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Abstract—Proficiency in programming is crucial for driving 

the Fourth Industrial Revolution. Therefore, interest in 

programming needs to be instilled in students starting from the 

school level. While the use of robotics can attract students' interest 

in programming, there is still a lack of research modeling, the 

impact of robotic learning experiences on programming interest 

using a structural equation modeling (SEM) approach. This study 

aims to analyze the structural relationship between interest in 

programming and learning experiences using a specially 

developed robotics module based on Kolb's experiential learning 

model and the programming development phases. An experiment 

involving 76 primary and secondary school students was 

conducted using the robotics module. Data were collected through 

a questionnaire containing 12 questions for five constructs: 

engagement, interaction, challenge, competency, and interest. 

These constructs, which are latent variables, formed the model 

using the partial least squares-SEM technique through the 

SmartPLS 4.0 software. The evaluation of the structural model 

found that the variables of engagement and competency had a 

significant impact on interest in programming, while interaction 

and challenge received low values. The developed model has 

moderate predictive power, indicating that interest in 

programming can be moderately predicted based on students' 

experiences using robots. 

Keywords—Programming; robotics; Structural Equation 

Modeling (SEM); experiential learning; student engagement 

I. INTRODUCTION 

Mastery of programming skills is essential for advancing the 
Fourth Industrial Revolution; however, fostering a genuine 
interest in programming among students at the school level 
continues to pose a considerable challenge. One effective way 
to enhance students' interest in programming is by integrating 
technology in interactive environments, such as using Turtle 
Graphics for vector-based graphics [1] and incorporating robots 
to provide hands-on learning experiences. Robotics education 
has emerged as an engaging avenue for introducing students to 
programming concepts and cultivating computational thinking 
(CT) skills [2] Additionally, a study by [3] demonstrated that 
integrating CT with Educational Robotics (ER) significantly 
enhances students' CT and programming skills. Given that 
robotic learning has the potential to significantly boost interest 
in programming, this approach can contribute to the increase of 
Science, Technology, Engineering, and Mathematics (STEM) 
graduates, a current national priority for many governments 

worldwide, including the United States [4], the UK [5] and 
Malaysia. Despite these efforts, Malaysia has not yet met its 
target ratio of 60:40 for students enrolling in STEM versus non-
STEM programs [6]. 

STEM teachers require educational tools that are affordable, 
hands-on, conceptually engaging, syllabus-aligned, interactive, 
extendable, and suitable for extracurricular activities. While 
some schools have adopted available robotic kits, they face 
challenges such as a lack of syllabus-related modules and the 
need for more extendable resources to maximize the kits' use. 
Moreover, many schools are unable to use robotic kits due to 
funding constraints, limiting their ability to foster interest in 
STEM. To address these issues, our research has developed 
robot prototypes called AkalBot, designed with affordability and 
educational value in mind, selecting Arduino as the main 
component. The accompanying learning module includes 
essential knowledge in computational thinking, such as 
algorithms, to make robotics an accessible and effective tool for 
enhancing programming interest and supporting STEM 
education in Malaysia. However, there remains a notable gap in 
the literature concerning the comprehensive assessment of how 
robotics learning experiences influence students' programming 
interest. This study seeks to address this gap by employing 
structural equation modeling (SEM) to analyze the intricate 
relationships between programming interest and robotics 
learning experiences, drawing on Kolb's experiential learning 
model as a theoretical framework. 

Kolb's experiential learning theory provides a theoretical 
framework for understanding how students acquire and 
internalize knowledge through concrete experiences, reflective 
observation, abstract conceptualization, and active 
experimentation [7]. Applied to robotics education, this theory 
suggests that hands-on activities with robots offer students 
opportunities to engage in concrete experiences, reflect on their 
learning, conceptualize abstract programming concepts, and 
apply their knowledge in practical contexts [8]. This study aims 
to investigate the structural relationships between programming 
interest and robotics learning experiences. Specifically, it seeks 
to assess how student engagement, interaction, challenge, 
competency, and interest within the context of robotics 
education impact programming interest after using the robotic 
module based on Kolb's model and our robot, AkalBot. The 
remainder of this paper reviews related work (Section II), details 
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the research methodology, including the experimental design 
and data analysis techniques (Section III), presents the results of 
the structural model analysis (Section IV), discusses the findings 
(Section V), and offers conclusions (Section VI). 

