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Abstract—The detection and identification of forest smoke 

and fire are critical for forest fire prevention efforts. However, 

current forest smoke and fire target detection algorithms 

confront obstacles such as high memory usage, computational 

costs, and deployment difficulty. Regarding these key issues, this 

paper presents FSFYOLO, a lightweight forest smoke and fire 

detection model based on the YOLOv8s model. To efficiently 

extract key features from forest smoke and fire images while 

reducing computational redundancy, the lightweight network 

EfficientViT is used as the backbone network. A lightweight 

detection head, Partial Convolutional Head (PCHead), is 

designed using the shared parameters idea to greatly minimize 

the amount of parameters and computations by leveraging 

shared convolutional layers and branched processing, thus 

achieving the lightweight design of the model. In the neck 

network, a lightweight feature extraction module, C2f-FL, is 

built to more fully extract local features and surrounding 

contextual information to widen the receptive field. Additionally, 

a Coordinate Attention (CA) mechanism is integrated into both 

the backbone and neck networks to capture cross-channel 

information, directional awareness, as well as position-sensitive 

information, improving the model's capacity to precisely pinpoint 

fire and smoke in forests. The experimental outcomes results on 

our self-constructed forest smoke and fire dataset demonstrate 

that FSFYOLO reduces the number of parameters and 

computation by 47.6% and 60.9%, respectively, compared to the 

original model, while improving precision, recall, and mAP50 by 

1.3%, 1.0%, and 1.0%, respectively. This demonstrates that 

FSFYOLO strikes a good compromise between model 

lightweighting and detection accuracy. 
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I. INTRODUCTION  

Forests are one of Earth's most valuable natural resources. 
They not only provide essential materials and minerals for 
production, but also play a critical role in maintaining 
ecological balance, preventing and mitigating drought, and 
conserving water resources [1], [2], [3]. However, forest fires 
often go undetected until they have spread across vast areas, 
making them difficult or even impossible to control and 
extinguish [4]. Such fires can cause irreversible and 
devastating damage to the environment, including contributing 
to global warming, soil erosion, the extinction of rare species 
of flora and fauna, and impairing the forest's ability to self-
regulate [5], [6]. Moreover, these fires pose significant risks to 
human life, infrastructure, and property [7]. Thus, quickly 
detecting forest fires and accurately identifying smoke areas is 
crucial for enabling firefighting personnel to take timely action, 
controlling the spread of the fire, which helps reduce the 

damage to ecosystems, infrastructure, and loss of life caused by 
forest fires [8]. 

The detection methods for forest fires are divided into 
smoke detection and flame detection [9]. Smoke, as an early 
indicator of fire, appears sooner, covers a larger volume, 
spreads faster, and is more easily detected by the naked eye 
[10], making it a critical clue for early fire detection. Flames, 
on the other hand, are essential for accurately pinpointing the 
fire's location [11], with color and varying shapes serving as 
key visual features that provide valuable information for 
firefighting efforts [12]. Therefore, integrating both smoke and 
fire detection significantly enhances the accuracy of forest fire 
monitoring, helping to protect forest resources and mitigate 
damage [13]. 

As a result of the quick development of computer vision 
technology, digital image processing techniques have been 
extensively used to identify forest fires. For the purpose of 
detection, early digital image processing techniques mainly 
extract the color, shape, and texture properties of smoke and 
flames. Unfortunately, manual feature extraction is heavily 
depended upon by these methods, and susceptibility to 
subjective human factors, as well as environmental 
complexities such as weather and lighting conditions, often 
leads to unsatisfactory detection performance [14]. Recently, 
the advances in deep learning have opened up new approaches 
to identifying forest fires. Deep learning models greatly 
improve the accuracy and robustness of fire detection models 
by providing benefits in terms of accuracy, detection speed, 
deployment flexibility, and adaptability to various fire 
characteristics [15], [16]. 

