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Abstract—In cloud environment context, organizations often 

rely on the platform for data storage and on demand access. Data 

is typically encrypted either by the cloud service itself or by the 

data owners before outsourcing it to maintain confidentiality. 

However, when it comes to processing encrypted data for tasks 

like kNN classification; existing approaches either prove to be 

inefficient or delegate portion of the classification task to end 

users or do not satisfy all the privacy requirements. Also, the 

datasets used in many existing approaches to check the 

performance seem to have very less attributes and instances; but, 

it is observed that as dataset size increases, the efficiency and 

accuracy of many privacy-preserving approaches reduce 

significantly. In this work, we propose a set of privacy preserving 

protocols that collectively perform the kNN classification with 

encrypted data in outsourced semi-honest-cloud environment 

and also address the stated challenges. This is accomplished by 

building an efficient randomization-based approach called PPkC 

that leverages homomorphic cryptosystem properties. With 

protocol analysis we prove that the proposed approach satisfies 

all privacy requirements. Finally, with extensive experimentation 

using real-world and scaled dataset we show that the 

performance of proposed PPkC protocol is computationally 

efficient and also independent of the number of nearest 

neighbours considered. 
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using encrypted data; randomization; k- nearest neighbours 

I. INTRODUCTION 

The progressive paradigm of information technology 
known as cloud computing provides the ability to deliver a 
variety of computing services including processing power, 
storage, and application platform, on demand. However, 
security has consistently posed a significant barrier to the 
general uptake of cloud computing technologies [1], [2]. The 
problem is further exacerbated by cloud computing service 
providers’ inaccurate reporting of security flaws [3], [4], [5]. 
Cloud based services have raised the need to protect data 
privacy in outsourced databases has become a focal point of 
research. As discussed in study [6], [7], [8] and [9] since, a 
data owner (DO), contracts out the management of his or her 
databases to a cloud, the DO can lower database management 
costs by utilizing the cloud’s resources as needed. Owing to 
the diverse range of users the dataset they offer encompasses 
multiple ranges of categories including personal health status 
details [10], back-office user database information [11], email 

information [12] as well as additional information about 
individual privacy or company trade secrets [13], [14], [15]. 
To safeguard the original data, access patterns as well as 
queries, research has been done on secure query processing 
over an encrypted database. Earlier approaches in [16], [17], 
[18], [19], [20] and [21] outsource plain texts to a cloud and 
alter them with their substituted data. Nonetheless, due to their 
vulnerability to different types of attacks, these earlier 
strategies are unable to fully protect both data as well as 
queries [22]. 

Consider a scenario where a hospital stores its encrypted 
patient database on the cloud for data mining tasks. When a 

doctor seeks to ascertain a patient’s symptoms for diagnosis, 

they must submit a query containing highly personal 
information. To protect the patient’s data privacy, cloud must 
be queried with only the encrypted query data. Moreover, any 
anomalies in cloud activity could reveal data access patterns, 
despite encryption. Therefore, maintaining privacy of involved 
data is paramount when performing classification tasks on 
encrypted data in an outsourced environment like the cloud. 

Previously many approaches have been introduced to 
address this challenge, however, either the computation cost 
required to process the queries turned out to be inefficient or 
privacy requirements were not completely fulfilled. The 
previous methodologies predominantly relied on datasets with 
integer values, limiting their applicability to a narrow range of 
datasets; however, real-world datasets typically encompass a 
broader spectrum, often comprising floating-point values. 
Moreover, the pattern of accessing the data during k-nearest 
neighbours (k-NN) algorithm is also not safeguarded in [23], 
[24], [25] and [16]. The privacy-preserving algorithms in [26] 
and [27] conceal data access patterns while ensuring privacy 
of outsourced databases as well query. However, they have a 
high query processing cost as discussed in study [6]. 

We propose set of protocols that jointly address the 
privacy-preserving k-nearest neighbours outsourced 
classification issue with the assumption of the process of 
classification along with encrypted data is held in the cloud 
environment. The focus in this paper is only specifically on 
creating the privacy-preserving k-nearest neighbor technique, 
since k-NN is a popular and most suitable classifier for this 
work. 
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A. Problem Definition 

In this paper, we assume a 'm' dimensional database is 
possessed by a data holder containing total instances of size 
'n'. 0th attribute serves as the record identifier (I), while the mth 
attribute represents the class label (c). The data holder 
encrypts the database attribute by attribute to get 𝐸𝑝𝑘(𝑡𝑖,𝑗) 

which denotes the encrypted value of a record, where 't 
'represents a tuple, 'i' ranges from 1 to 'n', and 'j' ranges from 0 
to 'm'. 

𝐸𝑝𝑘 is the encryption function of partial homomorphic 

encryption in [28]. After encryption, the encrypted database is 
sent to the cloud. After this the data holder doesn’t get 
involved in any of the further privacy-preserving classification 
steps. 

Authentic users can send encrypted queries 𝐸𝑝𝑘(Q)= 

(𝐸𝑝𝑘(𝑞1), … , 𝐸𝑝𝑘(𝑞𝑚−1)) to the cloud to obtain resultant 

encrypted class label, denoted as 𝐸𝑝𝑘(𝑐𝑞). 

B. Our Contributions 

We have proposed set of protocols that execute in a two-
cloud setup to jointly address the issue of preserving privacy 
while classifying user’s encrypted query using outsourced 
encrypted data. The protocols are for k-nearest neighbours 
classification algorithm. The proposed approach offers 
significantly reduced computational costs by utilizing parallel 
computing, so as to form more practical grounds for 
classification of encrypted data. Following are some 
requirements for privacy preserved outsourced classification: 

 The user’s query must stay encrypted throughout the 
entire classification task, ensuring it is not disclosed to 
the cloud. 

 The original contents of the database and any 
intermediate computations must remain hidden from 
the cloud. 

 The records that correspond to the k-nearest neighbours 
of the user’s query should be kept secret from both the 
cloud and the user. 

 Only the final class label should be disclosed to the 
user. 

This work is inspired by the research of Samanthula, 
Elmehdwi, and Jiang [29], [30], focusing on enhancing the 
efficiency of the related sub-protocols. As indicated in [29] 
regarding potential enhancements to the efficiency of the 
SMINn protocol, the attention in this work is directed towards 
enhancing execution time needed by it. Paillier cryptosystem 
[28] faces limitations when confronted with negative values 
resulting from Paillier addition. This challenge is particularly 
prominent if there are negative values while computing the 

encrypted Euclidean distance. It’s noteworthy to mention 

that in the proposed enhanced set of protocols accomplish all 
aforementioned requirements. The cloud remains oblivious to 
which database entries align with the nearest neighbours, and 
any intermediate data visible to the cloud consists solely of 
either encrypted or randomized values. Additionally, the 
resultant label remains undisclosed to both clouds. 

The rest of this paper is organized as follows. We provide 
literature survey of state-of-the-art privacy preserving 
protocols in Section II. The primitives for building proposed 
approach are described in Section III. We describe the 
methodology and our proposed privacy preserving PPkC 
protocol and the sub-protocols as its building blocks along 
with algorithms in Section IV and in Section V, we explain the 
privacy analysis of these sub-protocols. In Section VI, we 
provide the experimental results of our proposed PPkC 
protocol using standard and scaled datasets and its 
comparative analysis with state-of-the-art privacy preserving 
protocols. We finally conclude this work in Section VII. 

II. LITERATURE SURVEY 

In scenarios where queries for classification are executed 
on the cloud, the foremost and most critical requirement is to 
hide query details from cloud. 

It is important to note that data mining operations can be 
conducted on encrypted data with relatively less effort using 
fully homomorphic encryption (FHE) introduced by Gentry et 
al. (2009) [31]. This cryptosystem allows arbitrary functions 
to be performed on encrypted data without decryption. 
However, FHE is computationally intensive, making it 
impractical for handling real-time classification requests. 

