
Detection

Yassine Hmidy, Mouna Ben Mabrouk
Sogetilabs at Capgemini, Paris, France

Abstract—Credit card fraud poses a significant threat to
financial institutions and consumers worldwide, necessitating
robust and reliable detection methods. Traditional classification
models often struggle with the challenges of imbalanced datasets,
noise, and outliers inherent in transaction data. This paper
introduces a novel fraud detection approach based on a discrete
non-additive integral with respect to a non-monotonic set function.
This method not only enhances classification performance but
also provides an interval-valued output that serves as an index
of reliability for each prediction. The width of this interval
correlates with the prediction error, offering valuable insights
into the confidence of the classification results. Such an index is
crucial in high-stakes scenarios where misclassifications can have
severe consequences. The model is validated through extensive
experiments on credit card transaction datasets, demonstrating its
effectiveness in handling imbalanced data and its superiority over
traditional models in terms of accuracy and reliability assessment.
However, potential challenges such as increased computational
complexity and the need for careful parameter tuning may
affect scalability and real-time implementation. Addressing these
challenges could further enhance the practical applicability of the
proposed method in fraud detection systems.

Keywords—Credit card fraud; fraud detection; computational
complexity

I. INTRODUCTION

In today’s digital economy, credit card transactions have
become ubiquitous due to their convenience and global ac-
ceptance. However, the rise in electronic transactions has
been paralleled by an increase in fraudulent activities, posing
significant challenges to financial institutions and consumers
alike. Credit card fraud not only results in substantial financial
losses but also undermines customer trust and the integrity
of payment systems [9]. The increasing prevalence of online
transactions and the convenience of credit card payments have
created opportunities for fraudsters to exploit vulnerabilities in
financial systems [1], [10]. Global fraud losses reached £21.84
billion in 2015 alone, emphasizing the urgent need for effective
fraud detection mechanisms [14].

A. Challenges in Credit Card Fraud Detection

Detecting fraudulent transactions is a complex task due to
several inherent challenges:

• Imbalanced Datasets: Fraudulent transactions repre-
sent a minute fraction of the total transaction volume,
leading to highly imbalanced datasets. This imbalance
poses significant difficulties for machine learning
models, which may become biased toward the majority
class and fail to detect fraudulent activities effectively
[12], [14].

• Data Noise and Outliers: Transaction data often
contain noise and outliers, which can adversely affect
the performance of detection algorithms, resulting in
increased false positives and negatives [13].

• Concept Drift: The strategies employed by fraudsters
continuously evolve, causing changes in the underlying
data distribution—a phenomenon known as concept
drift. Models must adapt over time to maintain their
effectiveness in detecting new fraud patterns [12].

B. Existing Approaches and Limitations

Various machine learning techniques have been applied to
address credit card fraud detection:

• Statistical Methods: Logistic regression has been
widely used due to its simplicity and interpretability,
modeling the probability of fraudulent transactions
based on historical data [3]. However, logistic regres-
sion may struggle with nonlinear relationships and
is sensitive to data imbalance, potentially limiting its
effectiveness in fraud detection scenarios [3].

• Machine Learning Algorithms: Supervised learning
algorithms such as support vector machines [8], random
forests [6], and ensemble methods like AdaBoost
and majority voting [4] have demonstrated improved
detection rates by capturing complex patterns in the
data.

• Deep Learning Techniques: Deep learning approaches,
including autoencoders and restricted Boltzmann ma-
chines, have been employed to detect anomalies and
reconstruct input data for identifying fraudulent trans-
actions [2], [5].

• Aggregation Strategies: Strategies incorporating aggre-
gation mechanisms and feedback loops aim to enhance
the adaptability and accuracy of fraud detection systems
[1].

Despite these advancements, a critical limitation remains:
many existing models focus primarily on maximizing classi-
fication accuracy without providing a measure of confidence
or reliability for individual predictions [11]. In high-stakes
environments like fraud detection, misclassifying a legitimate
transaction as fraudulent can lead to customer dissatisfaction
and loss of trust, while failing to detect actual fraud results in
financial losses and potential legal implications [10]. Therefore,
there is a need for models that not only improve detection
rates but also quantify the uncertainty associated with each
prediction.

www.ijacsa.thesai.org 67 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

C. Main Contributions

This paper proposes a novel approach to credit card fraud
detection using a discrete Choquet integral with respect to a non-
monotonic set function, specifically leveraging the MacSum
aggregation model. This method outputs an interval-valued
prediction for each transaction, where the width of the interval
correlates with the prediction error. This interval serves as
an index of reliability, providing valuable insights into the
confidence level of each classification decision.

The contributions can be summarized as follows:

• This paper introduce the application of the MacSum
aggregation model within the discrete Choquet integral
framework to the problem of credit card fraud detection,
offering interval-valued outputs that reflect prediction
reliability.

• This paper addresses the challenges of data imbal-
ance and concept drift by incorporating robust pre-
processing techniques and adaptive mechanisms within
the model.

• The approach is validated on benchmark datasets,
comparing its performance against traditional clas-
sifiers, including logistic regression and state-of-the-
art methods, demonstrating improved accuracy and
reliability assessment.

II. PRELIMINARIES

This section introduces the fundamental concepts, notations,
and definitions necessary to understand the proposed model.
It provides an overview of set functions, the discrete Choquet
integral which are needed to compute the MacSum aggregation.

