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Abstract—With the increasing demand for large-scale mine 

equipment and the complexity of the operating environment, the 

intelligent trajectory planning and control of mine systems 

becomes very important. This paper proposes a proportional-

integral-differential (PID) feedback controller combined with 

adaptive improvement. This controller combines Genetic 

Algorithm and Particle Swarm Optimization technology to 

enhance the ability of the excavator’s intelligent control system 

and improve the control accuracy, response speed, and robustness 

under different working conditions. The results showed that the 

constructed PID controller improved the average constraint 

performance by 2.5% through quintic interpolation, and the 

power consumption was relatively small. The trajectory prediction 

error of different joints was less than 5% and the displacement 

and pressure curves of the hydraulic cylinder were stable and 

symmetrical. The accuracy of the proposed algorithm was 94% 

and quickly converged to 0.05 after 50 iterations, which was 

18.5%, 15.3%, and 17.5% higher than the other three algorithms, 

respectively. Therefore, the proposed method has high reliability 

and adaptability in anti-interference ability, trajectory planning 

progress, and optimization efficiency, and it provides a better 

solution for intelligent control of the excavator excavation system. 
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I. INTRODUCTION 

As global demand for mineral resources continues to rise, 
the existing production efficiency of the mining industry is 
unable to meet the current consumption needs. Furthermore, the 
safety of mining workers and the costs associated with 
production are also pressing concerns that require immediate 
attention [1]. Excavators represent the core equipment of large 
mining plants. However, they currently face significant 
challenges, including difficulties in dealing with complex 
mining environments, a lack of flexibility, and a lack of 
intelligent control [2]. The advancement of Electronic Control 
Technology (ECT) has provided the possibility for the 
emergence of Intelligent Control Systems (ICS) for excavators, 
which can to some extent meet the operational needs of large-
scale mining industries. Currently, experts have extensively 
researched excavator ICS and algorithm optimization [3]. 
However, the existing excavators have obvious shortcomings in 
dealing with the changing mine environment, improving 
operation accuracy, and enhancing intelligent control. To solve 
these problems, this study proposes an ICS based on ECT to 
improve the performance of excavators in complex mine 
environments through advanced control strategies. The 

innovation of the research lies in the development of a 
Proportional-Integral-Differential (PID) controller, which 
combines Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO) technology to enhance the adaptability and 
robustness of the excavator ICS. Through this combined 
optimization strategy, this method not only improves the 
control accuracy and response speed but also improves the anti-
interference ability of the system in the face of internal and 
external interference. 

This study proposes a PID feedback controller combining 
GA and PSO technology to improve the ICS performance of 
large mining excavators. By adopting the PID controller and 
GA-PSO optimization strategy, the control accuracy and 
response speed of ICS are improved. Compared with the 
existing PID control technology, fuzzy control, and GA and 
PSO when employed in isolation, the improved PID feedback 
control method combined with GA-PSO has stronger 
comprehensive performance in search performance and 
convergence speed and realizes more effective trajectory 
optimization. 

The overall structure of the study includes six sections. 
Introduction is given in Section I. Section II summarizes the 
research achievements and shortcomings of ECT in ICS of 
different countries. The second section studies and designs the 
simulation model of PID feedback control. Section III tests and 
analyzes the proposed model. Section IV discusses the 
experimental results. Discussion is given in Section V and 
finally, Section VI concluded the paper. 

II. RELATED WORKS 

Significant progress has been made in the application of 
ECT in excavator ICS [4-5]. Sadiq et al. put forth a PID-Mining 
Control Systems (MCS) method based on adaptive adjustment, 
which was designed to address the issue that traditional MCSs 
are unable to effectively address the influence of nonlinear 
factors. This method could improve the control performance of 
load fluctuations. This method has reduced the response time 
by 13% compared to the PID control technology before 
improvement [6]. Wellendorf et al. designed a PSO-based PID 
control parameter optimization method to address the issue of 
traditional MCS relying on manual experience. It has improved 
stability by 20% compared to traditional control systems [7]. 
Kanso et al. proposed an adaptive PID control method based on 
fuzzy logic to address the limitations of traditional manual 
experience-based control of mining systems. This method 
reduced the response time by 14% and improved its robustness 
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by 34% [8]. Wang Z et al. proposed a PID control technique 
grounded on Deep Learning (DL) algorithms. The DL and 
predictive capabilities of this algorithm have improved the 
accuracy and response speed by 23% and 12%, respectively [9]. 
Sohail A et al. proposed a mining job scheduling optimization 
method based on an ant colony algorithm. Compared to 
traditional control systems, this method has increased mining 
efficiency by 28% and resource utilization by 10% [10]. 