Handling queries on encrypted data without the cloud 
decrypting it poses a significant challenge. The work by 
Samanthula et al. (2014) [30] outlines a collection of protocols 
designed to jointly solve the k-nearest neighbours (k-NN) 
query issue within an encrypted database, where both the data 
and the classification tasks are delegated to the cloud. As 
described in study [30], the objective of the secure kNN 
protocol is to find the top k records closest to the user's query 
while keeping all details hidden from the cloud. However, in 
this approach, the SkNN protocol in [30] results in the cloud 
being exposed to intermediate data, such as the calculated 
distance values and the subsequently determined k smallest 
distance values. In addition, the records associated with the k 
nearest neighbours of the user query are disclosed to the cloud 
and also exposed to the user. This again compromises the 
privacy of the database entries involved in the classification 
process. 

According to Samanthula et al. (2015) in [29] ensuring 
privacy in k nearest neighbours classification is more 
challenging than running basic kNN queries on encrypted 
data. This complexity stems from the requirement that the k-
nearest neighbours identified during the classification process 
must remain confidential from querying user and cloud. 

Protocol presented in study [29] overlooks the issue of 
access patterns, which is a critical privacy concern for users. 
While the protocols in study [30] introduce a secure method 
for k nearest neighbours classification on encrypted data that 
safeguards data and user query privacy, they fail to conceal 
the data access patterns. Samanthula et al., in [29], expanded 
on their previous work from study [30] by introducing the 
PPkNN protocol, offering a new approach to the privacy 
preserved k-nearest neighbours classification issue. 

The k nearest neighbours remain hidden from both the user 
and cloud in the PPkNN protocol [29]. Secure Minimum 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 11, 2024 

910 | P a g e  

www.ijacsa.thesai.org 

protocol (SMIN) in study [30] is used to determine the nearest 
neighbours in a privacy preserved way. As proposed by 
Samanthula et al. in [29], the SMIN sub-protocol consumes 
nearlt 67% of the total processing time taken by the PPkNN 
protocol, which is significantly high and hence impractical in 
real-time scenario. So, the prevailing obstacle in any 
outsourced privacy preserving classification approach is to 
tackle this excess processing time which is caused due to the 
fact that protocols have to work upon encrypted values. A 
reduction in overall computational cost would bring even 
practical solution for the outsourced privacy preserving 
classification tasks. 

As mentioned by Zhu et al. (2020) in [32], conventional 
privacy preserving approaches for kNN classification induce 
huge computational cost since operations are purely conducted 
on encrypted values. Park et al. (2020) in [33] have proposed 
an efficient version of the Samanthula et al.’s (2015) work in 
[29] by designing the PkNC protocol which executes its 
component protocols in parallel to find the class label. 

Experimental results depict the gradual rise in execution 
time of the PkNC protocol. However, it decreases 
substantially regardless of k (the number of nearest 
neighbours). But, the primary drawback of this protocol 
emerges as the dataset increases. The execution time rises 
again in linear manner with increasing instances in dataset, 
largely because of the practical limitations on threading for 
parallel computation. Liu et al. (2020) [34] have investigated 
training of decision trees in outsourced environment. They 
asserted that encrypted dataset cannot be divided by the cloud 
based on best attribute and hence, they have proposed a new 
method which is splitting-free decision tree training. 

However, the prominent defining factor is that problem 
domain of this work deals with k-NN classification, which 
does not require a separate training phase that is needed for 
decision tree classification. Also, the scheme proposed by the 
authors uses an additive secret-sharing method for privacy 
preservation. This induces more computational cost with the 
inclusion of share reconstruction. Moreover, experimentations 
show that the designed protocols’ cost of communication and 
computation rises along with length of vector. Noteworthy 
observation is that protocols in study [34] were evaluated on 
relatively small datasets sizes, containing 24, 100, 120, and 
958 instances, respectively. The protocols proposed in study 
[35] and [36] are more efficient than the pioneer protocol in 
[29], but they result in class labels corresponding to k nearest 
records instead of providing the final class of query. Thus, this 
is not the exact expected result for outsourced privacy-
preserving kNN classification issue [37]. It also reveals the k 
nearest class labels to the querying user, which does not 
satisfy the privacy requirements as stated in study [29]. 
Moreover, it cannot protect all the intermediate information. 
The distribution of the inner products, which is used to 
describe the distance between two vectors like the Euclidean 
distance, is leaked to one of the cloud servers. 

Examining the proposed scheme for a variety of datasets is 
an important experimental step toward deciding the range of 
classification tasks that potentially can be performed by any 
privacy-preserving approach. Until now, all of the existing 

schemes have experimented with only integer datasets (i.e. 
they can handle only integer values). This is the reason that in 

[38], Du et al. scheme’s accuracy is not good enough for the 

real number datasets. In fact, the accuracy of this scheme 
severely drops with this Heart Disease dataset. 

A privacy-preserving k-NN query scheme (QS) based on a 
secure multi-party computation mechanism was modeled by 
Xian Guo et al. in [3] to address security concerns when 
malicious attackers control the cloud and query users. This 
method showed that the scheme has a certain degree of 
feasibility and reliability. Furthermore, this method showed a 
better solution for privacy protection and security. However, a 
privacy-preserving k-NN query scheme was limited in real-
world applications. 

Hyeong-Jin Kim et al. in [6] implemented a privacy 
preserving k-NN query processing algorithm (QPA) via secure 
two-party computation based on encrypted data. In terms of 
query processing cost, the performance of the model was 
better than the existing methods. Nevertheless, the model did 
not solve other types of queries including Top-k and k-NN 
classification due to low-dimensional data. In addition, this 
model required increased computational cost. Developing 
high-dimensional data space requires a data dimensionality 
reduction technique which led to a challenging task. 

Zhi Li et al. [39] presented a function secret sharing (FSS) 
based secure multi party kNN classification scheme 
(SecKNN). For secure computations, the presented scheme 
offered low computation and communication cost. The 
implementation of FSS reduced lot of computational 
overhead. Nonetheless, the deployment of the scheme on real 
time applications is limited. 

A privacy-preserving kNN query scheme (QS) was 
employed by Yandong Zheng et al. [10] to return accurate 
query results and high query efficiency. The scheme achieved 
low computation cots and the max-heap accelerated the query 
efficiency. However, the kNN query scheme leaked the 
relative proximities of various data records. 

Hyeong-Jin Kim et al. [22] employed a new Top-k query 
processing algorithm based on a homomorphic encryption 
system that is efficient and provides security also. Compared 
with the existing methods, the Top-k algorithm achieved more 
times better performance concerning query processing time. 
However, this model was only performed in specific privacy-
preserving data mining algorithms. 

III. PRIMITIVES 

A. Synthetic Minority Over-sampling Technique (SMOTE) 

SMOTE, introduced by Chawla et al [40] in 2002, 
addresses imbalanced class issues in machine learning. By 
synthesizing minority class samples through interpolation 
among existing instances, it counters bias favoring majority 
classes. Randomly selecting instances, it identifies k nearest 
neighbours and generates synthetic examples along the 
connecting line segments. This method improves the capacity 
of classifier for making accurate predictions by providing 
robust coverage of the minority class space. SMOTE 
generates synthetic data points, reducing model bias towards 
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the majority class. Particularly beneficial for imbalanced 
datasets where the minority class is underrepresented. 
Interpolation among existing minority class instances 
maintains diversity. Contrasts with simpler methods like 
random oversampling that may lead to overfitting. SMOTE 
introduces new instances near original minority class data 
points. Synthetic samples serve as plausible representations, 
reducing overfitting risk and aiding model generalization. 

B. Paillier Cryptosystem 

Paillier cryptosystem [28] is additively homomorphic and 
allows calculations upon encrypted values directly, 

eliminating the requirement to decrypt. It’s extensively 

employed in safeguarding privacy, especially in situations 
requiring the secure processing of sensitive information while 
maintaining confidentiality. This scheme is capable of 
providing semantic security. Fundamentally, Paillier 
encryption operates on principles of modular operations and 
large prime numbers. Its security hinges on computing 
difficulty of factoring the product of two large prime numbers. 