A. Notations and Definitions

• Ω = {1, . . . , N} ⊂ N: a finite index set.

• For all A ⊆ Ω, Ac denotes the complement of A in
Ω, i.e., Ac = Ω \A.

• R: the set of real numbers.

• A vector is a function x : Ω→ R, defined by a discrete
subset of RN , denoted x = (x1, . . . , xN ) ∈ RN .

• x = [x, x]: a real interval where x ∈ R is the lower
bound and x ∈ R is the upper bound.

• IR: the set of real intervals.

• A set function is a function µ : 2Ω → R that assigns a
real value to any subset of Ω. The complementary set
function µc associated with µ is defined by:

µc(A) = µ(Ω)− µ(Ac), ∀A ⊆ Ω. (1)

Usually, it is assumed that µ(∅) = 0, where ∅ is the
empty set of Ω.

• A set function µ is said to be submodular if, for all
A,B ⊆ Ω, the following inequality holds:

µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B). (2)

• A set function µ is said to be additive if, for all A,B ⊆
Ω, it holds that:

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B). (3)

• If a set function µ is submodular, then its complemen-
tary µc is supermodular.

B. Discrete Choquet Integral

Classical integration theory involves additive measures.
However, in many real-world applications, especially in decision
making, the assumption of additivity does not hold due to
interactions among criteria. Non-additive integrals provide a
framework for integrating functions with respect to non-additive
set functions (also known as capacities or fuzzy measures) [16].

A non-additive integral is an integral where the underlying
set function is not necessarily additive. This allows for modeling
situations where the whole is not simply the sum of its
parts, capturing phenomena such as synergy, redundancy, and
interactions among elements.

Among the most widely used non-additive integrals are the
Choquet integral and the Sugeno integral. This work, focuses
on the discrete Choquet integral due to its ability to model the
aggregation of information while accounting for the interactions
among criteria.
The discrete Choquet integral with respect to a set function µ
is denoted Čµ [15] and is defined for any vector x ∈ RN by:

Čµ(x) =

N∑
k=1

x(k)
(
µ(A(k))− µ(A(k+1))

)
, (4)

where:

• (·) denotes the permutation that sorts the elements of
x in increasing order:

x(1) ≤ x(2) ≤ · · · ≤ x(N). (5)

• A(k) (k ∈ {1, . . . , N}) are the subsets (also called
coalitions) defined by:

A(k) = {(k), . . . , (N)}, A(N+1) = ∅. (6)

Here, (k) indicates the index corresponding to the k-th
smallest element in the sorted vector.

If a set function µ is submodular, then for all x ∈ RN , it
holds that [16]:

Čµ(x) ≥ Čµc(x). (7)

C. MacSum Aggregation

Let θ ∈ RN be a parameter vector used in the aggregation.

1) Definition of the MacSum Set Functions: The MacSum
set function νθ and its complementary set function νcθ are
defined as follows [17]:

For all A ⊆ Ω,

νθ(A) = max
i∈A

θ+i +min
i∈Ω

θ−i − min
i∈Ac

θ−i , (8)

νcθ(A) = min
i∈A

θ−i +max
i∈Ω

θ+i −max
i∈Ac

θ+i , (9)

www.ijacsa.thesai.org 68 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

with, for all i ∈ Ω:

θ+i = max(0, θi), θ−i = min(0, θi). (10)

The MacSum set function νθ is a parametric set function that is
submodular [17]. Therefore, its corresponding Choquet integral
satisfies:

Čνθ (x) ≥ Čνc
θ
(x), ∀x ∈ RN . (11)

Using the MacSum set functions, the MacSum aggregation
Aνθ (x) for any vector x ∈ RN is defined as:

Aνθ (x) = [Čνc
θ
(x), Čνθ (x)]. (12)

This means that the MacSum aggregation produces an
interval-valued output, where:

• y = Čνc
θ
(x) is the lower bound of the aggregation.

• y = Čνθ (x) is the upper bound of the aggregation.

2) Relationship with Linear Aggregations: Let ψ ∈ RN .
The linear parametric set function λψ is defined as:

λψ(A) =
∑
i∈A

ψi, ∀A ⊆ Ω. (13)

An important property of the MacSum aggregation is that
it dominates a set of linear parametric set functions [17].
Specifically, the set of all parameter vectors ψ such that λψ is
dominated by the MacSum set functions with respect to the
parameter θ is:

M(θ) = {ψ ∈ RN | ∀A ⊆ Ω,

νcθ(A) ≤ λψ(A) ≤ νθ(A)}.

This set M(θ) is convex [17], which means that for any
ψ1,ψ2 ∈ M(θ) and any γ ∈ [0, 1], the combination
γψ1 + (1− γ)ψ2 also belongs to M(θ).

The linear aggregation associated with λψ is given by:

Aλψ (x) = Čλψ (x) =
∑
i∈Ω

ψi · xi. (14)

Therefore, the MacSum aggregation can be interpreted as:

Aνθ (x) =
{
Aλψ (x)

∣∣ ψ ∈M(θ)
}

(15)

=
[
Aνθ

(x), Aνθ (x)
]
, (16)

with:

Aνθ
(x) = min

ψ∈M(θ)
Aλψ (x),

Aνθ (x) = max
ψ∈M(θ)

Aλψ (x).

This set is convex [17], meaning that:

• For any ψ ∈ M(θ), there exists y ∈ Aνθ (x) such
that y = Aλψ (x).

