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Abstract—The exponential growth in video content has 

created a critical need for efficient video summarization 

techniques to enable faster and more accurate information 

retrieval. Video summarization has excellent potential to simplify 

the analysis of large video databases in various application areas 

ranging from surveillance, education, entertainment, and 

research. DSTC-Sum, a novel supervised video summarization 

model, is proposed based on Depthwise Separable Temporal 

Convolutional (DSTC). Leveraging the superior representational 

efficiency of DSTCN, the model addresses computational 

challenges and training inefficiencies encountered in traditional 

recurrent architectures such as Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory (LSTMs). Additionally, 

this approach reduces computational overhead and memory 

usage. DSTC-Sum achieved state-of-the-art performance on two 

commonly used benchmark datasets, TVSum and SumMe, and 

outperformed all previous methods with F-scores by 1.8% and 

3.33%, respectively. To validate the model's generality and 

robustness, the model was further tested on the YouTube and 

Open Video Project (OVP) datasets. The proposed model did 

slightly better on these datasets than several popular techniques, 

with F scores of 60.3 and 58.5, respectively. Finally, these 

findings confirm that this model captures long-term temporal 

dependencies and produces high-quality video summaries across 

all types of videos. 

Keywords—Video summarization; depthwise separable 

temporal convolutional; video processing; deep learning 

I. INTRODUCTION 

In recent years, the proliferation of video capture devices 
and their declining costs have led to an unprecedented increase 
in video data volume. There are many kinds of visual data, but 
the video is one of the most significant. It is impossible to 
expect people to be able to see these videos and extract 
relevant information from them due to the vast amount of data 
included inside them. According to the Cisco Visual 
Networking Index report [1], it will take a human more than 5 
million years to watch all the movies published on the Internet 
each month by 2022. Because of this, developing computer 
vision systems that effectively browse vast amounts of video 
data is becoming an increasingly important goal. Video 
summarizing has emerged as a potential technique that may 
assist viewers in dealing with the massive amount of data in the 
video. 

When given an original video as input, video summarizing 
produces a more condensed version that still contains all the 
essential information from the original. Video summarizing has 
numerous potential applications (for example, indexing, 
browsing, and surveillance) [2, 3]. Summary videos may also 
be helpful for various downstream video analysis activities. For 
instance, running other analytic algorithms on shorter videos, 
such as action recognition, can be done more quickly. 

Recent methodologies [4-6] address video summarization 
as a sequence labeling challenge, focusing on identifying and 
extracting key video segments efficiently. The Recurrent 
Neural Networks (RNNs) with Long Short-Term Memory 
(LSTM) have been modified as an RNN variant to address this 
issue [7]. The LSTM model has a one-to-one correspondence 
between each time step and video frame. The LSTM model 
generates an output binary value at each time step, which 
indicates whether this frame was chosen for inclusion in the 
summary video. The LSTM methodology has the advantage of 
recording the long-range structural connections between 
frames. However, some limitations are embedded into these 
LSTM-based models. In LSTM, the computation typically 
proceeds from left to right. It indicates that the model can only 
perform one frame at a time, with each frame having to wait 
until the processing of the frame has been completed before it 
can begin. Even if there is bi-directional LSTM (Bi-LSTM) 
[8], the computation still has the same issue when using Bi-
LSTM in either manner. Because of the sequential nature of the 
LSTM computation, it is impossible to readily parallelize it to 
make the most of the GPU resources. As temporal classifiers, 
sequence-based architectures such as RNN and LSTM are 
computationally costly, memory-heavy, and challenging to 
train. Temporal Convolutional Networks (TCNs) [9, 10] have 
recently demonstrated promising performance in video 
summarizing tasks. 