Consider Epk as encryption function associated with a 
public key pk represented by (N, g), where N is the product of 
two large prime numbers, and g is a generator in 𝑍𝑁2

∗ . 

Similarly, Dsk is the decryption function corresponding to the 
secret key sk. Following properties of Paillier encryption 
scheme [28] withstand for any two plaintext values a and b 
belonging to 𝑍𝑁: 

1) Homomorphic addition: It provides the addition 

operation on encrypted values, producing a sum which is also 

encrypted. 

𝐷𝑠𝑘 (𝐸𝑝𝑘(𝑥 + 𝑦)) =  𝐷𝑠𝑘(𝐸𝑝𝑘(𝑥) ∗ 𝐸𝑝𝑘(𝑦) 𝑚𝑜𝑑 𝑁2)   (1) 

2) Scalar multiplication homomorphism: It provides 

multiplication operation x*y and yields 𝐸𝑝𝑘(x*y) when an 

encrypted value 𝐸𝑝𝑘(x) is raised to the power with a scalar 

value y. 

𝐷𝑠𝑘 (𝐸𝑝𝑘(𝑥 ∗ 𝑦)) =  𝐷𝑠𝑘(𝐸𝑝𝑘(𝑥)𝑦𝑚𝑜𝑑 𝑁2)         (2) 

IV. METHODOLOGY FOR PRIVACY PRESERVED 

CLASSIFICATION 

This section elaborates on the operations of several sub-
protocols that serve as the foundational components for 
enhancing the efficiency of computing the k nearest 
neighbours. By performing all operations on Cloud Server 1 
(𝐶1) and utilizing Cloud Server 2 (𝐶2) for specific tasks with 
randomized and shuffled data, a robust privacy-preserving 

architecture can be established. As shown in Fig. 1, we 

operate within a genuine-but-curious scenario, where the two 
involved cloud platforms 𝐶1and 𝐶2 are non-colliding and 
adhere strictly to the protocol specifications. 𝐶2 hosts sk 
(secret key) and does not share it with anyone whereas 𝐶1 , 𝐶2 
and the querying user know the public key pk. 

User data is encrypted and stored securely on 𝐶1. kNN 
operations, including distance calculation and classification, 
are performed entirely on 𝐶1, ensuring that sensitive 
information remains within a single secure environment. 

 
Fig. 1. Two cloud architecture setup. 

For operations requiring additional computational 
resources, such as multiplication or comparison, 𝐶1sends 
encrypted data in a randomized format to 𝐶2. This randomized 
data prevents the exposure of sensitive information during the 
transmission and execution of these operations on 𝐶2. Upon 
receiving the encrypted data, 𝐶2 performs the necessary 
operations and returns the results to 𝐶1. The results are de-
randomized on 𝐶1, ensuring that the true outcomes are 
obtained without compromising on data privacy and 
confidentiality. 

The utilization of kNN within this two-cloud architecture 
facilitates privacy-preserving data mining operations in cloud 
environments. By encrypting data and performing all 
encrypted operations on 𝐶1, sensitive information remains 
protected. Role of 𝐶2 is specific to performing operations on 
randomized and shuffled data therefore, minimizing the risk of 
data breaches and unintended knowledge gain. The secure 
interaction between 𝐶1and 𝐶2 ensures that privacy is 
maintained throughout the outsourced classification process. 

A. Privacy Preserving Euclidean Distance Protocol 

Encrypted squared Euclidean distance is computed by this 
protocol. These encrypted distances are determined by 
computing difference between an encrypted user query, 
𝐸𝑝𝑘(𝑞)  and each encrypted dataset instance, denoted as 

𝐸𝑝𝑘(𝑡𝑖). Here, i is between 1 and n, and n represents total 

instances in dataset. Both 𝐸𝑝𝑘(𝑡𝑖) and 𝐸𝑝𝑘(𝑞) have m number 

of attributes. 𝐶2 holds sk (secret key) and does not share it 
with anyone where as 𝐶1 , 𝐶2 and the querying user know the 
public key pk. 

The protocol employs parallelization via multiprocessing 
to expedite results. Additionally, it employs randomization for 
all intermediate operations necessitating interactions with 𝐶2. 
In this process, the encrypted dataset values are randomized 
with an encrypted random number using the Paillier additive 
property [28], and the obtained result is later de-randomized. 
This approach guarantees that even if certain data points 
undergo decryption on 𝐶2, they are presented in a randomized 
manner, thereby preventing complete exposure of any data 
point to 𝐶2. 

Algorithm-A: PPED(𝐸𝑝𝑘(X),𝐸𝑝𝑘(Y)){𝐸𝑝𝑘(𝑑1),.., 𝐸𝑝𝑘(𝑑𝑛)} 

Require: 𝐶1 has 𝐸𝑝𝑘 (X) and 𝐸𝑝𝑘 (Y); 𝐶2has sk 

       On 𝐶1: 

1. for i = 1 to n do 

2.   for j = 1 to m do 

3.      𝐸𝑝𝑘 (xij − yj) ←𝐸𝑝𝑘 (xij) * 𝐸𝑝𝑘 (yj) N−1 mod N2  
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        (parallelization is used to compute attribute-wise      

        differences concurrently) 

 

4.    end for 

5.   Generate random number r ∈ ZN 

6.   u ← ∑𝑗=1
𝑚 𝐸𝑝𝑘 (xij − yj)  

7.   send R← u * 𝐸𝑝𝑘 (r) mod N2  to C2 

       On 𝐶2: 

8.    uꞌ ←𝐷𝑠𝑘(𝑅) 

9.    v ←𝑢ꞌ ∗  𝑢ꞌ  mod N 

10.    vꞌ ←𝐸𝑝𝑘 (v) 

11.    send vꞌ to C1 

       On 𝐶1: 

12.  rꞌ= r * r 

13. p= u2r mod N2 

14. pꞌ ← vꞌ * 𝐸𝑝𝑘(rꞌ) N−1 mod N2 

15.   𝐸𝑝𝑘(𝑑𝑖)← 𝐸𝑝𝑘 ((xi − y)2) ← 𝑝ꞌ * 𝑝 N−1 mod N2 

(parallelization is used to concurrently compute the encrypted 

squared Euclidean distances for all instances) 

16. end for 

17. return {𝐸𝑝𝑘(𝑑1),...., 𝐸𝑝𝑘(𝑑𝑛)} 

A vector 𝐸𝑝𝑘(Y) having user’s encrypted query attributes, 

and a data-frame 𝐸𝑝𝑘 (X) having attribute-wise encrypted 

instances from the dataset are used as inputs for the PPED 
protocol. Using PPED protocol, 𝐶1 and 𝐶2 jointly compute a 
vector having encrypted distances corresponding to each 
encrypted dataset instance. 

This protocol implements parallelism in two phases. In the 
first phase the attribute-wise difference between each 
attributes of the user query and corresponding attribute of a 
given dataset instance is computed concurrently. In the second 
(outer) phase, the encrypted squared difference 𝐸𝑝𝑘(𝑑𝑖) 

(i. e. 𝐸𝑝𝑘((xi − y)2)) is concurrently computed for all instances 

of the dataset. During implementation this concurrency is 
achieved by using threading in Python. Thus, efficiency is 
improved significantly through these concurrent executions. 
Moreover, with additional computing resources such as multi-
core processors, the PPED protocol can also be run in parallel 
to simultaneously compute the encrypted squared differences. 
We use parallelization for independently computing the 
attribute-wise differences for each ith instance and also for 
overall execution of PPED algorithm across n instances as 
each squared distance can be independently computed for all n 
instances. At the end of PPED protocol, the resulting vector of 
encrypted distances is only available to 𝐶1 however, these 
distances remain encrypted. 