II. A REVIEW OF RELATED WORK 

The use of robotics as a tool to engage students with 
programming and technology concepts has been extensively 
studied, emphasizing its potential to promote critical thinking 
and creativity. For instance, LEGO Mindstorms has been shown 
to enhance creativity [9], while LEGO WeDo kits have been 
explored for their role in fostering CT. A study investigating the 
effects of LEGO® WeDo and the Scratch programming 
platform on CT skills, grit, and programming abilities among 
undergraduate educational science students revealed notable 
outcomes. Using a quasi-experimental design with a pretest-
posttest approach, the six-week intervention involved 246 
participants (aged 18–23, mean age 20.5 ± 3.37, with a balanced 
gender distribution). The findings demonstrated that participants 
using LEGO® WeDo experienced significant improvements in 
CT skills, exhibited higher levels of grit, and gained a deeper 
understanding of Internet of Things (IoT) project creation. This 
study underscores the educational advantages of tangible robotic 
tools over purely visual programming platforms [10]. 

Building on these findings, the development of a robotic 
module tailored for Malaysian students seeks to replicate these 
educational benefits by introducing a low-cost robotic prototype 
aligned with the Malaysian school curriculum. The objective is 
to leverage similar hands-on, tangible tools to actively engage 
students in STEM learning, fostering deeper understanding and 
sustaining their interest in pursuing STEM programs. To ensure 
its effectiveness, survey feedback from STEM teachers was 
utilized to identify the core requirements for the module, which 
include being engaging, curriculum-based, easy to understand, 
and cost-effective [11]. 

To address this challenge, a customizable module was 
developed using Arduino as the microcontroller and Google’s 
Blockly as the visual editor, with potential for further 
enhancement. A study assessed Malaysian students' perceptions 
of their competency and interest in STEM after engaging with a 
STEM module and building a robotic prototype. Conducted at 
the National Science Centre, Malaysia, this activity aimed to 
address the under-enrollment in STEM programs. The module, 
based on Kolb’s experiential learning theory, incorporated five 
key activities: watching videos, reading materials, assembling 
components, using Blockly for programming, and playing a 
robotic game. The primary goal was to boost STEM interest 
through robotics and educational games. Evaluated through 
qualitative and quantitative case studies with students aged 11 to 
15, the results showed a positive response, with significant 
increases in students' interest in STEM, aligning with the 
Malaysia Education Blueprint 2013-2025 [12] 

In recent years, robots and visual editors have gained 
significant attention for teaching programming and robotics. 
AelE: A Versatile Tool for Teaching Programming and Robotics 
Using Arduino, highlights the role of programming in 
developing problem-solving and abstract thinking skills. 
Arduino boards, popular for their open hardware design and 
educational resources, are commonly programmed through text-

based environments like Arduino IDE or block-based tools such 
as mBlock and Scratch. However, these tools often face 
challenges, such as the need for specific syntax knowledge and 
limited sensor support. To address these, AelE was developed as 
a block-based tool designed to simplify programming for 
students. The tool has been successfully used in diverse 
educational settings, including secondary schools, adult 
education, and prison programs. Students across these contexts, 
regardless of prior knowledge, responded positively to AelE, 
which was found to effectively support various learning 
environments and project types, demonstrating its versatility and 
broad appeal [13]. 

Despite the growing body of research on robotics in 
education, there is still a significant gap in understanding how 
robotics learning experiences impact students' interest in 
programming. This study aims to fill this gap by utilizing SEM 
to explore the complex relationships between students' 
programming interest and their robotics learning experiences, 
with Kolb's experiential learning model serving as the 
theoretical foundation. 

III. MATERIALS AND METHODS 

The methods to model the impact of robotics learning 
experience on programming interest using the structured 
equation modeling approach consists of six main steps. An 
explanation of each step is given below. 