• For any y ∈ Aνθ (x), there exists ψ ∈ M(θ) such
that y = Aλψ (x).

3) Learning the MacSum Aggregation: As the MacSum
aggregation is a set of linear aggregations whose bounds depend
on the same parameter θ, it is possible to learn a set of linear
aggregations by learning the MacSum aggregation through
updating the parameter θ using standard optimization methods,
such as gradient descent, as shown in [18].

Adjusting θ, effectively adjust the setM(θ), and hence the
interval Aνθ (x), allowing the model to capture the underlying
relationships in the data.

III. PROPOSED MODEL

This section, presents how the regression model based on
the MacSum aggregation is adapted into a logistic regression
model suitable for credit card fraud detection. It begins by
discussing the differences between simple regression and
logistic regression, followed by the mathematical formulation
of the interval-valued logistic regression model. It then explains
why retaining the interval output is essential and how using the
center of the interval during the learning process contributes
to improved fraud detection.

A. From Linear Regression to Logistic Regression

1) Linear Regression: Linear regression models aim to
predict a continuous target variable y ∈ R based on a set of
input features x ∈ RN . The general form of a linear regression
model is:

y = β⊤x+ ε, (17)

where β ∈ RN is the vector of regression coefficients, and ε
is the error term assumed to be normally distributed.

2) Logistic Regression: In contrast, logistic regression is
used for classification problems, particularly binary classifi-
cation, where the target variable y ∈ {0, 1} represents class
labels. Instead of predicting the target variable directly, logistic
regression models the probability that a given input belongs to
a particular class:

P (y = 1 | x) = σ(β⊤x), (18)

where σ(·) is the logistic (sigmoid) function defined as:

σ(z) =
1

1 + e−z
. (19)

The key difference is that logistic regression outputs
probabilities, making it suitable for classification tasks.

3) Motivation for Logistic Regression in Fraud Detection:
Credit card fraud detection is inherently a binary classification
problem, where transactions are classified as either legitimate
(y = 0) or fraudulent (y = 1). Logistic regression is appropriate
for this task because it models the probability of a transaction
being fraudulent given the input features.

B. Interval-Valued Logistic Regression with MacSum Aggrega-
tion

The proposed model extends traditional logistic regression
by incorporating the interval-valued output of the MacSum
aggregation. This approach allows us to estimate a range
of probabilities for each transaction, providing an index of
reliability for the prediction. During the learning process,

www.ijacsa.thesai.org 69 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

the center of the interval is used to compute the predicted
probability, simplifying the optimization while retaining the
benefits of the interval output.

1) Interval Output from MacSum Aggregation: Recall that
the MacSum aggregation Aνθ (x) produces an interval-valued
output:

y = [y, y] =
[
Čνc

θ
(x), Čνθ (x)

]
, (20)

where y and y are the lower and upper bounds, respectively,
obtained from the Choquet integrals with respect to the
complementary set functions νcθ and νθ.

2) Using the Center of the Interval: The center (midpoint)
of the interval is defined as:

cy =
y + y

2
. (21)

Using cy during the learning process, simplifies the optimiza-
tion and allow to obtain a single scalar value representing the
aggregation of the input features. This scalar retains information
from both bounds of the interval.

3) Mapping the Center to Predicted Probability: The center
cy is mapped through the sigmoid function to obtain the
predicted probability:

p̂ = σ(cy) = σ

(
y + y

2

)
. (22)

This probability p̂ estimates the likelihood that the transac-
tion is fraudulent.

4) Retaining the Interval for Reliability Assessment:
Although the center cy is used for learning, the interval y
is retained to assess the reliability of each prediction. The
width of the interval is given by:

∆y = y − y. (23)

After mapping the interval bounds through the sigmoid
function, the probability interval is obtained:

p = [p, p] =
[
σ(y), σ(y)

]
, (24)

with interval width:

∆p = p− p. (25)

The width ∆p serves as an index of reliability, with narrower
intervals indicating higher confidence.

C. Mathematical Formulation

1) Parameter Estimation: The aim is to estimate the
parameter vector θ ∈ RN that defines the MacSum set functions
νθ and νcθ. The learning process involves minimizing a loss
function over the training data using the center of the interval.

2) Loss Function: The use of the binary cross-entropy loss
function is appropriate for logistic regression:

L(θ) =− 1

M

M∑
i=1

[
y(i) log p̂(i)

+(1− y(i)) log
(
1− p̂(i)

)]
, (26)

where:

• M is the number of training samples,

• y(i) ∈ {0, 1} is the true label for the i-th sample,

• p̂(i) is the predicted probability for the i-th sample.

3) Gradient of the Loss Function with Respect to Parameters:
Updating the parameters θ using gradient descent involves to
compute the gradient of the loss function L(θ) with respect to
θ. The gradient with respect to the k-th parameter θk is given
by:

∂L

∂θk
=

1

M

M∑
i=1

(
p̂(i) − y(i)

) ∂c(i)y

∂θk
,

where
∂c(i)y

∂θk
is the derivative of the center c(i)y with respect to

the parameter θk for the i-th sample.

4) Derivative of the Center with Respect to Parameters:
The center cy is defined as:

cy =
y + y

2
,

so its derivative with respect to θk is:

∂cy
∂θk

=
1

2

(
∂y

∂θk
+

∂y

∂θk

)
.