In this work, to solve the abovementioned challenges, the 
DSTC-Sum model was designed based on the Depthwise 
Separable Temporal Convolutional Network (DSTCN), which 
efficiently extracts long-term temporal dependencies and local 
features. Unlike RNN-based models, which are 
computationally inefficient, sequential in nature, and reliant on 
domain-specific annotations, TCNs allow the addition of new 
layers while being computationally less expensive, quicker to 
train, and lightweight [11]. This makes traditional methods like 
RNNs and LSTMs unsuitable for large-scale datasets and 
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longer videos. The DSTC-Sum model leverages Depthwise 
Separable Convolutions (DSC) to improve feature 
representation while requiring low computation and memory 
[12]. Its scalable and dataset-agnostic design ensures efficient 
extraction of temporal dependencies and enhances 
generalizability across diverse video datasets. The benefits of 
DSTCN include the use of large kernels to capture long-range 
relationships while limiting the number of overall parameters, 
resulting in compact models. Additionally, large adjacent 
kernels effectively extract both global and local temporal 
features. By enabling simultaneous analysis of all video frames 
through GPU parallelization, DSTC-Sum addresses the 
challenges of computational inefficiency, scalability, and poor 
temporal modeling, achieving superior performance compared 
to current video summarization techniques. 

We conducted comprehensive evaluations on two 
benchmark datasets, TVSum and SumMe. In the standard-
supervised setting, the DSTC-Sum model achieved an F-score 
of 48.7%, which increased to 52.8% with data augmentation. 
On the TVSum dataset, the model attained an F-score of 61.2% 
in the standard setting, improving to 62.9% with augmentation. 
These results demonstrate the superior performance of the 
DSTC-Sum model compared to state-of-the-art techniques, 
with notable improvements of 1.8% and 3.33% on the two 
datasets, respectively. This highlights the model’s enhanced 
ability to accurately predict the importance of video segments 
and generate high-quality summaries. The DSTC-Sum model's 
effective capture of temporal dependencies and key factors sets 
it apart, underscoring its potential for broader video 
summarization applications. To further evaluate the model's 
generalizability and robustness, we extended our experiments 
to two additional datasets: YouTube and the OVP. The model 
demonstrated superior performance on these datasets, 
achieving F-scores of 60.3% and 58.5%, respectively, 
outperforming several state-of-the-art techniques. These results 
underscore the model’s effectiveness in capturing long-term 
temporal dependencies and generating high-quality summaries 
across various video genres. 

The paper is organized as follows: Section II briefly 
discusses related studies on deep learning-based video 
summarizing approaches. Section III introduces our suggested 
DSTC-Sum model. Section IV discusses the model 
implementation and experimental findings. Lastly, the paper's 
conclusion is presented in Section V. 

II. RELATED WORK 

Video summarization presents the challenge of selecting 
the most relevant segments of a video for inclusion in the 
summary and accurately identifying and extracting those 
segments from the entire video. This process requires a 
comprehensive understanding of the video content to ensure 
the summary represents the original video's essential aspects. 
In the early stage of video summarizing research, most 
approaches focus on a particular category of videos. For 
instance, the significance of a specific occurrence during a 
video segment of a show airing a sporting event can be easily 
determined by referring to the regulations governing that sport. 
[13]. In addition, certain sports games, such as baseball and 
American football, have a specific structure that makes 

extracting crucial segments of the game's action easier. 
Similarly, characters who feature in movies can also be domain 
knowledge [14]. In these areas, video summaries can be 
generated with the assistance of many kinds of metadata [15, 
16]. Videos focusing on the creator alone are another 
fascinating example of video domains. A video summarization 
approach has been proposed using specific domain knowledge 
that can be considered a set of predetermined objects [17]. This 
approach aims to summarize videos in a manner that considers 
the domain's specifics. Newer methods in this general area use 
supervised learning techniques to incorporate domain 
knowledge. For instance, [18] offered to summarize a video 
with the primary focus on a particular event and use an event 
classifier's confidence score to measure a video segment's 
significance. However, due to the heavy reliance that such 
methods have on specific industry expertise, it is nearly 
impossible to generalize them to other types of writing. 