A. Step 1: Forming Variables to Model the Impact 

In order to form variables to model the impact of learning 
experience, existing variables that have been used to analyze 
learning experiences have been investigated. Five variables have 
been used to model the impact of interaction, engagement and 
challenge towards interest and competency in the subject area 
[14]. They have designed hands-on activities for virtual 
computer laboratories based on Kolb’s experiential learning 
cycle. The study in [15] have further used the variables to 
quantitatively analyzed for identifying the impact of the 
experiential activity.  The details of the variables that been used 
to model the impact of using the educational robotic is given 
below: 

 Interaction (ACT): This construct assesses the degree of 
collaboration among students during robotics exercises. 
Working in pairs, students engage in completing tasks, 
tackling new challenges, and jointly reflecting on their 
learning experiences. 

 Engagement (ENG): This construct evaluates students' 
readiness and enthusiasm to participate in and complete 
robotics activities. High engagement is evident through 
active involvement, enthusiasm, and persistence, which 
are essential for deep and effective learning experiences 
in programming. 

 Challenge (CHA): This construct gauges the perceived 
difficulty of the robotics activities from the students' 
perspective. By assessing the complexity and challenge 
level, this measure helps to understand how the tasks 
encourage cognitive development, problem-solving, and 
critical thinking skills. 
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 Competency (CMP): This construct focuses on the 
learning outcomes that students perceive they have 
achieved through robotics activities. Unlike interaction, 
engagement, and challenge, which evaluate the learning 
process, competency reflects the end results, indicating 
students' mastery of programming concepts and their 
confidence in applying these concepts. 

 Interest (INT): This construct measures the increase in 
students' interest and curiosity in programming due to 
robotics activities. Like competency, this construct 
evaluates the outcomes of the learning experience, 
showing how effectively the activities have stimulated 
and maintained students' interest in programming. 

These variables were integrated to form the research model 
as shown in Fig. 1. By integrating these variables into a cohesive 
framework, we can gain valuable insights into the multifaceted 
nature of learning experiences and their impact on students' 
academic outcomes. This framework provides a structured 
approach for examining the interplay between key factors that 
shape students' learning trajectories, laying the groundwork for 
subsequent analyses using structural equation modeling (SEM) 
techniques. Seven hypotheses were developed: 

Hypothesis 1 (H1). Challenge is positively related to 
students’ competency. 

Hypothesis 2 (H2). Challenge is positively related to 
students’ interest. 

Hypothesis 3 (H3). Competency is positively related to 
students’ interest. 

Hypothesis 4 (H4). Engagement is positively related to 
students’ competency. 

Hypothesis 5 (H5). Engagement is positively related to 
students’ interest. 

Hypothesis 6 (H6). Interaction is positively related to 
students’ competency. 

Hypothesis 7 (H7). Interaction is positively related to 
students’ interest. 

 
Fig. 1. Research model. 

B. Step 2: Developing Robotic Module Based on the Selected 

Variables and Kolb’s Learning Model 

The working principle of AkalBot is based on the integration 
of three main components: modules, robot prototypes, and a 
blockly editor. The robotic kit leverages Kolb’s experiential 
learning theory as the foundation for its modules, which also 
integrate computational skills like algorithms. 

The first component is module design. The module design 
captures experience as a resource for learning and development 
[7] through interactive games using robot prototypes. The 
modules are structured according to the four phases of Kolb’s 
learning theory: 

1) Concrete Experience (CE): Students begin with hands-

on exercises, such as programming robots, to gain practical 

experience. 

2) Reflective Observation (RO): Students provide feedback 

on a series of tasks, reflecting on their experiences from the CE 

phase. 

3) Abstract Conceptualization (AC): Students develop 

strategies to win specified games based on provided theoretical 

concepts. 

4) Active Experimentation (AE): Students implement their 

strategies to achieve game objectives. 

These phases are designed to promote deep learning and 
engagement by cycling through practical exercises, reflection, 
strategy formulation, and experimentation. 

