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Abstract—Energy management in data centers is currently a 

major challenge and arouses considerable interest. Many data 

center operators are seeking solutions to reduce energy 

consumption. In this work, the problem of resource 

overutilization-defined as the excessive usage of critical server 

resources such as CPU, RAM and storage surpassing their optimal 

capacity-in data centers is addressed, with a particular focus on 

servers. Estimating the energy consumption of servers in data 

centers allows its managers to allocate the necessary resources to 

ensure adequate quality of service. The research involved 

generating workloads performance on various servers, each 

connected to a wattmeter for energy consumption measurement. 

Data on resource utilization rates and server energy consumption 

were stored and analyzed. Machine learning models were then 

used to forecast server energy consumption. Parametric, non-

parametric, and ensemble methods were employed and validated 

using accuracy measurements, non-parametric tests, and model 

complexity to assess the quality of energy consumption prediction 

models. The results demonstrated that certain models could 

provide predictions with a low margin of error and minimal 

complexity like polynomial regression, while other models showed 

lower performance. A comparative analysis is conducted to 

evaluate the performance and limitations of each approach. 
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I. INTRODUCTION 

Data centers are centralized collections where networked 
computers provide computational resources for various 
applications such as web hosting, e-commerce, grid computing, 
cloud computing, and social networks [1]. The computing 
equipment also enables the processing, storage, and analysis of 
data within the data center. A data center is used in the form of 
a cloud computing infrastructure that offers enough storage 
capacity and computing for Internet of Things (IoT) services and 
managing real time massive IoT data generated by numerous 
IoT devices. However, to ensure optimal performance and high 
reliability, it is common for the data center network to be 
oversized, resulting in relatively low utilization of links in real 
life scenarios based on empirical observations [2]. Cooling or 
power interruptions can have significant repercussions on the 
environment of a data center. Since system failures can be 
extremely costly, it is crucial to implement reliability and 
redundancy measures. Redundancy in cooling systems helps 

minimize the risk of failure and improves performance by 
reducing downtime for maintenance and repairs. The primary 
advantage of redundancy is to increase system reliability [3]. 
Energy management is an important process that requires a 
systemic approach by addressing both the energy consumption 
of idle resources and the supporting infrastructure. However, 
truly sustainable operation should not only focus on energy 
management but also include investments in research and 
development of green energies, the utilization of renewable 
energy sources, and active measures to preserve the environment 
[4]. 

The data center infrastructure can be divided into three areas: 
the computer room, the support zone, and accessory spaces. The 
computer room is a space with controlled environmental 
conditions designed to accommodate equipment as well as 
cables directly linked to computer and telecommunications 
systems that generate a significant amount of heat. Additionally, 
Information Technology (IT) equipment is extremely 
susceptible to changes in humidity and temperature, so a data 
center must maintain constrained conditions to ensure the 
reliability and proper functioning of the equipment it contains. 
The support zones are where a variety of systems such as 
Uninterruptible Power Supplies (UPS), cooling control systems, 
and communication panels are situated. Finally, the accessory 
sections primarily consist of offices, a lobby, and restrooms [5]. 

The massive energy consumed by servers in data centers 
poses a major problem that requires strategic research to address 
such as high energy costs, environmental impact, and resource 
overutilization. Estimating server energy consumption is 
essential for efficient energy management, providing the 
necessary power to IT infrastructure, managing data center 
resources, and minimizing costs. The goal is to estimate servers’ 
energy consumption using ML algorithms and build models 
with a low margin of error and weak complexity, which refers 
to the time required for model creation. Three methods, namely 
parametric, non-parametric, and ensemble methods, are 
employed for this purpose. Parametric methods rely on 
assumptions regarding the data's underlying distribution and use 
a fixed number of parameters to describe it. Non-parametric 
techniques do not presume any specific distribution about the 
distribution of data. They are flexible and can handle complex 
relationships without specifying a fixed number of parameters. 
Ensemble methods integrate several models to enhance 
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predictive quality. They aggregate the predictions of several 
base models to produce a more accurate and robust prediction. 
Different models from each method were employed to assess the 
performance of each model and conduct a comparative study 
among them. We mention that the selection of parametric, non-
parametric, and ensemble methods was based on their 
encompassment of techniques commonly utilized in regression 
problems. This study involves the creation of workloads that 
consume server resources and used multiple ML models to 
predict energy consumption using a collected database. A 
comparative study among different models was conducted to 
demonstrate the effectiveness of each model, using accuracy 
metrics, models complexities, and non-parametric tests. 

The primary contributions of this research are detailed 
below: 

 Creation of workloads that vary the resource utilization 
rates of servers in terms of CPU, RAM, and hard drive. 

 Application of parametric, non-parametric, and ensemble 
methods on three heterogeneous servers, to verify the 
capability of ML models to predict the energy 
consumption of different servers. 

 Validation of the ML models through precision 
measurements, non- parametric tests, and complexity. 

The structure of this article is organized as follows: Section 
II presents the related work. Section III discusses the data center 
equipment and system architecture. Section IV reviews 
parametric, non-parametric, and ensemble methods. Section V 
details the data extraction processes, including the data extracted 
for each server, the designed algorithms, a comparison of the 
methods used to create workloads, and a description of the 
experiment. Section VI focuses on the prediction phase, 
applying parametric, non-parametric, and ensemble methods. 
Sections VII and VIII respectively present the results and 
discussion, including a comparison of the three types of methods 
across the three servers. Finally, Section IX is dedicated to the 
conclusion. 

II. RELATED WORK 

In the literature, several authors have worked on energy 
management and consumption in data centers, as well as virtual 
machine (VM) placement on physical machines (PMs). In study 
[7], the authors propose two VM placement algorithms on PMs, 
considering CPU, RAM, memory utilization, and correlation 
values. These algorithms have shown performance in terms of 
energy consumption and service quality improvement compared 
to other methods [8]. The second approach involves optimal VM 
placement on servers using heuristics while considering 
hardware vulnerabilities, server energy consumption, and 
interference collocation among VMs [9]. This method selects an 
optimal approach from options such as dot product, norm2, first 
fit, ω-greedy, ρ-greedy, and η-greedy. Other authors in [10] 
studied the correlation between server resource utilization and 
energy consumption. They applied different workloads on two 
different servers and measured their energy consumption using 
two methods: resources utilization rate obtained from 
performance counters, and from external energy meter device. 
The results showed a strong correlation between CPU utilization 

and energy consumption, and a weaker correlation with RAM 
and disk utilization. This study can help data centers operate 
more energy-efficiently by optimizing resource consumption 
and lowering energy expenditure. 

A power consumption prediction model for servers called 
PCP-2LSTM was proposed in study [11], this model applies a 
moving average smoothing technique to remove noise from the 
power consumption time series data and utilizes two stacked 
Long Short Term Memory (LSTM) networks to predict the 
power consumption for the next 30 seconds. A power 
consumption monitoring system is created to collect data and 
analyze power consumption, while ensuring the stationarity of 
the power series. CPU intensive workloads are used to collect 
power consumption data, and Collectd is used as a measurement 
tool to collect data such as CPU usage, frequency, memory 
usage, etc. The results show that PCP-2LSTM outperforms other 
models such as 2LSTM, LSTM, GBR, RAE, and ARIMA, with 
a normalized Root Mean Squared Error (nRMSE) of 0.417. 
However, it is important to note that the implementation of this 
model is simplified compared to a real data center, where there 
are various types of user requests beyond just CPU utilization. 
Another study proposes a VM selection policy called Maximum 
Correlation of sum of Squares of Deviation (MCSSD) [12]. This 
policy is implemented using the CloudSim tool with a 
heterogeneous server environment consisting of 800 servers. 
Workload traces from the CoMon project [13] are used, and the 
experiment is repeated with each server calculating resource 
utilization every minute. The results demonstrate that the 
proposed policy consumes less energy and minimizes the 
number of VM migrations compared to other policies such as 
Maximum Correlation, Minimum Utilization, and Minimum 
Migration Time. 