Despite promising progress in forest smoke and fire 
detection, several challenges remain unresolved. A key issue is 
how to achieve high detection accuracy, particularly in forest 
fire scenarios where the background is complex, interference is 
high, and the morphology of smoke and flames is highly 
variable. Furthermore, designing lightweight models for 
resource-constrained devices, such as edge and mobile devices, 
remains a critical research challenge. Thus, with the goal of 
addressing these concerns, this study proposes a lightweight 
forest smoke and fire detection model (FSFYOLO) built on 
YOLOv8s, which aims to reduce the computational load and 
parameter count through a lightweight design, enhancing 
detection accuracy. This makes it more feasible to deploy on 
resource-constrained devices, such as edge and mobile devices, 
allowing for rapid and accurate detection of smoke and fire in 
the early stages of a forest fire. This facilitates the issuance of 
timely warnings, reduces the time for rescue operations, and 
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minimizes the severe harm and losses caused by the spread of 
fires. 

The main contributions of this paper are as follows: First, 
EfficientViT, a lightweight network, is employed as the 
backbone for YOLOv8s. Second, a new lightweight detection 
head, PCHead, is designed using the concept of shared 
parameters. Third, to fully extract local features and contextual 
information, the neck network is using the lightweight feature 
extraction module C2f-FL. Finally, a coordinate attention 
mechanism is introduced to capture direction-aware and 
position-sensitive information from forest smoke and fire 
images. 

The remaining significant sections of this document are 
listed below: Section II provides a review of related research. 
Section III describes the improved model in this study. Section 
IV summarizes the dataset, experimental setup, parameters, 
and assessment measures that were employed during the 
studies. Section V performs pertinent experiments and 
discusses the findings. Finally, Section VI summarizes the 
entire effort of this study. 

II. RELATED WORKS 

With its strong feature extraction and pattern recognition 
capabilities, deep learning can automatically extract important 
information about forest fires from vast amounts of photos and 
videos. Therefore, deep learning-based recognition techniques 
have been used extensively in forest smoke and fire detection 
missions due to their notable benefits in forest smoke and fire 
recognition in recent years. 

This research in [17] aimed to detect early forest fire smoke 
by improving the deformable DETR model. This approach 
improves detection capabilities for little or unobtrusive smoke 
by incorporating modules like Dense Pyramid Pooling. An 
iterative bounding box combination technique is described for 
producing more exact bounding boxes. In addition, a forest fire 
smoke dataset was created to validate the capability of the 
improved network. However, the improved model still has a 
larger number of parameters. 

In the study [18], based on SqueezeNet, an efficient 
lightweight forest fire detection network was proposed. The 
model integrates Attention Gate (AG) units into the skip 
connections to enhance key features and suppress irrelevant 
information. Standard convolutions are replaced with 
depthwise convolutions, and a channel shuffle operation is 
introduced to optimize feature transmission. Although the 
model achieves good segmentation accuracy for forest fires, it 
may have limitations in broader fire detection tasks. 

This paper in [19] described a methodology for detecting 
forest fires automatically that combines the Atom Search 
Optimizer (ASO) and deep transfer learning. The ResNet50 
model is utilized to generate feature vectors, and the ASO is 
used to optimize the ResNet model's hyperparameters. A quasi-
recurrent neural network model is used for fire categorization, 
with promising recognition and detection results. 

The authors in [20] improved the YOLOv5 model to 
classify and detect forest fires. By incorporating the Weighted 
Bi-directional Feature Pyramid Network (BiFPN) and the 

Convolutional Block Attention Module (CBAM), the model 
enhances its ability to recognize various types of fires in 
complex backgrounds. The bounding box loss function adopts 
SIoU loss and introduces directionality to accelerate model 
convergence, effectively detecting different types of forest fires. 

The research in [21] introduced a multi-task learning model 
for forest fire detection, which includes detection, classification, 
and segmentation tasks. The model includes a diagonal random 
origin swapping data augmentation approach that significantly 
enhances detection performance for small fire targets. When 
compared to single-task models, the upgraded model reduces 
missed and incorrect detections and has better feature 
extraction capabilities. 

This paper in [22] improved the YOLOv8 model by adding 
a large-object detection head and introducing an Efficient 
Multi-Scale Attention (EMA) mechanism to reduce 
background noise and improve the identification of smoke 
targets and large-scale fires. The proposed path aggregation 
network bag structure further improves accuracy in detecting 
fires and smoke with uneven feature distributions and variable 
shapes. The improved model achieves higher detection 
accuracy. 

