
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

908 | P a g e

www.ijacsa.thesai.org

An Efficient Privacy-Preserving Randomization-

Based Approach for Classification Upon Encrypted

Data in Outsourced Semi-Honest Environment

Vijayendra Sanjay Gaikwad1, Kishor H. Walse2, Mohammad Atique Mohammad Junaid3

P.G. Department of Computer Science & Engineering, Sant Gadge Baba Amravati University, Amravati, India1, 3

SCTR’s PICT, Pune, India1

Sant Bhagwanbaba Kala Mahavidyalaya, Sindkhed Raja, Buldana, India2

Abstract—In cloud environment context, organizations often

rely on the platform for data storage and on demand access. Data

is typically encrypted either by the cloud service itself or by the

data owners before outsourcing it to maintain confidentiality.

However, when it comes to processing encrypted data for tasks

like kNN classification; existing approaches either prove to be

inefficient or delegate portion of the classification task to end

users or do not satisfy all the privacy requirements. Also, the

datasets used in many existing approaches to check the

performance seem to have very less attributes and instances; but,

it is observed that as dataset size increases, the efficiency and

accuracy of many privacy-preserving approaches reduce

significantly. In this work, we propose a set of privacy preserving

protocols that collectively perform the kNN classification with

encrypted data in outsourced semi-honest-cloud environment

and also address the stated challenges. This is accomplished by

building an efficient randomization-based approach called PPkC

that leverages homomorphic cryptosystem properties. With

protocol analysis we prove that the proposed approach satisfies

all privacy requirements. Finally, with extensive experimentation

using real-world and scaled dataset we show that the

performance of proposed PPkC protocol is computationally

efficient and also independent of the number of nearest

neighbours considered.

Keywords—Partial homomorphic encryption; classification

using encrypted data; randomization; k- nearest neighbours

I. INTRODUCTION

The progressive paradigm of information technology
known as cloud computing provides the ability to deliver a
variety of computing services including processing power,
storage, and application platform, on demand. However,
security has consistently posed a significant barrier to the
general uptake of cloud computing technologies [1], [2]. The
problem is further exacerbated by cloud computing service
providers’ inaccurate reporting of security flaws [3], [4], [5].
Cloud based services have raised the need to protect data
privacy in outsourced databases has become a focal point of
research. As discussed in study [6], [7], [8] and [9] since, a
data owner (DO), contracts out the management of his or her
databases to a cloud, the DO can lower database management
costs by utilizing the cloud’s resources as needed. Owing to
the diverse range of users the dataset they offer encompasses
multiple ranges of categories including personal health status
details [10], back-office user database information [11], email

information [12] as well as additional information about
individual privacy or company trade secrets [13], [14], [15].
To safeguard the original data, access patterns as well as
queries, research has been done on secure query processing
over an encrypted database. Earlier approaches in [16], [17],
[18], [19], [20] and [21] outsource plain texts to a cloud and
alter them with their substituted data. Nonetheless, due to their
vulnerability to different types of attacks, these earlier
strategies are unable to fully protect both data as well as
queries [22].

Consider a scenario where a hospital stores its encrypted
patient database on the cloud for data mining tasks. When a

doctor seeks to ascertain a patient’s symptoms for diagnosis,

they must submit a query containing highly personal
information. To protect the patient’s data privacy, cloud must
be queried with only the encrypted query data. Moreover, any
anomalies in cloud activity could reveal data access patterns,
despite encryption. Therefore, maintaining privacy of involved
data is paramount when performing classification tasks on
encrypted data in an outsourced environment like the cloud.

Previously many approaches have been introduced to
address this challenge, however, either the computation cost
required to process the queries turned out to be inefficient or
privacy requirements were not completely fulfilled. The
previous methodologies predominantly relied on datasets with
integer values, limiting their applicability to a narrow range of
datasets; however, real-world datasets typically encompass a
broader spectrum, often comprising floating-point values.
Moreover, the pattern of accessing the data during k-nearest
neighbours (k-NN) algorithm is also not safeguarded in [23],
[24], [25] and [16]. The privacy-preserving algorithms in [26]
and [27] conceal data access patterns while ensuring privacy
of outsourced databases as well query. However, they have a
high query processing cost as discussed in study [6].

We propose set of protocols that jointly address the
privacy-preserving k-nearest neighbours outsourced
classification issue with the assumption of the process of
classification along with encrypted data is held in the cloud
environment. The focus in this paper is only specifically on
creating the privacy-preserving k-nearest neighbor technique,
since k-NN is a popular and most suitable classifier for this
work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

909 | P a g e

www.ijacsa.thesai.org

A. Problem Definition

In this paper, we assume a 'm' dimensional database is
possessed by a data holder containing total instances of size
'n'. 0th attribute serves as the record identifier (I), while the mth
attribute represents the class label (c). The data holder
encrypts the database attribute by attribute to get 𝐸𝑝𝑘(𝑡𝑖,𝑗)

which denotes the encrypted value of a record, where 't
'represents a tuple, 'i' ranges from 1 to 'n', and 'j' ranges from 0
to 'm'.

𝐸𝑝𝑘 is the encryption function of partial homomorphic

encryption in [28]. After encryption, the encrypted database is
sent to the cloud. After this the data holder doesn’t get
involved in any of the further privacy-preserving classification
steps.

Authentic users can send encrypted queries 𝐸𝑝𝑘(Q)=

(𝐸𝑝𝑘(𝑞1), … , 𝐸𝑝𝑘(𝑞𝑚−1)) to the cloud to obtain resultant

encrypted class label, denoted as 𝐸𝑝𝑘(𝑐𝑞).

B. Our Contributions

We have proposed set of protocols that execute in a two-
cloud setup to jointly address the issue of preserving privacy
while classifying user’s encrypted query using outsourced
encrypted data. The protocols are for k-nearest neighbours
classification algorithm. The proposed approach offers
significantly reduced computational costs by utilizing parallel
computing, so as to form more practical grounds for
classification of encrypted data. Following are some
requirements for privacy preserved outsourced classification:

 The user’s query must stay encrypted throughout the
entire classification task, ensuring it is not disclosed to
the cloud.

 The original contents of the database and any
intermediate computations must remain hidden from
the cloud.

 The records that correspond to the k-nearest neighbours
of the user’s query should be kept secret from both the
cloud and the user.

 Only the final class label should be disclosed to the
user.

This work is inspired by the research of Samanthula,
Elmehdwi, and Jiang [29], [30], focusing on enhancing the
efficiency of the related sub-protocols. As indicated in [29]
regarding potential enhancements to the efficiency of the
SMINn protocol, the attention in this work is directed towards
enhancing execution time needed by it. Paillier cryptosystem
[28] faces limitations when confronted with negative values
resulting from Paillier addition. This challenge is particularly
prominent if there are negative values while computing the

encrypted Euclidean distance. It’s noteworthy to mention

that in the proposed enhanced set of protocols accomplish all
aforementioned requirements. The cloud remains oblivious to
which database entries align with the nearest neighbours, and
any intermediate data visible to the cloud consists solely of
either encrypted or randomized values. Additionally, the
resultant label remains undisclosed to both clouds.

The rest of this paper is organized as follows. We provide
literature survey of state-of-the-art privacy preserving
protocols in Section II. The primitives for building proposed
approach are described in Section III. We describe the
methodology and our proposed privacy preserving PPkC
protocol and the sub-protocols as its building blocks along
with algorithms in Section IV and in Section V, we explain the
privacy analysis of these sub-protocols. In Section VI, we
provide the experimental results of our proposed PPkC
protocol using standard and scaled datasets and its
comparative analysis with state-of-the-art privacy preserving
protocols. We finally conclude this work in Section VII.

II. LITERATURE SURVEY

In scenarios where queries for classification are executed
on the cloud, the foremost and most critical requirement is to
hide query details from cloud.

It is important to note that data mining operations can be
conducted on encrypted data with relatively less effort using
fully homomorphic encryption (FHE) introduced by Gentry et
al. (2009) [31]. This cryptosystem allows arbitrary functions
to be performed on encrypted data without decryption.
However, FHE is computationally intensive, making it
impractical for handling real-time classification requests.

Handling queries on encrypted data without the cloud
decrypting it poses a significant challenge. The work by
Samanthula et al. (2014) [30] outlines a collection of protocols
designed to jointly solve the k-nearest neighbours (k-NN)
query issue within an encrypted database, where both the data
and the classification tasks are delegated to the cloud. As
described in study [30], the objective of the secure kNN
protocol is to find the top k records closest to the user's query
while keeping all details hidden from the cloud. However, in
this approach, the SkNN protocol in [30] results in the cloud
being exposed to intermediate data, such as the calculated
distance values and the subsequently determined k smallest
distance values. In addition, the records associated with the k
nearest neighbours of the user query are disclosed to the cloud
and also exposed to the user. This again compromises the
privacy of the database entries involved in the classification
process.

According to Samanthula et al. (2015) in [29] ensuring
privacy in k nearest neighbours classification is more
challenging than running basic kNN queries on encrypted
data. This complexity stems from the requirement that the k-
nearest neighbours identified during the classification process
must remain confidential from querying user and cloud.