Authors in study [14] developed a stochastic model to 
estimate the power consumption based on archived data. They 
consider workload and power as random variables and establish 
a correlation relationship between these two entities using a non-
parametric approach. This makes the task complex as it requires 
estimating the complete distribution from the data. AI 
techniques were used to classify VMs based on their RAM and 
CPU usage [15], as well as to group user tasks based on their 
size and details extracted from the log file. Multiple tasks can 
share the same resources of a VM. The objective is to allow 
more dynamic resource allocation and enhance QoS standards 
by ensuring better resource allocation, raising user satisfaction, 
and lowering the number of rejected tasks. In [16], the authors 
present methods for evaluating and modeling the energy 
consumption of these resources and describe techniques that 
operate at the distributed system level, aiming to better manage 
resource scheduling, distribution, and network traffic 
management. Their research aims to make network and 
computing resources more efficient. A system proposed by [17] 
identifies frequently used data from application traces. 
Replication management and data placement are used to allocate 
frequently used files to "hot" disks and other files to "cold" disks. 
This system adds disk management to the cloud environment, 
which has proven effective in saving 39% of energy with an 
18.26% reduction in execution time. The article also proposes 
an energy efficient storage system for a disk, combining energy 
efficient placement with a smart scheduling algorithm. The 
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system assigns data to a disk based on its data usage model. Data 
replication used in the algorithm ensures fast and easy data 
availability. The system maximizes energy savings by 
associating requests to the most available disks, thereby 
reducing query execution time. It also considers the minimum 
wait time and maximum remaining idle time when research 
disks are active or inactive, respectively. This approach applies 
data replication with the appropriate number of replicas across a 
hybrid system, ensuring the QoS for cloud applications. 

On the subject of triggering queries, researchers in study [18] 
noticed that the frequency of triggering the same query to access 
data is quite high. Therefore, forecasting and preloading often 
accessed queries can elevate performance levels by reducing 
execution time and increasing cache hit rates. Hence, they 
develop a prediction model that first generates memory traces to 
assess data usage patterns related to query frequency. Future 
query requests were predicted and organized using an ensemble 
strategy, resulting in an accuracy of 87.5%. In study [19], the 
authors define Random Allocation as a policy that randomly 
assigns arrived tasks to a queue without considering how many 
tasks are waiting in the queue. This can lead to overflow in one 
queue while others remain empty or partially filled, increasing 
the probability of task loss. Short tasks may wait for a long 
duration in front of large tasks, which the random scheduler does 
not detect. However, implementing this policy is easy and does 
not require knowledge about the system. The Shortest Queue is 
defined as a strategy that overcomes the problem of balanced 
load across queues. Upon task arrival, the policy directs them to 
the queues with the shortest waiting time. This ensures that full 
queues do not appear while others still have available capacity, 
reducing the probability of task loss. However, short tasks may 
be delayed in front of long duration tasks. This strategy only 
considers waiting time and not service demands. The policy 
requires knowledge of the queue states. A notion of Task 
Assignment based on Guessing Size (TAGS) is introduced, 
aiming to allocate tasks when the service demands are not 
known before execution. In this case, a task is sent to a server's 
queue, and the server executes the task in the queue until it is 
completed or the execution time elapses. In the latter case, the 
task is sent to another server, and the same operations are 
repeated, increasing the waiting time as it moves from one server 
to another. Compared to the shortest queue strategy and random 
allocation, TAGS solves the problem of short tasks waiting 
behind long tasks. However, performance may be affected due 
to repetitive service. If the waiting time is very short, multiple 
tasks will require repetitive services, and if it is longer, the 
duration will delay completion. In study [20], the authors define 
reliability, energy consumption, and execution time as the 
principal scheduling parameters for real time embedded 
systems. In their work, while considering three constraints: the 
partial order of task modules, time limitations, and reliability, 
based on a Directed Acyclic Graphs (DAG) and Quantum 
behaved Particle Swarm Optimization (QPSO). When compared 
to alternative algorithms, the findings demonstrate that the two 
proposed algorithms provide effective optimization. These two 
algorithms are DAG_QPSO_I and DAG_QPSO_II. The first 
one demonstrates efficiency in terms of energy consumption, 
while the second one best meets the requirements of time and 
reliability. In this work, workloads have been created and 
launched to consume resources from heterogeneous servers and 

ML methods belonging to different parametric, non-parametric, 
and ensemble methods were implemented. A comparative study 
was conducted between these methods for each server. 
Estimating server energy consumption will enable better 
management of energy consumption in a data center. On the 
other hand, data center managers can adjust resources based on 
server demand, which helps reduce costs. Another objective is 
to optimize energy efficiency by identifying energy consuming 
areas and implementing. In contrast to many other studies that 
use limited or simulated workload data, this work involves the 
construction and deployment of real workloads which make use 
of resources from diverse servers. This method provides a more 
accurate assessment of the energy and servers performance. 
Moreover, comprehensive comparisons and the selection of the 
optimal models for diverse circumstances are made possible by 
the utilization of diverse ML methods. A comparative analysis 
was done for each server independently to make sure the results 
are accurate and applicable to different servers’ configurations. 
This degree of specificity offers useful management insights for 
data centers. 

III. DATA CENTER EQUIPMENT AND SYSTEM 

ARCHITECTURE 

The power distribution systems of the data center are 
intended to provide electricity to the system loads or IT and 
mechanical equipment, ensuring proper levels of power quality 
and supply security. Since the public grid may experience 
voltage drops or prolonged outages that can result in 
malfunction or even a complete shutdown of the data center, it 
is crucial to ensure proper power supply. In a standard data 
center, there is a backup diesel generator or generator set to 
provide power in case of major grid failures. The UPS is capable 
of using different storage solutions like batteries, it is typically 
designed to keep power supply under appropriate conditions 
during the startup of the diesel generator. Power supply units 
(PSUs) and Power distribution units (PDUs) are in charge of 
distributing and regulating power for servers [5]. Fig. 1. 
illustrate the main elements of the data center responsible for 
power supply. It is important to note that generators or batteries 
provide backup power during a power outage. Racked servers 
and critical datacenter infrastructure can smoothly switch to this 
backup power for uninterrupted service. They can support 
primary power during periods of high demand or grid instability. 
They can help to balance the load on the power infrastructure of 
the data center and ensure a stable and reliable supply of power 
to the rack servers. During peak power usage periods, when 
energy demand is high, generators or batteries can supplement 
the power supply to avoid overloading the grid. This helps 
manage peak demand and avoid potential blackouts. They can 
also provide voltage regulation to ensure that the power supplied 
to rack servers remains within acceptable voltage ranges. This 
helps maintain the stability and longevity of server hardware. 
Rack servers, networking equipment, storage devices and other 
critical infrastructure within the data center rely on stable and 
reliable power to function optimally. Generators and batteries 
provide the necessary backup power to support these loads 
during emergencies or planned maintenance activities. In total, 
effective use of generators or batteries in a data center ensures 
reliable power to rack servers, improves energy efficiency, and 
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contributes to the resiliency and sustainability of the data center 
infrastructure. 

 
Fig. 1. Data center elements responsible for the power supply. 