III. IMPROVED METHODOLOGY 

A. The Forest Smoke and Fire YOLO Model 

YOLOv8 is a high-performance object detection algorithm, 
available in five versions: n, s, m, l, and x, ranging from small 
to large. These versions have the same network structure, with 
differences only in network depth and width. YOLOv8s offers 
notable advantages, including strong feature extraction 
capabilities, high accuracy, compact size, and ease of 
deployment. Therefore, this study uses YOLOv8s as the 
baseline network and proposes a lightweight forest smoke and 
fire detection model, named FSFYOLO (Forest Smoke and 
Fire YOLO). Fig. 1 shows the FSFYOLO network structure. 

 
Fig. 1. Architecture of FSFYOLO. 
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The FSFYOLO network enhances the ability to accurately 
capture smoke and fire features in images while reducing 
computational redundancy by using the lightweight 
EfficientViT as the backbone network. Partial convolution is 
introduced, and a lightweight detection head, PCHead, is 
designed by sharing convolutional layers and branching 
processing, which productively minimizes the count of 
parameters and computational cost. In the neck network, to 
fully extract local features of smoke and fire as well as the 
surrounding contextual information, the LCFE block is 
proposed. This block is combined with the FasterNet Block 
and then integrated into the C2f module to form the lightweight 
feature extraction module C2f-FL, which expands the receptive 
field and lowers computational complexity. The coordinate 
attention, which extracts location sensitivity, directional 
awareness, and cross-channel information from fire and smoke 
images, is included into the backbone and neck networks. This 
mechanism filters out superfluous features in forest smoke and 
fire images, suppressing the impact of unrelated background 
information. 

B. EfficientViT 

The YOLOv8 backbone network, composed of multiple 
convolutional and pooling layers, results in high computational 
and storage costs. Furthermore, it struggles to accurately 
capture both local and global features of smoke and fire when 
processing cross-scale information. To address these issues, 
this study adopts EfficientViT as the backbone network of 
YOLOv8s. EfficientViT [23] is a high-speed vision 

transformer model that strikes a balance between speed and 
accuracy by optimizing memory efficiency and reducing 
attention computation redundancy. The EfficientViT network 
consists of overlapping patch embedding layers, EfficientViT 
blocks, and EfficientViT subsample layers, as shown in Fig. 2. 

The input feature map first passes through the overlapping 
patch embedding layer, which divides the input into 16×16 
patches and transforms them into vector tokens of a specified 
dimension, enabling better learning of the underlying features 
of the feature map. 

The EfficientViT block is the core module of the 
EfficientViT network, with each block consisting of a 
sandwich layout formed by 2N FeedForward Network (FFN) 
layers, a token interaction layer, and Cascaded Group Attention 
(CGA). The token interaction layer, built with depthwise 
convolution (DWConv), is placed before the FFN layers to 
better capture local features in the image, thereby enhancing 
the model's overall performance. Unlike the conventional 
Multi-head Self-Attention Mechanism (MHSA), the CGA 
mechanism first divides the heads before generating Q, K, and 
V, and adds each head's output to the following head's input, 
thus providing each head with different features, improving the 
diversity of the attention maps. The outputs of all heads are 
spliced together and then passed through a linear layer to get 
the final output. Additionally, comparable to group convolution, 
this method lowers computational complexity and parameter 
count by lowering the Q, K, and V layers' input and output 
channels by a factor of 1/G, where G is the number of groups. 

 
Fig. 2. (a) Architecture of EfficientViT; (b) Structure of sandwich layout block; (c) Structure of cascaded group attention. 
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CGA is expressed by the formula: 
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In Eq. (1) and Eq. (2), X̃ij represents the output of Xij after 

being processed by the self-attention mechanism in the j-th 
head. Xij refers to the j-th slice of the input feature map Xi, i.e. 
Xi=[Xi1,Xi2,…,Xih] , , where 1<j≤h  and h represent the total 

number of attention heads. Wij
Q
,Wij

K,Wij
V  denotes the weight 

matrix, and Wi
P represents the linear layer. 

In Eq. (3), Xij
'  represents the sum of Xij, the j-th slice of Xi 

and the output X̃i(j-1)  from the (j-1)-th head, as obtained 

through Eq. (1) and Eq. (2). At this point, Xij
'  replaces Xij as 

the j-th head's original input feature map. 