When given an original video as input, the video 
summarizing goal is to produce a condensed version 
highlighting the most vital information from the original. There 
have been many other ways that this issue has been 
represented, such as in a video overview [19], time-lapses [20-
22], montage [23, 24], and storyboards [25-29]. Our work is 
most closely associated with storyboards, consisting of a 
selection of a few typical frames of video that outline important 
events throughout an entire film. Storyboard-based 
summarization can produce two different kinds of outputs: 
keyframes [30], in which specific isolated frames are selected 
for forming the summary of the video, as well as key shots [31, 
32], a method for generating a resume that considers a series of 
successive correlated frames contained within a temporal slot. 
Both types of outputs are referred to as keyframes. 

Initial efforts in a video summarizing primarily rely on 
hand-crafted heuristics. Most of these methods do not require 
supervision. They specify a variety of heuristics to reflect the 
significance of the frames' representativeness [33-39], and they 
utilize the significance scores to select representative frames to 
form the video summary. Recent research has investigated 
supervised learning methodologies for video summaries [40-
42]. These methods use video training data and the ground-
truth summaries humans create for those videos. These 
supervised learning algorithms perform better than the early 
work on unsupervised methods because they can acquire 
sophisticated semantic knowledge that humans implicitly use 
to construct summaries. 

Deep learning approaches have recently been popular for 
vision tasks, especially video summarization [43-45]. The 
foundation of LSTM is the theory that it can effectively capture 
long-range dependencies between video frames, which are 
necessary for creating insightful summaries. Zhang et al. [32] 
model the variable range dependency with two LSTMs and 
consider the video summarizing assignment of a problem of 
structured prediction based on data that can be sequential. Two 
Long Short-Term Memory (LSTM) networks are employed to 
analyze video sequences comprehensively. One LSTM is 
dedicated to processing the sequences in the forward direction, 
capturing the temporal dynamics as they unfold 
chronologically. Meanwhile, the other LSTM handles 
sequences in the reverse direction, allowing for a holistic 
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understanding of the video content from both temporal 
perspectives. They incorporate a determinantal point process 
model to improve further the subset selection's diversity [9, 
46]. Mahasseni and colleagues present an unsupervised 
generative adversarial system consisting of the discriminator 
and summarizer [6]. The summarizer, an LSTM variational 
autoencoder, selects frames from the video and decodes the 
output to reconstruct the video. The discriminator is another 
LSTM network that gains the ability to distinguish between 
candidates by differentiating between the input video and its 
reconstruction. It accomplishes this by examining the 
variations between the two. They also incorporate a keyframe 
regularization into their algorithm, expanding it to supervise 
learning. 

Despite significant advancements in video summarization, 
several gaps still need to be discovered in existing studies that 
necessitate further investigation. Prior approaches, such as 
those based on Recurrent Neural Networks (RNNs) and their 
variants like Long Short-Term Memory (LSTM) networks and 
Gated Recurrent Units (GRUs), have proven effective in 
capturing temporal dependencies but are hindered by high 
computational costs, memory intensiveness, and sequential 
processing limitations, making them less scalable for larger 
datasets or longer video sequences. Additionally, evaluations in 
previous research are often confined to limited datasets, such as 
TVSum and SumMe, which do not adequately represent the 
diversity of real-world video content. The reliance on domain-
specific annotations and handcrafted features further restricts 
the generalizability of these methods. While Temporal 
Convolutional Networks (TCNs) offer an alternative by 
addressing some of these limitations, there remains a need for 
lightweight, scalable architectures that combine computational 
efficiency with robust temporal modeling capabilities. This 
study addresses these gaps by proposing DSTC-Sum, a novel 
video summarization model based on Depthwise Separable 
Temporal Convolutions, which enhances efficiency and 
scalability, demonstrates generalizability across diverse 
datasets, and outperforms state-of-the-art methods in terms of 
F-scores and computational performance, thereby contributing 
to the advancement of efficient and robust video 
summarization techniques. 