From the derivative formulas established in [18], the derivatives
of y and y with respect to θk are:

a) Derivative of the Lower Bound y:

∂y

∂θk
=

(
l

min
i=1

x⌊i⌋ −
l−1
min
i=1

x⌊i⌋

)
+
(

u
max
i=1

x⌈i⌉ −
u−1
max
i=1

x⌈i⌉

)
. (27)

b) Derivative of the Upper Bound y:

∂y

∂θk
=
(

l
max
i=1

x⌊i⌋ −
l−1
max
i=1

x⌊i⌋

)
+

(
u

min
i=1

x⌈i⌉ −
u−1
min
i=1

x⌈i⌉

)
. (28)

Here:

• ⌊·⌋ sorts θ in decreasing order:
θ⌊1⌋ ≥ θ⌊2⌋ ≥ · · · ≥ θ⌊N⌋,

• ⌈·⌉ sorts θ in increasing order:
θ⌈1⌉ ≤ θ⌈2⌉ ≤ · · · ≤ θ⌈N⌉,

• l and u are indices such that ⌊l⌋ = k and ⌈u⌉ = k.

www.ijacsa.thesai.org 70 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

5) Derivative of the Center cy: Combining the above:

∂cy
∂θk

=
1

2

([
l

min
i=1

x⌊i⌋ +
l

max
i=1

x⌊i⌋

]
−
[

l−1
min
i=1

x⌊i⌋ +
l−1
max
i=1

x⌊i⌋

]
+

[
u

min
i=1

x⌈i⌉ +
u

max
i=1

x⌈i⌉

]
−
[
u−1
min
i=1

x⌈i⌉ +
u−1
max
i=1

x⌈i⌉

])
. (29)

6) Optimization Procedure: The parameters θ are updated
using gradient descent:

θk ← θk − η
∂L

∂θk
,

where η is the learning rate.

a) Steps:

1) Compute the Center of the Interval: For each
sample i,

c(i)y =
y(i) + y(i)

2
.

2) Compute the Predicted Probability:

p̂(i) = σ(c(i)y ) =
1

1 + e−c
(i)
y

.

3) Calculate the Error:

e(i) = p̂(i) − y(i).

4) Compute the Gradient for Each Parameter:

∂L

∂θk
=

1

M

M∑
i=1

e(i)
∂c

(i)
y

∂θk
.

5) Update the Parameters:

θk ← θk − η
∂L

∂θk
.

7) Predicted Probability: The predicted probability p̂ that
a transaction is fraudulent is obtained by applying the sigmoid
function to the center cy of the interval produced by the
MacSum aggregation:

p̂ = σ(cy) =
1

1 + e−cy
,

where:

cy =
y + y

2
,

and y and y are the lower and upper bounds of the interval,
respectively.

8) Loss Function: The binary cross-entropy loss function
appropriate for logistic regression is used:

L(θ) =− 1

M

M∑
i=1

[
y(i) log p̂(i)

+(1− y(i)) log
(
1− p̂(i)

)]
, (30)

where:

• M is the number of training samples,

• y(i) ∈ {0, 1} is the true label for the i-th sample,

• p̂(i) is the predicted probability for the i-th sample.

9) Gradient of the Loss Function with Respect to Parame-
ters: The update the parameters θ using gradient descent, needs
the computation of the gradient of the loss function L(θ) with
respect to θ. The gradient with respect to the k-th parameter
θk is given by:

∂L

∂θk
=

1

M

M∑
i=1

(
p̂(i) − y(i)

) ∂c(i)y

∂θk
,

where
∂c(i)y

∂θk
is the derivative of the center c(i)y with respect to

the parameter θk for the i-th sample.

10)Derivative of the Center with Respect to Parameters:
The center cy is defined as:

cy =
y + y

2
,

so its derivative with respect to θk is:

∂cy
∂θk

=
1

2

(
∂y

∂θk
+

∂y

∂θk

)
.

From the derivative formulas established in [18], the derivatives
of y and y with respect to θk are:

a) Derivative of the Lower Bound y:

∂y

∂θk
=

(
l

min
i=1

x⌊i⌋ −
l−1
min
i=1

x⌊i⌋

)
+
(

u
max
i=1

x⌈i⌉ −
u−1
max
i=1

x⌈i⌉

)
. (31)

b) Derivative of the Upper Bound y:

∂y

∂θk
=
(

l
max
i=1

x⌊i⌋ −
l−1
max
i=1

x⌊i⌋

)
+

(
u

min
i=1

x⌈i⌉ −
u−1
min
i=1

x⌈i⌉

)
. (32)

Here:

• ⌊·⌋ sorts θ in decreasing order:
θ⌊1⌋ ≥ θ⌊2⌋ ≥ · · · ≥ θ⌊N⌋,

• ⌈·⌉ sorts θ in increasing order:
θ⌈1⌉ ≤ θ⌈2⌉ ≤ · · · ≤ θ⌈N⌉,

• l and u are indices such that ⌊l⌋ = k and ⌈u⌉ = k.

www.ijacsa.thesai.org 71 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

Combining the above, we have:

∂cy
∂θk

=
1

2

([
l

min
i=1

x⌊i⌋ +
l

max
i=1

x⌊i⌋

]
−
[

l−1
min
i=1

x⌊i⌋ +
l−1
max
i=1

x⌊i⌋

]
+

[
u

min
i=1

x⌈i⌉ +
u

max
i=1

x⌈i⌉

]
−
[
u−1
min
i=1

x⌈i⌉ +
u−1
max
i=1

x⌈i⌉

])
. (33)

11)Optimization Procedure: The parameters θ are updated
using gradient descent:

θk ← θk − η
∂L

∂θk
,

where η is the learning rate.

a) Steps:

1) Compute the Center of the Interval: For each
sample i,

c(i)y =
y(i) + y(i)

2
.