The trajectory planning control method based on GA and 
PSO algorithms has also received widespread attention [11]. 
Gad et al. proposed a GA-based path optimization scheme for 
trajectory planning problems in complex environments. This 
method could obtain the global Optimal Solution (OS) under 
complex road conditions [12]. Pervaiz et al. developed an 
approach that simulates the objective function of PSO and 
updates the position and velocity of particles to obtain the OS, 
which has a fast convergence performance [13]. Zhang et al. 
established a trajectory planning control method based on GA-
PSO, which expands the search range through crossover and 
mutation, and locally refines with PSO, significantly improving 
the accuracy and efficiency of the algorithm [14]. Minh et al. 
suggested a multi-objective optimization method fused with 
GA-PSO for nonlinear factors in complex environments. This 
method utilized the OS and hierarchical selection mechanism to 
achieve the OS under multi-objective common constraints [15]. 
Pozna et al. proposed a GA-PSO that combines DL and the 
feature extraction capability of DL to predict the priority of 
trajectory points, improving the intelligence level of path 
planning. This method could be used for path planning in 
complex environments and ensure the stability and reliability of 
the results [16]. 

In summary, existing research has made certain progress in 
anti-interference and trajectory optimization [17]. However, in 
more complex large-scale mining environments, the 
comprehensive control performance of the method still needs 
improvement, with limitations in response speed, control 
accuracy, anti-interference ability, and robustness [18-19]. 
Therefore, this study proposes an ECT-based ICS for large 
mining plant excavators to enhance their overall performance 

and control capabilities in complex working conditions. The 
innovation of the research lies in proposing a PID anti-
interference control model based on adaptive improvement, 
aiming to improve the internal and external anti-interference 
performance of the algorithm. The trajectory control model 
combined with the GA-PSO optimization algorithm can 
improve the optimization of global and local solutions in 
complex and real-world environments while ensuring the 
accuracy and efficiency of the solutions. This study provides a 
better solution for excavator trajectory planning. 

III. METHODS AND MATERIALS 

The first section constructs an anti-interference mining 
system. Firstly, a mechanical arm simulation dynamic model 
based on improved D-H parameters is established, and forward 
and inverse dynamics verification is carried out. Finally, a PID 
controller is introduced to further optimize the control 
performance of the mining trajectory planning system. The 
second section introduces the GA-PSO algorithm to optimize 
the parameters of the PID controller, further enhancing the 
control performance of the mining system. 

A. Construction of PID Feedback Control Simulation Model 

for Anti-Interference Mining System 

The operating environment of large mining plants is 
complex and harsh. The operation of excavators is inevitably 
limited by environmental factors, and it is also necessary to deal 
with self-interference caused by factors such as inertia and 
vibration during the excavator's movement process [20-21]. To 
enhance the ability of mining systems to cope with complex 
environments, it is necessary to construct a PID feedback 
control simulation model based on mining systems for 
trajectory planning and control. This study first establishes a 
geometric simulation model of the Robotic Arm (RA), defining 
the length, mass, centroid position, and inertia tensor of the 
joints and linkages of the RA. Subsequently, based on the 
improved D-H parameters, a coordinate for the linkage of the 
excavator arm is established, as shown in Fig. 1 [22-23]. 
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Fig. 1. Structural diagram of the coordinate system of the RA. 
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Based on the improved D-H parameters, each joint angle 
and link length of the RA is defined, and a coordinate system is 
set for each joint to determine the relationship between the 
joints. A positive dynamics verification is conducted on the 
constructed geometric simulation model of the RA, thereby 
obtaining the relationship between the posture and joint angles 
of the end position of the RA. The homogeneous transformation 
matrix between the connecting rod and the joint is shown in Eq. 
(1). 
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In Eq. (1), 1i

i T  is the transformation relationship between 

adjacent linkage coordinate systems i  and 1i . i
 is the 

angle of rotation required for the connecting rod connecting two 

adjacent joints.  i
and 

id  are the other angle and 

displacement length required to connect two adjacent joints. 