B. Privacy Preserving Shuffle Protocol (PPSP) 

In order to get the k nearest neighbours for the encrypted 
user query, we need to find the k minimum encrypted 
distances from amongst the vector of encrypted squared 
differences generated by PPED protocol. Since, these distance 
values are encrypted, the k minimum distances cannot be 
found directly by 𝐶1. The immediate solution is to send the 
vector of encrypted squared differences to 𝐶2 so that 𝐶2 can 
decrypt them with the secret key and then the squared 
differences could be compared in plaintext to get the required 

k minimum distances. However, this will reveal all the 
original distance values to 𝐶2 and 𝐶2 also gets to know which 
dataset records correspond to the selected k minimum 
distances. So, another solution which avoids this data leakage 
issue is to randomize the original distances at 𝐶1 using 
additive homomorphic property and then send these 
randomized encrypted squared differences to 𝐶2 for 
comparison. This solves the data leakage issue as the original 
distances are not revealed to 𝐶2 but 𝐶2 still gains knowledge 
about which k records from the dataset are selected as the 
nearest neighbours. 

Algorithm-B: PPSP (D)  Dꞌ 

Require: 𝐶1 has D← {𝐸𝑝𝑘 (𝑑1 + 𝑟),.., 𝐸𝑝𝑘 (𝑑𝑛 + 𝑟) } 

       On 𝐶1: 

1. n ← length_of (D) 

2. for i = n-1 to 1 do 

3.       Generate a random integer j , where 0 ≤ j  ≤ i 

4.       temp = D[i] 

            D[i] = D[j] 

            D[j] = temp 

5. end for 

6. return Dꞌ← securely permuted vector of randomized 

encrypted squared differences 

Although, 𝐶1and 𝐶2 are non-colliding but revealing such 
data access patterns to C2 can be potentially malicious. Hence, 
we propose a privacy preserving shuffle protocol (PPSP) that 
performs random permutation with the randomized encrypted 
squared differences before sending them to C2 for comparison. 
Since, PPSP applies the random permutation directly on 
encrypted data, at the end of the protocol C1 does not gain any 
information about the randomized encrypted squared 
differences. Moreover, C2 remains unaware about the 
sequence of the randomized encrypted squared differences it 
receives from C1 for comparison, as intermediate steps are not 
revealed. Thus, by utilizing proposed PPSP protocol before 
determining the k minimum encrypted distances, C2 does not 
gain any knowledge about which k records from the dataset 
get selected as the target nearest neighbours and data access 
patterns are preserved. 

C. Privacy Preserving k-Minimum Distances (PPkMD) 

Protocol 

The objective of PPkMD protocol is to determine the 
encrypted k nearest neighbours of the encrypted user query 
such that the corresponding original dataset records are not 
revealed to either of the clouds (i.e.𝐶1 or 𝐶2). Also, the 
intermediate results must be either encrypted or such that they 
must not lead 𝐶1 or 𝐶2 to gain any knowledge about the 
original values to avoid disclosure of data access patterns. The 
protocol takes a vector ‘v’ as input and each element of v is an 
object having three encrypted values namely, encrypted 
dataset record identifier 𝐸𝑝𝑘(𝑖𝑑𝑖), encrypted distances (i.e. 

squared difference) 𝐸𝑝𝑘(𝑑𝑖) and corresponding encrypted 

class label 𝐸𝑝𝑘(𝑐𝑖). So, v= {(𝐸𝑝𝑘(𝑖𝑑1), 𝐸𝑝𝑘(𝑑1), 𝐸𝑝𝑘(𝑐1)), 

..,(𝐸𝑝𝑘(𝑖𝑑𝑛),𝐸𝑝𝑘(𝑑𝑛),𝐸𝑝𝑘(𝑐𝑛))} 
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The protocol begins with 𝐶1 generating random integer r 
from 𝑍𝑁, and randomizes vector v by homomorphically 
adding 𝐸𝑝𝑘(𝑟) to 𝐸𝑝𝑘(𝑖𝑑𝑖), 𝐸𝑝𝑘(𝑑𝑖) and 𝐸𝑝𝑘(𝑐𝑖) of each 

element of v This gives us an encrypted randomized vector, vꞌ. 
This vꞌ vector is shuffled using PPSPm protocol before it is 
transmitted to 𝐶2. PPSPm is a variant of above proposed PPSP 
protocol used for shuffling the vector vꞌ, where vꞌ[i]= 
(𝐸𝑝𝑘(𝑖𝑑ꞌ𝑖), 𝐸𝑝𝑘(𝑑ꞌ𝑖), 𝐸𝑝𝑘(𝑐ꞌ𝑖)) and 1 ≤ i  ≤ n. Thus, PPSPm 

receives vꞌ and shuffles it such that position of each element 
vꞌ[i] is changed. Then, the shuffled vector V is sent to 𝐶2. 

𝐶2 decrypts V to get a plaintext but randomized vectors V ꞌ. 
Now, 𝐶2 constructs a min-heap with the randomized distances, 
V ꞌ[i].dꞌ , where 1≤ i ≤n and each node in the heap comprises 
of (V ꞌ[i].idꞌ , V ꞌ[i].dꞌ  , V ꞌ[i].cꞌ ) i.e. an element of vectors 
V ꞌ. Since, the randomized distance value present at the root 
node of the min-heap is always the smallest value, we pop the 
root node from the heap to get the first amongst the k nearest 
neighbours. Similarly, we pop the heap to get all the 
remaining nearest neighbours and store them in vector Kmin. 
As the min-heap is built with randomized distance values and 
each node in the heap structure has only randomized values, 
𝐶2 does not gain any information about original values. Also, 
since the randomized elements are already shuffled, therefore 
𝐶2 neither learns about their order nor it is able to determine 
which k records from the dataset were selected as the nearest 
records to the query. Moreover, the identifiers are also 
randomized and shuffled which avoids revealing any data 
access patterns. 𝐶2 then encrypts the vector Kmin to get 
encrypted vector Kminꞌ and sends it to 𝐶1. 

Then, 𝐶1 de-randomizes Kminꞌ using the paillier additive 
property [28] to get the original encrypted k nearest elements 
in vector vmin. Since, every step at 𝐶1 involves only encrypted 
data, no information is revealed to 𝐶1. 

Algorithm-C: PPkMD (v)  vmin 

Requires:𝐶1 holds v= {(𝐸𝑝𝑘(𝑖𝑑1),𝐸𝑝𝑘(𝑑1),𝐸𝑝𝑘(𝑐1)),…, (𝐸𝑝𝑘(𝑖𝑑𝑛), 

𝐸𝑝𝑘(𝑑𝑛), 𝐸𝑝𝑘(𝑐𝑛))} and 𝐶2 holds the secret key sk. 

       On 𝐶1: 

1. Generate random integer r 𝜖 𝑍𝑁 and encrypt it, 𝐸𝑝𝑘(r) 

2. Build randomized vector vꞌ by adding 𝐸𝑝𝑘(r) to each 

element of v : 

3. for i = 1 to n do 

4.     𝐸𝑝𝑘(𝑖𝑑ꞌ𝑖) = 𝐸𝑝𝑘(𝑖𝑑𝑖) ∗ 𝐸𝑝𝑘(𝑟) mod N2 

5.      𝐸𝑝𝑘(𝑑ꞌ
𝑖
) = 𝐸𝑝𝑘(𝑑𝑖) ∗ 𝐸𝑝𝑘(𝑟) mod N2 

6.      𝐸𝑝𝑘(𝑐ꞌ
𝑖
) = 𝐸𝑝𝑘(𝑐𝑖) ∗ 𝐸𝑝𝑘(𝑟) mod N2 

7. end for 

8. So we have, encrypted randomized vector as, vꞌ= 

{(𝐸𝑝𝑘(𝑖𝑑ꞌ1),𝐸𝑝𝑘(𝑑ꞌ1),𝐸𝑝𝑘(𝑐ꞌ1)),…,(𝐸𝑝𝑘(𝑖𝑑ꞌ𝑛), 𝐸𝑝𝑘(𝑑ꞌ𝑛), 

𝐸𝑝𝑘(𝑐ꞌ𝑛))}  

9. V ← PPSPm(vꞌ) to shuffle all elements in vꞌ 

10. Send shuffled vector V to 𝐶2 

On 𝐶2: 