The second component is robot prototypes. AkalBot (Fig. 2) 
features low-cost robot prototypes designed with affordability 
and accessibility in mind, making the robotic kit an attractive 
option for schools and higher education institutions. The core 
component of these robots is the Arduino microcontroller board, 
known for its low cost, ease of use, and flexibility. Arduino can 
interact with a variety of components such as buttons, motors, 
LEDs, and GPS modules. The study in [16] highlights several 
advantages of using Arduino in educational robotics. One of the 
key strengths is the ability to load experimental scripts directly 
onto the board’s memory, allowing the Arduino to operate 
independently without the need for continuous interfacing with 
computers or external software. This feature provides complete 
independence, portability, and accuracy in experiments. 
Additionally, Arduino benefits from a large community that 
supports its use by offering numerous hardware add-ons and 
hundreds of free scripts for various projects, making it an 
accessible and versatile tool for educational purposes. Arduino 
is particularly suitable for educational purposes due to the 
abundance of available resources, hardware add-ons, and free 
scripts for various project ideas. 

The third key component of AkalBot is its utilization of a 
block-based editor, which is a visual programming tool 
developed by Google. Modified blocks within this platform 
form AkalBlok (Fig. 3), facilitating a drag-and-drop interface 
that enables students to program the robots without the need to 
delve into intricate programming languages. This visual 
approach aims to captivate primary and secondary students, 
enticing them to explore the realms of robotics and 
programming. Within the AkalBlok platform, students 
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encounter specific blocks tailored for programming Arduino-
related components, neatly categorized into three main types: 
Arduino Parts, Arduino Sensor, and Arduino Motor. 

 

Fig. 2. A robotic prototype named AkalBot. 

 
Fig. 3. A block-based editor named AkalBot. 

AkalBot's overall design revolves around game-based 
activities, wherein students apply control over robot prototypes 
using the block-based editor to create programs. This innovative 
design framework embraces experiential learning theory, 
effectively harnessing hands-on experiences as a facilitator for 
learning and development. By integrating these elements, 
AkalBot emerges as a comprehensive and immersive 
educational tool, adept at augmenting students' programming 
skills and cultivating their interest in the subject matter.  

C. Step 3: Setting Up an Experiment with Students 

In this study, the population consisted of 76 primary and 
secondary school students who participated in an experiment 
designed to assess the impact of a robotics learning module on 
their interest in programming. The robotics module, developed 
based on Kolb's experiential learning model, guided the students 
through different programming development phases. Data were 
collected during the experiment through a questionnaire, which 
consisted of 12 questions focused on five key constructs: 
engagement, interaction, challenge, competency, and interest. 

These constructs were used as latent variables to form the 
structural model, which was analyzed using partial least squares 
structural equation modeling (PLS-SEM) through SmartPLS 4.0 
software. The experiment consisted of five sessions, each lasting 
three hours, designed to evaluate the impact of robotics learning 
on students' programming interest and skills.  

1) Session 1: Pre-Test and Introduction (20 minutes): 

Activity: Students answered pre-test questions to assess their 

initial knowledge of basic robotics and programming concepts. 

This session aimed to establish a baseline for their 

understanding and skills. 

2) Session 2: Introduction to Robotic Kit and a Blok-based 

Editor (30 minutes): Activity: Students were introduced to the 

AkalBot robotic kit and the AkalBlok programming 

environment. This session included a detailed explanation of 

how to use the kit and the drag-and-drop interface of AkalBlok 

to program the robots. 

3) Session 3: Hands-On Robotic Assembly and Initial 

Programming (60 minutes): Activity: Students engaged in the 

assembly of robot prototypes and performed initial 

programming exercises. This session followed the Concrete 

Experience (CE) phase of Kolb's learning theory, where 

students learned through hands-on activities. 

4) Session 4: Reflective Observation and Strategy Planning 

(60 minutes): Activity: Based on their hands-on experiences, 

students reflected on their activities and provided feedback. 

This session corresponded to the Reflective Observation (RO) 

phase, where students analyzed their experiences and planned 

strategies for upcoming tasks. 

5) Session 5: Implementation and Experimentation (60 

minutes): Activity: Students implemented their strategies and 

engaged in further programming to accomplish specific tasks 

using the robots. This session combined the Abstract 

Conceptualization (AC) and Active Experimentation (AE) 

phases, encouraging students to apply theoretical concepts in 

practical scenarios. 

D. Step 4: Collecting Data and Analyzing Model 

The empirical data utilized in this study are considered 
primary as they were directly gathered through a survey 
conducted among students. To assess the effectiveness of the 
robotic educational experience, data collection encompassed a 
combination of quantitative and qualitative methodologies. The 
subsequent steps were followed: 

1) Surveys and Questionnaires: Students filled out surveys 

and questionnaires to provide feedback on their learning 

experiences, engagement, and interest levels throughout the 

experiment. 