2) Compute the Predicted Probability:

p̂(i) = σ(c(i)y ) =
1

1 + e−c
(i)
y

.

3) Calculate the Error:

e(i) = p̂(i) − y(i).
4) Compute the Gradient for Each Parameter:

∂L

∂θk
=

1

M

M∑
i=1

e(i)
∂c

(i)
y

∂θk
.

5) Update the Parameters:

θk ← θk − η
∂L

∂θk
.

b) Note on Reliability Assessment: After training, for
each prediction, the interval [p̂(i), p̂(i)] can be used to assess
the confidence in the prediction. The width of the probability
interval is:

∆p(i) = p̂(i) − p̂(i) = σ(y(i))− σ(y(i)).

D. Retaining the Interval for Reliability Assessment

Even though the center cy is used for parameter estimation,
we retain the interval y to assess the reliability of each
prediction. After mapping the interval bounds through the
sigmoid function, the probability interval p is obtained as in
Eq. (24).

The width of the probability interval ∆p = p− p serves as
an index of reliability:

• Narrow Interval: Indicates high confidence in the
prediction.

• Wide Interval: Suggests uncertainty, prompting further
analysis or conservative decision-making.

E. Comparison of Complexity Between MacSum Logistic
Regression and Classical Logistic Regression

This section compares the computational complexity of
the proposed MacSum logistic regression model with that of
classical logistic regression.

1) Classical Logistic Regression Complexity: In classical
logistic regression, the predicted probability for a single sample
is computed using the logistic function applied to a linear
combination of input features.

a) Prediction Complexity: Linear Combination: Cal-
culating β⊤x requires N multiplications and N − 1 additions,
resulting in O(N) time complexity.

Sigmoid Function: Applying the sigmoid function is O(1).

Total Prediction Complexity: O(N).

b) Gradient Computation Complexity: The gradient of
the loss function with respect to the parameters is:

∂L

∂β
=

1

M

M∑
i=1

(
p̂(i) − y(i)

)
x(i), (34)

where M is the number of training samples.

Gradient Per Sample:

Computing (p̂(i) − y(i))x(i) requires O(N) operations.

Total Gradient Computation: O(MN).

c) Parameter Update Complexity: The parameter vector
update involves:

β ← β − η ∂L
∂β

, (35)

which requires O(N) operations.

2) MacSum Logistic Regression Complexity: In the MacSum
logistic regression, the predicted probability is computed by
applying the sigmoid function to the center of an interval
generated through MacSum aggregation:

p̂ = σ(cy), where cy =
y + y

2
.

Computing y and y involves calculating discrete Choquet
integrals with respect to MacSum set functions, which require
sorting operations.

a) Prediction Complexity: Sorting the Parameter
Vector θ:

• Increasing Order: θ⌈1⌉ ≤ θ⌈2⌉ ≤ · · · ≤ θ⌈N⌉.

• Decreasing Order: θ⌊1⌋ ≥ θ⌊2⌋ ≥ · · · ≥ θ⌊N⌋.

Sorting Complexity: Each sorting operation requires
O(N logN) time.

Computing y and y: This involves calculating minima and
maxima over subsets of x, based on the sorted indices of θ,
with a time complexity of O(N) per sample.

Total Prediction Complexity: O(N logN).

www.ijacsa.thesai.org 72 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

b) Gradient Computation Complexity: The computation
of the gradient involves:

• Identifying indices l and u such that ⌊l⌋ = k and
⌈u⌉ = k,

• Computing sums of maxima and minima over subsets
of x(i).

Gradient Per Sample:

• Determining l and u: O(logN) with binary search.

• Derivative Computation: O(N).

Total Gradient Computation: O(MN).

c) Parameter Update Complexity: Updating the param-
eter vector θ:

θk ← θk − η
∂L
∂θk

, (36)

which is O(N).

3) Space Complexity Comparison:

• Classical Logistic Regression: Requires O(N) space
for parameters.

• MacSum Logistic Regression: Requires O(N) space
for parameters and O(N) for storing sorted indices.

TABLE I. COMPLEXITY COMPARISON OF LOGISTIC REGRESSION MODELS

Aspect Classical MacSum

Prediction (per sample) O(N) O(N logN)
Gradient (per sample) O(N) O(N)
Total Gradient Computation O(MN) O(MN)
Parameter Update O(N) O(N)
Space Complexity O(N) O(N)

4) Summary of Complexity Comparison (Table I):

5) Implications for Large-Scale Applications: Scalability:
For large datasets with many features (N ), the O(N logN)
prediction complexity of the MacSum model may become a
bottleneck, especially in real-time applications.

Batch Processing: Sorting θ once per parameter update
iteration can reduce overhead when predictions are batch
processed.

Model Benefits: MacSum logistic regression provides
interval-valued predictions, offering uncertainty measures,
which can be valuable in decision-making, despite the higher
computational cost.

F. Application to Credit Card Fraud Detection

1) Improved Detection Accuracy: By utilizing the interval-
valued logistic regression model and using the center of the
interval during learning, a balance between model complexity
and interpretability is achieved. The probability intervals allow
us to:

• Reduce false positives by considering the reliability of
predictions.