III. THE PROPOSED APPROACH 

This section introduces the DSTC-Sum model to 
summarize the input videos. Fig. 1 depicts the structured steps 
of the DSTC-Sum. First, the feature descriptors are generated 
from the input video frames using VGG16 [47]. Then, these 
feature vectors are fed into a series of Depthwise Separable 
Temporal Convolutional Blocks (DSTCB) that predict a score 
for each frame. Suppose that X represents a feature vector as 
𝑋 1:𝑛 = {𝑓1, 𝑓2, 𝑓3, . . . ,  𝑓𝑛}.  The model goal is to assign a 
corresponding score for each frame 𝑌 1:𝑛 =
{𝑦1, 𝑦2, 𝑦3, . . . ,  𝑦𝑛}, where n is the frame number, which varies 
depending on the video. 

In the following subsections, we will describe the baseline 
model VGG16 and then explain the DSTCB, which is built 
using residual depthwise dilated blocks. 

 
Fig. 1. The detailed structure of the DSTC-Sum. 

A. Feature Extraction using VGG16 

We start by feeding an input video into a feature extractor. 
The feature extractor module comprises the pre-trained first ten 
convolution layers of the VGG16 [47]. Because of its high 
generalization capabilities, the VGG16 is commonly employed 
as a feature extractor for many deep-learning models. We 
applied VGG16 to extract the basic features for the suggested 
model. 

B. Depthwise Separable Temporal Convolutional Blocks 

(DSTCB) 

Temporal convolutional network (TCN) is a CNN variant 
utilized in sequencing-based tasks and has recently 
outperformed alternative recurrent models like LSTM and 
gated recurrent units (GRUs) [48]. TCN enables temporal solid 
information extraction from sequential data [49]. TCNs aim to 
encapsulate temporal relationships with a broader receptive 
field. To capture large receptive fields, either a) dilations on 
consecutive TCN layers or b) big standard neighboring kernels 
are used. Dilated convolutions on consecutive layers help 
capture a broad temporal representation while reducing the 
number of training parameters. However, when additional 
layers are added, the kernels become increasingly sparse, 
resulting in the gridding artifacts issue. 
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When the dilation parameter increases at higher levels, the 
input data sample becomes increasingly sparse (Gridding 
Artifacts issue). As a result, local dependencies between 
neighboring pixels are lost, and the output layer is not 
temporally associated with their input sample. DS-TCN [10] 
proposes techniques for methodical aggregation of convolution 
layers in the following layers with constant or configurable 
dilation rates to address the issue of gridding artifacts. 
Therefore, each DSTCB consists of stacked 'N' depthwise 
dilated 1d temporal convolution layers. 

Fig. 2 depicts the detailed construction of the DSTCB. All 
output levels receive a combined input from the preceding 
layer with various dilation rates. Each output layer is combined 
along a channel dimension to produce the NxC dimension. The 
cross-channel correlation is then estimated using a pointwise 
convolution procedure that decreases the dimensions of the 
channel from N×C to C from the concatenated data. This 
output is normalized using layer normalization [50]. To 
maintain adequate gradient flow, we also employ residual 
connections. Finally, we employ ReLU. 

The DSTCB has various advantages: 

1) Because depthwise convolutions are computationally 

efficient, we may employ huge-size kernels. As a result, we 

may employ lower dilations in conjunction with lengthy 

kernels to capture lengthy temporal features. 

2) Scale information is recorded in each layer with varied 

dilation rates. Multi-scale information is contained in 

concatenated pointwise convolution. As a result, the model 

can tolerate different temporal durations for each event. 

3) Stacking the outputs of all layers aids in data smoothing 

and eliminates the artifact effect caused by gridding. This 

method enables the model to acquire more detailed local 

features. 

4) The receptive field can temporally extend without 

boosting the parameters by adjusting the block's dilation rates. 

 
Fig. 2. The detailed construction of the DSTCB. 

A temporal max-pooling was added after each DSTCB. 
Next, we take the output of DSTCB5, perform a 1x1 
convolution layer and batch normalization, and then combine it 
with the production of deconv1 by element-wise addition. This 
merger is equivalent to the skip-connection in study [9]. Skip 
connections mix coarse and fine feature maps in semantic 
segmentation to acquire richer visual characteristics. This skip 
connector will also be valuable in video summarization, as it 
will aid in the recapture of temporal information needed for 
summary. Then, we do another temporal deconvolution to 
obtain the final representation of length N. The generated 
representation is fed into the temporal regressor network as 
input. Finally, the Regressor generates a collection of frame-
level scores that represent the importance of the frames. 