ia  is the horizontal distance between adjacent joints. The 

transformation matrix effectively describes the directional 
relationship between each joint and link in the structure of the 
RA, which can be used to obtain the final posture of the RA and 
accurately describe the pose of the RA at specific time points 
during motion. Using MATLAB for inverse dynamics 
verification, a simulation model is constructed to obtain the 
motion parameters of the RA. To ensure the accuracy of the 
excavator during excavation, handling, and movement in 
complex mining environments, the interpolation method is 
utilized to simulate the motion process multiple times. The 
motion parameters of the RA are obtained at each moment and 
then adjusted to ensure the model’s accuracy. To ensure both 
the economy and stability of the RA control process, a Five 
Order Interpolation Method (FOIM) is adopted, as shown in Eq. 
(2). 

2 3 4 5

0 1 2 3 4 3( )      t A At A t A t A t A t
(2) 

In Eq. (2), 
( ) t

is the rotation angle of the RA joint at time 

t. 0A
, 1A

, 2A
, 3A

, 4A
, and 5A

are the difference 
coefficients related to t, representing the positions of each joint 
of the RA at time t. Through FOIM, more accurate simulation 
results of the RA are obtained. To further obtain a more optimal 
robot motion path and determine the objective function, the 
parameters during the movement of the RA are adjusted to 
ensure that the path meets the requirements, as given by Eq. (3). 

1 2( ) ( ) ( )  F x f x f x
(3) 

In Eq. (3),   and   are weighting coefficients. ( )F x

is the objective function for the optimal path of the RA. 
1( )f x  

is a matrix constraint condition that describes the range of 

motion space of the RA. 
2 ( )f x  is the proportion of the RA in 

the workspace. Considering the influence of factors such as 
gravity and inertia during the movement of the RA, this study 

presents challenges for precise control and efficient operation 
of the motion. Therefore, the derived joint torque is shown in 
Eq. (4). 

( ) ( , ) ( )   M q q V q q G q
(4) 

In Eq. (4),   is the joint torque of the RA. ( )M q  is the 

inertia matrix of the RA itself. q , q , and q  are the joint 

gravity, inertia, and centripetal force of the RA, respectively. 

( )G q  is the gravity vector of the RA, which describes the 

influence of gravity on the joints. ( , )V q q  is the term for 

centrifugal force and Coriolis force. In complex mining 
environments, to completely replace manual labor with 
excavators, it is necessary to ensure the flexibility of excavator 
movement. The formula for adaptive adjustment of the RA 
using an anti-interference tracker is given by Eq. (5). 

     1 1 1 e t x t z t
(5) 

In Eq. (5),  1e t  represents the velocity prediction error 

value during the motion of the RA.  1x t  is a nonlinear 

interference factor.  1z t  is the true value of the interference 

factor. To enhance the control capability of the RA over its own 
interference factors and increase its joint robustness, this study 
adopts a PID control strategy for the purpose of planning and 
controlling the motion trajectory of the RA, as illustrated in Fig. 
2. 

In Fig. 2, the PID controller uses Lyapunov function to 
perform error control based on the input joint motion state, and 
updates its motion state to obtain an anti-interference 
mechanical arm motion process. By using backstepping 
adaptation, the limitations of the controller can be effectively 
addressed. The dynamic equation for noise measurement of the 
sub states of the RA is shown in Eq. (6). 

1
   L m L disJ T B T

n (6) 

In Eq. (6),  L  and  L  are angular displacement and 

velocity. J  is the gravity vector of the RA joint. 
mT  is the 

joint torque input to the PID controller. B  is the adaptive 

control parameter. 
disT  is the joint torque output by the PID 

controller. n  is the joint variable of the RA. The parameters in 

the PID controller can be adaptively adjusted based on the 
influence of environmental and excavator factors. The 
calculation of parameter adaptive law is shown in Eq. (15). 