Most traditional data centers, including small and medium 
sized ones, have a power consumption breakdown as illustrated 
in Fig. 2 [6]. It can be observed that IT equipment accounts for 
50% of the total data center power, followed by cooling systems, 
which represent 25% of the total power. Air handling equipment 
utilizes 12%, UPS units consume 10%, while lighting and other 
equipment consume 3% of the power. It is important to 
emphasize that servers, as part of the IT equipment, consume a 
significant fraction of the total power within data centers. This 
observation highlights the need to develop Machine Learning 
(ML) models to predict server energy consumption, enabling 
data center managers to better allocate their resources based on 
users’ needs. The amount of energy consumed by servers 
compared to other components in a data center will vary based 
on factors such as workload type, server efficiency, cooling 
systems, and the data center design. In a conventional data center 
environment, as shown in Fig. 2, servers typically account for 
approximately 50% of total energy consumption. For this 
reason, and due to the limitations in accessing a real data center 
environment, this study focused primarily on servers, other 
elements such as networking equipment and cooling systems are 
not considered. 

 
Fig. 2. Distribution of power consumption in a traditional data center [6]. 

Fig. 3 showcases the architecture of the system developed in 
this work, starting with the creation of workloads and their 
deployment on three servers, and ends with the generation of the 
proposed models. 

 
Fig. 3. System architecture. 

IV. BACKGROUND 

A. Parametric Methods 

Parametric regression techniques are statistical tools 
employed to examine the relationship between a dependent 
variable and multiple independent variables [21]. This 
relationship is expressed through a mathematical equation that 
contains a set of parameters. The objective is to estimate the 
values of these parameters based on the data. Common examples 
of parametric regression models include polynomial regression, 
which is a statistical study that models the variation of a 
dependent variable using a polynomial function of an 
explanatory variable. The mathematical representation of the 
polynomial regression is provided in Eq. (1). Where x is the 
independent variable, y is the dependent variable, 𝑎𝑖; i=1,…, k 
is the coefficient or the parameter. Lasso regression (L1 
regularization) is another method of statistical regression that 
combines linear regression with regularization, aiming to 
eliminate features that do not contribute to the training. Eq. (2) 
illustrates the formula utilized in Lasso regression, where k is the 
number of observations. 𝑦𝑖  is the observed value of the 
observation i. 𝑥𝑖𝑗  is the value of the predictor j for the 

observation i. α𝑗 is the coefficient to be estimated and strictly 

between zero and one. m is the number of predictor variables, 
and γ is the regularized parameter that controls the strength of 
the penalty term. Determining the ideal value of γ, or the value 
that strikes a balance between the model's fidelity and other 
factors is crucial [22]. Elastic Network (L1+L2) is a linear 
combination of L1 and L2 resulting in a regularizer that 
combines the advantages of both L1 (Lasso) and L2 (Ridge) 
regularization techniques, similar to Lasso regression, uses 
regularization to control the complexity of the model by 
selecting the most relevant variables. Many studies have utilized 
the Elastic Network, including the work presented by authors in 
[23], which introduces a novel algorithm for clustering analysis 
based on elastic networks and leveraging weighted properties. 
Also, in study [24] authors propose a novel approach called the 
Elastic Network Algorithm for Clustering based on Cluster 
Center Shift, which combines Mean-Shift with the Elastic 
Network algorithm to optimize both cluster stability and 
effectiveness in the cluster analysis. Lastly, Neural Networks 
(NN) are a type of ML that consists of interconnected neurons 
organized in layers and capable of learning from data by 
adjusting connection weights between neurons. For NN with 
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multiple layers, the output of each layer l can be calculated using 
the output of the previous layer. Eq. (3) outlines the structural 

formulation of NN, where 𝑎(𝑙) is the output of the layer l, σ is 

the activation function, 𝑤(𝑙)  is the weight matrix of layer l, 

𝑎(𝑙−1) is the input to the layer l, and 𝑏(𝑙) is the bias for layer l. 
Lasso regression minimizes the sum of squared errors between 
the actual and predicted values. It works by iteratively reducing 
the coefficients of less important variables towards zero. It 
utilizes a regularization parameter, alpha, which controls the 
strength of the L1 penalty. A larger value of alpha leads to 
coefficients closer to zero. The formulation for Elastic Network 
can be found in Eq. (4), where N is the number of observations, 
y𝑖 is the observed value for the observation i. β𝑘, k=0,.., p is the 
coefficient to be estimated. p is the number of predictor 
variables. λ1 and λ2 are the regularization parameters for L1 and 
L2 penalties. x_i is the value of the predictor variable j for the 
observation i. For each server, 80% of data was used for training 
the model, and the obtained error values were recorded. It should 
be noted that for each server, the models were trained using non-
normalized data. 

𝑦 = 𝑎0 +𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑘𝑥𝑘

L = ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗 .
𝑚

𝑗=1
𝛼𝑗)

2𝑘

𝑖=1
+ 𝛾 ∑ |𝛼𝑗|

𝑚

𝑗=1


𝑎(𝑙) = 𝜎(𝑤(𝑙)𝑎(𝑙−1) + 𝑏(𝑙))

𝑚𝑖𝑛𝛽0,𝛽 (∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖
𝑇𝛽)𝑁

𝑖=1
2

+ 𝜆1 ∑ |𝛽𝑗|
𝑝
𝑗=1 + 𝜆2 ∑ 𝛽𝑗
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B. Non-parametric Methods 

Non-parametric methods apply statistical analysis to 
investigate the connection between a dependent variable and 
multiple independent variables without making specific 
assumptions about the functional form or equation that describes 
the relationship [25]. These methods estimate the relationship 
based on the data itself. Common examples of non-parametric 
regression models include Support Vector Regression (SVR), 
which is a supervised learning method based on support vectors 
that model the data and find a hyperplane that separates the data 
by minimizing the squared error. It is useful for complex 
regression problems where the data has nonlinear relationships. 
The formula for SVR is presented in Eq. (5). Where ω is the 
weight vector or coefficients associated with the input features 
x. This vector determines the importance of each feature in the 
prediction. x is the input feature, and b is the bias term. Decision 
trees are ML algorithms used for classification and regression 
problems. They model the relationships between input variables 
and output variables using a graphical representation with 
connected nodes. The algorithm selects the most informative 
variable to split the data into categories, and the process is 
repeated until a stopping condition is met. Random forests are 
an ensemble of decision trees constructed randomly based on the 
training data. The prediction for an observation is based on the 
average or majority value of the individual predictions from the 
trees. Gaussian Process Regression (GPR) is a probabilistic 
approach based on the concept of a Gaussian process, which is 
a collection of random variables that have a joint Gaussian 
distribution for any finite number of variables. This model can 
capture complex and nonlinear relationships between variables 
without assuming a specific functional form of the relationship. 

𝑦 = 𝑓(𝑥) = ⟨𝜔, 𝑥⟩ + 𝑏;  𝜔, 𝑥 ∈  ℝ𝑀, 𝑏 ∈  ℝ(5) 