IV. EXPERIMENTS 

This section provides an overview of the datasets, 
implementation details, and evaluation metrics used to assess 
the DSTC-Sum model. It outlines the training setup, key 
parameters, and performance criteria. The section concludes 
with a presentation and discussion of the DSTC-Sum results, 
highlighting its strengths, limitations, and potential areas for 
improvement. 

A. Evaluation Datasets 

The benchmark datasets for testing and evaluating our 
DSTC-Sum model are SumMe [51] and TVSum [52]. Table I 
shows several features of the target datasets. The SumMe 
benchmark dataset consists of 25 videos in a video benchmark 
dataset that has numerous topics and occurrences (like 
holidays, Sports, etc.). The videos on SumMe can vary 
between 1.5 to 6.5 minutes. The TVSum dataset consists of 50 
videos from the TRECVid Multimedia Event Detection (MED) 
challenge [53]. The videos are divided into different categories, 
e.g., 'saucing up a sandwich,' 'showing dog,' and so on. This 
dataset houses videos that range from one minute to five 
minutes. 

Previous research in [32] suggests that more videos should 
be added to the datasets to minimize the difficulty of training a 
deep neural network with a few manually annotated examples. 
Therefore, we bolster the existing training data by 
incorporating 39 videos from the YouTube dataset [54] in 
addition to 50 videos from the OVP dataset [54, 55]. The 
YouTube dataset includes some videos, including cartoons, 
sports, news, etc. OVP has videos in many different genres, 
such as documentaries. Because the multiple datasets provide 
ground-truth annotations in various formats, we adapt a 
training process that uses summaries based on keyframes to 
construct a unified set of ground truths for each video included 
in the datasets, as in study [32, 56]. 

TABLE I. OVERVIEW OF THE TARGET DATASETS 

Datasets Videos Annotations Duration (Min) 

TVSum 50 20 2-10 

SumMe 25 15-18 1-6 

YouTube 39 5 1-10 

OVP 50 5 1-4 
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B. Implementation and Training Details 

The model is implemented using PyTorch, with the number 
of DSTCB blocks set to ten. Each DSTCB block consists of 
four depthwise one-dimensional temporal convolution layers, 
where the dilation parameter is doubled in each layer. We 
adopt the hyperparameters used in MS-TCN [12] to ensure a 
fair comparison with other methods. The Adam optimizer is 
employed with a learning rate of 0.0005. The parameters for 
the smoothing loss function are set as follows: smoothing 
λ=0.15 and threshold τ=4. 

We downsample the videos uniformly to 2 frames per 
second for feature extraction, as done in [2]. We select 
representative frames from each video to reduce the final 
feature dimension to 320. Training frames are scaled to 
maintain consistent spatial dimensions across all videos. The 
DSTC-Sum model can handle longer videos and videos of 
varying lengths. We use the output from the maxpool5 layer of 
a pre-trained VGG16 model [47] as the feature descriptor for 
each frame, with a feature dimension of 512. Notably, our 
model is flexible and can work with any feature representation. 

During training, we set the batch size to 5, the learning rate 
to 10-3, and the momentum to 0.9. The Stochastic Gradient 
Descent (SGD) optimizer was used to train the DSTC-Sum 
model. 

C. Evaluation Metrics 

We evaluate the DSTC-Sum use of a keyshot-based metric, 
as in [6, 32]. Suppose that 𝑆𝐺  is the ground-truth summary and 
𝑆𝐸  is the extracted summary for video V. We define the 
precision (P) and recall (R) by utilizing the temporal overlap 
between them as in Eq. (1) and (2): 

𝑃 =  
|𝑆𝐸 ∩ 𝑆𝐺|

|𝑆𝐸|
   

𝑅 =  
|𝑆𝐸 ∩ 𝑆𝐺|

|𝑆𝐺|
                                         (2) 