ˆ Γ  p
(7) 

In Eq. (7), 
˙

̂  and Γ  are the PID control parameter 

adaptive law and adaptive matrix of the RA.   is the error 

between the predicted and actual values of adjacent joint 
motion sub states. p  is the error value of the motion state of 

the RA. 
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Fig. 2. Schematic diagram of backstepping adaptive control. 

B. Construction of Excavator Trajectory Control Model 

based on GA-PSO 

The previous section constructs a mining trajectory 
planning system based on a PID controller and obtains an anti-
interference mechanical arm simulation dynamic model. In the 
ICS of large mining plants, PID-ECT can achieve excavation 
trajectory planning and control to enhance the accuracy, 
efficiency, and flexibility of the excavation process. However, 
in practical operating environments, due to the complexity of 
the environment, the feedback control mechanism of PID 
controllers requires a lot of adjustment time and experience and 
may encounter problems such as overshoot and oscillation [24-
25]. Given these issues, this study proposes a PID control 
strategy built on GA-PSO to address complex control processes 
and ensure the accuracy, speed, and robustness of optimal 

parameter solving. Fig. 3 shows the PID control structure based 
on the GA-PSO algorithm. 

In Fig. 3, GA-PSO searches for the optimal PID parameters 
to enable the PID controller to provide adjustments for high-
frequency and low-frequency signals. GA can search globally 
by emulating the genetic operations that occur in the natural 
evolution of organisms. PSO simulates group behavior, and 
based on the global optimum searched by GA, further performs 
local fast convergence to obtain more accurate PID parameters. 
The first step in building GA-PSO is to use GA to randomly 
generate a set of PID parameters as the initial population, as 
shown in Eq. (8). 
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Fig. 3. PID control structure based on GA-PSO. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

777 | P a g e  

www.ijacsa.thesai.org 

In Eq. (8), ( )u t  is the input of the PID parameter vector. 

( )e t  is the error signal of PID control parameters. 
pK , 

iK , 

and 
dK  are the proportional gain, integral gain, and derivative 

gain of PID control parameters. Each individual input is 
subjected to fitness calculation, including sum of squared errors, 
overshoot, and response time, to achieve PID control 
performance evaluation, as shown in Eq. (9). 

2

2 2

0 1 2

( )
( ) ( ) 

  
        

T du t
J e t u t dt

dt
  (9) 

In Eq. (9), J  is the fitness function value. T  is the total 

PID control time. 
1  and 

2  both represent weight factors. 

Following each iteration of the population update, an adaptive 
function is employed to assess the selected PID parameter 
solutions, thereby identifying the optimal control individual. 
This creates conditions for the next individual elimination and 
retention operations to improve the overall quality of the 
population. Based on the evaluation results of the adaptive 
function, the expression for selecting probabilities for each 
individual is given by Eq. (10). 

1





i

i N

j
j

J
P

J
     (10) 

In Eq. (10), 
iP  and 

iJ  are the selection probability and 

fitness of the current individual i . N  means the population 

size. j  is the individual in the population who is currently 

assigned a probability. To increase the diversity of the 
population and avoid getting stuck in local optima during 
algorithm solving, this study randomly selects gene fragments 
from any two individuals and performs crossover operations to 
generate new offspring individuals, as shown in Eq. (11). 

*
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In Eq. (11), 
1 2( , , , ) nu u u u  and 

1 2( , , , ) nv v v v  are 

the generation of new individuals 
*u  and *v  after 

chromosome crossing between any two selected parental 

individuals. k  is a random gene fragment cleavage point 

within the 1~ n  range. Cross operation can increase 

population diversity, randomly mutate individuals, and further 
enhance the global nature of the algorithm, avoiding local 
optima. The random mutation operation performed on 
individuals is shown in Eq. (12). 

* max

min

Δ( , ), (0,1) 0

Δ( , ), (0,1) 1

   
 

  

k

k k

k k

k k

x t U v random
x

x t v U random
 (12) 

In Eq. (12), 
kx  is the individual's randomly selected 

cutting point for mutation. *kx  is the new mutation point 

generated after the mutation operation. 1,0random（ ） is a 

random integer representing the random value of the variance 

Δ( , )t y . 
min max[ , ]k kU U  represents any cutting point within the 

range. The individual crossover mutation operation process is 
shown in Fig. 4. 