11. Decrypt all elements in V using sk such as, 

12. for i = 1 to n do 

13.   V ꞌ[i]←( 𝐷𝑠𝑘(𝑉[𝑖]. 𝑖𝑑ꞌ), 𝐷𝑠𝑘(𝑉[𝑖]. 𝑑ꞌ), 𝐷𝑠𝑘(𝑉[𝑖]. 𝑐ꞌ) ) 

14. end for 

15. Construct a min-heap based on randomized distances V 

ꞌ[i].dꞌ, where 1≤ i ≤n and each node in the heap comprises 

of (V ꞌ[i].idꞌ, V ꞌ[i].dꞌ , V ꞌ[i].cꞌ) 

16. for i = 1 to k do 

17.   Kmin[i] ← pop the root node from the min-heap 

18. end for 

19. Vector Kmin is encrypted using pk such as, 

20. for i = 1 to k do 

21.    Kminꞌ[i] ←(𝐸𝑝𝑘(Kmin[i] . 𝑖𝑑ꞌ), 𝐸𝑝𝑘(Kmin[i] . 𝑑ꞌ),   

𝐸𝑝𝑘(Kmin[i] . 𝑐ꞌ) ) 

22. end for 

23. Send encrypted vector Kminꞌ to 𝐶1 

On 𝐶1: 

24. Receive Kminꞌ from 𝐶2 and get the de-randomized vector 

vmin : 

25. for i = 1 to k do 

26.     𝐸𝑝𝑘(𝑖𝑑min _𝑖) =Kminꞌ[i] . 𝑖𝑑ꞌ ∗ 𝐸𝑝𝑘(𝑟)𝑁−1 mod N2    

27.     𝐸𝑝𝑘(𝑑min _𝑖) =Kminꞌ[i] . 𝑑ꞌ ∗ 𝐸𝑝𝑘(𝑟)𝑁−1 mod N2    

28.     𝐸𝑝𝑘(𝑐min _𝑖) =Kminꞌ[i] . 𝑐ꞌ ∗ 𝐸𝑝𝑘(𝑟)𝑁−1 mod N2    

29. end for 

30. So, we have the encrypted k nearest neighbours in vmin as,  

31. return vmin = 

{(𝐸𝑝𝑘(𝑖𝑑min _1),𝐸𝑝𝑘(𝑑min _1),𝐸𝑝𝑘(𝑐min _1)),…, 

(𝐸𝑝𝑘(𝑖𝑑min _𝑘), 𝐸𝑝𝑘(𝑑min _𝑘), 𝐸𝑝𝑘(𝑐min _𝑘))} 

D. Privacy Preserving Frequency Counting (PPFC) Protocol 

The list of encrypted class labels of the dataset is also 
outsourced to 𝐶1 along with the EDB. 
V=(𝐸𝑝𝑘(𝑐1),…., 𝐸𝑝𝑘(𝑐𝑤)) denotes the encrypted class labels 

list held by 𝐶1.Hence, we have definite class labels (i.e. w). 
Also, at the end of PPkMD protocol, 𝐶1 holds the encrypted 
class labels corresponding to the k- nearest records. Let these 
class labels be denoted as, U= (𝐸𝑝𝑘(𝑐1),…., 𝐸𝑝𝑘(𝑐𝑘)). The 

goal of PPFC protocol is to compute the frequency of 
occurrence for each class label in EDB in privacy preserved 

manner i.e. 𝐸𝑝𝑘(𝑓(𝑐𝑗)), where 1 ≤ j ≤ w. 

PPSPf is another variant of the proposed PPSP protocol 
used for shuffling vector 𝐺𝑖, where 1 ≤ i  ≤ k, which comprises 
of encrypted randomized class label difference values. Then, 
the shuffled matrix Gꞌ is sent to 𝐶2. This ensures that 𝐶2 does 
not learn anything about which randomized difference value in 
Gꞌ corresponds to which class label. The inverted matrix I 
received from 𝐶2 is then de-shuffled using the reverse 
permutation protocol PPSPꞌf . Finally, the column-wise 
homomorphic addition of matrix Iꞌ gives the encrypted 
occurrence frequency of class label 𝑐𝑗 , where 1 ≤ j ≤ w. 

Algorithm-D: PPFC (U,V) F={𝐸𝑝𝑘(𝑓(𝑐1)),… 𝐸𝑝𝑘(𝑓(𝑐𝑤))} 

Requires:𝐶1 holds U= {𝐸𝑝𝑘(𝑐min _1), ..,𝐸𝑝𝑘(𝑐min _𝑘)} and V= 

{𝐸𝑝𝑘(𝑐1), ..,𝐸𝑝𝑘(𝑐w)} 

On 𝐶1: 

1. for 1 ≤ i ≤ k 

2.    for 1 ≤ j ≤ w 

3.        𝐺𝑖,𝑗 = 𝐸𝑝𝑘(𝑐𝑗) ∗  𝐸𝑝𝑘(𝑐min _𝑖)
𝑁−1

  

4.        Generate a random integer 𝑡𝑖,𝑗 ∈ ZN 

5.       𝐺ꞌ𝑖,𝑗  = 𝐺𝑖,𝑗
𝑡𝑖,𝑗  

6.    end for 

7. Gꞌi ←PPSPf (𝐺ꞌ𝑖) to shuffle all elements of 𝐺ꞌ𝑖 

8. end for 

9. Send shuffled matrix Gꞌ to 𝐶2  
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On 𝐶2: 

10. for 1 ≤ i ≤ k 

11.   for 1 ≤ j ≤ w 

      if  𝐷𝑠𝑘(𝐺ꞌ𝑖,𝑗) = 0 

             𝐼𝑖,𝑗 = 𝐸𝑝𝑘(1) 

     otherwise, 𝐼𝑖,𝑗 = 𝐸𝑝𝑘(0) 

     end if  

12.   end for 

13. end for 

14. Send matrix 𝐼 to 𝐶1 

On 𝐶1: 

15. for 1 ≤ i ≤ k 

16.  Iꞌi ←PPSPꞌf (𝐼𝑖) to de-shuffle all elements of 𝐼𝑖 

17. end for 

18. for 1 ≤ j ≤ w 

19.  F[j] ← 𝐸𝑝𝑘(𝑓(𝑐𝑗)) = ∏ 𝐼ꞌ𝑖,𝑗
𝑘
𝑖=1    

20. end for 

E. Privacy Preserving Max-Frequency (PPMF) Protocol 

The PPFC protocol yields a vector F, that has encrypted 
occurrence (counts) frequencies of all class labels of given 
dataset.  The objective of PPMF protocol is to determine 
which these encrypted frequency values is the largest. The 
class label corresponding to the largest encrypted randomized 
frequency will be the final class label for the user’s query. So, 
PPMF protocol can be similar to the proposed PPkMD 
protocol where 𝐶1 prepares a randomized version of the vector 
Fꞌ, shuffles it using another suitable variant of PPSP protocol 
and sends it to 𝐶2; each element is a pair of randomized 
encrypted class label and corresponding randomized encrypted 

frequency <𝐸𝑝𝑘(𝑐𝑗 + 𝑟), 𝐸𝑝𝑘(𝑓(𝑐𝑗) + 𝑟) >, where 1 ≤ j ≤ w. 

𝐶1 also sends the randomizing factor, r, to the querying user at 
this stage. 𝐶2 decrypts the received vector and now builds a 
max-heap based on the decrypted but randomized and shuffled 
frequency values. Each node in the max-heap comprises of the 
randomized class label and its corresponding randomized 
frequency value. Since, the randomized frequency value 
present at the root node of the max-heap is always the largest 
value; we pop the root node from the heap to get the 
maximum frequency and its corresponding class label, both 
randomized. This is the final but randomized class 
label, (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) for the user query. 𝐶2 sends this randomized 

final class label to the querying user. 