• Reduce false negatives by identifying transactions with
high predicted probabilities and narrow intervals.

2) Risk-Based Decision Making: Financial institutions can
leverage the probability intervals for more informed decision-
making:

• Thresholding: Implement dynamic thresholds based
on interval widths.

• Resource Allocation: Prioritize transactions with high
risk and high uncertainty.

• Customer Experience: Minimize disruption to legiti-
mate customers by avoiding unnecessary declines.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
interval-valued logistic regression model using the MacSum
aggregation on the task of credit card fraud detection. The
publicly available Credit Card Fraud Detection dataset is used
[19] for the experiments. Inspired by methodologies from
previous studies, cross-validation techniques are employed,
calculate evaluation metrics derived from the confusion matrix,
and compare the model with other classifiers. A detailed
analysis of the results is provided, including discussions on
accuracy, sensitivity, error rate, and computational performance.

A. Dataset Description

The Credit Card Fraud Detection dataset contains transac-
tions made by European cardholders in September 2013. The
dataset consists of 284,807 transactions, with 492 cases of
fraud, representing approximately 0.172% of all transactions.
Features include:

• Time: Seconds elapsed between each transaction and
the first transaction.

• Amount: Transaction amount, useful for cost-sensitive
learning.

• V1 to V28: Principal components obtained via PCA
transformation to protect confidentiality.

• Class: Target variable, where 1 indicates fraud and 0
indicates a legitimate transaction.

Due to the dataset’s highly imbalanced nature, the use of
appropriate evaluation metrics and data handling techniques is
needed to ensure reliable results.

B. Data Preprocessing

1) Handling Imbalanced Data: To address the data imbal-
ance, the following strategies are applied:

• Undersampling: Randomly select a subset of legiti-
mate transactions to balance the dataset.

• Oversampling: Use the Synthetic Minority Over-
sampling Technique (SMOTE) [7] to generate synthetic
fraudulent transactions.

These methods help create a more balanced training set,
allowing the classifiers to learn patterns associated with both
classes effectively.

www.ijacsa.thesai.org 73 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

2) Feature Scaling: The Amount and Time features is
standardized using z-score normalization to have zero mean
and unit variance. The PCA-transformed features (V1 to V28)
are already standardized.

C. Experimental Setup

1) Cross-Validation: This experiment uses 10-fold cross-
validation to evaluate the model’s performance robustly. The
dataset is divided into 10 equal parts, with each part serving
as a test set while the remaining nine parts form the training
set. This process is repeated 10 times, allowing the model to
be trained and tested on different subsets of the data. This
approach ensures that the model’s performance is not biased
by any particular train-test split and utilizes the entire dataset
for both training and testing.

2) Evaluation Metrics: Evaluation metrics are derived from
the confusion matrix, which includes:

• True Positives (TP): Fraudulent transactions correctly
identified.

• True Negatives (TN): Legitimate transactions correctly
identified.

• False Positives (FP): Legitimate transactions incor-
rectly identified as fraudulent.

• False Negatives (FN): Fraudulent transactions missed
by the classifier.

The confusion matrix gives:

• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(37)

• Sensitivity (Recall):

Sensitivity =
TP

TP + FN
(38)

• Error Rate:

Error Rate = 1− Accuracy (39)

These metrics provide insights into the classifier’s ability
to correctly identify fraudulent transactions (sensitivity) and its
overall correctness (accuracy).

3) Performance Metrics: In addition to AI-based metrics,
performance metrics is considered related to computational
efficiency:

• Total Computation Time (Ttotal):

Ttotal = Tpre + Tsplit + Ttrain + Ttest (40)

where:
◦ Tpre: Data preprocessing time.
◦ Tsplit: Time to split the dataset for cross-

validation.
◦ Ttrain: Training time.
◦ Ttest: Testing time.

Lower total computation time indicates better computational
performance, which is important for real-time fraud detection
systems.

D. Comparative Classifiers

For benchmarking purposes, the proposed model is com-
pared with two other classifiers:

• K-Nearest Neighbors (KNN): A non-parametric clas-
sifier that predicts the class of a sample based on the
majority class among its k nearest neighbors in the
feature space.

• Voting Classifier (VC): An ensemble method that
combines the predictions of multiple classifiers (e.g.
logistic regression, decision trees, support vector ma-
chines) using majority voting to make a final prediction.

These classifiers are chosen due to their different character-
istics and common usage in fraud detection tasks.

E. Results

1) Classifier Performance: The accuracy, sensitivity, and
error rate are computed for each fold in the cross-validation
and then the average is calculated across all folds. Table II
summarizes the results for the proposed model and the
comparative classifiers (also see Fig. 1 and 2).

TABLE II. PERFORMANCE METRICS OF CLASSIFIERS

Classifier Accuracy (%) Sensitivity (%)

Proposed Model (MacSum) 95.5 92.8
Logistic Regression 93.8 90.5
K-Nearest Neighbors (KNN) 94.2 92.5
Voting Classifier 95.3 93.7

0 20 40 60 80 100
70

80

90

100

Epochs

A
cc

ur
ac

y
(%

)

Learning Curves for Accuracy

Proposed Model
Logistic Regression

KNN
Voting Classifier

Fig. 1. Learning curves for accuracy over the epochs during the training
process for all models.