C. Ensemble Methods 

Ensemble methods refer to a class of ML models that blend 
several models to increase the system’s predictive effectiveness 
[26]. These models can be of the same type (homogeneous) or 
different types (heterogeneous). The idea behind ensemble 
methods is to reduce the variance and bias of individual models 
by combining their outputs. This is achieved through different 
strategies, such as bagging, which is based on an ensemble 
estimator using base regressors trained on random subsets of the 
dataset and merges their predictions, either via voting or 
averaging, to generate the final output. Bagging involves 
creating multiple versions of the same model on different 
subsets of the data and combining their outputs by averaging or 
voting. Eq. (6) illustrates the formula utilized in Bagging. Where 
𝑓𝑏𝑎𝑔𝑔𝑖𝑛𝑔(𝑥) is the aggregated prediction for the input x. N is the 

total number of base learners, and 𝑓𝑖(𝑥) is the prediction of the 
base learner i. Boosting is a ML method that involves creating a 
series of models aimed at reducing errors in predictive data 
analysis. Each subsequent model learns from the errors of the 
previous one. Boosting addresses the problem of biased models 
when using new data by successively training multiple models 
to improve the overall system accuracy. Data scientists often use 
boosting with decision tree algorithms [27]. Boosting combines 
multiple models sequentially and assigns weights to the outputs 
of individual models, giving higher weight and input to the next 
model for incorrect predictions from the previous model. 
Stacking is an ensemble method that reduces the error rate of 
one or multiple estimators during prediction. It works by 
stacking the outputs of each individual estimator and using a 
regressor to compute the final prediction. This method allows 
leveraging the strengths of each estimator by using their outputs 
as input to a final estimator. It is important to mention that the 
base estimators are fitted on the dataset, while the final estimator 
is trained using the cross-validation predictions of the base 
estimators. Stacking incorporates boosting and aggregation, 
which combines the outputs of models and achieves high 
accuracy and low variance. The formula of Stacking can be 
found in Eq. (7). Where 𝑓𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔 (𝑥) is the final prediction of 

the stacking ensemble for input x, and 𝑓𝑘 (𝑥), k=1,…, N is the 
predictions of base learners. Meta_learner is the meta learner 
that combines the predictions. Typically, the number of 
estimators used in this method ranges from three to five. In this 
work, parametric and non-parametric models were used and 
developed earlier while keeping the same chosen configurations. 

𝑓𝑏𝑎𝑔𝑔𝑖𝑛𝑔(𝑥) =
1

𝑁
∑ 𝑓𝑖(𝑥)

𝑁

𝑖=1
(6) 

𝑓𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔(𝑥) =  𝑀𝑒𝑡𝑎_𝑙𝑒𝑎𝑟𝑛𝑒𝑟(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑁(𝑥))(7) 

V. DATA EXTRACTION 

In this experiment, workloads that consume CPU, RAM, and 
hard disk resources of three servers were created and executed, 
each one is connected to a wattmeter that accurately measures 
the server's energy consumption with a precision of one mwh. 
The number of data points used for server one, server two and 
server three is 897, 945, and 951, respectively. Each data 
element represents the median value of resources utilization for 
the server over a period of one hour. In other words, workloads 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

882 | P a g e  

www.ijacsa.thesai.org 

that varied the usage of CPU, RAM, and/or hard disk were 
executed for one hour and recorded the server's state during that 
execution. If the resource utilization varies frequently, the 
configuration is discarded; otherwise, it is kept. For the three 
servers, each data point (vector representing a workload) 
includes CPU values ranging from 10% to 100%, RAM values 
ranging from 10% to 90%, and disk usage ranging from zero GB 
to the maximum storage capacity of each server. The servers 
used in this study are documented in Fig. 4, which illustrates the 
work conducted at the LUSAC laboratory of the University of 
Caen Normandy in France. 

 

Fig. 4. Servers used in the experimentation conducted at LUSAC laboratory. 

In the following, the algorithms used to generate workloads 
that consume CPU, RAM, and disk resources of the servers are 
presented. For the implementation of those algorithms, the 
Python programming language was utilized, and every 
algorithm was launched in every server. After creating and 
executing the workloads, the energy consumption of the servers 
is measured. Then, on a computer, models belonging to different 
categories: parametric, non-parametric and ensemble, were built 
with the aim of predicting the energy consumption of the 
servers. It is mentioned that the results obtained come from a 
computer and not from a simulator. Also, the duration is the 
same in the three algorithms. For the first algorithm, OCCT was 
utilized to generate workloads that would stress the CPU of the 
server. In the second algorithm, programs such as Google 
Chrome were launched continuously to consume the RAM of 
the server, the memory usage is measured after executing those 
programs. In the third algorithm, files were created and 
duplicated on the hard drive to write data on it. After each 
execution, the files created to run the algorithm with different 
parameters were deleted (number of bytes to write). It is noted 
that various input data values are employed for writing 
operations on the hard drive. This approach aimed to create 
workloads that would write on the server's hard drive with 
continuous writing operations. Initially, the process was initiated 
by writing at a rate of 100 bytes per second for a duration of one 
hour. Subsequently, the byte values were incrementally 
increased in the following simulations. 

Algorithm1: Workload_CPU 

Input: nbr_process, duration 
Output: cpu_rate, ram_rate, hard_drive_rate, energy_consumption 
Start 
 For var p in [1: nbr_process]: 

 Create_process() 

 Launch_process() 
 End for 

 While time < duration: 

 Save (cpu_rate, ram_rate, hard_drive_rate, 
energy_consumption) 

 If time == duration: 

 For var p in [1: nbr_process] 

 destroy_process () 

 End for 

 End if 

 End while 

End 
 

Algorithm2 Workload_RAM 

Input: nbr_process, duration 
Output: cpu_rate, ram_rate, hard_drive_rate, energy_consumption 
Start 
 For var p in [1: nbr_process]: 

 Launch_program() 
 End for 

 While time < duration: 

 Save (cpu_rate, ram_rate, hard_drive_rate, 
energy_consumption) 

 If time == duration: 

 For var p in [1: nbr_process] 

 Destroy_process () 

 End For 

 Break 
 End If 

 End While 

End 
 

Algorithm3: Workload_hard_drive 

Input: nbr_bytes, duration 
Output: cpu_rate, ram_rate, hard_drive_rate, energy_consumption 
Start 
 While time < duration: 
 write_bytes() 
 Save (cpu_rate, ram_rate, hard_drive_rate, 

energy_consumption) 
 If time == duration: 
 Break 
 End if 
 End while 
End 

The characteristics of each server are presented in Table I. It 
should be noted that the selection of servers is based on their 
availability in the research laboratory where this study is 
conducted. 

TABLE I.  SERVERS CHARACTERISTICS 

Server one Server two Server three 

processor Intel(R) 

Xeon(R) CPU W3565 

@ 3.20 GHz, RAM 16 
Go, Disk SATA SSD 

256Go, NVIDIA 

Quadro 400, os 
Windows 10 

Intel(R) Core (TM) i5-
10500 CPU @ 

3.10GHz, RAM 8GB, 

Disk 512GB, and OS 
windows server 2022 

Standard version os. 

Processor Intel (R) 

core (TM) i3 CPU 

540 @ 3.07 GHz, 
RAM 4 Go, disk 120 

Go SSD, Intel(R) HD 

Graphics, os 
Windows 10. 
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VI. PREDICTION PHASE 

A. Application of Parametric, Non-parametric, and Ensemble 

Methods on Servers 

We applied parametric methods to analyze the behavior of 
three servers. Starting with server one, according to Fig. 5, Fig. 
6 and Fig. 7 which show the error rate, the p-value, and the 
models’ complexity respectively, It is observed that some 
models, such as NN, have high complexity, followed by 
Bagging_GPR. In terms of MSE, Lasso regression, elastic 
network, GPR, and other models exhibit high values around six 
wh. Table II presents the error rates, the p-values of non-
parametric tests Wilcoxon rank sum and the complexity of each 
method. The results show that the polynomial regression of 
degree two performs the best with a low MSE of 0.71 wh. 
Followed by NN, which consists of two layers with 64 neurons 
each, using the Adam optimizer and trained with 2600 epochs. 
It achieves a high R² of one and low errors, indicating that this 
model can accurately predict the server's energy consumption. 
Lasso regression and Elastic Network have similar R² values, 
with a coefficient alpha of 0.69 for Lasso regression, an alpha 
and L1 coefficients of 0.34 and 0.9, respectively, for Elastic 
Network. The MSE of both methods exceeds five wh, indicating 
that these two models struggle to explain the variation in the 
data. The p-value of the models is relatively similar for all three 
models, suggesting no significant difference in their 
performance. For each model used, different parameters were 
tested, and those that yielded the best results were selected. It is 
interesting to note that the polynomial regression, Lasso 
regression, and Elastic Network models have negligible 
predictions and construction times. However, NN stands out 
with a construction time of 283 seconds, primarily due to the 
high number of epochs used and the complexity of its structure. 