2) Observation: Instructors observed student interactions 

with the robotic kit. The measurement model is foundational to 

structural equation modeling (SEM), offering a robust 

assessment of the reliability and validity of the constructs under 

investigation. In addition to assessing convergent validity 

through factor loadings, composite reliability (CR), and 

average variance extracted (AVE), discriminant validity is a 
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critical aspect that ensures the distinctiveness of the constructs 

[17]. 

1) Factor loading: Factor loading examines the strength of 

the relationship between observed variables and their 

corresponding latent constructs. High factor loadings (> 0.70) 

indicate that the observed variables effectively capture the 

underlying constructs [17]. 

2) Composite Reliability (CR): CR assesses the internal 

consistency of a set of indicators for each latent construct. CR 

values exceeding 0.70 indicate satisfactory reliability, implying 

that the indicators consistently measure the underlying 

construct [18]. 

3) Average Variance Extracted (AVE): AVE quantifies the 

proportion of variance captured by a construct's indicators 

relative to measurement error. AVE values > 0.50 indicate 

adequate convergent validity, suggesting that the observed 

variables collectively represent the latent construct effectively 

[19]. 

4) Discriminant validity (Heterotrait-monotrait ratio): 

Discriminant validity examines whether the constructs are 

empirically distinct from one another. The heterotrait-monotrait 

(HTMT) ratio compares the correlations between constructs 

(heterotrait correlations) with the average correlations within 

constructs (monotrait correlations). A threshold value of 0.90 is 

suggested for HTMT ratios to ensure discriminant validity [20]. 

It measures how much more strongly items within the same 

construct are related to each other compared to items across 

different constructs. 

Analyzing the structural model is a crucial step in SEM using 
SmartPLS, as it helps to understand the relationships between 
constructs and validate the hypothesized paths. This step 
involves evaluating various metrics such as path coefficients (β), 
standard errors (SE), t-values, p-values, effect sizes (f²), 
variance inflation factors (VIF), and predictive relevance (Q² 
Predict). The following provides a detailed explanation of each 
component within the context of SmartPLS: 

1) Path Coefficients (β): Path coefficients represent the 

strength and direction of the relationships between constructs, 

ranging from -1 to +1. Positive values indicate positive 

relationships, while negative values indicate negative 

relationships. High absolute values indicate stronger 

relationships. For example, a path coefficient of 0.45 between 

robotics learning experience and programming interest 

suggests a moderate positive relationship [21]. 

2) Standard Error (SE): The standard error measures the 

precision of the estimated path coefficients, indicating how 

much the estimated coefficient would vary from the true 

population value. Smaller SE values indicate more precise 

estimates. For instance, an SE of 0.07 for a path coefficient of 

0.45 suggests that the estimate is quite precise [22]. 

3) t-value: The t-value assesses the statistical significance 

of the path coefficients, calculated by dividing the path 

coefficient by its standard error (t = β / SE). A higher absolute 

t-value indicates stronger evidence against the null hypothesis. 

Typically, a t-value greater than 1.96 is considered significant 

at the 0.05 level. For example, a t-value of 6.43 indicates a 

highly significant relationship [23]. 

4) p-value: The p-value indicates the probability that the 

observed relationship is due to chance. A p-value less than 0.05 

is typically considered statistically significant. For example, a 

p-value <0.001 suggests a very low probability that the 

relationship occurred by chance, thus confirming the 

significance of the path coefficient [17]. 

5) Effect Size (f²): The f² effect size measures the impact of 

a specific exogenous variable on an endogenous variable, 

calculated based on the change in the R² value when the 

exogenous variable is included in the model. Effect size values 

are interpreted as follows: 

a) Small effect: f² = 0.02 

b) Medium effect: f² = 0.15 

c) Large effect: f² = 0.35 For instance, an f² of 0.20 

indicates a medium effect, suggesting that robotics learning 

experience has a moderate impact on programming interest 

[24]. 