The EfficientViT subsampling layer downscales the feature 
map. Unlike traditional Transformer models, EfficientViT uses 
an inverted residual block in the subsample block instead of a 
self-attention layer, reducing potential information loss during 
downsampling. 

C. The Lightweight Design of the Detection Head 

Both branches of the YOLOv8 detecting head start with 
two 3×3 convolution modules, then a Conv2d module. Finally, 
they calculate the Cls and Bbox losses individually. Fig. 3 
shows the specific structure of the YOLOv8 detection head. 

 
Fig. 3. YOLOv8 detection head structure. 

To detect smoke and fire targets at different scales, the 
YOLOv8 detection head requires more convolution operations 
to process multi-scale feature maps, which increases the depth 
and number of parameters in the network. We adopt Partial 
Convolution (PConv) from the FasterNet Block [24] to modify 
the lightweight design of the YOLOv8s detection head to 
address these issues. Fig. 4 displays the FasterNet Block and 
PConv network structure diagram. 

 
Fig. 4. Network structure of FasterBlock and PConv. 

Comprising three layers, the FasterNet Block is composed 
of PConv layer, 1×1 convolutional layer, and 1×1 2D 
convolutional layer. PConv selectively applies regular 
convolution to specific input channels to extract spatial features; 
the remaining input channels remain unaltered and are directly 
translated to the output channels, resulting in significant 
computational redundancy reduction. 

The new detection head first shares a PConv layer and a 
1×1 convolutional layer, and then branches into two paths. 
Each path computes the Bbox loss and Cls loss, respectively, 
after passing through a Conv2d module. This new detection 
head is called PCHead (Partial Convolutional Head), and its 
structure is shown in Fig. 5. 

 

Fig. 5. PCHead structure. 

D. C2f-FL Lightweight Feature Extraction Module 

1) Local and Contextual Feature Extraction (LCFE) block: 

Traditional convolution operations confront issues such as 

information loss and a limited receptive field when capturing 

the diverse features of forest smoke and fires in various 

conditions. This hinders the model's ability to effectively 

extract local forest smoke and fire features and the 

corresponding surrounding contextual information, which in 

turn affects the extraction of fire-related features and restricts 

the expansion of the receptive field. In order to overcome this 

limitation, we propose a Local and Contextual Feature 

Extraction (LCFE) block, as illustrated in Fig. 6. The LCFE 

block is designed to efficiently capture local forest smoke and 

fire features while also extracting related contextual 

information, broadening the model's receptive field, and 

improving the network's capacity to identify fire features. 

 
Fig. 6. LCFE block structure. 

The LCFE block integrates information from several 
channels of the input feature map using a 1×1 convolution, thus 
enabling information interaction within the receptive field. The 
feature map is then partitioned evenly along the channel 
dimension into two sub-feature maps with an equal number of 
channels. One sub-feature map uses 3×3 conventional 
convolution to extract local features from eight neighboring 
vectors, while the other uses 3×3 dilated convolution to capture 
contextual information as well as widen the receptive field. 
Subsequently, concatenation of the extracted characteristics 
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occurs along the channel dimension; the local features and 
contextual information are combined using a 1×1 convolution. 
The fused features are then normalized and nonlinearized using 
batch normalization (BN) and the SiLU activation function, 
yielding the final output. Through this design method, the 
LCFE block is able to fully capture the intricate characteristics 
of smoke and fires, improving the model's recognition 
capabilities. 

1 2
, ( ( ))

n
f f Split F X

  (4) 

1 2
( ( ( ( ), ( ))))d

n n mf W F Concat F f F f      (5) 

In this context, X represents the input feature map, Fn 

denotes an n × n convolution operation, and Fm
d  refers to a 

dilated convolution with a dilation rate d and a kernel size of m 
× m. f

1
 and f

2
 are the output feature maps, uniformly divided 

along the channel dimension. W(·) denotes the Batch 
Normalization (BN) and SiLU activation procedures; Concat(·) 
denotes concatenation along the channel dimension; Split(·) 
denotes the operation of splitting the feature map along the 
channel dimension. Ultimately, after being processed by the 
LCFE block, the output feature map f is obtained. 