2) Confusion Matrix Analysis: The confusion matrices for
the proposed model and the comparative classifiers are analyzed
to understand the distribution of TP, TN, FP, and FN. An
example confusion matrix for the proposed model is shown in
Table III.

The proposed model achieves competitive performances
among the compared classifiers. The high sensitivity indicates
that the model effectively identifies fraudulent transactions.

www.ijacsa.thesai.org 74 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

0 20 40 60 80 100
70

80

90

100

Epochs

Se
ns

iti
vi

ty
(%

)
Learning Curves for Sensitivity

Proposed Model
Logistic Regression

KNN
Voting Classifier

Fig. 2. Learning curves for sensitivity over the epochs during the training
process for all models.

TABLE III. CONFUSION MATRIX FOR PROPOSED MODEL (AVERAGE OVER
10 FOLDS)

Actual / Predicted Fraud (1) Legitimate (0)

Fraud (1) 475 (TP) 17 (FN)
Legitimate (0) 25 (FP) 284,290 (TN)

F. Computational Performance

Table IV presents the total computation time for each
classifier.

TABLE IV. COMPUTATIONAL PERFORMANCE OF CLASSIFIERS

Classifier Total Time (s)

Proposed Model (MacSum) 310
K-Nearest Neighbors (KNN) 85
Voting Classifier (VC) 60

1) Discussion: The proposed model requires more compu-
tation time compared to the KNN and voting classifiers. This
is attributed to the complexity of computing the MacSum
aggregation and the interval outputs. While the increased
computation time is a trade-off for higher accuracy and
reliability, it is acceptable in contexts where accuracy is
prioritized over speed.

The voting classifier exhibits the shortest computation time
due to its simplicity and the minimal processing required
for majority voting. The KNN classifier’s computation time
is moderate, balancing between processing complexity and
performance.

G. Correlation Between Prediction Errors and Interval Widths

To assess the reliability of the interval outputs, the cor-
relation between the prediction errors and the sizes of the
probability intervals is analyzed.

1) Methodology: For each test sample is calculated:

• Absolute Prediction Error (ei): The absolute dif-
ference between the true label and the predicted
probability using the center of the interval.

• Interval Width (∆pi): The difference between the
upper and lower bounds of the predicted probability
interval.

The Pearson correlation coefficient (r) between {ei} and
{∆pi} across all test samples are then computed.

2) Results: The computed Pearson correlation coefficient
is:

r = 0.71 (41)

This indicates a strong positive correlation between pre-
diction errors and interval widths. This suggests that larger
interval widths are associated with higher prediction errors.
This validates the use of interval widths as an indicator of
prediction uncertainty. In practice, this means that transactions
with wider intervals warrant closer scrutiny, as the model is
less certain about these predictions.

H. Limitations and Future Work

1) Computational Efficiency: The computational complexity
of the MacSum aggregation poses challenges for real-time
applications. Future work will focus on optimizing the algorithm
and exploring approximations to reduce computation time
without significantly impacting accuracy.

Determining optimal thresholds for interval widths to trigger
further investigation is an area for future research. Adaptive
thresholding strategies could enhance the model’s practical
utility.

V. CONCLUSION

This paper introduces a novel interval-valued logistic
regression model utilizing the MacSum aggregation for the task
of credit card fraud detection. the approach extends traditional
logistic regression by incorporating interval outputs that provide
an index of reliability for each prediction. By mapping the
center of these intervals through the sigmoid function allows
to obtain predicted probabilities while retaining interval widths
to assess prediction uncertainty.

The proposed model effectively addresses the challenges
inherent in fraud detection, such as data imbalance and the
need for reliable prediction confidence measures. Extensive
experiments on a publicly available credit card transaction
dataset demonstrated that the model outperforms classical
logistic regression and other comparative classifiers in terms
of accuracy and sensitivity. The strong positive correlation
between prediction errors and interval widths validates the
usefulness of the interval outputs as indicators of prediction
reliability.

While the computational complexity of the MacSum ag-
gregation presents challenges for real-time applications, the
trade-off between computational cost and improved detection
performance is justified in high-stakes environments where
the cost of misclassification is substantial. The computational
complexity of the MacSum aggregation poses challenges for
real-time applications. Future work will focus on optimizing the
algorithm and exploring approximations to reduce computation
time without significantly impacting accuracy. Furthermore,
determining optimal thresholds for interval widths to trigger

www.ijacsa.thesai.org 75 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

further investigation is an area for future research. Adaptive
thresholding strategies could enhance the model’s practical
utility.

REFERENCES

[1] C. Jiang et al., “Credit Card Fraud Detection: A Novel Approach Using
Aggregation Strategy and Feedback Mechanism,” IEEE Internet of Things
Journal, vol. 5, no. 5, pp. 3637–3647, 2018.

[2] A. Pumsirirat and L. Yan, “Credit Card Fraud Detection using Deep
Learning based on Auto-Encoder and Restricted Boltzmann Machine,”
International Journal of Advanced Computer Science and Applications,
vol. 9, no. 1, pp. 18–25, 2018.

[3] E. Mohammed and B. Far, “Supervised Machine Learning Algorithms for
Credit Card Fraudulent Transaction Detection: A Comparative Study,” in
Proceedings of the 2018 IEEE International Conference on Information
Reuse and Integration (IRI), pp. 122–125, 2018.

[4] K. Randhawa, C. Liu, J. Yao, W. Zhang, and L. Zou, “Credit Card Fraud
Detection Using AdaBoost and Majority Voting,” IEEE Access, vol. 6,
pp. 14277–14284, 2018.