Protocol presented in study [29] overlooks the issue of
access patterns, which is a critical privacy concern for users.
While the protocols in study [30] introduce a secure method
for k nearest neighbours classification on encrypted data that
safeguards data and user query privacy, they fail to conceal
the data access patterns. Samanthula et al., in [29], expanded
on their previous work from study [30] by introducing the
PPkNN protocol, offering a new approach to the privacy
preserved k-nearest neighbours classification issue.

The k nearest neighbours remain hidden from both the user
and cloud in the PPkNN protocol [29]. Secure Minimum

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

910 | P a g e

www.ijacsa.thesai.org

protocol (SMIN) in study [30] is used to determine the nearest
neighbours in a privacy preserved way. As proposed by
Samanthula et al. in [29], the SMIN sub-protocol consumes
nearlt 67% of the total processing time taken by the PPkNN
protocol, which is significantly high and hence impractical in
real-time scenario. So, the prevailing obstacle in any
outsourced privacy preserving classification approach is to
tackle this excess processing time which is caused due to the
fact that protocols have to work upon encrypted values. A
reduction in overall computational cost would bring even
practical solution for the outsourced privacy preserving
classification tasks.

As mentioned by Zhu et al. (2020) in [32], conventional
privacy preserving approaches for kNN classification induce
huge computational cost since operations are purely conducted
on encrypted values. Park et al. (2020) in [33] have proposed
an efficient version of the Samanthula et al.’s (2015) work in
[29] by designing the PkNC protocol which executes its
component protocols in parallel to find the class label.

Experimental results depict the gradual rise in execution
time of the PkNC protocol. However, it decreases
substantially regardless of k (the number of nearest
neighbours). But, the primary drawback of this protocol
emerges as the dataset increases. The execution time rises
again in linear manner with increasing instances in dataset,
largely because of the practical limitations on threading for
parallel computation. Liu et al. (2020) [34] have investigated
training of decision trees in outsourced environment. They
asserted that encrypted dataset cannot be divided by the cloud
based on best attribute and hence, they have proposed a new
method which is splitting-free decision tree training.

However, the prominent defining factor is that problem
domain of this work deals with k-NN classification, which
does not require a separate training phase that is needed for
decision tree classification. Also, the scheme proposed by the
authors uses an additive secret-sharing method for privacy
preservation. This induces more computational cost with the
inclusion of share reconstruction. Moreover, experimentations
show that the designed protocols’ cost of communication and
computation rises along with length of vector. Noteworthy
observation is that protocols in study [34] were evaluated on
relatively small datasets sizes, containing 24, 100, 120, and
958 instances, respectively. The protocols proposed in study
[35] and [36] are more efficient than the pioneer protocol in
[29], but they result in class labels corresponding to k nearest
records instead of providing the final class of query. Thus, this
is not the exact expected result for outsourced privacy-
preserving kNN classification issue [37]. It also reveals the k
nearest class labels to the querying user, which does not
satisfy the privacy requirements as stated in study [29].
Moreover, it cannot protect all the intermediate information.
The distribution of the inner products, which is used to
describe the distance between two vectors like the Euclidean
distance, is leaked to one of the cloud servers.

Examining the proposed scheme for a variety of datasets is
an important experimental step toward deciding the range of
classification tasks that potentially can be performed by any
privacy-preserving approach. Until now, all of the existing

schemes have experimented with only integer datasets (i.e.
they can handle only integer values). This is the reason that in

[38], Du et al. scheme’s accuracy is not good enough for the

real number datasets. In fact, the accuracy of this scheme
severely drops with this Heart Disease dataset.

A privacy-preserving k-NN query scheme (QS) based on a
secure multi-party computation mechanism was modeled by
Xian Guo et al. in [3] to address security concerns when
malicious attackers control the cloud and query users. This
method showed that the scheme has a certain degree of
feasibility and reliability. Furthermore, this method showed a
better solution for privacy protection and security. However, a
privacy-preserving k-NN query scheme was limited in real-
world applications.

Hyeong-Jin Kim et al. in [6] implemented a privacy
preserving k-NN query processing algorithm (QPA) via secure
two-party computation based on encrypted data. In terms of
query processing cost, the performance of the model was
better than the existing methods. Nevertheless, the model did
not solve other types of queries including Top-k and k-NN
classification due to low-dimensional data. In addition, this
model required increased computational cost. Developing
high-dimensional data space requires a data dimensionality
reduction technique which led to a challenging task.

Zhi Li et al. [39] presented a function secret sharing (FSS)
based secure multi party kNN classification scheme
(SecKNN). For secure computations, the presented scheme
offered low computation and communication cost. The
implementation of FSS reduced lot of computational
overhead. Nonetheless, the deployment of the scheme on real
time applications is limited.

A privacy-preserving kNN query scheme (QS) was
employed by Yandong Zheng et al. [10] to return accurate
query results and high query efficiency. The scheme achieved
low computation cots and the max-heap accelerated the query
efficiency. However, the kNN query scheme leaked the
relative proximities of various data records.

Hyeong-Jin Kim et al. [22] employed a new Top-k query
processing algorithm based on a homomorphic encryption
system that is efficient and provides security also. Compared
with the existing methods, the Top-k algorithm achieved more
times better performance concerning query processing time.
However, this model was only performed in specific privacy-
preserving data mining algorithms.

III. PRIMITIVES

A. Synthetic Minority Over-sampling Technique (SMOTE)

SMOTE, introduced by Chawla et al [40] in 2002,
addresses imbalanced class issues in machine learning. By
synthesizing minority class samples through interpolation
among existing instances, it counters bias favoring majority
classes. Randomly selecting instances, it identifies k nearest
neighbours and generates synthetic examples along the
connecting line segments. This method improves the capacity
of classifier for making accurate predictions by providing
robust coverage of the minority class space. SMOTE
generates synthetic data points, reducing model bias towards

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

911 | P a g e

www.ijacsa.thesai.org

the majority class. Particularly beneficial for imbalanced
datasets where the minority class is underrepresented.
Interpolation among existing minority class instances
maintains diversity. Contrasts with simpler methods like
random oversampling that may lead to overfitting. SMOTE
introduces new instances near original minority class data
points. Synthetic samples serve as plausible representations,
reducing overfitting risk and aiding model generalization.

B. Paillier Cryptosystem

Paillier cryptosystem [28] is additively homomorphic and
allows calculations upon encrypted values directly,

eliminating the requirement to decrypt. It’s extensively

employed in safeguarding privacy, especially in situations
requiring the secure processing of sensitive information while
maintaining confidentiality. This scheme is capable of
providing semantic security. Fundamentally, Paillier
encryption operates on principles of modular operations and
large prime numbers. Its security hinges on computing
difficulty of factoring the product of two large prime numbers.

Consider Epk as encryption function associated with a
public key pk represented by (N, g), where N is the product of
two large prime numbers, and g is a generator in 𝑍𝑁2

∗ .

Similarly, Dsk is the decryption function corresponding to the
secret key sk. Following properties of Paillier encryption
scheme [28] withstand for any two plaintext values a and b
belonging to 𝑍𝑁:

1) Homomorphic addition: It provides the addition

operation on encrypted values, producing a sum which is also

encrypted.

𝐷𝑠𝑘 (𝐸𝑝𝑘(𝑥 + 𝑦)) = 𝐷𝑠𝑘(𝐸𝑝𝑘(𝑥) ∗ 𝐸𝑝𝑘(𝑦) 𝑚𝑜𝑑 𝑁2) (1)

2) Scalar multiplication homomorphism: It provides

multiplication operation x*y and yields 𝐸𝑝𝑘(x*y) when an

encrypted value 𝐸𝑝𝑘(x) is raised to the power with a scalar

value y.

𝐷𝑠𝑘 (𝐸𝑝𝑘(𝑥 ∗ 𝑦)) = 𝐷𝑠𝑘(𝐸𝑝𝑘(𝑥)𝑦𝑚𝑜𝑑 𝑁2) (2)

IV. METHODOLOGY FOR PRIVACY PRESERVED

CLASSIFICATION

This section elaborates on the operations of several sub-
protocols that serve as the foundational components for
enhancing the efficiency of computing the k nearest
neighbours. By performing all operations on Cloud Server 1
(𝐶1) and utilizing Cloud Server 2 (𝐶2) for specific tasks with
randomized and shuffled data, a robust privacy-preserving

architecture can be established. As shown in Fig. 1, we

operate within a genuine-but-curious scenario, where the two
involved cloud platforms 𝐶1and 𝐶2 are non-colliding and
adhere strictly to the protocol specifications. 𝐶2 hosts sk
(secret key) and does not share it with anyone whereas 𝐶1 , 𝐶2
and the querying user know the public key pk.

User data is encrypted and stored securely on 𝐶1. kNN
operations, including distance calculation and classification,
are performed entirely on 𝐶1, ensuring that sensitive
information remains within a single secure environment.

Fig. 1. Two cloud architecture setup.