F. Privacy Preserving k-NN Classifcation (PPkC) Protocol 

This protocol serves as the base protocol for performing 
outsourced k-NN classification. It utilizes the above proposed 
privacy preserving protocols as building blocks for classifying 
user queries. The querying user is expected to encrypt all 
query attributes (𝐸𝑝𝑘(𝑦1), . . . , 𝐸𝑝𝑘(𝑦𝑚)) and send it to 𝐶1. Let 

us suppose that the encrypted database (EDB) at 𝐶1 is denoted 
by 𝐸𝑝𝑘(X) and the encrypted user query is 𝐸𝑝𝑘(Y). With these 

inputs, the PPkC protocol starts its execution. 

Algorithm-E: PPkC (𝐸𝑝𝑘(X), 𝐸𝑝𝑘(Y))  

(𝐸𝑝𝑘(𝑐1), . . , 𝐸𝑝𝑘(𝑐𝑘)) 

Requires: 𝐶1 has 𝐸𝑝𝑘(X) and receives 𝐸𝑝𝑘(Y) 

1. {𝐸𝑝𝑘(𝑑1),.., 𝐸𝑝𝑘(𝑑𝑛)}  PPED(𝐸𝑝𝑘(X), 𝐸𝑝𝑘(Y)) 

2. v= {(𝐸𝑝𝑘(𝑖𝑑1),𝐸𝑝𝑘(𝑑1),𝐸𝑝𝑘(𝑐1)),…, (𝐸𝑝𝑘(𝑖𝑑𝑛), 𝐸𝑝𝑘(𝑑𝑛), 

𝐸𝑝𝑘(𝑐𝑛))} 

3. vmin PPkMD (v) 

4. U= {𝐸𝑝𝑘(𝑐min _1), ..,𝐸𝑝𝑘(𝑐min _𝑘)} and  

5. V= {𝐸𝑝𝑘(𝑐1), ..,𝐸𝑝𝑘(𝑐w)} 

6. F  PPFC (U,V) 

7. for 1 ≤ i ≤ w 

8.    F ꞌ[i]= < 𝐸𝑝𝑘(𝑐𝑖), 𝐸𝑝𝑘(𝑓(𝑐𝑖)) > 

9. User receives (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟)  PPMF (Fꞌ) 

10. With r received from 𝐶1, the user computes the final class 

label as, (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) − 𝑟   

At the end of PPMF protocol, the querying user receives 
the final randomized class label, (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) from 𝐶2. With r 

received from 𝐶1, the user de-randomizes (𝑐𝑓𝑖𝑛𝑎𝑙 + 𝑟) to 

determine the final class label, 𝑐𝑓𝑖𝑛𝑎𝑙 . 

V. PROTOCOL ANALYSIS 

Although we focus on building an efficient approach for 
outsourced kNN classification, in this section we also 
highlight the effectiveness, security and total privacy 
preservation provided by the proposed protocols. We have 
guaranteed that the final result of all the proposed privacy 
preserving protocols remains encrypted. Additionally, 𝐶2 
works with only random and shuffled values that bear no 
connection to the original data. Furthermore, all computations 
performed on 𝐶2 are consistently sent back to 𝐶1 in encrypted 
format. Hence, at no stage the original data is revealed to 𝐶1 or 
𝐶2. The complexities of the proposed protocols employed in 
the proposed PPkC protocol is presented in Table I. 

TABLE I.  COMPLEXITIES OF PROPOSED PROTOCOLS 

Protocols PPED PPSP PPkMD PPFC 

Complexity O(m logN) O(n) O(k logn) O(kwn) 

A. PPED Analysis 

PPED protocol is carried out with randomization to 
prevent the sum of attribute-wise differences (i.e. u) from 
getting revealed at 𝐶2. The sum of attribute-wise differences is 
randomized using the Paillier additive property [28] at 𝐶1 and 
the randomized value is sent to 𝐶2 for squaring. 𝐶2 decrypts 
the randomized value, computes square of the randomized 
values and then encrypts the square again before sending it to 
𝐶1. 𝐶1 receives the encrypted square of randomized value and 
de-randomizes the square through mathematical formulae and 
homomorphic properties to get the encrypted square of the 
original u value. Hence, the resulting encrypted square of u is 
only available to 𝐶1. Also, the randomizing factor r is only 
known to 𝐶1 so, 𝐶2 does not gain any information about the 
original value of u. 

Parallelization is employed in two phases; firstly for 
computing the attribute-wise difference of each ith instance 
and also for independently computing the n squared distances. 
With parallelization, assuming ideal conditions, these 
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computations can be done in O(m) time for the attribute-wise 
difference and O(n) time for the actual squared distance. The 
de-randomizing step takes O(nlogN) time across all n 
instances, N being the . So with parallelization, the overall 
complexity could be reduced to O(mlogN) if the operations are 
fully parallelized. 

B. PPkMD Analysis 

The encrypted vector v is randomized with an encrypted 
random factor 𝐸𝑝𝑘(r) and then shuffled using PPSPm protocol 

to get vector V at 𝐶1. 𝐶2 then builds the min-heap with the 
decrypted distances but they are randomized and shuffled 
distance values so, 𝐶2 does not gain any information about the 
original distances and access patterns since 𝐶2 takes decisions 
based on randomized and shuffled values and hence, no extra 
information is leaked at 𝐶2. Once 𝐶2 determines the 
randomized k nearest neighbours, 𝐶2 encrypts them and sends 
to 𝐶1. Now, since paillier cryptosystem is semantically secure, 
the cipher texts received by 𝐶1 are not the same as the ones 
which were sent to 𝐶2. Hence, 𝐶1 cannot determine which k 
distances amongst the sent n distances are received as nearest 
distances. Ultimately, no knowledge is acquired by 𝐶1 and 𝐶2 
about the original data during PPkMD protocol. Since, min-
heap is built with O(logn) and k minimum neighbours are to 
be extracted, the overall complexity of the PPkMD is 
O(klogn). 

VI. EXPERIMENTAL RESULTS AND PERFORMANCE 

ANALYSIS 

The various experiments were performed in Google Colab 
environment with an Intel® 2 GHz system having 4 cores, 
RAM of 8 GB and 3 MB Cache Size. We utilized the python 
homomorphic encryption (i.e. phe) library for implementing 
the Paillier cryptosystem in [28] which is required in the 
proposed protocols. Existing privacy preserving solutions also 
use the same cryptosystem so, the performance of the 
proposed PPkN protocol can be easily compared with them. 

We compare the performance of proposed PPkC protocol 
with the recent and state-of-the-art work in [33], [34], [35], 
[41] and [43]. The state-of-the-art privacy preserving solutions 
in [33], [34] and [35] have used datasets the same UCI KDD 
archive’s Car Evaluation dataset [42] in their experimentation. 
To clearly showcase the improved performance of the 
proposed PPkC protocol, we firstly conducted experimentation 
using the same Car Evaluation dataset [42] having 1728 
records and six attributes. 

For extensive performance evaluation of proposed PPkC 
protocol with huge dataset and comparison with the most 
recent work in studies [41] and [43] we used a suitable scaled 
version of the Car Evaluation dataset in experimentation 
having 10000 records and six attributes. All the above 
mentioned recent solutions have used different hardware 
specifications while performing the performance evaluation of 
their privacy preserving protocols. 

We encrypted both datasets firstly keeping the key size as 
512 bits and then as 1024 bits (i.e. K=512/1024), and also 
varied the values for the nearest neighbours i.e. k and the 

number of records i.e. n to evaluate the performance of 
proposed PPkN protocol. 

A. Experimental Analysis 

1) Performance of proposed protocols with varying key 

size (K): The below figures illustrate the execution time (in 

seconds) required by each of the proposed component 

protocols namely PPED, PPkMD, PPFC, PPMF along with 

the total execution time taken by PPkC while using datasets 

encrypted with key size (K) as 512 and 1024 and k= 5. The 

execution time of PPSP is inclusive in time taken by above 

mentioned protocols. The protocols are listed on the x-axis, 

while the y-axis represents the execution time in seconds.  

Fig. 2 illustrates the execution time required by all 
protocols when the Car Evaluation dataset (dataset-1) is 

encrypted with a key size of 512 and 1024 bits. It is clearly 
observed that the PPED requires more time as compared to 
other component protocols with relatively insignificant time 
requirements. 