6) Variance Inflation Factor (VIF): The VIF assesses 

multicollinearity among the exogenous constructs. High 

multicollinearity can inflate the standard errors and affect the 

reliability of the path coefficients. VIF values greater than 5 

indicate significant multicollinearity. A VIF of 1.15 suggests 

low multicollinearity, indicating that the estimates are reliable 

[17]. 

7) Explained Variance (R²): R² quantifies the proportion of 

variability in the dependent variable explained by the 

independent variables in the model. A high R² value indicates 

that a large portion of the variability in the dependent variable 

is captured by the predictors, suggesting a robust model fit. 

Conversely, a low R² suggests that the predictors fail to explain 

much variability in the dependent variable. According to [24] 

R² values can be categorized as follows: 

a) Weak: R² values between 0.01 and 0.25 

b) Moderate: R² values between 0.26 and 0.49 

c) High: R² values of 0.50 and above 

8) Predictive Relevance (Q² Predict): PLS Predict assesses 

the model’s predictive power by generating predictions for new 

data and comparing them with actual observed values. The key 

metrics include: 

a) Q² Predict: Indicates the predictive relevance of the 

model for a specific endogenous construct. A Q² Predict value 

greater than 0 indicates predictive relevance [25]. 

b) RMSE (Root Mean Squared Error): Evaluates the 

accuracy of the predictions. Lower RMSE values indicate better 

predictive performance. 

c) MAE (Mean Absolute Error): Measures the average 

magnitude of the prediction errors. Lower MAE values indicate 

more accurate predictions. 

9) Decision based on Statistical Analysis: The decision 

indicates whether the hypothesis is supported. If the p-value is 

less than 0.05 and the path coefficient (β) is in the hypothesized 
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direction, the hypothesis is typically considered supported. For 

instance, if β is 0.45, t-value is 6.43, and p-value <0.001, the 

hypothesis that robotics learning experience positively affects 

programming interest is supported [23]. 

IV. RESULTS 

A. Measurement Model 

The measurement model was evaluated to determine the 
reliability and validity of the constructs used in this study. Table 
I presents the factor loadings, composite reliability (CR), and 
average variance extracted (AVE) for the constructs: 
Engagement (ENG), Interaction (ACT), Challenge (CHA), 
Competency (COMP), and Interest (INT). 

TABLE I.  FACTOR LOADINGS, COMPOSITE RELIABILITY (CR), AND 

AVERAGE VARIANCE EXTRACTED (AVE) FOR ENGAGEMENT, INTERACTION, 
CHALLENGE, COMPETENCY, AND INTEREST CONSTRUCTS 

Construct Items 
Factor 

Loading 
CR AVE 

ENG 
ENG1The activity was 

enjoyable. 
0.916 0.795 0.829 

 
ENG2 The activity was 

interesting. 
0.905   

ACT 

ACT1 Asking questions to 
other students. 

0.715 0.751 0.571 

ACT2 Observing other 

students. 
0.742   

ACT3 Discussions with 
other students. 

0.819   

ACT4 Interacting with 

other students. 
0.741   

CHA 
CHA 1 The activity was 
challenging. 

1.000   

COMP 

COMP1 I felt that I learned 

important skills 
0.798 0.738 0.656 

COMP1 I felt a sense of 

accomplishment after 

completing the activity. 

0.807   

COMP1 The activity 
improved my competency 

in the subject area. 

0.824   

INT 

INT1 The activity 

increased my curiosity and 
interest in this area. 

0.901 0.724 0.774 

INT2 The activity 

encouraged me to learn 
more about this topic. 

0.858   

The Engagement construct was assessed through two items: 
"The activity was enjoyable" (ENG1) and "The activity was 
interesting" (ENG2), achieving high factor loadings of 0.916 
and 0.905, respectively. With a composite reliability (CR) of 
0.795 and an average variance extracted (AVE) of 0.829, these 
results demonstrate strong internal consistency and convergent 
validity, confirming reliable measurement of Engagement in this 
study. 

The Interaction construct, measured by four items with 
factor loadings ranging from 0.715 to 0.819, yielded a CR of 
0.751 and an AVE of 0.571. While these figures are acceptable, 
the lower factor loadings suggest the need for item refinement 
to better capture the essence of interaction in robotics learning. 