For operations requiring additional computational
resources, such as multiplication or comparison, 𝐶1sends
encrypted data in a randomized format to 𝐶2. This randomized
data prevents the exposure of sensitive information during the
transmission and execution of these operations on 𝐶2. Upon
receiving the encrypted data, 𝐶2 performs the necessary
operations and returns the results to 𝐶1. The results are de-
randomized on 𝐶1, ensuring that the true outcomes are
obtained without compromising on data privacy and
confidentiality.

The utilization of kNN within this two-cloud architecture
facilitates privacy-preserving data mining operations in cloud
environments. By encrypting data and performing all
encrypted operations on 𝐶1, sensitive information remains
protected. Role of 𝐶2 is specific to performing operations on
randomized and shuffled data therefore, minimizing the risk of
data breaches and unintended knowledge gain. The secure
interaction between 𝐶1and 𝐶2 ensures that privacy is
maintained throughout the outsourced classification process.

A. Privacy Preserving Euclidean Distance Protocol

Encrypted squared Euclidean distance is computed by this
protocol. These encrypted distances are determined by
computing difference between an encrypted user query,
𝐸𝑝𝑘(𝑞) and each encrypted dataset instance, denoted as

𝐸𝑝𝑘(𝑡𝑖). Here, i is between 1 and n, and n represents total

instances in dataset. Both 𝐸𝑝𝑘(𝑡𝑖) and 𝐸𝑝𝑘(𝑞) have m number

of attributes. 𝐶2 holds sk (secret key) and does not share it
with anyone where as 𝐶1 , 𝐶2 and the querying user know the
public key pk.

The protocol employs parallelization via multiprocessing
to expedite results. Additionally, it employs randomization for
all intermediate operations necessitating interactions with 𝐶2.
In this process, the encrypted dataset values are randomized
with an encrypted random number using the Paillier additive
property [28], and the obtained result is later de-randomized.
This approach guarantees that even if certain data points
undergo decryption on 𝐶2, they are presented in a randomized
manner, thereby preventing complete exposure of any data
point to 𝐶2.

Algorithm-A: PPED(𝐸𝑝𝑘(X),𝐸𝑝𝑘(Y)){𝐸𝑝𝑘(𝑑1),.., 𝐸𝑝𝑘(𝑑𝑛)}

Require: 𝐶1 has 𝐸𝑝𝑘 (X) and 𝐸𝑝𝑘 (Y); 𝐶2has sk

 On 𝐶1:

1. for i = 1 to n do

2. for j = 1 to m do

3. 𝐸𝑝𝑘 (xij − yj) ←𝐸𝑝𝑘 (xij) * 𝐸𝑝𝑘 (yj) N−1 mod N2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

912 | P a g e

www.ijacsa.thesai.org

 (parallelization is used to compute attribute-wise

 differences concurrently)

4. end for

5. Generate random number r ∈ ZN

6. u ← ∑𝑗=1
𝑚 𝐸𝑝𝑘 (xij − yj)

7. send R← u * 𝐸𝑝𝑘 (r) mod N2 to C2

 On 𝐶2:

8. uꞌ ←𝐷𝑠𝑘(𝑅)

9. v ←𝑢ꞌ ∗ 𝑢ꞌ mod N

10. vꞌ ←𝐸𝑝𝑘 (v)

11. send vꞌ to C1

 On 𝐶1:

12. rꞌ= r * r

13. p= u2r mod N2

14. pꞌ ← vꞌ * 𝐸𝑝𝑘(rꞌ) N−1 mod N2

15. 𝐸𝑝𝑘(𝑑𝑖)← 𝐸𝑝𝑘 ((xi − y)2) ← 𝑝ꞌ * 𝑝 N−1 mod N2

(parallelization is used to concurrently compute the encrypted

squared Euclidean distances for all instances)

16. end for

17. return {𝐸𝑝𝑘(𝑑1),...., 𝐸𝑝𝑘(𝑑𝑛)}

A vector 𝐸𝑝𝑘(Y) having user’s encrypted query attributes,

and a data-frame 𝐸𝑝𝑘 (X) having attribute-wise encrypted

instances from the dataset are used as inputs for the PPED
protocol. Using PPED protocol, 𝐶1 and 𝐶2 jointly compute a
vector having encrypted distances corresponding to each
encrypted dataset instance.

This protocol implements parallelism in two phases. In the
first phase the attribute-wise difference between each
attributes of the user query and corresponding attribute of a
given dataset instance is computed concurrently. In the second
(outer) phase, the encrypted squared difference 𝐸𝑝𝑘(𝑑𝑖)

(i. e. 𝐸𝑝𝑘((xi − y)2)) is concurrently computed for all instances

of the dataset. During implementation this concurrency is
achieved by using threading in Python. Thus, efficiency is
improved significantly through these concurrent executions.
Moreover, with additional computing resources such as multi-
core processors, the PPED protocol can also be run in parallel
to simultaneously compute the encrypted squared differences.
We use parallelization for independently computing the
attribute-wise differences for each ith instance and also for
overall execution of PPED algorithm across n instances as
each squared distance can be independently computed for all n
instances. At the end of PPED protocol, the resulting vector of
encrypted distances is only available to 𝐶1 however, these
distances remain encrypted.

B. Privacy Preserving Shuffle Protocol (PPSP)

In order to get the k nearest neighbours for the encrypted
user query, we need to find the k minimum encrypted
distances from amongst the vector of encrypted squared
differences generated by PPED protocol. Since, these distance
values are encrypted, the k minimum distances cannot be
found directly by 𝐶1. The immediate solution is to send the
vector of encrypted squared differences to 𝐶2 so that 𝐶2 can
decrypt them with the secret key and then the squared
differences could be compared in plaintext to get the required

k minimum distances. However, this will reveal all the
original distance values to 𝐶2 and 𝐶2 also gets to know which
dataset records correspond to the selected k minimum
distances. So, another solution which avoids this data leakage
issue is to randomize the original distances at 𝐶1 using
additive homomorphic property and then send these
randomized encrypted squared differences to 𝐶2 for
comparison. This solves the data leakage issue as the original
distances are not revealed to 𝐶2 but 𝐶2 still gains knowledge
about which k records from the dataset are selected as the
nearest neighbours.

Algorithm-B: PPSP (D) Dꞌ

Require: 𝐶1 has D← {𝐸𝑝𝑘 (𝑑1 + 𝑟),.., 𝐸𝑝𝑘 (𝑑𝑛 + 𝑟) }

 On 𝐶1:

1. n ← length_of (D)

2. for i = n-1 to 1 do

3. Generate a random integer j , where 0 ≤ j ≤ i

4. temp = D[i]

 D[i] = D[j]

 D[j] = temp

5. end for

6. return Dꞌ← securely permuted vector of randomized

encrypted squared differences

Although, 𝐶1and 𝐶2 are non-colliding but revealing such
data access patterns to C2 can be potentially malicious. Hence,
we propose a privacy preserving shuffle protocol (PPSP) that
performs random permutation with the randomized encrypted
squared differences before sending them to C2 for comparison.
Since, PPSP applies the random permutation directly on
encrypted data, at the end of the protocol C1 does not gain any
information about the randomized encrypted squared
differences. Moreover, C2 remains unaware about the
sequence of the randomized encrypted squared differences it
receives from C1 for comparison, as intermediate steps are not
revealed. Thus, by utilizing proposed PPSP protocol before
determining the k minimum encrypted distances, C2 does not
gain any knowledge about which k records from the dataset
get selected as the target nearest neighbours and data access
patterns are preserved.

C. Privacy Preserving k-Minimum Distances (PPkMD)

Protocol

The objective of PPkMD protocol is to determine the
encrypted k nearest neighbours of the encrypted user query
such that the corresponding original dataset records are not
revealed to either of the clouds (i.e.𝐶1 or 𝐶2). Also, the
intermediate results must be either encrypted or such that they
must not lead 𝐶1 or 𝐶2 to gain any knowledge about the
original values to avoid disclosure of data access patterns. The
protocol takes a vector ‘v’ as input and each element of v is an
object having three encrypted values namely, encrypted
dataset record identifier 𝐸𝑝𝑘(𝑖𝑑𝑖), encrypted distances (i.e.

squared difference) 𝐸𝑝𝑘(𝑑𝑖) and corresponding encrypted

class label 𝐸𝑝𝑘(𝑐𝑖). So, v= {(𝐸𝑝𝑘(𝑖𝑑1), 𝐸𝑝𝑘(𝑑1), 𝐸𝑝𝑘(𝑐1)),

..,(𝐸𝑝𝑘(𝑖𝑑𝑛),𝐸𝑝𝑘(𝑑𝑛),𝐸𝑝𝑘(𝑐𝑛))}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

913 | P a g e

www.ijacsa.thesai.org

The protocol begins with 𝐶1 generating random integer r
from 𝑍𝑁, and randomizes vector v by homomorphically
adding 𝐸𝑝𝑘(𝑟) to 𝐸𝑝𝑘(𝑖𝑑𝑖), 𝐸𝑝𝑘(𝑑𝑖) and 𝐸𝑝𝑘(𝑐𝑖) of each

element of v This gives us an encrypted randomized vector, vꞌ.
This vꞌ vector is shuffled using PPSPm protocol before it is
transmitted to 𝐶2. PPSPm is a variant of above proposed PPSP
protocol used for shuffling the vector vꞌ, where vꞌ[i]=
(𝐸𝑝𝑘(𝑖𝑑ꞌ𝑖), 𝐸𝑝𝑘(𝑑ꞌ𝑖), 𝐸𝑝𝑘(𝑐ꞌ𝑖)) and 1 ≤ i ≤ n. Thus, PPSPm

receives vꞌ and shuffles it such that position of each element
vꞌ[i] is changed. Then, the shuffled vector V is sent to 𝐶2.