Concerning the second server, as shown in Table III, the 
polynomial regression of degree two had the least bias, with a 
MSE rate of 0.04 wh and a p-value of 0.98. Followed by NN 
model, configured with 2600 epochs, a sigmoid activation 
function for the first and the second layers, 128 neurons, and the 
Root Mean Squared Propagation (rmsprop) optimizer. The best 
result for Elastic Network was achieved with an alpha of 0.01 
and an L1 of 0.01, resulting in a MSE rate of 0.07 wh. As for the 
Lasso regression model, it is observed that the error rate 
increases with the increase in the alpha coefficient. The best 
performance was obtained with an alpha of 0.01, resulting in a 
MSE of 0.08 wh. Overall, the results indicate that the parametric 
methods generally perform well in predicting the energy 
consumption for this server. Indicating a high probability that 
the real and predicted vectors are significantly similar. It is 
observed that polynomial regression, Lasso regression, and 
Elastic Network stand out for their reduced model construction 
time and negligible prediction time. On the other hand, NN 

model requires a longer construction time, reaching up to 110.9 
s. However, it achieves a fast prediction rate of 0.1 s. 

 
Fig. 5. MSE of server one's models. 

 
Fig. 6. P-value of server one's models. 

 

Fig. 7. Complexity of server one's models. 

TABLE II.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF PARAMETRIC METHODS OF SERVER ONE 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon 

rank-sum test 

Model construction 

time [s] 

Prediction 

time [s] 

Polynomial Regression 1.0 0.71 0.57 0.84 0.45 0.812 0.0091 0.0 

Lasso Regression 0.99 5.69 1.81 2.39 1.39 0.62 0.0007 0.0 

Elastic Network 0.99 5.69 1.82 2.39 1.41 0.63 0.0022 0.0010 

Neural Network 1.0 2.02 0.62 1.42 0.50 0.63 283.4409 0.1547 
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TABLE III.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF PARAMETRIC METHODS OF SERVER TWO 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon 

rank-sum test 

Model construction 

time [s] 

Prediction 

time [s] 

Polynomial Regression 0.99 0.04 0.16 0.2 0.87 0.98 0.0019 0.0 

Lasso Regression 0.98 0.08 0.21 0.28 1.14 0.42 0.0019 0.0005 

Elastic Network 0.98 0.07 0.21 0.26 1.12 0.49 0.0020 0.0 

Neural Network 0.99 0.05 0.12 0.22 0.66 0.48 110.9219 0.1096 
 

On server three, the polynomial regression model of degree 
two was employed, Lasso regression with an alpha of 0.01, 
Elastic Network with an alpha of 0.01 and an L1 of 0.01. The 
NN is configured with a number of epochs of 2600, two layers 
of 128 neurons each, using the hyperbolic tangent activation 
function 'tanh'. We used the Stochastic Gradient Descent 
optimizer 'sgd' for the NN. Table IV indicates that NN turned 
out to be the least biased model, with a MSE of 0.07 wh, 
followed by polynomial regression with a MSE of 0.09 wh. 
Lasso regression and Elastic Network produced similar 
prediction values, with a MSE of 1.24 wh and 1.23 wh, 
respectively. Like servers one and two, all the parametric models 
are characterized by their low complexity in terms of model 
construction and prediction. Except NN model that requires 
108.34 s for model construction. 

Proceeding with non-parametric methods, models were used 
to evaluate the performance of the servers. For the first one, the 
results show that decision trees, random forests, and SVR 
models achieve the best performance with a MSE below 0.58 
wh. On the other hand, the GPR model exhibits a significantly 
higher MSE of 5.71 wh, indicating lower performance compared 
to the other models. For the SVR model, the Radial Basis 
Function (RBF) kernel was used with an epsilon value of 0.1 and 
a regularization parameter C of 19.6. The depth of the decision 
tree and random forests are 9 and 10, respectively, with 20 
estimators for random forests. Lastly, for the GPR model, the 
DotProduct kernel and WhiteKernel were utilized. As observed 

in Table V the SVR model, decision trees, and random forests 
have minimal construction and prediction times, making them 
computationally advantageous. However, the GPR model stands 
out from the others in terms of construction and prediction time, 
being higher. 

Similarly for server one, server two results, as cited in Table 
VI show that decision trees, random forests, and SVR are the 
best models for predicting server energy consumption, with a 
MSE rate of 0.02 wh. Although GPR model follows the other 
three models in terms of precision, it is also performant. We note 
that SVR model is configured with an epsilon and a C parameter 
of 0.1 and 3.0 respectively. The optimal depth for decision trees 
and random forests is five. The kernel used in the GPR model is 
based on DotProduct and WhiteKernel. Also, all selected non-
parametric methods stand out for their low complexity in terms 
of model construction and prediction time. Likewise to the first 
and second servers, random forests, decision trees, and SVR are 
the best models for predicting the energy consumption of server 
three. The SVR model was trained with an epsilon of 0.06 and a 
C value of 16.1, while the decision trees and random forests have 
a maximum depth of six. On the other hand, the GPR model has 
a high MSE of 1.23 wh. It was trained with a DotProduct and 
WhiteKernel. Based on the results obtained in Table VII, it can 
be observed that all the proposed non-parametric models can 
provide energy consumption predictions with an error rate 
below 1.23 wh and relatively low complexity. 

TABLE IV.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF PARAMETRIC METHODS OF SERVER THREE 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon rank-

sum test 

Model construction 

time [s] 

Prediction time 

[s] 

Polynomial Regression 1.0 0.09 0.21 0.3 0.41 0.64 0.0029 0.0 

Lasso Regression 0.98 1.24 0.88 1.11 1.81 0.35 0.0009 0.0009 

Elastic Network 0.98 1.23 0.88 1.11 1.81 0.35 0.0009 0.0010 

Neural Network 1.0 0.07 0.19 0.26 0.37 0.29 8613.801 638886 

TABLE V.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF NON-PARAMETRIC METHODS OF SERVER ONE 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon rank-

sum test 

Model construction 

time [s] 

Prediction time 

[s] 

SVR 1.0 0.57 0.47 0.75 0.37 0.67 0.0630 0.0079 

Decision Tree 1.0 0.34 0.36 0.58 0.3 0.9 0.0207 0.0 

Random forest 1.0 0.35 0.35 0.59 0.29 0.9 0.0366 0.0 

GPR 0.99 5.71 1.84 2.39 1.42 0.62 0.6222 0.0315 

TABLE VI.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF NON-PARAMETRIC METHODS OF SERVER TWO 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon rank-

sum test 

Model construction 

time [s] 

Prediction time 

[s] 

SVR 0.99 0.02 0.1 0.14 0.53 0.9 0.0189 0.0039 

Decision Tree 1.0 0.02 0.04 0.14 0.19 0.9 0.0010 0.0 

Random forest 1.0 0.02 0.04 0.14 0.22 0.89 0.0927 0.0069 

GPR 0.97 0.11 0.26 0.33 1.46 0.8 0.0867 0.0029 
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TABLE VII.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF NON-PARAMETRIC METHODS OF SERVER THREE 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon 

rank-sum test 

Model construction 

time [s] 

Prediction time 

[s] 