 
Fig. 2. Execution time of proposed protocols with encrypted Car Evaluation 

dataset (K= 512, 1024, n=1724). 

Fig. 3 illustrates the execution time required by all 
protocols when the scaled Car Evaluation dataset (dataset-2) is 

encrypted with a key size of 512 and 1024 bits. As the number 
of data records are more in this scaled dataset, the execution 
time taken by all the component protocols is relatively more. 
However, the growth in time required by PPkMD, PPFC, 
PPMF protocols is insignificant. 

 
Fig. 3. Execution time of proposed protocols with encrypted Scaled Car 

Evaluation dataset (K= 512, 1024, n=10000). 
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TABLE II.  SUMMARY OF EXECUTION TIME (SEC) OF COMPONENT 

PROTOCOLS  WITH BOTH DATASETS 

Protocols PPED PPkMD PPFC, PPMF 
Total 

(PPkC) 

Dataset-2 (K= 512) 153.2 29.5 0.42 0.09 183.21 

Dataset-2 (K= 1024) 360.76 63.07 1.01 0.22 425.06 

Dataset-1 (K= 512) 29.3 5.1 0.07 0.01 34.48 

Dataset-1 (K= 1024) 63.77 12.27 0.18 0.04 76.26 

Table II shows the summary of execution time incurred by 
all proposed component protocols during the user query 
classification with both Car Evaluation dataset and its scaled 
version having 1724 and 10000 records, respectively, 
encrypted under key sizes (K) of 512 and 1024 bits. 

TABLE III.  DATA TRANSFERRED DURING QUERY CLASSIFICATION USING 

PPKC 

K  (bits) Data Transferred (MB) 

 k= 5 k= 10 k= 15 k= 20 k= 25 

512 18.366 25.827 33.355 40.822 48.0 

1024 35.587 50.217 64.834 79.474 94.224 

Table III shows the data transferred (in Megabytes) during 
user query classification using the proposed PPkC protocol in 
the two cloud setup with the Car Evaluation dataset encrypted 
under key sizes (K) 512 and 1024 bits. The table presents the 
data transferred for various values of k i.e. number of 
neighbours considered. 

2) Performance of proposed protocols with varying 

number of nearest neighbours (k): We examined the execution 

time required by each of the proposed component protocols 

and also the total execution time taken by PPkC algorithm 

while varying values of number of neighbours (i.e. k) with 

encrypted Car Evaluation dataset using key size of 512. Across 

all component protocols a consistent pattern of constant 

execution times is maintained as the value of k is increased 

from 5 to 25. Hence, the total execution time of proposed 

PPkC protocol remains almost constant when k is changed 

from 5 to 25. Fig. 4 shows this merit of consistent pattern of 

constant execution times for all proposed protocols while 

varying k. 

 
Fig. 4. Constant execution time of proposed protocols under varying values 

of k. 

TABLE IV.  SUMMARY OF EXECUTION TIME (SEC) OF PROPOSED 

COMPONENT PROTOCOLS UNDER VARYING VALUES OF K 

 PPED PPkMD PPFC PPMF PPkC 

k= 5 29.3 5.1 0.07 0.01 34.48 

k= 10 29.3 5.18 0.11 0.01 34.59 

k= 15 29.3 5.24 0.18 0.01 34.73 

k= 20 29.3 5.35 0.29 0.01 34.95 

k= 25 29.3 5.51 0.4 0.01 35.22 

Table IV clearly indicates that increase in the number of 
neighbours considered for query classification (i.e. k) does not 
affect the execution time of proposed PPkC protocol which is 
a significant achievement. On other hand, when compared 
with recent privacy preserving solutions, the execution time of 
protocols in [34] and [41] grows linearly along with increasing 
value of k. Although the execution time of protocol in [33] 
remains almost constant while varying k from 5 to 25, still the 
time required is significantly more. This is discussed in detail 
in the comparative analysis section. 

B. Comparative Analysis 

The existing recent privacy preserving solutions in [33], 
[34], [35], [41] and [43] are compared with proposed PPkC 
protocol. The performance of proposed PPkC protocol is 
examined in terms of its execution time by varying the number 
of records (n) and the number of nearest neighbours 
considered (k) during the outsourced classification. For fair 
analysis, the execution time of PPkC protocol is compared 
with execution time of protocols in [33], [34] and [35] under 
above stated varying parameters and using the UCI KDD 
archive’s Car Evaluation dataset [42] having 1728 records, 6 
attributes and 4 unique classes. Size of encryption the key (K) 
used in [33], [34] and [35] is 1024 bits and hence, we maintain 
the same in our experiment. 

Additionally, for extensive performance evaluation with 
much larger dataset, the comparative analysis on the execution 
time of proposed PPkC protocol and that of the most recent 
protocols in [41] and [43] is made under same varying 
parameters while using the SMOTE [40] based scaled version 
of the Car Evaluation dataset having 10000 records and 6 
attributes. Size of the encryption key (K) used in [41] and [43] 
is 512 bits and hence, to maintain fairness we use the same 
key size in experiment with the scaled dataset. 

1) Analysis with the car evaluation dataset: The state-of-

the-art prior work in [33], [34] and [35] used the Car 

Evaluation dataset [42] encrypted with key size (K) of 1024 

bits in their experimentations. Hence, for fairness of 

comparison we have also used the same encrypted dataset in 

experiments with the proposed PPkC approach. The results on 

the execution time and performance of proposed PPkC 

protocol under varying parameter of n and k are compared 

with state-of-the-art prior work. Table V shows the execution 

time required by proposed PPkC protocol as compared to 

other state-of-the-art protocols when varying the nearest 

neighbours i.e. k, from 5 to 25. 
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TABLE V.  EXECUTION TIME (SEC) OF PPKC AND OTHER STATE-OF-THE-
ART PROTOCOLS WITH VARYING VALUES OF K (WITH N=1724, K=1024) 

 k= 5 k= 10 k= 15 k= 20 k= 25 

proposed 

PPkC 
76.26 76.61 76.9 77.37 77.82 

Park et al. 

(2020) [33] 
249.6 249.6 249.6 249.6 249.6 

Liu et al. 

(2019) [34] 
181.14 375.18 560.52 728.46 923.28 

Wu et al. 

(2018) [35] 
53.34 56.58 60.3 63.18 65.82 

 
Fig. 5. Comparison on execution time of PPkC and existing state-of-the-art 

protocols with varying k using Car evaluation dataset. 

Fig. 5 shows the analysis of execution time on the 
encrypted Car evaluation dataset with key size 1024 bits under 
varying values k. The running time of proposed PPkC varies 
from 76.26 to 77.82 seconds when the number of neighbours 
are changed from 5 to 25, respectively. Since, execution time 
of proposed approach remains almost constant so, we can 
significantly establish that the performance of proposed PPkC 
protocol is not much affected by changes in k. When k=25, the 
time taken for execution by PPkC protocol is 77.82 seconds 
which shows that it performs 11.86 times (i.e. 91.57 %) better 
than the SKC protocol in [34],  3.21 times (i.e. 68.82 %) better 
than the PkNC protocol in [33] and just 1.18 times less better 
than the PPKC protocol in [35]. As indicated by Table III, the 
memory usage of the PPkC protocol increases gradually with 
an increase in value of k but, so is the case with the other 
compared protocols. In fact, except protocol in [35] all the 
other compared protocols require more memory than proposed 
PPkC protocol when using key size of 1024 bits and with 
varying values of k. 

Table VI shows the execution time required by proposed 
PPkC protocol as compared to other state-of-the-art protocols 
when varying the number of records i.e. n, from 500 to 1724. 

TABLE VI.  EXECUTION TIME (SEC) OF PPKC AND OTHER STATE-OF-THE-
ART PROTOCOLS WHILE VARYING N (WITH K=25, K=1024) 

 n= 500 n= 1000 n= 1500 n= 1724 

our PPkC 22.58 45.12 67.66 77.82 

Park et al. (2020) [33] 72.2 144.4 216.6 249.6 

Liu et al. (2019) [34] 267.77 535.54 803.31 923.28 

Wu et al. (2018) [35] 19.08 38.16 57.24 65.82 

 

Fig. 6. Comparison on execution time of PPkC and existing state-of-the-art 

protocols with varying n using Car evaluation dataset. 