2) C2f-FL module: In YOLOv8, the C2f module makes 

use of a bottleneck structure made up of many convolutional 

layers, which requires repetitive dimensionality reduction and 

channel expansion of the input feature map. This approach can 

cause information loss while also increasing the model's 

computational complexity and parameter count. To tackle these 

issues, this study introduces the FasterNet Block, which 

reduces the model's parameter load and computational 

complexity while achieving efficient spatial feature extraction. 

Additionally, the LCFE block is incorporated into the forward 

propagation of the FasterNet Block, forming the FL block. This 

FL block serves as the bottleneck module within the C2f 

module of the neck network, resulting in the new lightweight 

feature extraction module, C2f-FL. This improvement reduces 

the parameters and computation required for smoke and flame 

feature extraction, effectively enhancing both target feature 

extraction and overall model efficiency. The structure of the FL 

block and C2f-FL is shown in Fig. 7. 

 
Fig. 7. Structure of FL block and C2f-FL module. 

E. Coordinate Attention (CA) 

Given the complexity of background textures and the 
abundance of irrelevant information in forest smoke and fire 
images, existing attention mechanisms often focus only on 
channel dependencies, neglecting the importance of spatial 
information. This results in significant redundancy in the 
spatial dimension of the extracted feature maps. To address this 
issue, a coordinate attention (CA) [25] mechanism is integrated 
into the network: before the backbone network's SPPF module 
and after the neck network's feature fusion module. This 
approach enhances the extraction of both channel and spatial 
information, effectively filtering out redundant features in 
forest smoke and fire images. Fig. 8 depicts the structure of the 
coordinate attention mechanism. 

 
Fig. 8. Structure of the coordinate attention mechanism. 

Two-dimensional global pooling is broken down by CA 
into two one-dimensional global poolings in separate directions. 
The input feature map is aggregated separately along the 
vertical and horizontal directions, resulting in two independent 
feature maps that are direction-aware and position-sensitive. 
This approach enables the capture of long-range dependencies 
along different spatial dimensions while avoiding the loss of 
spatial details, thus accurately preserving positional 
information from the original image. Subsequently, these 
direction-specific feature maps undergo operations such as 
stacking and normalization to encode attention maps. Finally, 
these attention maps are applied to the input feature maps in a 
complementary manner through elemental multiplication. 

IV. DATASET AND EXPERIMENTAL SETUP 

A. Dataset 

One of the challenges in this study is the absence of a 
publicly available, unified forest fire dataset. To address this, a 
custom dataset containing instances of smoke and fire was 
created. The images in the dataset come from two sources: the 
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first involves collecting forest smoke and fire images and 
videos from the Internet, extracting one frame every 5 frames 
of the videos to create still images; the second source includes 
partial images from the FLAME dataset [26] published by 
Northern Arizona University. The dataset contains a total of 
3,895 images, all manually labeled using LabelImg. It is 
separated into two sets: training and validation, in a 4:1 ratio, 
with 3,116 images for training and 779 for validation. Fig. 9 
depicts sample photos from the collection. 

   

   

Fig. 9. Partial experimental data. 

B. Experimental Environment 

The system used for the experiments in this study runs on 
Windows 11 with 16GB of RAM. The hardware includes a 
13th Gen Intel(R) Core(TM) i7-13700H CPU and an NVIDIA 
GeForce RTX 4060 Laptop GPU. Pycharm was used as the 
software environment, and the PyTorch deep learning 
framework, based on Python, was utilized. The Python version 
used was 3.10. 

C. Hyperparameter Settings 

In this work, all models' hyperparameters are kept 
consistent during training and validation. The experimental 
parameters utilized for network training are listed in Table I: 

TABLE I.  EXPERIMENTAL HYPERPARAMETERS 

Parameter name Configuration 

Size of the input image 640×640 

Optimizer SGD 

Batchsize 16 

Epochs 150 

Momentum 0.937 

Lr0 0.01 

Weight decay 0.0005 

D. Evaluation Criterion 

Precision (P), Recall (R), Mean Average Precision (mAP), 
Giga Floating Point Operations per Second (GFLOPs), number 
of parameters (Params), and model weight file size (in MB) 
were used as assessment measures to analyze the network 
performance in this study. 