SVR 1.0 0.06 0.16 0.24 0.3 0.86 4840.0 484000 

Decision Tree 1.0 0.03 0.1 0.17 0.2 0.63 6366.1 636 

Random forest 1.0 0.02 0.09 0.14 0.19 0.48 6381.. 636618 

GPR 0.98 1.23 0.88 1.11 1.81 0.36 633.8. 636618 
 

Different ensemble methods were used, namely boosting, 
bagging, and stacking. The boosting model was configured with 
a learning rate of 0.41 and 50 estimators, using a decision tree 
with a depth of nine as the base estimator. The bagging model 
was evaluated using various regression methods as base 
estimators, including polynomial regression, Lasso regression, 
Elastic Network, SVR, decision trees, random forests, and the 
GPR model, denoted in Table VIII as Bagging_Poly, 
Bagging_Lasso, Bagging_Elastic, Bagging_SVR, 
Bagging_Tree, Bagging_Forest, and Bagging_GPR, 
respectively. The parameters for these models were defined as 
mentioned previously, with an optimal number of estimators set 
to 100. Regarding the first server, the results showed that the 
boosting model had the least bias, followed by the stacking 
model configured with GPR and the decision tree as base 
estimator. Next, the bagging model trained with decision trees 
achieved good results, as well as the stacking model configured 
with random forests and SVR model, along with the bagging 
model trained with the SVR estimator. The MSE of these models 
ranged from 0.32 wh to 0.59 wh, with a p-value above 0.69. 
However, except for the bagging model with the GPR estimator, 
the bagging and stacking methods trained with polynomial 
regression, Lasso regression, and Elastic Network as base 
estimators yielded less accurate prediction results compared to 
the aforementioned models. These models exhibited a higher 
MSE above five wh. It is observed that certain models had both 
high error rates and low model construction time, such as 
bagging and stacking trained with parametric methods. The 

bagging using the GPR model is distinguished with high error 
rates and significant model construction time. On the other hand, 
other models such as boosting and bagging using non-
parametric methods other than GPR, as well as stacking using 
non-parametric models or a combination of the two methods, 
were characterized by low error rates and model construction 
times below 3.8 s. 

Moving to the second server, the MSE of the boosting model 
is 0.02 wh and the R² reaches one, indicating that the model is 
capable of predicting energy consumption with negligeable 
error. As shown in Table IX, the p-value of the Wilcoxon tests 
is indicating that this method provides predicted values similar 
to the real values. By applying bagging and stacking models 
with different estimators. The best results were obtained using 
decision trees, random forests, and polynomial regression as 
base estimators for both methods. The average MSE in these 
models is below 0.07 wh, with a high value of R². The stacking 
model trained with the GPR estimator is the least biased in terms 
of precision measurement among all the proposed ensemble 
methods, with a MSE of 0.01 wh. The Bagging_Lasso, 
Bagging_Elastic, Bagging_GPR, Stacking_Lasso, and 
Stacking_Elastic models follow the previously mentioned 
models in terms of prediction quality. Among the ensemble 
methods, it is noteworthy that all models are characterized by 
their low complexity, with a model construction time of 9.18 s 
for the bagging model trained with the base estimator GPR. 

TABLE VIII.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF ENSEMBLE METHODS OF SERVER ONE 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon 

rank-sum test 

Model construction 

time [s] 

Prediction time 

[s] 

Boosting_Tree 1.0 0.32 0.36 0.57 0.29 0.84 0.0306 0.0 

Bagging_Poly 0.99 5.7 1.83 2.39 1.42 0.64 0.2196 0.0159 

Bagging_Lasso 0.99 5.69 1.81 2.39 1.39 0.62 0.1423 0.0059 

Bagging_Elastic 0.99 5.69 1.82 2.39 1.40 0.64 0.1408 0.0049 

Bagging_SVR 1.0 0.59 0.48 0.77 0.37 0.69 2.7756 0.8097 

Bagging_Tree 1.0 0.4 0.36 0.63 0.29 0.94 0.1503 0.0069 

Bagging_Forest 1.0 0.41 0.37 0.64 0.3 0.93 2.1579 0.1466 

Bagging_GPR 0.99 5.7 1.84 2.39 1.42 0.64 57.4755 0.0947 

Stacking_Poly 0.99 5.74 1.84 2.4 1.43 0.62 0.0249 0.0009 

Stacking_Lasso 0.99 5.7 1.83 2.39 1.41 0.62 0.0259 0.0009 

Stacking_Elastic 0.99 5.7 1.83 2.39 1.42 0.63 0.0268 0.0009 

Stacking_SVR 1.0 0.47 0.4 0.69 0.31 0.86 2.3417 0.0269 

Stacking_Tree 1.0 0.37 0.37 0.61 0.3 0.86 2.4175 0.0119 

Stacking_Forest 1.0 0.41 0.4 0.64 0.32 0.75 2.5212 0.0139 

Stacking_GPR 1.0 0.34 0.36 0.58 0.29 0.89 3.4553 0.0119 

Stacking_GPR_all 1.0 0.35 0.36 0.59 0.29 0.94 3.8855 0.0209 
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TABLE IX.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF ENSEMBLE METHODS OF SERVER TWO 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon rank-

sum test 

Model constr-uction 

time [s] 
Prediction time [s] 

Boosting_Tree 1.0 0.02 0.04 0.14 0.24 0.82 0.4188 0.0 

Bagging_Poly 0.98 0.07 0.21 0.26 1.13 0.45 0.1134 0.0059 

Bagging_Lasso 0.97 0.11 0.27 0.33 1.48 0.6 0.1276 0.0049 

Bagging_Elastic 0.97 0.11 0.26 0.33 1.46 0.59 0.1386 0.0069 

Bagging_SVR 0.99 0.02 0.09 0.14 0.49 0.92 0.6927 0.3383 

Bagging_Tree 1.0 0.02 0.04 0.14 0.19 0.87 0.1269 0.0069 

Bagging_Forest 1.0 0.02 0.01 0.14 0.2 0.87 2.2184 0.1476 

Bagging_GPR 0.97 0.11 0.26 0.33 1.46 0.82 9.1893 0.2563 

Stacking_Poly 0.98 0.07 0.21 0.26 1.13 0.46 0.0469 0.0 

Stacking_Lasso 0.96 0.16 0.35 0.4 1.92 0.36 0.0399 0.0 

Stacking_Elastic 0.98 0.1 0.25 0.32 1.41 0.31 0.0411 0.0 

Stacking_SVR 1.0 0.02 0.07 0.14 0.37 0.46 0.8902 0.0089 

Stacking_Tree 0.99 0.03 0.04 0.17 0.24 0.87 0.9402 0.0079 

Stacking_Forest 1.0 0.02 0.04 0.14 0.22 0.79 0.9835 0.0099 

Stacking_GPR 1.0 0.01 0.05 0.1 0.26 0.49 1.8894 0.0109 

Stacking_GPR_all 1.0 0.02 0.05 0.14 0.25 0.88 1.9824 0.0134 
 

Lastly, as for the third server, it can be observed that the 
boosting method trained with decision trees of depth six as base 
estimators provides predicted values with a MSE of 0.03 wh. 
Similarly, the bagging and stacking methods trained with the 
SVR model, decision trees, and random forests as base 
estimators have a MSE ranging from 0.02 wh to 0.06 wh. 
Therefore, the stacking model trained with GPR has an MSE of 
0.03 wh. On the other hand, the other models such as 
Bagging_Poly, Bagging_Lasso, Bagging_Elastic, 
Bagging_GPR, Stacking_Poly, Stacking_Lasso, and 
Stacking_Elastic provide prediction values with an MSE of 1.23 
wh and 1.24 wh. It can be observed that all ensemble methods 
are capable of predicting energy consumption with an error rate 
below 1.24 wh in terms of MSE, MAE, and MAPE, and p-values 
ranging from 0.35 to 0.89, as indicated in Table X. The values 
of the MAPE are already multiplied by 100. Therefore, a MAPE 

of 0.45 represents 0.45% and not 45%. Different complexity 
characteristics are observed among the boosting and bagging 
models using parametric models as base estimators. They have 
relatively low complexity, making them efficient in terms of 
model construction time. Next, bagging using decision trees, 
random forests, and SVR as base estimators, which also exhibit 
moderate but slightly higher complexity. On the other hand, the 
bagging model using GPR as the base estimator stands out for 
its higher model construction time, reaching 93.19 s. As for 
stacking, the results show that the methods using parametric 
models have a model construction time of 1.1 s, indicating 
relatively low complexity. On the other hand, stacking using 
non-parametric models has model construction times ranging 
from 5.3 s to 8.08 s, which remains reasonable considering the 
more complex nature of these models. 