In Fig. 4, by performing cross-mutation on individuals, the 
PID parameters of individuals can be randomly adjusted to 
obtain more global parameter solutions. The global advantage 
of GA has to some extent slowed down the computational speed 
of the algorithm. To deeply improve the calculation accuracy 
and velocity of the algorithm, the PSO algorithm is adopted for 
improvement. PSO is inspired by the foraging process of bird 
flocks and can accelerate the convergence process by updating 
particle velocity and position, and increase the accuracy of PID 
parameters to improve PID control performance. The velocity 
and location of particles are updated as shown in Eq. (13). 

min max min

min max min

(0) (0,1) ( )

(0) (0,1) ( )

   


   

i

i

x x rand x x

v v rand v v
 (13) 

In Eq. (13), (0)ix  and (0)iv  are the initial positions and 

velocities of the particles. 
minx /

maxx  and 
minv /

maxv  are the 

minimum and maximum values of particle position and velocity. 
PSO achieves further optimization of PID parameters by 
updating particle velocity and position, and the updated formula 
is shown in Eq. (14). 

1 1 2 2( 1) ( ) ( ( )) ( ( ))     i i i i iv t v t c r p x t c r g x t
 (14) 

Parental Offspring 

V1 V2 V3 V3 V4 V5 V1 V2 V3 V3 V4 V5

Multi-point

crossover

 

Fig. 4. Execution process of mutation operator. 
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In Eq. (14), ( 1)iv t  is the particle update speed. ( )iv t  is 

the velocity before particle update.   denotes the inertia 

weight of particle velocity. 
1c  and 

2c  both represent learning 

factors. 
1r  and 

2r  are velocity weighting factors. 
ip  and 

g  are velocity updates for particles. ( )ix t  is the optimal 

position for both the individual and the global. The formula for 

updating the particle's historical position based on its historical 
location and updated velocity is shown in Eq. (15). 

( 1) ( ) ( 1)   i i ix t x t v t
   (15) 

In Eq. (15), ( 1)ix t  is the current position of the particle 

after the position update. The schematic diagram of excavator 
trajectory planning is shown in Fig. 5. 
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Fig. 5. Schematic diagram of excavator trajectory planning. 

In Fig. 5, the process of mining mechanical trajectory 
planning is the process from task input to control instruction 
output. 

IV. RESULTS 

Firstly, the anti-interference simulation model based on PID 
feedback control is tested to verify its control stability, accuracy, 
and error value. Next, the application effect of PID-MCS based 
on GA-PSO optimization is verified. The research method is 
compared in mining operation control under different working 
conditions to verify its superiority. 

A. Performance Testing of PID Feedback Control for Anti-

Interference Mining Trajectory Planning System 

To validate the effectiveness of the constructed mining 
system dynamics simulation model, simulation experiments are 
conducted on the model. The hardware configuration used for 
the experimental equipment is Genuine Intel ®CPU 2140 (dual-
core) 1.6GHz, 512MB of memory. The experiment is 
conducted on the MATLAB 7.0 platform. In MATLAB, a 3D 
simulation model of the linkage coordinates of the RA in the 
mining system is constructed based on the improved D-H 
parameters. The simulation experiment is conducted on a 
scaled-down testing platform to simulate the motion and 
operation process of the RA in a real environment, creating 
conditions for the structural and operational analysis of the RA. 
Table I shows the D-H parameters. 

Firstly, the effectiveness of FIOM in controlling the motion 
of RAs is experimentally verified, using three, five, and nine 
iterations as comparisons. Each interpolation method is applied 
to joints 1, 2, and 3 of the RA. The joint motion fluctuation 

curve over time is used as the evaluation index, as displayed in 
Fig. 6. In Fig. 6, different numbers of interpolation methods 
have a good constraint effect on the motion path of the RA, with 
smooth and continuous curves without significant fluctuations. 
In Fig. 6 (a), the cubic interpolation method has the worst 
constraint effect on the motion process of the RA, with 
significant fluctuations occurring at both the beginning and end 
of the RA motion. In Fig. 6 (b), FOIM has the best constraint 
effect with no significant fluctuations, and the curve remains 
within the range of [-0.25, 0.25]. In Fig. 6 (c) and (d), the seven-
degree and nine-degree interpolation methods improved the 
constraint performance by 2% and 3% respectively based on 
five degrees, but these two methods have higher energy 
consumption. This indicates that FOIM can ensure higher 
constraint performance while also being more energy-efficient. 