Fig. 6 shows the analysis of execution time on the 
encrypted Car evaluation dataset with key size 1024 bits under 
varied number of records i.e. n, from 500 to 1724. The 
running time of proposed PPkC varies from 22.58 to 77.82 
seconds when n is changed from 500 to 1724, respectively. 
Since, execution time drops significantly with proposed PPkC 
approach even while varying the number of records so, we can 
clearly establish that the performance of proposed protocol is 
much better than that of PkNC protocol and SKC protocol in 
[33] and [34], respectively. When n=1724, the time taken for 
execution by PPkC protocol is 77.82 seconds which shows 
that it again performs 11.86 times (i.e. 91.57 %) better than 
the SKC protocol in [34],  3.21 times (i.e. 68.82 %) better than 
the PkNC protocol in study [33] and just 1.18 times less better 
than the PPKC protocol in study [35]. However, protocol in 
[35] only aims at determining the class labels corresponding to 
k nearest records instead of providing the final class for user’s 
query. It also reveals the k nearest class labels to the querying 
user, which does not satisfy the privacy requirements as stated 
in study [29]. 

2) Analysis with the scaled Car Evaluation dataset: In the 

literature survey, we observed that the performance of many 

existing privacy preserving classification protocols has 

depleted when they were tested with huge datasets. 

Specifically, the execution time of even the most recent 

protocols in [41] and [43] grows linearly while varying the 

number of records (n) due to the linear growth in 

computational cost. So, for extensive performance evaluation 

of proposed PPkC protocol we conducted experiments with 

the SMOTE [40] based scaled version of the Car Evaluation 

dataset which is a much larger dataset having 10000 records. 

Table VII shows the execution time required by PPkC 

protocol as compared to the most recent protocols in [41] and 

[43] when varying the nearest neighbours i.e. k, from 5 to 20. 

Fig. 7 shows the comparative analysis on execution time of 
proposed PPkC with the most recent protocols in [41] and [43] 
using the scaled Car evaluation dataset encrypted with key 
size of 512 bits under varying values k. When n=10000 and 
the number of neighbours are changed from 5 to 20, the 
running time of proposed PPkC varies from only 183.21 to 
184.68 seconds, respectively whereas the running time of [41] 
ranges from 60.32 to 202.12 seconds. Since, execution time of 
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proposed approach remains almost constant with scaled 
dataset also, we can significantly establish that even with huge 
datasets the performance of proposed PPkC protocol is not 
much affected when k is increased. Same is the case with the 
protocol in [43], its run time is also almost independent of k. 
However, the runtime of PPkC protocol is nearly 5 times 
better than that of protocol in [43]. When k=20, the time taken 
for execution by proposed PPkC protocol is 184.68 seconds 
which shows that it performs 9.96 % better than the protocol 
in study [41]. Also, it is worth observing that the execution 
time of protocol in [41] grows linearly with increasing value 
of k whereas it remains almost constant for proposed PPkC 
protocol across all values of k. 

TABLE VII.  EXECUTION TIME (SEC) OF PPKC AND RECENT EFFICIENT 

PROTOCOLS WITH VARYING VALUES OF K (K= 512) 

 
with n= 10000 with n= 6000 

proposed 

PPkC 

Kim et al. 

(2022) [41] 

proposed 

PPkC 

Wang et al. 

(2024) [43] 

k= 5 183.21 60.32 103.24 600.26 

k= 10 183.93 98.22 104.53 600.33 

k= 15 184.32 135.87 104.77 601.67 

k= 20 184.68 202.12 104.94 602.88 

 
Fig. 7. Comparative analysis on execution time with varying k using the 

scaled dataset. 

Table VIII shows the execution time required by proposed 
PPkC protocol as compared to the most recent protocols in 
[41] and [43] when varying the number of records i.e. n, from 
2000 to 10000. 

TABLE VIII.  EXECUTION TIME (SEC) OF PPKC AND RECENT EFFICIENT 

PROTOCOLS WITH VARYING VALUES OF N (WITH K=10, K= 512) 

 Proposed PPkC 
Kim et al.  

(2022) [41] 

Wang et al. 

(2024) [43] 

n= 2000 39.12 22.44 240 

n= 5000 87.1 56.11 480 

n= 10000 183.93 98.22 1200 

Fig. 8 shows the analysis of execution time of proposed 
PPkC protocol with the most recent protocols in [41] and [43] 
while using the scaled Car evaluation dataset encrypted with key 
size of 512 bits under varied number of records i.e. n, from 
2000 to 10000. The running time of proposed PPkC varies 

from 39.12 to 183.93 seconds when n is changed from 2000 to 
10000, respectively. Since, execution time drops significantly 
with proposed PPkC approach while using the scaled dataset 
also so, we can clearly establish that the performance of 
proposed protocol is much better than that of the protocol in 
[43]. When n=10000, the time taken for execution by 
proposed PPkC protocol is 183.93 seconds which shows that it 
again performs 6.52 times (i.e. 84.67 %) better than the 
protocol in [43] and just 1.87 times less better than the 
protocol in [41] with increasing value of n. 

 
Fig. 8. Comparative analysis on execution time with varying n using the 

scaled dataset. 

VII. CONCLUSION AND FUTURE SCOPE 

In this paper, we have proposed efficient privacy-
preserving kNN classification approach, named as PPkC 
protocol and its component protocols that leveraging partial 
homomorphic encryption (PHE). Our endeavor focused on 
demonstrating the feasibility and efficacy of PHE in 
safeguarding sensitive data while allowing for kNN 
classification in outsourced environments. 

First and foremost, it is noteworthy that proposed 
protocols are preserving privacy of user’s query, dataset 
values and the final class label. The protocol analysis shows 
that no information is ever disclosed and no knowledge can be 
potentially gained by both the clouds (𝐶1 and 𝐶2) during 
execution of any of the component protocols for performing 
the outsourced k-NN classification on encrypted data. In the 
protocol analysis and implementation, we underscore that the 
proposed enhanced privacy preserving component protocols 
fully adhere to the privacy requirements outlined earlier in this 
paper. Notably, both cloud servers, 𝐶1𝑎𝑛𝑑 𝐶2, are kept 
oblivious to the identities of the database records associated 
with the computed nearest neighbours of the user query. 
Moreover, the intermediate data available to either of the 
clouds consist of encrypted random values or random numbers 
only. Also, the privacy preserving shuffling protocol 
eliminates the risk of 𝐶2 understanding the data accessing 
patterns. 

Furthermore, we explored the possibility of using the heap 
structure firstly to determine the k minimum distances and 
their corresponding class labels and then for finding the class 
label with maximum occurrence frequency. With this we were 
able to significantly reduce the computational overhead 
involved in classifying the encrypted user’s query on 
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encrypted data and hence enhanced the efficiency of the 
overall PPkC protocol. This approach proved instrumental in 
optimizing performance with real-world datasets and also 
particularly in scenarios involving scaled datasets. 

Through the experimental investigations, we have drawn 
several noteworthy conclusions. In the comparative analysis 
on execution time using the Car evaluation dataset and its 
scaled version encrypted with key size 1024 bits and 512 bits, 
respectively it is observed that the running time of proposed 
PPkC remains almost constant while varying values of k from 
5 to 25. Even while varying n the execution time drops 
significantly with proposed PPkC approach with both the 
dataset. Hence, we established that the performance of 
proposed PPkC protocol is independent of variation in k and is 
much better than that of other recent protocols while varying k 
and n. 

In our future work, we plan to utilize fully homomorphic 
encryption (FHE) schemes for working in an encrypted 
environment since it gives access to a wide range of 
operations thereby minimizing communication costs incurred 
in a two-cloud setup. However, its computational overhead 
must be considered as well and efforts must be taken to 
improve the same. 
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