TABLE X.  ACCURACY MEASUREMENTS, NON-PARAMETRIC TESTS AND COMPLEXITY OF ENSEMBLE METHODS OF SERVER THREE 

 R² 
MSE 

[wh] 

MAE 

[wh] 

RMSE 

[wh] 

MAPE 

[%] 

Wilcoxon 

rank-sum test 

Model construction 

time [s] 

Prediction time 

[s] 

Boosting_Tree 1.0 0.03 0.1 0.17 0.21 0.89 4840.0 481000 

Bagging_Poly 0.98 1.24 0.88 1.11 1.81 0.37 638185 636866 

Bagging_Lasso 0.98 1.24 0.88 1.11 1.81 0.36 638902 636616 

Bagging_Elastic 0.98 1.24 0.88 1.11 1.81 0.37 638912 636616 

Bagging_SVR 1.0 0.06 0.16 0.24 0.31 0.9 6.2082 633833 

Bagging_Tree 1.0 0.02 0.09 0.14 0.19 0.48 1.3107 636616 

Bagging_Forest 1.0 0.03 0.1 0.17 0.2 0.45 3.8057 6381.. 

Bagging_GPR 0.98 1.24 0.88 1.11 1.81 0.38 93.1952 63..81 

Stacking_Poly 0.98 1.24 0.88 1.11 1.8 0.38 1.1771 636 

Stacking_Lasso 0.98 1.23 0.88 1.11 1.81 0.35 1.1857 6366.6 

Stacking_Elastic 0.98 1.23 0.88 1.11 1.81 0.35 1.1792 636 

Stacking_SVR 1.0 0.03 0.1 0.17 0.2 0.38 5.8112 0.0201 

Stacking_Tree 1.0 0.02 0.09 0.14 0.19 0.67 5.3006 0.0182 

Stacking_Forest 1.0 0.05 0.1 0.22 0.22 0.53 5.6406 0.2202 

Stacking_GPR 1.0 0.03 0.11 0.17 0.21 0.68 7.6102 0.0302 

Stacking_GPR_all 1.0 0.03 0.11 0.17 0.23 0.65 8.0803 0.0202 
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VII. RESULTS 

This section provides an overview of the results obtained. 
For the first server, observations indicate that certain parametric 
methods, specifically polynomial regression, perform well in 
terms of prediction with low error rates and reduced complexity. 
However, other methods like Lasso regression and Elastic 
Network show high error rates exceeding five wh in terms of 
MSE for energy consumption prediction, while maintaining 
relatively low complexity. Among the non-parametric methods, 
SVR, decision trees, and random forests have low complexity 
and error rates for energy consumption prediction. However, 
GPR model provides prediction results with a high error rate and 
higher complexity compared to other methods. When it comes 
to ensemble methods, the boosting method trained with decision 
trees provides results very close to the actual values with low 
complexity. It is to highlight that models trained with parametric 
models have high MSE error rates but low complexity. 
Conversely, models trained with non-parametric methods like 
SVR, decision trees, and random forests as base estimators are 
considered the best models with construction complexity 
ranging from 0.15 s to 2.77 s. However, using the GPR base 
estimator in the bagging method significantly increases the MSE 
error rate up to 5.7 wh, and the model construction complexity 
reaches 57.47 s. 

When using the stacking method, all models trained with 
parametric methods provide poor prediction results. On the other 
hand, models trained with non-parametric methods show 
optimal error rates. In conclusion, the recommended model for 
predicting the energy consumption of this server is the stacking 
model, using non-parametric or both parametric + non-
parametric methods as estimators and trained with GPR as final 
estimator. The advantage of this method is that it combines 
multiple ML models and selects the optimal model to provide 
the best results. Furthermore, the complexity of this method is 
low. For example, although the GPR model provides poor 
prediction results when used alone, it can be used as the final 
estimator in the stacking model to improve the model's error rate 
and obtain optimal results. 

For server two, it is remarkable that all models have a MSE 
lower than 0.17 wh. Among the parametric methods, polynomial 
regression and NN are characterized by their high performance. 
However, it should be noted that NN has considerable 
complexity due to their architecture and computational 
operations involved. Next, Lasso regression and Elastic 
Network, which exhibit average error rates and lower 
complexity. For non-parametric methods, the SVR model, 
decision trees, and random forests achieve a MSE of 0.02 wh, 
indicating good prediction performance. However, the GPR 
model has a higher error rate, suggesting poorer performance 
compared to other models. In terms of complexity, all methods 
are characterized by low complexity, making them efficient in 
terms of model construction and prediction time. The boosting 
method offers optimal prediction results with low complexity, 
as behave the bagging methods trained with non-parametric 
models such as SVR, decision trees, and random forests, as well 
as the stacking methods trained with non-parametric models. 
The recommended model for predicting energy consumption 
while maintaining a trade-off between complexity and error rate 
is the stacking model trained with non-parametric or mixed 

models. Regarding complexity, all proposed methods have low 
complexity, except the bagging model using the base estimator 
GPR, which has a model construction complexity of 9.18 s. 

It is observed for the third server that high performing 
parametric methods with low error rates are polynomial 
regression and NN. However, the other two parametric methods 
reach a MSE of 1.23 wh, with a p-value of 0.35. It is important 
to note that for all three servers, NN are considered complex due 
to their architecture. Therefore, if new data is added to retrain 
the model, it may not be the optimal choice in terms of 
complexity, even though its performance may surpass some 
other models. As with server one and server two, non-parametric 
methods other than GPR provide optimal prediction, and the 
complexity of all methods is low. For ensemble methods, 
bagging_SVR, bagging_Tree, bagging_Forest, stacking_SVR, 
stacking_Tree, stacking_Forest, and stacking_GPR are 
considered optimal in terms of MSE, MAE, and MAPE. 
However, some models have low error rates while others have 
higher error rates, notably the stacking method using non-
parametric methods as estimators, resulting in complexity 
reaching 7.61 s. Similar to server one and server two, bagging 
using GPR as base estimator stands out with a higher error rate 
and higher complexity of 93.19 s. Other models such as bagging 
and stacking trained with parametric models have a MSE error 
rate of 1.24 wh and low complexity. The best model for 
predicting energy consumption of this server while maintaining 
a balance between complexity and error rate is the Gradient 
Boosting model. The stacking method is characterized by a low 
error rate. However, the model construction complexity is 
higher compared to the Gradient Boosting model, reaching up to 
eight seconds. These observations allow us to better understand 
the relationship between different models and their respective 
complexity. They also highlight the importance of considering 
this complexity when choosing and evaluating models to find 
the right balance between performance and computational 
efficiency. 