𝐶2 decrypts V to get a plaintext but randomized vectors V ꞌ.
Now, 𝐶2 constructs a min-heap with the randomized distances,
V ꞌ[i].dꞌ , where 1≤ i ≤n and each node in the heap comprises
of (V ꞌ[i].idꞌ , V ꞌ[i].dꞌ , V ꞌ[i].cꞌ) i.e. an element of vectors
V ꞌ. Since, the randomized distance value present at the root
node of the min-heap is always the smallest value, we pop the
root node from the heap to get the first amongst the k nearest
neighbours. Similarly, we pop the heap to get all the
remaining nearest neighbours and store them in vector Kmin.
As the min-heap is built with randomized distance values and
each node in the heap structure has only randomized values,
𝐶2 does not gain any information about original values. Also,
since the randomized elements are already shuffled, therefore
𝐶2 neither learns about their order nor it is able to determine
which k records from the dataset were selected as the nearest
records to the query. Moreover, the identifiers are also
randomized and shuffled which avoids revealing any data
access patterns. 𝐶2 then encrypts the vector Kmin to get
encrypted vector Kminꞌ and sends it to 𝐶1.

Then, 𝐶1 de-randomizes Kminꞌ using the paillier additive
property [28] to get the original encrypted k nearest elements
in vector vmin. Since, every step at 𝐶1 involves only encrypted
data, no information is revealed to 𝐶1.

Algorithm-C: PPkMD (v) vmin

Requires:𝐶1 holds v= {(𝐸𝑝𝑘(𝑖𝑑1),𝐸𝑝𝑘(𝑑1),𝐸𝑝𝑘(𝑐1)),…, (𝐸𝑝𝑘(𝑖𝑑𝑛),

𝐸𝑝𝑘(𝑑𝑛), 𝐸𝑝𝑘(𝑐𝑛))} and 𝐶2 holds the secret key sk.

 On 𝐶1:

1. Generate random integer r 𝜖 𝑍𝑁 and encrypt it, 𝐸𝑝𝑘(r)

2. Build randomized vector vꞌ by adding 𝐸𝑝𝑘(r) to each

element of v :

3. for i = 1 to n do

4. 𝐸𝑝𝑘(𝑖𝑑ꞌ𝑖) = 𝐸𝑝𝑘(𝑖𝑑𝑖) ∗ 𝐸𝑝𝑘(𝑟) mod N2

5. 𝐸𝑝𝑘(𝑑ꞌ
𝑖
) = 𝐸𝑝𝑘(𝑑𝑖) ∗ 𝐸𝑝𝑘(𝑟) mod N2

6. 𝐸𝑝𝑘(𝑐ꞌ
𝑖
) = 𝐸𝑝𝑘(𝑐𝑖) ∗ 𝐸𝑝𝑘(𝑟) mod N2

7. end for

8. So we have, encrypted randomized vector as, vꞌ=

{(𝐸𝑝𝑘(𝑖𝑑ꞌ1),𝐸𝑝𝑘(𝑑ꞌ1),𝐸𝑝𝑘(𝑐ꞌ1)),…,(𝐸𝑝𝑘(𝑖𝑑ꞌ𝑛), 𝐸𝑝𝑘(𝑑ꞌ𝑛),

𝐸𝑝𝑘(𝑐ꞌ𝑛))}

9. V ← PPSPm(vꞌ) to shuffle all elements in vꞌ

10. Send shuffled vector V to 𝐶2

On 𝐶2:

11. Decrypt all elements in V using sk such as,

12. for i = 1 to n do

13. V ꞌ[i]←(𝐷𝑠𝑘(𝑉[𝑖]. 𝑖𝑑ꞌ), 𝐷𝑠𝑘(𝑉[𝑖]. 𝑑ꞌ), 𝐷𝑠𝑘(𝑉[𝑖]. 𝑐ꞌ))

14. end for

15. Construct a min-heap based on randomized distances V

ꞌ[i].dꞌ, where 1≤ i ≤n and each node in the heap comprises

of (V ꞌ[i].idꞌ, V ꞌ[i].dꞌ , V ꞌ[i].cꞌ)

16. for i = 1 to k do

17. Kmin[i] ← pop the root node from the min-heap

18. end for

19. Vector Kmin is encrypted using pk such as,

20. for i = 1 to k do

21. Kminꞌ[i] ←(𝐸𝑝𝑘(Kmin[i] . 𝑖𝑑ꞌ), 𝐸𝑝𝑘(Kmin[i] . 𝑑ꞌ),

𝐸𝑝𝑘(Kmin[i] . 𝑐ꞌ))

22. end for

23. Send encrypted vector Kminꞌ to 𝐶1

On 𝐶1:

24. Receive Kminꞌ from 𝐶2 and get the de-randomized vector

vmin :

25. for i = 1 to k do

26. 𝐸𝑝𝑘(𝑖𝑑min _𝑖) =Kminꞌ[i] . 𝑖𝑑ꞌ ∗ 𝐸𝑝𝑘(𝑟)𝑁−1 mod N2

27. 𝐸𝑝𝑘(𝑑min _𝑖) =Kminꞌ[i] . 𝑑ꞌ ∗ 𝐸𝑝𝑘(𝑟)𝑁−1 mod N2

28. 𝐸𝑝𝑘(𝑐min _𝑖) =Kminꞌ[i] . 𝑐ꞌ ∗ 𝐸𝑝𝑘(𝑟)𝑁−1 mod N2

29. end for

30. So, we have the encrypted k nearest neighbours in vmin as,

31. return vmin =

{(𝐸𝑝𝑘(𝑖𝑑min _1),𝐸𝑝𝑘(𝑑min _1),𝐸𝑝𝑘(𝑐min _1)),…,

(𝐸𝑝𝑘(𝑖𝑑min _𝑘), 𝐸𝑝𝑘(𝑑min _𝑘), 𝐸𝑝𝑘(𝑐min _𝑘))}

D. Privacy Preserving Frequency Counting (PPFC) Protocol

The list of encrypted class labels of the dataset is also
outsourced to 𝐶1 along with the EDB.
V=(𝐸𝑝𝑘(𝑐1),…., 𝐸𝑝𝑘(𝑐𝑤)) denotes the encrypted class labels

list held by 𝐶1.Hence, we have definite class labels (i.e. w).
Also, at the end of PPkMD protocol, 𝐶1 holds the encrypted
class labels corresponding to the k- nearest records. Let these
class labels be denoted as, U= (𝐸𝑝𝑘(𝑐1),…., 𝐸𝑝𝑘(𝑐𝑘)). The

goal of PPFC protocol is to compute the frequency of
occurrence for each class label in EDB in privacy preserved

manner i.e. 𝐸𝑝𝑘(𝑓(𝑐𝑗)), where 1 ≤ j ≤ w.

PPSPf is another variant of the proposed PPSP protocol
used for shuffling vector 𝐺𝑖, where 1 ≤ i ≤ k, which comprises
of encrypted randomized class label difference values. Then,
the shuffled matrix Gꞌ is sent to 𝐶2. This ensures that 𝐶2 does
not learn anything about which randomized difference value in
Gꞌ corresponds to which class label. The inverted matrix I
received from 𝐶2 is then de-shuffled using the reverse
permutation protocol PPSPꞌf . Finally, the column-wise
homomorphic addition of matrix Iꞌ gives the encrypted
occurrence frequency of class label 𝑐𝑗 , where 1 ≤ j ≤ w.