Precision refers to the fraction of true positive samples 
among those predicted as positive by the model. It is calculated 
using the following formula: 




TP
P

TP FP    (6) 

Recall evaluates the proportion of true positive samples that 
are correctly predicted among all actual positive samples. Its 
calculation is as follows: 




TP
R

TP FN    (7) 

where TP, FP and FN denote the number of true, false 
positive and false negative cases, respectively. 

AP represents the average precision for a single target 
category. It is calculated using the following formula: 

1

0
  （ ）AP P R dR

  (8) 

mAP is the average of AP values across all categories. It is 
calculated using the following formula: 

1

1


 

n

i
i

mAP AP
n   (9) 

The Intersection over Union (IoU) represents the ratio of 
the intersection area to the union area between the predicted 
bounding box and the ground truth bounding box. By setting 
different IoU thresholds, corresponding mAP values can be 
obtained. In this study, mAP at IoU = 0.5 (mAP50) is adopted 
as the evaluation metric to assess the model's localization and 
classification capabilities for detected objects, providing a 
comprehensive evaluation of its overall detection performance. 

GFLOPs is an indication for determining a model's 
computational complexity; a lower GFLOPs value indicates 
reduced computational cost. The parameter count measures the 
size of the model, and fewer parameters help accelerate the 
training process. The number of bytes in the file created during 
training is referred to as the weight file size for the model, with 
smaller weight files facilitating deployment and operation on 
resource-constrained devices. 

V. RESULTS AND DISCUSSION 

A. Ablation Experiments 

To verify the effectiveness of the proposed detection model 
FSFYOLO in smoke and fire detection tasks, four groups of 
ablation experiments were conducted. Throughout these tests, 
the same dataset and hyperparameters were used to train each 
model, with only the modules under evaluation being changed. 
Table Ⅱ presents the experimental results obtained. 

The ablation experiment outcomes show that incorporating 
EfficientViT as the backbone network for YOLOv8s leads to 
reductions of 24.6% in the number of parameters, 28.2% in 
GFLOPs, and 22.0% in the size of the weight file compared to 
the original network. This proves that EfficientViT effectively 
reduces the model's complexity and computational burden. 
Additionally, by using the PCHead as the detection head, 
which shares convolutional layers and employs branch-based 
processing, the parameters and computational load are further 
reduced on the YOLOv8s-EfficientViT foundation, greatly 
decreasing model complexity. In addition, the network is 
further lightweighted by using the lightweight feature 
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extraction module C2f-FL, resulting in reductions of 16.9% in 
parameters, 17.9% in GFLOPs, and 15.3% in weight file size 
compared to YOLOv8s-EfficientViT-PCHead. The recall and 
mAP50 of the model compare favorably to the original 
network in terms of performance, suggesting that adding the 
C2f-FL module can recognize target items more thoroughly 
and lower the miss detection rate. Lastly, by adding the CA 
mechanism, the model's precision increases by 1%, reducing 

false positives in smoke and fire detection, as it better captures 
directional and positional information from the images. 
Importantly, the inclusion of CA does not significantly increase 
the parameter count or computation load, demonstrating that 
performance improvements are achieved without a notable 
increase in model size. The experimental results confirm that 
the FSFYOLO model proposed achieves superior performance 
in forest smoke and fire image recognition tasks. 

TABLE II.  THE RESULTS OF ABLATION EXPERIMENTS 

YOLOv8s EfficientViT PCHead C2f-FL CA P R mAP50 Params/106 GFLOPs Weight File Size/MB 

+     0.904 0.873 0.923 11.13 28.4 21.4 

+ +    0.896 0.872 0.922 8.39 20.4 16.7 

+ + +   0.906 0.868 0.926 6.86 13.4 13.7 

+ + + +  0.907 0.886 0.931 5.70 11.0 11.6 

+ + + + + 0.917 0.883 0.933 5.83 11.1 11.8 
 

B. Comparative Experiments 

To further validate the effectiveness of the improved 
network in detecting forest smoke and fire, a comparative 
analysis was conducted under the same experimental settings, 
dataset, and training strategies, using other mainstream object 
detection models. These models include SSD [27], YOLOX 
[28], YOLOv5, YOLOv6 [29], YOLOv7 [30], RT-DETR [31], 
the improved YOLOv5s model by Yang et al. [32], and the 
improved YOLOv8s model by Kong et al. [33]. Performance 
indicators such as precision (P), recall (R), mAP50, number of 
parameters, GFLOPs, and model weight file size were used as 
evaluation criteria. Table Ⅲ presents the experimental results 
obtained. 