As a final step, the evaluation is carried out utilizing the F-
score, which is calculated in Eq. (3):  

𝐹 =  
2𝑃 × 𝑅

𝑃 + 𝑅
×  100                                    (3) 

D. Performance Analysis and Discussion 

The performance of various summarization techniques on 
the SumMe dataset is outlined in Table II and visualized in Fig. 
3. The proposed DSTC-Sum method significantly outperforms 
other state-of-the-art techniques across almost all parameters. 
Specifically, in the standard-supervised setting, DSTC-Sum 
achieves an F-score of 48.7, higher than the following best 
technique, SUM-FCN, which scores 47.5. DSTC-Sum shows 
an even more substantial improvement in the augmented 
setting, achieving an F-score of 52.8 compared to SUM-FCN's 
51.1. This consistent outperformance highlights the 
effectiveness of DSTC-Sum in summarizing videos within the 
SumMe dataset. 

Similarly, the results on the TVSum dataset, presented in 
Table III and Fig. 4, demonstrate the superior performance of 
the DSTC-Sum approach. DSTC-Sum achieves an F-score of 
61.2 in the standard-supervised setting, edging out with close 
competitors like M-AVS and DHAVS, which scored 61.0 and 

60.8, respectively. The augmented setting further showcases 
the dominance of DSTC-Sum, with an F-score of 62.9, 
significantly higher than M-AVS's 61.8 and SUM-GAN𝑠𝑢𝑝's 
61.2. These results underline the robustness and efficiency of 
DSTC-Sum in producing high-quality video summaries on the 
TVSum dataset. 

TABLE II. SUMMARIZATION PERFORMANCE (F-SCORE) COMPARISON ON 

THE SUMME BENCHMARK DATASET BETWEEN DSTC-SUM AND OTHER 

TECHNIQUES USING DIFFERENT PARAMETERS 

Technique Standard-Supervised Augmented 

DPP-LSTM [5] 38.6 42.9 

SUM-GAN𝑠𝑢𝑝 [6] 41.7 43.6 

Li et al. [57] 43.1 – 

M-AVS [58] 44.4 46.1 

DHAVS [59] 45.6 46.5 

SUM-FCN [9] 47.5 51.1 

DSTC-Sum 48.7 52.8 

 
Fig. 3. Summarization performance (F-score) comparison on the SumMe 

dataset. 

TABLE III. SUMMARIZATION PERFORMANCE (F-SCORE) COMPARISON ON 

THE TVSUM DATASET BETWEEN DEPTHTEMPORAL-SUM AND OTHER 

TECHNIQUES USING DIFFERENT PARAMETERS 

Technique Standard-Supervised Augmented 

DPP-LSTM [5] 54.7 59.6 

SUM-GAN𝑠𝑢𝑝 [6] 56.3 61.2 

Li et al. [57] 52.7 – 

SUM-FCN [9] 56.8 59.2 

M-AVS [58] 61.0 61.8 

DHAVS [59] 60.8 61.2 

DSTCN-Sum 61.2 62.9 
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Fig. 4. Summarization performance (F-score) comparison on the SumMe 

dataset. 

The DSTC-Sum methodology consistently demonstrates 
superior performance in video summarization tasks compared 
to existing state-of-the-art techniques. Its notable effectiveness, 
especially in augmented settings, indicates its high efficiency 
in improving summarization quality, as evidenced by the F-
score metrics. The robust applicability of DSTC-Sum across 
different datasets further suggests its potential for wide 
adoption in video summarization applications. The 
implications of these findings are significant for the field of 
video summarization. By providing a method that consistently 
outperforms existing techniques, DSTC-Sum can enhance 
various applications, from creating more engaging video 
highlights for entertainment to improving the efficiency of 
video data management in professional and educational 
contexts. Moreover, the scalability and adaptability of DSTC-
Sum means it could be integrated into various platforms and 
devices, including mobile applications and cloud-based 
services, thereby broadening its impact. 