Algorithm-D: PPFC (U,V) F={𝐸𝑝𝑘(𝑓(𝑐1)),… 𝐸𝑝𝑘(𝑓(𝑐𝑤))}

Requires:𝐶1 holds U= {𝐸𝑝𝑘(𝑐min _1), ..,𝐸𝑝𝑘(𝑐min _𝑘)} and V=

{𝐸𝑝𝑘(𝑐1), ..,𝐸𝑝𝑘(𝑐w)}

On 𝐶1:

1. for 1 ≤ i ≤ k

2. for 1 ≤ j ≤ w

3. 𝐺𝑖,𝑗 = 𝐸𝑝𝑘(𝑐𝑗) ∗ 𝐸𝑝𝑘(𝑐min _𝑖)
𝑁−1

4. Generate a random integer 𝑡𝑖,𝑗 ∈ ZN

5. 𝐺ꞌ𝑖,𝑗 = 𝐺𝑖,𝑗
𝑡𝑖,𝑗

6. end for

7. Gꞌi ←PPSPf (𝐺ꞌ𝑖) to shuffle all elements of 𝐺ꞌ𝑖

8. end for

9. Send shuffled matrix Gꞌ to 𝐶2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

914 | P a g e

www.ijacsa.thesai.org

On 𝐶2:

10. for 1 ≤ i ≤ k

11. for 1 ≤ j ≤ w

 if 𝐷𝑠𝑘(𝐺ꞌ𝑖,𝑗) = 0

 𝐼𝑖,𝑗 = 𝐸𝑝𝑘(1)

 otherwise, 𝐼𝑖,𝑗 = 𝐸𝑝𝑘(0)

 end if

12. end for

13. end for

14. Send matrix 𝐼 to 𝐶1

On 𝐶1:

15. for 1 ≤ i ≤ k

16. Iꞌi ←PPSPꞌf (𝐼𝑖) to de-shuffle all elements of 𝐼𝑖

17. end for

18. for 1 ≤ j ≤ w

19. F[j] ← 𝐸𝑝𝑘(𝑓(𝑐𝑗)) = ∏ 𝐼ꞌ𝑖,𝑗
𝑘
𝑖=1

20. end for

E. Privacy Preserving Max-Frequency (PPMF) Protocol

The PPFC protocol yields a vector F, that has encrypted
occurrence (counts) frequencies of all class labels of given
dataset. The objective of PPMF protocol is to determine
which these encrypted frequency values is the largest. The
class label corresponding to the largest encrypted randomized
frequency will be the final class label for the user’s query. So,
PPMF protocol can be similar to the proposed PPkMD
protocol where 𝐶1 prepares a randomized version of the vector
Fꞌ, shuffles it using another suitable variant of PPSP protocol
and sends it to 𝐶2; each element is a pair of randomized
encrypted class label and corresponding randomized encrypted

frequency <𝐸𝑝𝑘(𝑐𝑗 + 𝑟), 𝐸𝑝𝑘(𝑓(𝑐𝑗) + 𝑟) >, where 1 ≤ j ≤ w.

𝐶1 also sends the randomizing factor, r, to the querying user at
this stage. 𝐶2 decrypts the received vector and now builds a
max-heap based on the decrypted but randomized and shuffled
frequency values. Each node in the max-heap comprises of the
randomized class label and its corresponding randomized
frequency value. Since, the randomized frequency value
present at the root node of the max-heap is always the largest
value; we pop the root node from the heap to get the
maximum frequency and its corresponding class label, both
randomized. This is the final but randomized class
label, (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) for the user query. 𝐶2 sends this randomized

final class label to the querying user.

F. Privacy Preserving k-NN Classifcation (PPkC) Protocol

This protocol serves as the base protocol for performing
outsourced k-NN classification. It utilizes the above proposed
privacy preserving protocols as building blocks for classifying
user queries. The querying user is expected to encrypt all
query attributes (𝐸𝑝𝑘(𝑦1), . . . , 𝐸𝑝𝑘(𝑦𝑚)) and send it to 𝐶1. Let

us suppose that the encrypted database (EDB) at 𝐶1 is denoted
by 𝐸𝑝𝑘(X) and the encrypted user query is 𝐸𝑝𝑘(Y). With these

inputs, the PPkC protocol starts its execution.

Algorithm-E: PPkC (𝐸𝑝𝑘(X), 𝐸𝑝𝑘(Y))

(𝐸𝑝𝑘(𝑐1), . . , 𝐸𝑝𝑘(𝑐𝑘))

Requires: 𝐶1 has 𝐸𝑝𝑘(X) and receives 𝐸𝑝𝑘(Y)

1. {𝐸𝑝𝑘(𝑑1),.., 𝐸𝑝𝑘(𝑑𝑛)} PPED(𝐸𝑝𝑘(X), 𝐸𝑝𝑘(Y))

2. v= {(𝐸𝑝𝑘(𝑖𝑑1),𝐸𝑝𝑘(𝑑1),𝐸𝑝𝑘(𝑐1)),…, (𝐸𝑝𝑘(𝑖𝑑𝑛), 𝐸𝑝𝑘(𝑑𝑛),

𝐸𝑝𝑘(𝑐𝑛))}

3. vmin PPkMD (v)

4. U= {𝐸𝑝𝑘(𝑐min _1), ..,𝐸𝑝𝑘(𝑐min _𝑘)} and

5. V= {𝐸𝑝𝑘(𝑐1), ..,𝐸𝑝𝑘(𝑐w)}

6. F PPFC (U,V)

7. for 1 ≤ i ≤ w

8. F ꞌ[i]= < 𝐸𝑝𝑘(𝑐𝑖), 𝐸𝑝𝑘(𝑓(𝑐𝑖)) >

9. User receives (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) PPMF (Fꞌ)

10. With r received from 𝐶1, the user computes the final class

label as, (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) − 𝑟

At the end of PPMF protocol, the querying user receives
the final randomized class label, (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) from 𝐶2. With r

received from 𝐶1, the user de-randomizes (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) to

determine the final class label, 𝑐𝑓𝑖𝑛𝑎𝑙 .

V. PROTOCOL ANALYSIS

Although we focus on building an efficient approach for
outsourced kNN classification, in this section we also
highlight the effectiveness, security and total privacy
preservation provided by the proposed protocols. We have
guaranteed that the final result of all the proposed privacy
preserving protocols remains encrypted. Additionally, 𝐶2
works with only random and shuffled values that bear no
connection to the original data. Furthermore, all computations
performed on 𝐶2 are consistently sent back to 𝐶1 in encrypted
format. Hence, at no stage the original data is revealed to 𝐶1 or
𝐶2. The complexities of the proposed protocols employed in
the proposed PPkC protocol is presented in Table I.

TABLE I. COMPLEXITIES OF PROPOSED PROTOCOLS

Protocols PPED PPSP PPkMD PPFC

Complexity O(m logN) O(n) O(k logn) O(kwn)

A. PPED Analysis

PPED protocol is carried out with randomization to
prevent the sum of attribute-wise differences (i.e. u) from
getting revealed at 𝐶2. The sum of attribute-wise differences is
randomized using the Paillier additive property [28] at 𝐶1 and
the randomized value is sent to 𝐶2 for squaring. 𝐶2 decrypts
the randomized value, computes square of the randomized
values and then encrypts the square again before sending it to
𝐶1. 𝐶1 receives the encrypted square of randomized value and
de-randomizes the square through mathematical formulae and
homomorphic properties to get the encrypted square of the
original u value. Hence, the resulting encrypted square of u is
only available to 𝐶1. Also, the randomizing factor r is only
known to 𝐶1 so, 𝐶2 does not gain any information about the
original value of u.

Parallelization is employed in two phases; firstly for
computing the attribute-wise difference of each ith instance
and also for independently computing the n squared distances.
With parallelization, assuming ideal conditions, these

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

915 | P a g e

www.ijacsa.thesai.org

computations can be done in O(m) time for the attribute-wise
difference and O(n) time for the actual squared distance. The
de-randomizing step takes O(nlogN) time across all n
instances, N being the . So with parallelization, the overall
complexity could be reduced to O(mlogN) if the operations are
fully parallelized.

B. PPkMD Analysis

The encrypted vector v is randomized with an encrypted
random factor 𝐸𝑝𝑘(r) and then shuffled using PPSPm protocol

to get vector V at 𝐶1. 𝐶2 then builds the min-heap with the
decrypted distances but they are randomized and shuffled
distance values so, 𝐶2 does not gain any information about the
original distances and access patterns since 𝐶2 takes decisions
based on randomized and shuffled values and hence, no extra
information is leaked at 𝐶2. Once 𝐶2 determines the
randomized k nearest neighbours, 𝐶2 encrypts them and sends
to 𝐶1. Now, since paillier cryptosystem is semantically secure,
the cipher texts received by 𝐶1 are not the same as the ones
which were sent to 𝐶2. Hence, 𝐶1 cannot determine which k
distances amongst the sent n distances are received as nearest
distances. Ultimately, no knowledge is acquired by 𝐶1 and 𝐶2
about the original data during PPkMD protocol. Since, min-
heap is built with O(logn) and k minimum neighbours are to
be extracted, the overall complexity of the PPkMD is
O(klogn).

VI. EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

The various experiments were performed in Google Colab
environment with an Intel® 2 GHz system having 4 cores,
RAM of 8 GB and 3 MB Cache Size. We utilized the python
homomorphic encryption (i.e. phe) library for implementing
the Paillier cryptosystem in [28] which is required in the
proposed protocols. Existing privacy preserving solutions also
use the same cryptosystem so, the performance of the
proposed PPkN protocol can be easily compared with them.

We compare the performance of proposed PPkC protocol
with the recent and state-of-the-art work in [33], [34], [35],
[41] and [43]. The state-of-the-art privacy preserving solutions
in [33], [34] and [35] have used datasets the same UCI KDD
archive’s Car Evaluation dataset [42] in their experimentation.
To clearly showcase the improved performance of the
proposed PPkC protocol, we firstly conducted experimentation
using the same Car Evaluation dataset [42] having 1728
records and six attributes.