To further verify the anti-interference ability of the path 
planning system after adopting the PID controller, the 
prediction and actual trajectory error of the RA are used as 
evaluation indicators, as shown in Fig. 7. In the trajectory 
prediction of four joints using the proposed method, the error is 
within 5% compared to the true values, and the motion 
trajectory curves are smooth, continuous, and without 
significant abrupt changes. In Fig. 7 (a), the application effect 
in joint 1 is the worst, with a predicted and actual displacement 
difference of 0.4m. In joint 2 of Fig. 7 (b), the actual and 
predicted displacement values have the highest overlap, with a 
difference of less than 0.1m. In Fig. 7 (c) and (d), the error 
values of joint 3 and joint 4 are at an intermediate level, within 
0.3m. The proposed method can overcome the influence of 
nonlinear factors in the real environment when applied to MCS 
and has high feasibility and accuracy. 
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TABLE I. IMPROVED D-H COORDINATE PARAMETERS 

Joint Joint angle/° Z-axis offset/mm X-axis offset/mm 
Rotation angle around the 

X-axis 
Range of variation 

1 -90°~90° 0 59 734 2643mm 

2 -34.6°~76.2° 0 3680 0 2677mm 

3 0° 136 1734 0 -40°~40° 

4 0° 180 1046 0 3000 
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Fig. 6. Comparison of motion speed curves under different interpolation modes. 
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Fig. 7. Performance test under PID control of RA. 
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B. Application Verification of PIDMCS based on GA-PSO 

Optimization 

After verifying the performance of the PID-controlled RA 
simulation model in the previous section, the actual application 
effect of the PID controller optimized by GA-PSO is analyzed. 
The displacement and pressure curves of the hydraulic cylinder 
applied to the practical application scenario of the bucket 
hydraulic cylinder using the research method are shown in Fig. 
8. During the bucket operation, it can move accurately by the 
pre-set trajectory, and the displacement and pressure curves 
always show stability. In Fig. 8 (a), the displacement curve of 

the bucket cylinder encounters obstacles and evades them at 8-
11s, and then returns to normal track operation. In Fig. 8 (b), 
there is consistency in the action of the pressure changes in the 
large and small chambers of the bucket cylinder at time points 
2s, 4s, 8s, 12s, and 18s. The pressure curve exhibits symmetry 
within the ranges of [2, 4], [4, 8], [8, 12], and [18, 24]. The 
proposed excavation trajectory control method has good 
stability and accuracy in controlling the pressure parameters of 
the hydraulic system and can make the excavator move 
smoothly according to the predetermined track in practical 
applications. 
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Fig. 8. Displacement and pressure control curve of bucket cylinder. 
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Fig. 9. Trajectory control curves for different work environments. 
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To further verify the control effect during bucket excavation, 
the motion trajectory of the bucket during leveling and slope 
operations is tracked. Fig. 9 shows the error result between the 
calculated actual value and the predicted value. In Fig. 9 (a) and 
(b), the trajectory and error curve of the bucket tooth tip indicate 
that the maximum error in horizontal displacement is 44.21mm. 
In Fig. 9 (c) and (d), the maximum error of water diagonal 
displacement during bucket slope operation is 41.41mm. 
Overall, the motion errors are within a reasonable range, and 
the motion curve is smooth, continuous, and without significant 
fluctuations. The proposed method can ensure stable and 
accurate control effects in two different operating environments, 
with errors controlled within a reasonable range, and the results 
have high reliability. 