The experimental results indicate that the SSD, RT-DETR, 
and YOLOv6s detection algorithms have relatively large 
parameter counts and computational costs. These factors result 
in larger model weight files and impose higher demands on 
hardware resources. In contrast, the parameter count of the 
FSFYOLO model is approximately one-fourth that of SSD, 
one-fifth that of RT-DETR, and one-third that of YOLOv6s. 
Therefore, SSD, RT-DETR, and YOLOv6s are deemed 
unsuitable for lightweight, real-time detection of forest smoke 
and fire. The YOLOv5s, YOLOv7, and FSFYOLO models 
include some identical feature extraction modules, such as the 
Conv module, and share similar network architectures. As a 
result, they exhibit only minor differences in parameter count, 
computational complexity, and model weight size. However, 
FSFYOLO achieves significant advantages by optimizing the 
C2f feature extraction module and introducing the CA 
mechanism to enhance feature extraction. Consequently, 
FSFYOLO outperforms YOLOv5s and YOLOv7 in terms of 
accuracy, recall, and mAP50, demonstrating a clear and 
distinct advantage. Although YOLOXs has a computational 
cost close to that of FSFYOLO, its parameter count is 34.8% 
higher, and its weight file is 2.9 times larger, with lower 
precision, recall, and mAP50 compared to FSFYOLO. Yang et 
al. [32] proposed an improved YOLOv5s model by adding 
C3Ghost and Ghost modules, resulting in parameter counts and 
GFLOPs of 3.78 × 10⁶ and 8.3, respectively. However, due to 
the Ghost module only performing standard convolution 

operations on half of the spatial features, the model exhibits 
limitations in capturing detailed features for complex forest fire 
smoke detection tasks. Consequently, its precision, recall, and 
mAP50 do not surpass FSFYOLO. Similarly, Kong et al. [33] 
introduced Efficient Multi-Scale Attention (EMA) and 
GSConv to optimize YOLOv8s, reducing its parameter count, 
GFLOPs, and weight file size, but all performance metrics 
remain lower than those of FSFYOLO. Compared to the 
baseline YOLOv8s, the improved network outperforms the 
original in all key metrics. Based on a comprehensive analysis 
of all evaluation metrics, FSFYOLO offers significantly 
enhanced detection capabilities and is better suited for forest 
fire detection compared to other models. 

C. Visual Analysis 

To better further confirm the FSFYOLO network 
performance in forest smoke and fire detection tasks, we 
conducted a visual analysis utilizing the Gradient-weighted 
Class Activation Mapping (Grad-CAM) [34] approach. Grad-
CAM heatmaps show that deeper colors indicate more 
attention to the respective locations, while lighter colors 
suggest less attention. We chose a few typical photos from the 
experimental validation set to compare the detection 
performance of YOLOv8s with FSFYOLO under various fire 
conditions. Fig. 10 displays the detection results, with (a) and 
(b) containing both fire and smoke, (c) containing only smoke, 
and (d) containing only fire. 

It is evident from the heatmaps that YOLOv8s and 
FSFYOLO are equally adept at identifying and pinpointing 
target locations that are characterized by smoke and fire. But 
the FSFYOLO model has a higher confidence level, focuses 
more accurately on the regions of fire and smoke in the image, 
and focuses on regions very close to the actual smoke and fire 
shapes. Specifically, YOLOv8s may be affected by complex 
background interference present in forest fire images, leading 
to a dispersed focus on target objects. In contrast, FSFYOLO, 
through its lightweight design and optimized feature extraction 
modules, not only suppresses background noise but also 
enhances the precise capture of target features, improving 
accuracy. This again demonstrates the effectiveness of 
FSFYOLO in the task of forest smoke and fire detection. 
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TABLE III.  THE RESULTS OF COMPARATIVE EXPERIMENTS 