For extensive performance evaluation of proposed PPkC
protocol with huge dataset and comparison with the most
recent work in studies [41] and [43] we used a suitable scaled
version of the Car Evaluation dataset in experimentation
having 10000 records and six attributes. All the above
mentioned recent solutions have used different hardware
specifications while performing the performance evaluation of
their privacy preserving protocols.

We encrypted both datasets firstly keeping the key size as
512 bits and then as 1024 bits (i.e. K=512/1024), and also
varied the values for the nearest neighbours i.e. k and the

number of records i.e. n to evaluate the performance of
proposed PPkN protocol.

A. Experimental Analysis

1) Performance of proposed protocols with varying key

size (K): The below figures illustrate the execution time (in

seconds) required by each of the proposed component

protocols namely PPED, PPkMD, PPFC, PPMF along with

the total execution time taken by PPkC while using datasets

encrypted with key size (K) as 512 and 1024 and k= 5. The

execution time of PPSP is inclusive in time taken by above

mentioned protocols. The protocols are listed on the x-axis,

while the y-axis represents the execution time in seconds.

Fig. 2 illustrates the execution time required by all
protocols when the Car Evaluation dataset (dataset-1) is

encrypted with a key size of 512 and 1024 bits. It is clearly
observed that the PPED requires more time as compared to
other component protocols with relatively insignificant time
requirements.

Fig. 2. Execution time of proposed protocols with encrypted Car Evaluation

dataset (K= 512, 1024, n=1724).

Fig. 3 illustrates the execution time required by all
protocols when the scaled Car Evaluation dataset (dataset-2) is

encrypted with a key size of 512 and 1024 bits. As the number
of data records are more in this scaled dataset, the execution
time taken by all the component protocols is relatively more.
However, the growth in time required by PPkMD, PPFC,
PPMF protocols is insignificant.

Fig. 3. Execution time of proposed protocols with encrypted Scaled Car

Evaluation dataset (K= 512, 1024, n=10000).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

916 | P a g e

www.ijacsa.thesai.org

TABLE II. SUMMARY OF EXECUTION TIME (SEC) OF COMPONENT

PROTOCOLS WITH BOTH DATASETS

Protocols PPED PPkMD PPFC, PPMF
Total

(PPkC)

Dataset-2 (K= 512) 153.2 29.5 0.42 0.09 183.21

Dataset-2 (K= 1024) 360.76 63.07 1.01 0.22 425.06

Dataset-1 (K= 512) 29.3 5.1 0.07 0.01 34.48

Dataset-1 (K= 1024) 63.77 12.27 0.18 0.04 76.26

Table II shows the summary of execution time incurred by
all proposed component protocols during the user query
classification with both Car Evaluation dataset and its scaled
version having 1724 and 10000 records, respectively,
encrypted under key sizes (K) of 512 and 1024 bits.

TABLE III. DATA TRANSFERRED DURING QUERY CLASSIFICATION USING

PPKC

K (bits) Data Transferred (MB)

 k= 5 k= 10 k= 15 k= 20 k= 25

512 18.366 25.827 33.355 40.822 48.0

1024 35.587 50.217 64.834 79.474 94.224

Table III shows the data transferred (in Megabytes) during
user query classification using the proposed PPkC protocol in
the two cloud setup with the Car Evaluation dataset encrypted
under key sizes (K) 512 and 1024 bits. The table presents the
data transferred for various values of k i.e. number of
neighbours considered.

2) Performance of proposed protocols with varying

number of nearest neighbours (k): We examined the execution

time required by each of the proposed component protocols

and also the total execution time taken by PPkC algorithm

while varying values of number of neighbours (i.e. k) with

encrypted Car Evaluation dataset using key size of 512. Across

all component protocols a consistent pattern of constant

execution times is maintained as the value of k is increased

from 5 to 25. Hence, the total execution time of proposed

PPkC protocol remains almost constant when k is changed

from 5 to 25. Fig. 4 shows this merit of consistent pattern of

constant execution times for all proposed protocols while

varying k.

Fig. 4. Constant execution time of proposed protocols under varying values

of k.

TABLE IV. SUMMARY OF EXECUTION TIME (SEC) OF PROPOSED

COMPONENT PROTOCOLS UNDER VARYING VALUES OF K

 PPED PPkMD PPFC PPMF PPkC

k= 5 29.3 5.1 0.07 0.01 34.48

k= 10 29.3 5.18 0.11 0.01 34.59

k= 15 29.3 5.24 0.18 0.01 34.73

k= 20 29.3 5.35 0.29 0.01 34.95

k= 25 29.3 5.51 0.4 0.01 35.22

Table IV clearly indicates that increase in the number of
neighbours considered for query classification (i.e. k) does not
affect the execution time of proposed PPkC protocol which is
a significant achievement. On other hand, when compared
with recent privacy preserving solutions, the execution time of
protocols in [34] and [41] grows linearly along with increasing
value of k. Although the execution time of protocol in [33]
remains almost constant while varying k from 5 to 25, still the
time required is significantly more. This is discussed in detail
in the comparative analysis section.

B. Comparative Analysis

The existing recent privacy preserving solutions in [33],
[34], [35], [41] and [43] are compared with proposed PPkC
protocol. The performance of proposed PPkC protocol is
examined in terms of its execution time by varying the number
of records (n) and the number of nearest neighbours
considered (k) during the outsourced classification. For fair
analysis, the execution time of PPkC protocol is compared
with execution time of protocols in [33], [34] and [35] under
above stated varying parameters and using the UCI KDD
archive’s Car Evaluation dataset [42] having 1728 records, 6
attributes and 4 unique classes. Size of encryption the key (K)
used in [33], [34] and [35] is 1024 bits and hence, we maintain
the same in our experiment.

Additionally, for extensive performance evaluation with
much larger dataset, the comparative analysis on the execution
time of proposed PPkC protocol and that of the most recent
protocols in [41] and [43] is made under same varying
parameters while using the SMOTE [40] based scaled version
of the Car Evaluation dataset having 10000 records and 6
attributes. Size of the encryption key (K) used in [41] and [43]
is 512 bits and hence, to maintain fairness we use the same
key size in experiment with the scaled dataset.

1) Analysis with the car evaluation dataset: The state-of-

the-art prior work in [33], [34] and [35] used the Car

Evaluation dataset [42] encrypted with key size (K) of 1024

bits in their experimentations. Hence, for fairness of

comparison we have also used the same encrypted dataset in

experiments with the proposed PPkC approach. The results on

the execution time and performance of proposed PPkC

protocol under varying parameter of n and k are compared

with state-of-the-art prior work. Table V shows the execution

time required by proposed PPkC protocol as compared to

other state-of-the-art protocols when varying the nearest

neighbours i.e. k, from 5 to 25.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

917 | P a g e

www.ijacsa.thesai.org

TABLE V. EXECUTION TIME (SEC) OF PPKC AND OTHER STATE-OF-THE-
ART PROTOCOLS WITH VARYING VALUES OF K (WITH N=1724, K=1024)

 k= 5 k= 10 k= 15 k= 20 k= 25

proposed

PPkC
76.26 76.61 76.9 77.37 77.82

Park et al.

(2020) [33]
249.6 249.6 249.6 249.6 249.6

Liu et al.

(2019) [34]
181.14 375.18 560.52 728.46 923.28

Wu et al.

(2018) [35]
53.34 56.58 60.3 63.18 65.82

Fig. 5. Comparison on execution time of PPkC and existing state-of-the-art

protocols with varying k using Car evaluation dataset.

Fig. 5 shows the analysis of execution time on the
encrypted Car evaluation dataset with key size 1024 bits under
varying values k. The running time of proposed PPkC varies
from 76.26 to 77.82 seconds when the number of neighbours
are changed from 5 to 25, respectively. Since, execution time
of proposed approach remains almost constant so, we can
significantly establish that the performance of proposed PPkC
protocol is not much affected by changes in k. When k=25, the
time taken for execution by PPkC protocol is 77.82 seconds
which shows that it performs 11.86 times (i.e. 91.57 %) better
than the SKC protocol in [34], 3.21 times (i.e. 68.82 %) better
than the PkNC protocol in [33] and just 1.18 times less better
than the PPKC protocol in [35]. As indicated by Table III, the
memory usage of the PPkC protocol increases gradually with
an increase in value of k but, so is the case with the other
compared protocols. In fact, except protocol in [35] all the
other compared protocols require more memory than proposed
PPkC protocol when using key size of 1024 bits and with
varying values of k.

Table VI shows the execution time required by proposed
PPkC protocol as compared to other state-of-the-art protocols
when varying the number of records i.e. n, from 500 to 1724.

TABLE VI. EXECUTION TIME (SEC) OF PPKC AND OTHER STATE-OF-THE-
ART PROTOCOLS WHILE VARYING N (WITH K=25, K=1024)

 n= 500 n= 1000 n= 1500 n= 1724

our PPkC 22.58 45.12 67.66 77.82

Park et al. (2020) [33] 72.2 144.4 216.6 249.6

Liu et al. (2019) [34] 267.77 535.54 803.31 923.28

Wu et al. (2018) [35] 19.08 38.16 57.24 65.82

Fig. 6. Comparison on execution time of PPkC and existing state-of-the-art

protocols with varying n using Car evaluation dataset.