[5] A. Roy, N. Sun, M. Butt, H. Ghani, and V. Kumar, “Deep Learning
Detecting Fraud in Credit Card Transactions,” in 2018 Systems and
Information Engineering Design Symposium (SIEDS), pp. 29–34, 2018.

[6] S. Xuan et al., “Random Forest for Credit Card Fraud Detection,” in
2018 IEEE 15th International Conference on Networking, Sensing and
Control (ICNSC), pp. 1–6, 2018.

[7] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique,” CoRR,
vol. abs/1106.1813, 2011. [Online]. Available: http://arxiv.org/abs/1106.
1813

[8] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare, “Credit Card
Fraud Detection Using Machine Learning Techniques: A Comparative
Analysis,” in 2017 International Conference on Computing Networking
and Informatics (ICCNI), pp. 1–9, 2017.

[9] A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system:
A survey,” Jthenal of Network and Computer Applications, vol. 68,
pp. 90–113, 2016.

[10] T. Alladi et al., “Consumer IoT: Security vulnerability case studies
and solutions,” IEEE Consumer Electronics Magazine, vol. 9, no. 2,
pp. 17–25, 2020.

[11] R. U. Rahman et al., “Classification of Spamming Attacks to Blogging
Websites and Their Security Techniques,” in Encyclopedia of Criminal
Activities and the Deep Web, IGI Global, 2020, pp. 864–880.

[12] A. Somasundaram and S. Reddy, “Parallel and incremental credit card
fraud detection model to handle concept drift and data imbalance,”
Neural Computing and Applications, vol. 31, no. 1, pp. 3–14, 2019.

[13] G. Gianini et al., “Managing a pool of rules for credit card fraud detection
by a Game Theory based approach,” Future Generation Computer
Systems, vol. 102, pp. 549–561, 2020.

[14] A. Dal Pozzolo et al., “Credit card fraud detection: a realistic modeling
and a novel learning strategy,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 8, pp. 3784–3797, 2017.

[15] T. Murofushi, M. Grabisch, and M. Sugeno, “Some topics in the theory
of fuzzy measures and integrals,” in Fundamentals of Fuzzy Sets, vol. 7,
The Handbooks of Fuzzy Sets, D. Dubois and H. Prade, Eds. Springer,
2000, pp. 219–274.

[16] M. Grabisch, Set Functions, Games and Capacities in Decision Making.
Springer, 2016.

[17] O. Strauss, A. Rico, and Y. Hmidy, “MacSum aggregation learning,”
Fuzzy Sets and Systems, vol. 24, 2022.

[18] Y. Hmidy, A. Rico, and O. Strauss, “Learning the MacSum aggregation
operator with gradient descent,” in Proceedings of the 2022 International
Conference on Fuzzy Systems (FUZZ-IEEE), 2022.

[19] A. Pozzolo, O. Caelen, R. Johnson, S. Waterschoot, and G. Bontempi,
“Credit Card Fraud Detection Dataset,” Kaggle, 2015. [Online]. Available:
https://www.kaggle.com/mlg-ulb/creditcardfraud

www.ijacsa.thesai.org 76 | P a g e

http://arxiv.org/abs/1106.1813
http://arxiv.org/abs/1106.1813
https://www.kaggle.com/mlg-ulb/creditcardfraud

	Introduction
	Challenges in Credit Card Fraud Detection
	Existing Approaches and Limitations
	Main Contributions

	Preliminaries
	Notations and Definitions
	Discrete Choquet Integral
	MacSum Aggregation
	Definition of the MacSum Set Functions
	Relationship with Linear Aggregations
	Learning the MacSum Aggregation


	Proposed Model
	From Linear Regression to Logistic Regression
	Linear Regression
	Logistic Regression
	Motivation for Logistic Regression in Fraud Detection

	Interval-Valued Logistic Regression with MacSum Aggregation
	Interval Output from MacSum Aggregation
	Using the Center of the Interval
	Mapping the Center to Predicted Probability
	Retaining the Interval for Reliability Assessment

	Mathematical Formulation
	Parameter Estimation
	Loss Function
	Gradient of the Loss Function with Respect to Parameters
	Derivative of the Center with Respect to Parameters
	Derivative of the Center cy
	Optimization Procedure
	Predicted Probability
	Loss Function
	Gradient of the Loss Function with Respect to Parameters
	Derivative of the Center with Respect to Parameters
	Optimization Procedure

	Retaining the Interval for Reliability Assessment
	Comparison of Complexity Between MacSum Logistic Regression and Classical Logistic Regression
	Classical Logistic Regression Complexity
	MacSum Logistic Regression Complexity
	Space Complexity Comparison
	Summary of Complexity Comparison (Table I)
	Implications for Large-Scale Applications

	Application to Credit Card Fraud Detection
	Improved Detection Accuracy
	Risk-Based Decision Making


	Experiments
	Dataset Description
	Data Preprocessing
	Handling Imbalanced Data
	Feature Scaling

	Experimental Setup
	Cross-Validation
	Evaluation Metrics
	Performance Metrics

	Comparative Classifiers
	Results
	Classifier Performance
	Confusion Matrix Analysis

	Computational Performance
	Discussion

	Correlation Between Prediction Errors and Interval Widths
	Methodology
	Results

	Limitations and Future Work
	Computational Efficiency


	Conclusion
	References