E. Extended Experiments 

To further evaluate the effectiveness and generalizability of 
the DSTC-Sum model, we extended our experiments to include 
two additional benchmark datasets: YouTube and OVP (Open 
Video Project). These datasets were chosen due to their diverse 
content types, which pose unique challenges to video 
summarization models. By expanding our experimental scope, 
we aim to demonstrate the robustness of the proposed model 
across a broader range of video genres and characteristics. The 
DSTC-Sum model was fine-tuned on both datasets using the 
same configuration as in prior experiments. Specifically, the 
model architecture consisted of 10 Depthwise Separable 
Temporal Convolutional Blocks (DSTCB), with 4 depthwise 
convolutional layers per block. The Adam optimizer with a 
learning rate of 0.0005 was utilized, and the number of training 
epochs was adjusted based on the dataset size to prevent 
overfitting. 

We applied data augmentation techniques such as random 
cropping and video flipping during training to improve 
generalization. Like the TVSum and SumMe datasets, the 
extracted frame-level features were fed into the model for 
training and evaluation. We benchmarked the model against 
several state-of-the-art video summarization models, including 
SUM-GAN, MS-TCN, and DPP-LSTM. 

Table IV summarizes the YouTube dataset results. The 
proposed DSTC-Sum model achieved an F-score of 60.3%, 
outperforming the following best method, MS-TCN, which 
achieved an F-score of 58.6%. This improvement can be 
attributed to the model's ability to capture both long-term and 
short-term temporal dependencies, which is essential for 
summarizing the diverse content found in YouTube videos. 

TABLE IV. PERFORMANCE COMPARISON OF VIDEO SUMMARIZATION 

METHODS ON THE YOUTUBE DATASET, MEASURED USING F-SCORE, 
PRECISION, AND RECALL 

Technique F-score (%) Precision Recall 

DPP-LSTM [5] 55.2 54.8 55.7 

SUM-GAN𝑠𝑢𝑝 [6] 56.3 55.9 56.8 

SUM-FCN [9] 58.6 57.9 59.2 

DSTC-Sum 60.3 60.1 60.6 

TABLE V. PERFORMANCE COMPARISON OF VIDEO SUMMARIZATION 

METHODS ON THE OVP DATASET, MEASURED USING F-SCORE, PRECISION, 
AND RECALL 

Technique F-score (%) Precision Recall 

DPP-LSTM [5] 52.7 51.9 53.5 

SUM-GAN𝑠𝑢𝑝 [6] 56.3 55.4 57.0 

SUM-FCN [9] 56.1 55.4 56.8 

DSTC-Sum 58.5 58.0 59.0 

Table V presents the results of the OVP dataset. Here, 
DSTC-Sum achieved an F-score of 58.5%, again 
outperforming the compared methods. With its more structured 
content, the OVP dataset benefited from the model's ability to 
capture long-range dependencies without losing important 
local features, a challenge that other models, such as SUM-
GANsup, struggled with. 

As shown in Fig. 5, the experimental results demonstrate 
the effectiveness of the DSTC-Sum model across both 
YouTube and OVP datasets. The model's ability to summarize 
videos of varying lengths and content types significantly 
influenced its performance in the YouTube dataset. The 
diversity in YouTube videos requires a model capable of 
understanding both global and local temporal structures, which 
is one of the key strengths of the DSTC-Sum model. On the 
OVP dataset, the model's performance highlights its ability to 
handle shorter, more structured videos. Compared to the 
baseline models, the improved F-score on this dataset shows 
that DSTC-Sum is particularly effective at summarizing videos 
with well-defined narrative structures, such as documentaries 
and educational videos. 
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Fig. 5. DSTC-Sum model across both YouTube and OVP datasets. 

The results on both YouTube and OVP datasets reinforce 
the generalizability and effectiveness of the DSTC-Sum model 
in video summarization tasks. The model consistently 
outperforms existing methods, demonstrating its ability to 
capture both long-term and short-term temporal dependencies. 
This makes it suitable for videos with diverse content 
(YouTube) and structured narratives (OVP). 