To further verify the practical application effect of GA-PSO 
in optimizing PID parameters and mining trajectory planning 
systems, three classic algorithms, Adaptive Genetic Algorithm 

(AGA), A* Search Algorithm (A*), and Rapidly-exploring 
Random Tree (RTT), are compared. Fig. 10 shows the results 
of using the convergence accuracy and rate of the algorithm as 
performance evaluation indicators. As the number of iterations 
increases, the convergence accuracy and rate of the proposed 
algorithm are better than the other three compared algorithms. 
In Fig. 10 (a), the proposed algorithm converges to 0.05 after 
50 iterations, while AGA, A*, and RTT algorithms converge to 
similar levels after 80, 91, and 110 iterations, respectively. The 
average convergence rate of the three algorithms is 0.08 lower 
than the proposed algorithm. In Fig. 10 (b), the proposed 
algorithm achieves the highest accuracy of 94%, while AGA 
has the lowest accuracy of only 75%. The accuracy of A * and 
RTT algorithms is at an intermediate level, which is 15.3% and 
17.5% lower than the proposed algorithm. Therefore, the GA-
PSO has the best accuracy and efficiency when applied to 
mining trajectory planning systems. 
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Fig. 10. Comparison of convergence accuracy and efficiency of different algorithms. 
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Fig. 11. Comparison of algorithm path planning length before and after improvement. 
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To test the path planning performance of the research 
algorithm, it is tested under two different load levels and 
compared with the improved algorithm using path length as the 
evaluation index, as exhibited in Fig. 11. Overall, the path 
length of the improved algorithm is shorter. In condition 1 of 
Fig. 11 (a), the longest path of the algorithm before 
improvement is 884m at 30 iterations, which is 46.2% longer 
than the improved algorithm. In condition 2 of Fig. 11 (b), the 
improved algorithm has a maximum path of 962m at 60 
iterations, a decrease of 43.5% compared to before the 
improvement. In two different levels of complexity, the error is 
within 5%, indicating that the improved method has high 
reliability and accuracy. 

V. DISCUSSION 

The proposed ECT-based ICS shows obvious performance 
improvement in the application of large-scale mining 
excavators by combining the PID controller optimized by GA-
PSO technology. The analysis of experimental results 
demonstrates that the enhanced PID feedback control method 
exhibits superior comprehensive performance in search 
performance and convergence speed when compared to 
traditional PID control technology, fuzzy control, and the use 
of GA and PSO in isolation. In the aspect of the anti-
interference ability, the proposed method effectively improves 
the robustness of the excavator in the face of internal and 
external interference through adaptive adjustment of the PID 
controller. This is reflected in the stability of the displacement 
and pressure curve of the hydraulic cylinder. The stability and 
symmetry of the curve show the precise control ability of the 
system in actual operation [20, 21]. In addition, the trajectory 
prediction error is controlled within 5%, which further proves 
the high reliability and adaptability of the system in complex 
mine environments. 

In terms of optimization efficiency, the application of the 
GA-PSO algorithm significantly improves the accuracy and 
speed of parameter optimization. A comparative analysis of the 
algorithms reveals that the proposed algorithm rapidly 
converges to 0.05 after 50 iterations, with an accuracy of 94%, 
which is superior to the other three classical algorithms [11-13]. 
This shows that the GA-PSO algorithm can balance the 
efficiency of global search and local search more effectively 
when dealing with complex trajectory planning problems. 

VI.  CONCLUSION 

Aiming at the intelligent control of large mining equipment 
in complex mine environments, this paper proposes an ICS 
based on ECT. Through the PID controller optimized by 
combining GA and PSO technology, the accuracy, response 
speed, and robustness of the control system are improved. The 
experimental results showed that the control system had good 
stability and accuracy under different working conditions. The 
trajectory prediction error was controlled within 5%, the 
displacement and pressure curves of the hydraulic cylinder 
were stable, and the algorithm converged rapidly after 50 
iterations, with an accuracy of 94%. These results proved the 
effectiveness of the proposed method and provided a practical 
solution for improving the intelligent control performance of 
large mining equipment. 

Nevertheless, the research is not without limitations. In 
particular, the comprehensive control performance of the 
algorithm requires further improvement in a more complex 
actual mine environment. Future research will concentrate on 
enhancing the algorithm's adaptability to more effectively 
address the evolving mine environment. Additionally, more 
efficient optimization strategies will be investigated to 
minimize calculation time and enhance control accuracy. In 
addition, advanced technologies such as DL are considered to 
be integrated into the control system to further improve the 
level of intelligent control. 
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