Fig. 6 shows the analysis of execution time on the
encrypted Car evaluation dataset with key size 1024 bits under
varied number of records i.e. n, from 500 to 1724. The
running time of proposed PPkC varies from 22.58 to 77.82
seconds when n is changed from 500 to 1724, respectively.
Since, execution time drops significantly with proposed PPkC
approach even while varying the number of records so, we can
clearly establish that the performance of proposed protocol is
much better than that of PkNC protocol and SKC protocol in
[33] and [34], respectively. When n=1724, the time taken for
execution by PPkC protocol is 77.82 seconds which shows
that it again performs 11.86 times (i.e. 91.57 %) better than
the SKC protocol in [34], 3.21 times (i.e. 68.82 %) better than
the PkNC protocol in study [33] and just 1.18 times less better
than the PPKC protocol in study [35]. However, protocol in
[35] only aims at determining the class labels corresponding to
k nearest records instead of providing the final class for user’s
query. It also reveals the k nearest class labels to the querying
user, which does not satisfy the privacy requirements as stated
in study [29].

2) Analysis with the scaled Car Evaluation dataset: In the

literature survey, we observed that the performance of many

existing privacy preserving classification protocols has

depleted when they were tested with huge datasets.

Specifically, the execution time of even the most recent

protocols in [41] and [43] grows linearly while varying the

number of records (n) due to the linear growth in

computational cost. So, for extensive performance evaluation

of proposed PPkC protocol we conducted experiments with

the SMOTE [40] based scaled version of the Car Evaluation

dataset which is a much larger dataset having 10000 records.

Table VII shows the execution time required by PPkC

protocol as compared to the most recent protocols in [41] and

[43] when varying the nearest neighbours i.e. k, from 5 to 20.

Fig. 7 shows the comparative analysis on execution time of
proposed PPkC with the most recent protocols in [41] and [43]
using the scaled Car evaluation dataset encrypted with key
size of 512 bits under varying values k. When n=10000 and
the number of neighbours are changed from 5 to 20, the
running time of proposed PPkC varies from only 183.21 to
184.68 seconds, respectively whereas the running time of [41]
ranges from 60.32 to 202.12 seconds. Since, execution time of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

918 | P a g e

www.ijacsa.thesai.org

proposed approach remains almost constant with scaled
dataset also, we can significantly establish that even with huge
datasets the performance of proposed PPkC protocol is not
much affected when k is increased. Same is the case with the
protocol in [43], its run time is also almost independent of k.
However, the runtime of PPkC protocol is nearly 5 times
better than that of protocol in [43]. When k=20, the time taken
for execution by proposed PPkC protocol is 184.68 seconds
which shows that it performs 9.96 % better than the protocol
in study [41]. Also, it is worth observing that the execution
time of protocol in [41] grows linearly with increasing value
of k whereas it remains almost constant for proposed PPkC
protocol across all values of k.

TABLE VII. EXECUTION TIME (SEC) OF PPKC AND RECENT EFFICIENT

PROTOCOLS WITH VARYING VALUES OF K (K= 512)

with n= 10000 with n= 6000

proposed

PPkC

Kim et al.

(2022) [41]

proposed

PPkC

Wang et al.

(2024) [43]

k= 5 183.21 60.32 103.24 600.26

k= 10 183.93 98.22 104.53 600.33

k= 15 184.32 135.87 104.77 601.67

k= 20 184.68 202.12 104.94 602.88

Fig. 7. Comparative analysis on execution time with varying k using the

scaled dataset.

Table VIII shows the execution time required by proposed
PPkC protocol as compared to the most recent protocols in
[41] and [43] when varying the number of records i.e. n, from
2000 to 10000.

TABLE VIII. EXECUTION TIME (SEC) OF PPKC AND RECENT EFFICIENT

PROTOCOLS WITH VARYING VALUES OF N (WITH K=10, K= 512)

 Proposed PPkC
Kim et al.

(2022) [41]

Wang et al.

(2024) [43]

n= 2000 39.12 22.44 240

n= 5000 87.1 56.11 480

n= 10000 183.93 98.22 1200

Fig. 8 shows the analysis of execution time of proposed
PPkC protocol with the most recent protocols in [41] and [43]
while using the scaled Car evaluation dataset encrypted with key
size of 512 bits under varied number of records i.e. n, from
2000 to 10000. The running time of proposed PPkC varies

from 39.12 to 183.93 seconds when n is changed from 2000 to
10000, respectively. Since, execution time drops significantly
with proposed PPkC approach while using the scaled dataset
also so, we can clearly establish that the performance of
proposed protocol is much better than that of the protocol in
[43]. When n=10000, the time taken for execution by
proposed PPkC protocol is 183.93 seconds which shows that it
again performs 6.52 times (i.e. 84.67 %) better than the
protocol in [43] and just 1.87 times less better than the
protocol in [41] with increasing value of n.

Fig. 8. Comparative analysis on execution time with varying n using the

scaled dataset.

VII. CONCLUSION AND FUTURE SCOPE

In this paper, we have proposed efficient privacy-
preserving kNN classification approach, named as PPkC
protocol and its component protocols that leveraging partial
homomorphic encryption (PHE). Our endeavor focused on
demonstrating the feasibility and efficacy of PHE in
safeguarding sensitive data while allowing for kNN
classification in outsourced environments.

First and foremost, it is noteworthy that proposed
protocols are preserving privacy of user’s query, dataset
values and the final class label. The protocol analysis shows
that no information is ever disclosed and no knowledge can be
potentially gained by both the clouds (𝐶1 and 𝐶2) during
execution of any of the component protocols for performing
the outsourced k-NN classification on encrypted data. In the
protocol analysis and implementation, we underscore that the
proposed enhanced privacy preserving component protocols
fully adhere to the privacy requirements outlined earlier in this
paper. Notably, both cloud servers, 𝐶1𝑎𝑛𝑑 𝐶2, are kept
oblivious to the identities of the database records associated
with the computed nearest neighbours of the user query.
Moreover, the intermediate data available to either of the
clouds consist of encrypted random values or random numbers
only. Also, the privacy preserving shuffling protocol
eliminates the risk of 𝐶2 understanding the data accessing
patterns.

Furthermore, we explored the possibility of using the heap
structure firstly to determine the k minimum distances and
their corresponding class labels and then for finding the class
label with maximum occurrence frequency. With this we were
able to significantly reduce the computational overhead
involved in classifying the encrypted user’s query on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

919 | P a g e

www.ijacsa.thesai.org

encrypted data and hence enhanced the efficiency of the
overall PPkC protocol. This approach proved instrumental in
optimizing performance with real-world datasets and also
particularly in scenarios involving scaled datasets.

Through the experimental investigations, we have drawn
several noteworthy conclusions. In the comparative analysis
on execution time using the Car evaluation dataset and its
scaled version encrypted with key size 1024 bits and 512 bits,
respectively it is observed that the running time of proposed
PPkC remains almost constant while varying values of k from
5 to 25. Even while varying n the execution time drops
significantly with proposed PPkC approach with both the
dataset. Hence, we established that the performance of
proposed PPkC protocol is independent of variation in k and is
much better than that of other recent protocols while varying k
and n.

In our future work, we plan to utilize fully homomorphic
encryption (FHE) schemes for working in an encrypted
environment since it gives access to a wide range of
operations thereby minimizing communication costs incurred
in a two-cloud setup. However, its computational overhead
must be considered as well and efforts must be taken to
improve the same.

REFERENCES

[1] D. Zissis and D. Lekkas, “Addressing Cloud Computing Security
Issues,” Future Generation Computer Systems, Vol. 28, No. 3, pp. 583-
592, 2012.

[2] M. Zhang, Y. Zhang, Y. Jiang and J. Shen, "Obfuscating EVES
Algorithm and Its Application in Fair Electronic Transactions in Public
Clouds," in IEEE Systems Journal, vol. 13, no. 2, pp. 1478-1486, June
2019.

[3] X. Guo, Y. Li, Y. Jiang, J. Wang, J. Fang, “Privacy-Preserving k-
Nearest Neighbor Classification over Malicious Participants in
Outsourced Cloud Environments,” in Cryptography, vol. 7, no. 4, p. 59,
2023.

[4] R. Barona and E. A. M. Anita, "A survey on data breach challenges in
cloud computing security: Issues and threats," 2017 International
Conference on Circuit ,Power and Computing Technologies (ICCPCT),
Kollam, India, 2017, pp. 1-8, doi: 10.1109/ICCPCT.2017.8074287.

[5] M. Zhang, Y. Chen and J. Lin, "A Privacy-Preserving Optimization of
Neighborhood-Based Recommendation for Medical-Aided Diagnosis
and Treatment," in IEEE Internet of Things Journal, vol. 8, no. 13, pp.
10830-10842, July, 2021.