Model P R mAP50 Params/106 GFLOPs Weight File Size/MB 

SSD 0.900 0.667 0.848 23.75 136.8 91.1 

YOLOXs 0.905 0.864 0.908 8.94 13.4 34.3 

YOLOv5s 0.899 0.879 0.920 7.03 15.8 13.7 

YOLOv6s 0.898 0.884 0.917 18.50 45.3 38.7 

YOLOv7 0.904 0.870 0.916 6.02 13.2 11.7 

RT-DETR 0.890 0.837 0.901 32.81 108.0 63.0 

Yang et al. [32] 0.898 0.874 0.917 3.78 8.3 7.7 

Kong et al. [33] 0.897 0.879 0.922 8.56 20.9 16.6 

YOLOv8s 0.904 0.873 0.923 11.13 28.4 21.4 

FSFYOLO 0.917 0.883 0.933 5.83 11.1 11.8 
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Fig. 10. Schematic visualization of YOLOv8s and FSFYOLO detection results. 

D. Generalization Verification 

In this experiment, the proposed FSFYOLO model was 
evaluated for generalization performance using the open FM-
VOC Dataset18644 [35], which contains instances of smoke 
and fire. The dataset contains 16,844 photos depicting fires in a 
variety of contexts, including building fires, grassland fires, 
indoor fires, forest fires, and road fires. Experiments were 
conducted to compare the YOLOv8s and FSFYOLO models 
on the FM-VOC Dataset18644. The experimental conditions, 
parameter settings, and evaluation metrics were consistent with 

those used in other experiments in this study. The results are 
shown in Table Ⅳ. 

As Table Ⅳ illustrates, compared to the baseline YOLOv8s 
model, the FSFYOLO model achieved improvements of 1.3%, 
2.3%, and 1.3% in precision, recall, and mAP50, respectively, 
on the FM-VOC Dataset18644. Additionally, the FSFYOLO 
model demonstrated reductions of 47.6%, 60.9%, and 44.9% in 
parameter count, GFLOPs, and model weight size, respectively. 
The experimental results confirm that the FSFYOLO model 
achieves a good balance between detection performance and 
lightweight design, effectively detecting and recognizing fires 
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across different scenarios. Therefore, the FSFYOLO model 
exhibits excellent generalization performance, which will 
broaden the application of target detection in forest fire 
scenarios. 

TABLE IV.  COMPARISON OF EXPERIMENTAL RESULTS ON THE FM-VOC 

DATASET18644 

Evaluation Metrics YOLOv8s FSFYOLO 

P 0.917 0.930 

R 0.872 0.895 

mAP50 0.939 0.952 

Params/106 11.13 5.83 

GFLOPs 28.4 11.1 

Weight File Size/MB 21.4 11.8 

VI. CONCLUSION 

To accomplish precise and timely forest fire detection, we 
present FSFYOLO, a lightweight forest smoke and fire 
detection network based on YOLOv8s. To begin, EfficientViT, 
a lightweight transformer network, serves as the backbone 
network to improve network feature extraction capability. 
Second, a lightweight detection head, PCHead, is designed 
using the shared parameters idea, which decreases the model's 
complexity while preserving detection performance. Third, the 
lightweight feature extraction module C2f-FL is introduced to 
effectively capture local features of forest smoke and fire, as 
well as relevant surrounding contextual information, which 
achieves the dual enhancement of model computation 
efficiency and feature extraction capability. Finally, a 
coordinate attention mechanism is integrated to extract both 
channel and spatial location information, filtering out 
superfluous features in forest fire images. Experimental 
validation shows that the FSFYOLO network achieves higher 
accuracy than other networks, with significantly reduced 
parameter count and computational cost, satisfying real-time 
needs for forest smoke and fire detection. Additionally, the 
FSFYOLO network is easily deployable on resource-
constrained devices, providing an effective method for forest 
fire detection. However, this study still has some limitations. 
For example, the forest fire dataset used in the experiments is 
relatively small, and the range of scene coverage is insufficient. 
Moreover, although the FSFYOLO network decreases the 
number of parameters and computing costs while increasing 
accuracy, there is still room for optimization in the model 
structure and performance. In future work, we will focus on 
expanding the forest fire dataset to cover more complex 
scenarios and exploring more efficient, parameter-reduced 
methods to further enhance the performance and precision of 
forest fire detection models. 
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