The comparison across all datasets (TVSum, SumMe, 
YouTube, and OVP) indicates that the DSTC-Sum model is 
robust and versatile in different summarization tasks, whether 
the videos are user-generated content (YouTube), educational 
(OVP) or professionally curated datasets (TVSum, SumMe). 
The scalability and low computational cost of DSTCB 
architecture further emphasize its potential for practical 
applications, including real-time video summarization. 

F. Qualitative Results 

In addition to the quantitative evaluations presented in 
previous sections, assessing the DSTC-Sum model's 
performance from a qualitative perspective is essential. This 
section provides a deeper insight into how effectively the 
model captures important segments and generates accurate 
video summaries. We aim to demonstrate the model's ability to 
identify critical video moments by visualizing the extracted 
importance and ground truth scores.  As seen in Fig. 6, we plot 
the extracted importance scores and the ground truth scores for 
two videos from the TVSum dataset to understand better how 
well our DSTC-Sum has learned. The important ratings derived 
from ground truth and the extracted scores generated by the 
suggested DSTC-Sum roughly match. Moreover, the proposed 
technique produces high-quality video summaries as users 
incorporate several factors that our DSTC-Sum considers 
relevant. 

To further understand how effective our DSTC-Sum is, we 
showcase some video summaries that demonstrate its temporal 
modeling capabilities compared to SUM-GAN𝑠𝑢𝑝 and 
DHAVS [57]. Fig. 7 illustrates that colorful bars indicate 
projected video summaries and sky-blue bars indicate ground 
truth scores. The segments selected as summaries by SUM-
GAN𝑠𝑢𝑝, DHAVS, and DSTC-Sum are shown by the yellow, 
green, and red bars, respectively. 

The DSTC-Sum technique produces high-quality video 
summaries by capturing temporal dependencies, allowing it to 
identify the most crucial video segments effectively. 
Comparisons of the summaries generated by DSTC-Sum with 
those produced by SUM-GANsup and DHAVS reveal that 
while other approaches often fail to select the most relevant 
sub-shots, DSTC-Sum consistently identifies key segments 
with higher ground-truth relevance scores. This ability to create 
accurate and relevant video summaries underscores DSTC-
Sum's superiority in video summarization tasks. 

GT-Score 

 

GT-Score 

 

Extracted Score 

 
(a) Video# 4 in TVSum 

Extracted Score 

 
(b) Video# 20 in TVSum 

Fig. 6. Video scores extracted by the proposed DSTC-Sum (bottom) and Ground truth scores (top) for video 4 and video 20 in the TVSum dataset. 
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Fig. 7. Comparison of the extracted summary extraction for video 4 and video 20 in the TVSum dataset. 

V. CONCLUSION 

This study introduces DSTC-Sum, a video summarization 
model leveraging Depthwise Separable Temporal 
Convolutions (DSTC) to capture long-term temporal 
relationships and local features effectively. TCNs, unlike 
RNN-based models, allow for adding more layers while being 
computationally less expensive, faster to train, and lightweight. 
Furthermore, DSTC improves representational efficiency while 
being low-cost in computing and memory. Extensive 
experiments are carried out on two benchmark datasets, 
TVSum and SumMe. The outcomes demonstrate the efficacy 
of our DSTC-Sum model for supervised video summarization. 
Furthermore, the qualitative findings show that our model can 
produce fine-grained summary predictions and better scoring 
for each frame. To further assess the model's generalizability 
and robustness, we extended our experiments to two additional 
datasets: YouTube and the OVP (Open Video Project). On 
both datasets, the proposed model demonstrated superior 
performance, achieving F-scores of 60.3% and 58.5%, 
respectively, surpassing several state-of-the-art techniques. 
These results highlight the model's effectiveness in capturing 

long-term temporal dependencies and generating high-quality 
video summaries across various genres. 

In the future, we plan to enhance the DSTC-Sum 
framework by integrating attention mechanisms to gain richer 
contextual information and improve summarization accuracy. 
Additionally, we will explore its potential in real-time video 
processing and personalized content creation, aiming to extend 
its application scope and solidify its position as a leading 
methodology in video summarization. 
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