[6] H.J. Kim, H. Lee, Y. K. Kim and J.W. Chang, “Privacy-preserving k NN
query processing algorithms via secure two-party computation over
encrypted database in cloud computing,” in The Journal of
Supercomputing, vol. 78, no. 7, pp.9245-9284, 2022.

[7] D. Oh, I. Kim, K. Kim, S. M. Lee and W.W. Ro, “Highly secure mobile
devices assisted with trusted cloud computing environments,” in ETRI
Journal, vol. 37, no. 2, pp.348-358, 2015.

[8] J. Raja and M. Ramakrishnan, “Confidentiality-preserving based on
attribute encryption using auditable access during encrypted records in
cloud location,” in The Journal of Supercomputing, vol. 76, no. 8,
pp.6026-6039, 2020.

[9] A. Ahmad, M. Ahmad, M. A. Habib, S. Sarwar, J. Chaudhry, M. A.
Latif, S. H. Dar, and M. Shahid, “Parallel query execution over
encrypted data in database-as-a-service (DaaS),” in The Journal of
Supercomputing, vol. 75, pp.2269-2288, 2019.

[10] Y. Zheng, R. Lu, S. Zhang, J. Shao and H. Zhu, "Achieving Practical
and Privacy-Preserving kNN Query over Encrypted Data," in IEEE
Transactions on Dependable and Secure Computing, (Early Access), pp.
1-13, March, 2024.

[11] A. Alabdulkarim, M. Al-Rodhaan, T, Ma, Y. Tian, “PPSDT: A Novel
Privacy-Preserving Single Decision Tree Algorithm for Clinical
Decision-Support Systems Using IoT Devices” in Sensors, vol. 19, no.1,
2019.

[12] P. Centonze, “Security and Privacy Frameworks for Access Control Big
Data Systems,” in Computers, Materials & Continua, vol. 59, no. 2, pp.
361-374, 2019.

[13] D. Patel, K. Srinivasan, C. Y. Chang, T. Gupta and A. Kataria,
“Network anomaly detection inside consumer networks—a hybrid
approach,” in Electronics, vol. 9, no. 6, pp.923, 2020.

[14] M. M. Salim,I. Kim, U. Doniyor, C. Lee and J. H. Park, “Homomorphic
encryption based privacy-preservation for IoMT,” in Applied Sciences,
vol. 11, no. 18, p.8757, 2021.

[15] N. B. A. Ghani, M. Ahmad, Z. Mahmoud and R. M. Mehmood, “A
Pursuit of Sustainable Privacy Protection in Big Data Environment by an
Optimized Clustered-Purpose Based Algorithm,” in Intelligent
Automation & Soft Computing, vol. 26, no. 6, 2020.

[16] M. L. Yiu, G. Ghinita, C. S. Jensen and P. Kalnis, “Enabling search
services on outsourced private spatial data,” in The VLDB Journal, vol.
19, pp.363-384, 2010.

[17] A. Boldyreva, N. Chenette, Y. Lee and A. O’neill, “Order-preserving
symmetric encryption,” in Advances in Cryptology-EUROCRYPT
2009: 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany,
Proceedings 28, pp. 224-241, Springer Berlin Heidelberg, 2009.

[18] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving
encryption revisited: Improved security analysis and alternative
solutions,” in Advances in Cryptology–CRYPTO 2011: 31st Annual
Cryptology Conference, CA, USA, Proceedings 31, pp. 578-595,
Springer Berlin Heidelberg, 2011.

[19] Y. Qi and M. J. Atallah, "Efficient Privacy-Preserving k-Nearest
Neighbor Search," 2008 The 28th International Conference on
Distributed Computing Systems, Beijing, China, pp. 311-319, 2008.

[20] M. Shaneck, Y. Kim and V. Kumar, “Privacy preserving nearest
neighbor search,” in Machine Learning in Cyber Trust: Security,
Privacy, and Reliability, Springer US, pp. 247-276, 2009.

[21] J. Vaidya and C. Clifton, “Privacy-preserving top-k queries,” in 21st
International Conference on Data Engineering (ICDE'05), IEEE, pp.
545-546, April, 2005.

[22] H.J. Kim, Y.K Kim, H.J. Lee and J.W. Chang, “Privacy-Preserving Top-
k Query Processing Algorithms Using Efficient Secure Protocols over
Encrypted Database in Cloud Computing Environment,” in Electronics,
vol. 11 no. 18, p.2870, 2022.

[23] W. K. Wong, D. W. L. Cheung, B. Kao and N. Mamoulis, “Secure kNN
computation on encrypted databases,” in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pp. 139-
152, June, 2009.

[24] H. Hu, J. Xu, C. Ren and B. Choi, “Processing private queries over
untrusted data cloud through privacy homomorphism,” 2011 IEEE 27th
International Conference on Data Engineering, Hannover, Germany,
pp. 601-612, 2011.

[25] Y. Zhu, R. Xu and T. Takagi, “Secure k-NN computation on encrypted
cloud data without sharing key with query users,” in Proceedings of the
2013 international workshop on Security in cloud computing, pp. 55-60,
May, 2013.

[26] Y. Elmehdwi, B. K. Samanthula and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environments,” in
2014 IEEE 30th International Conference on Data Engineering, pp.
664-675, March, 2014.

[27] H. I. Kim, H. J. Kim and J. W. Chang, “A secure kNN query processing
algorithm using homomorphic encryption on outsourced database,” in
Data & Knowledge Engineering, vol. 123, pp.101602, 2019.

[28] P. Paillier, “Public key cryptosystems based on composite degree
residuosity classes,” in Eurocrypt, pp. 223–238, 1999.

[29] B. K. Samanthula, Y. Elmehdwi, and W. Jiang, “k- Nearest Neighbor
Classification over Semantically Secure Encrypted Relational Data,” in
IEEE Transactions on Knowledge and Data Engineering, vol. 27, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 11, 2024

920 | P a g e

www.ijacsa.thesai.org

[30] B. K. Samanthula, Y. Elmehdwi, and W. Jiang, “Secure k- Nearest
Neighbor Query over Encrypted Data in Outsourced Environment,” in
IEEE ICDE, pp. 664- 675, 2014.

[31] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in ACM
STOC, pp. 169–178, 2009.

[32] Y. Zhu, X. Li, J. Wang, and J. Li, “Cloud-assisted secure biometric
identification with sub-linear search efficiency,” in Soft Computing, vol.
24, p. 5885–5896, 2019.

[33] J. Park and D. H. Lee, “Parallelly running k-nearest neighbor
classification over semantically secure encrypted data in outsourced
environments,” in IEEE Access, vol. 8, p. 64617–64633, 2020.

[34] L. Liu, J. Su, X. Liu, R. Chen, K. Huang, R. H. Deng, and X. Wang,
“Toward highly secure yet efficient knn classification scheme on
outsourced cloud data,” in IEEE Internet of Things Journal, vol. 6, pp.
9841–9852, 2019.

[35] W. Wu, J. Liu, H. Rong, H. Wang, and M. Xian, “Efficient k-nearest
neighbor classification over semantically secure hybrid encrypted cloud
database,” in IEEE Access, vol. 6, pp. 41771–41784, 2018.

[36] W. Wu, U. Parampalli, J. Liu, and M. Xian, “Privacy preserving
knearest neighbor classification over encrypted database in outsourced
cloud environments,” in World Wide Web, vol. 22, p. 101–123, 2018.

[37] Gaikwad VS, Walse KH, Thakare VM, “Review of the state-of-the-art
methods for privacy preserved classification in outsourced

environment,” in Proc. Int. Conf. Innovative Trends in Information
Technology (ICITIIT), Kottayam, India, Feb. 2020, pp 1–6.

[38] J. Du and F. Bian, “A privacy-preserving and efficient k-nearest
neighbor query and classification scheme based on k-dimensional tree
foroutsourced data,” in IEEE Access, vol. 8, pp. 69333–69345, 2020.

[39] Z. Li, H. Wang, S. Zhang, W. Zhang and R. Lu, “SecKNN: FSS-Based
Secure Multi-Party KNN Classification Under General Distance
Functions,” in IEEE Transactions on Information Forensics and
Security, vol. 19, pp.1326-1341, 2024.

[40] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” in Journal of
Artificial Intelligence Research, vol. 16, p. 321–357, 2002.

[41] Y. K. Kim, H. J. Kim, H. Lee and J.W. Chang, “Privacy-preserving
parallel kNN classification algorithm using index-based filtering in
cloud computing,” in PLoS One, vol. 17, no. 9, 2022.

[42] B. Z. M. Bohanec. (1997). Car Evaluation Data Set, UCI Machine
Learning Repository. Accessed: May. 24, 2023. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation.

[43] H. Wang, Y. Zhao, Z. Cai and H. Zhao, “Privacy-Preserving kNN
Classification Query Scheme for Encrypted Data in Outsourced
Environments for Smart Grid,” 4th International Conference on
Computer Communication and Artificial Intelligence (CCAI), Xi'an,
China, 2024, pp. 162-169.