VIII. DISCUSSION 

The variation in servers’ energy consumption with workload 
execution is illustrated in Fig. 8, when CPU_workloads are 
executed on the first server, the CPU utilization rate reaches 
94.5%, resulting in an increase in server energy consumption 
from 98.52 wh in idle state to 177.92 wh under load. On the other 
hand, when RAM_workloads are executed, energy consumption 
reaches 130.93 wh, while CPU utilization varies between 11.2% 
and 24.9%. Finally, when disk-based workloads are executed 
and write up to 11 290.35 MB on the disk, energy consumption 
reaches 125.84 wh, with RAM utilization varying between 
24.33% and 71.17%, and CPU utilization varying between 
12.5% and 24.2%. For server two, energy consumption ranges 
from 16 wh to 22.73 wh when CPU-intensive workloads are 
executed, with CPU utilization varying between 8.1% and 
92.4%. When RAM-intensive workloads are executed, energy 
consumption reaches 20.32 wh, with RAM utilization varying 
from 26.38% to 78.29%. For disk-intensive workloads, energy 
consumption ranges from 16.99 wh to 18.75 wh, with CPU and 
RAM utilization rates ranging from 10.7% to 16.6% and 51.1% 
to 78.29% respectively, and data written to the disk reaching up 
to 18 064.42 MB. Regarding server three, energy consumption 
varies from 41.66 wh to 62.4 wh when executing workloads that 
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consume between 25.6% and 100% of the CPU. For workloads 
that vary RAM utilization between 40.12% and 68.21% and 
CPU utilization between 22.2% and 23.1%, energy consumption 
ranges from 40.77 wh to 42.25 wh. Launching workloads that 
consume the hard disk results in energy consumption ranging 
from 35.72 wh to 44.91 wh, with CPU utilization varying 
between 24.6% and 33.9%, and RAM utilization ranging from 
42.74% to 49.56%, with data written to the disk reaching up to 
4 393.99 MB. 

Note that for all three servers, each parameter was carefully 
selected through experimentation. Experiments were conducted 
extensive testing on a range of values, choosing those that 
yielded the best results in terms of accuracy, complexity, and 
non-parametric test performance. Additionally, the same 
workloads were launched on the three servers, but each server 
handled them according to its architecture and capacity. For 
example, when a workload is launched on server i, it may 

complete successfully within the expected duration, while on 
another server, it may crash due to insufficient capacity to 
process and execute that workload. This explains why the 
number of data varies from one server to another. 

The MSE, complexity, and p-value performance of the three 
servers are shown in Fig. 9. For the three servers, it was 
identified that the best models were polynomial regression, 
decision tree, boosting_Tree, and bagging_Tree. The outcomes 
demonstrate that the three servers' MSEs are all less than 0.7 wh, 
their complexities are all under 1.31 seconds, and their p-values 
range from 0.48 to 0.98. These findings show those models are 
useful for low computational complexity and high accuracy 
server energy consumption prediction. Because the models' 
predictions are statistically similar to the actual values, as 
confirmed by the high p-values, they can be effectively 
implemented to improve energy management and efficiency. 

 

Fig. 8. Variation in servers energy consumption with workload execution. 
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Fig. 9. Performance of the top models for the three servers. 

Observation shows that for the three servers, certain methods 
are distinguished by low error rates and low complexity. These 
methods include polynomial regression belonging to parametric 
methods, as well as SVR, decision trees, and random forests 
belonging to non-parametric methods. Similarly, Boosting and 
Stacking with parametric models show good performance in 
terms of error rates. Other methods, such as Lasso regression, 
Elastic Network, GPR, and bagging using parametric models, 
have high error rates but low complexity. On the other hand, 
bagging methods using SVR, decision trees, and random forests, 
as well as Stacking with non-parametric models, are 
characterized by low error rates and moderate complexity. The 
worst results in terms of high error rates and high complexity are 
obtained with NN and bagging using GPR as the base estimator. 
Comparing the three servers, it is observed that each has a 
different energy consumption pattern. Server one consumes 2.85 
times more energy than server three and 7.82 times more than 
server two. Server three, on the other hand, consumes 2.74 times 
more energy than server two. In this study, the complexity of the 
model was included as a critical factor for several reasons. For 
instance, after selecting a model that meets the requirements, it 

becomes crucial to assess its complexity. If the data center 
providers intend to retrain the model with additional data, 
understanding its complexity becomes paramount. If the 
complexity is high, retraining the model might not be advisable. 
However, if the complexity is manageable, this process can 
enhance the model's capability to accommodate new workloads, 
thereby improving its estimation accuracy. It should be 
highlighted that, to apply the elaborated algorithms to a real data 
center, it is highly recommended to use the data directly from 
the servers within that data center. In fact, the variability in 
workload characteristics influences the creation of ML models 
designed to predict server energy consumption. In this work, 
three types of servers were used to demonstrate the performance 
of ML models, as the type of servers may vary from one data 
center to another. This study aims to pinpoint the most effective 
models for estimating server energy usage, offering tailored 
recommendations for different server environments. 

Predicting the future workload of servers in a data center is 
considered a challenging task because it is difficult to control or 
fully anticipate the clients' needs, as they are free to use or 

 

  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
al

u
e 

o
f 

M
SE

, c
o

m
p

le
xi

ty
 a

n
d

 p
-v

al
u

e Server three

MSE [wh] complexity [s] p-value

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
al

u
e 

o
f 

M
SE

, c
o

m
p

le
xi

ty
 a

n
d

 p
-v

al
u

e

Server one

MSE [wh] complexity [s] p-value

0

0.2

0.4

0.6

0.8

1

1.2

V
al

u
e 

o
f 

M
SE

, c
o

m
p

le
xi

ty
 a

n
d

 p
-v

al
u

e Server two

MSE [wh] complexity [s] p-value



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

890 | P a g e  

www.ijacsa.thesai.org 

consume resources according to the SLA. However, by 
analyzing historical server activity, patterns can be identified 
using various ML methods to estimate server workloads. In this 
study, the focus is placed on resources such as the CPU, RAM, 
and hard disk. Although users may request other types of 
resources, this study is limited to the resources. If the data center 
workloads shift in an irregular way and atypical manner, 
predictions can still be made by the proposed ML models. 
Besides, in this situation, it will be advised to use continuous 
learning, which will enable ML models to automatically update 
with current data and adjust over time to shifting workload 
patterns. Additionally, retraining the ML models on current data 
on a regular basis will keep them more accurate and relevant. 
Additionally, online learning has also the potential to be 
effective and enable the models to rapidly adapt to transient 
variations in workload. 

IX. CONCLUSION 

The choice of the appropriate method depends on the desired 
objectives. If the focus is on prediction quality in terms of error 
rates, the Stacking model, which uses the GPR model alongside 
other parametric and non-parametric models as internal 
estimators, is a good choice for predicting server energy 
consumption. However, if the objective is to regularly retrain the 
model by increasing the amount of data, it is preferable to choose 
a model that has both low error rates and reduced complexity. In 
this case, the polynomial regression model may be a good choice 
due to its architecture and computational requirements. It can be 
observed that for all three servers, the CPU consumes the most 
energy compared to the other resources, and the energy 
consumption when applying workloads that consume RAM and 
hard disk differs from one server to another. In this study, only 
CPU, RAM, and hard drive workloads are used as data to 
construct ML models to predict energy consumed by servers, 
while other types of workloads can also be handled within the 
data center. Also, in real data center, servers are placed in racks 
and installed in rooms equipped with other elements such as 
cooling system. However, the integration of cooling units and 
heat management are not elaborated in this work. Our future 
research will focus on exploring and refining anomaly detection 
in data centers as a critical frontier for ensuring the robustness 
and reliability of server systems by enabling the identification 
and mitigation of irregularities or unexpected patterns in energy 
consumption. Ultimately, the efforts in anomaly detection 
promise not only to improve system reliability, but also to 
facilitate more sustainable and resource-efficient operation of 
server networks. 
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