The Challenge construct was represented by a single item, 
"The activity was challenging" (CHA1), which showed a perfect 
factor loading of 1.000. However, reliance on a single item may 
not fully encompass the multifaceted nature of challenges 
encountered by students. 

For the Competency construct, three items achieved factor 
loadings between 0.798 and 0.824, resulting in a CR of 0.738 
and an AVE of 0.656. These values indicate satisfactory 
reliability and validity, effectively reflecting students' perceived 
learning outcomes from robotics activities. 

Lastly, the Interest construct comprised two items: "The 
activity increased my curiosity and interest" (INT1) and "The 
activity encouraged me to learn more" (INT2), with factor 
loadings of 0.901 and 0.858, respectively. The CR was 0.724 
and the AVE 0.774, confirming robust internal consistency and 
good convergent validity, indicating effective measurement of 
increased interest and curiosity in programming. 

In summary, while Engagement and Interest exhibited strong 
psychometric properties, some constructs, particularly 
Interaction, may benefit from item refinement. Overall, these 
findings affirm the model's effectiveness in capturing critical 
dimensions of the robotics learning experience and its influence 
on programming interest. 

B. Structural Model 

The structural model, as shown in Fig. 4, was assessed to test 
the hypothesized relationships among the constructs. Table II 
presents the results of the hypothesis testing, and Table III 
displays the R² values for the endogenous latent constructs.  

 
Fig. 4. Structural model analysis using SmartPLS. 
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TABLE II.  HYPOTHESIS TESTING- RESULTS OF STRUCTURAL MODEL 

(SIGNIFICANT AT P*** < 0.001, P** < 0.01, P* < 0.05) 

Hypothesis β, 
t-

Value 

p-

Value 
f2 VIF Decision 

H1 
-

0.070 
0.603 0.547 

0.006 

small 
1.059 

Not 

Supported 

H2 
-

0.097 
1.189 0.234 

0.017 

small 
1.066 

Not 

Supported 

H3 0.442 4.226 0.000 
0.276 

medium 
1.386 Supported*** 

H4 0.534 3.223 0.001 
0.331 

medium 
1.194 Supported** 

H5 0.339 2.602 0.009 
0.142 

small 
1.588 Supported** 

H6 
-
0.101 

0.712 0.476 
0.012 
small 

1.151 
Not 
Supported 

H7 
-

0.050 
0.461 0.645 

0.004 

small 
1.165 

Not 

Supported 

TABLE III.  THE R2
 VALUE FOR THE ENDOGENOUS LATENT CONSTRUCTS 

Constructs R2 Results 

Competency 0.279 Weak 

Interest 0.490 Moderate 

Following this assessment, the study aimed to explore the 
structural relationships between programming interest and 
learning experiences within the robotics module using a 
structural equation modeling (SEM) approach. The analysis 
indicated that the challenge component did not significantly 
impact students' perceived competency (H1: β = -0.070, p = 
0.547) or their interest in programming (H2: β = -0.097, p = 
0.234). This finding underscores a misalignment between the 
difficulty of tasks and the students' readiness, suggesting that 
merely increasing challenge levels may not lead to improved 
learning outcomes unless accompanied by appropriate 
scaffolding. 

Conversely, the hypothesis that competency positively 
impacts interest (H3: β = 0.442, p < 0.001) was strongly 
supported, confirming that students who perceive themselves as 
competent in programming exhibit a higher level of interest. 

Engagement also emerged as a significant predictor of both 
competency (H4: β = 0.534, p < 0.01) and interest (H5: β = 
0.339, p < 0.01). These results underscore the dual role of 
engagement in educational settings, as it not only enhances 
learning outcomes but also fosters a deeper interest in 
programming. Engaging and enjoyable activities can captivate 
students' attention, encouraging active participation and 
sustained motivation. 

However, interaction did not significantly affect competency 
(H6: β = -0.101, p = 0.476) or interest (H7: β = -0.050, p = 
0.645), suggesting that the quality of peer interactions may need 
enhancement to effectively contribute to learning outcomes. 
Effective scaffolding and support during collaborative tasks are 
crucial to maximizing the potential benefits of interaction. 

The model demonstrated moderate predictive power, with R² 
values of 0.490 for interest and 0.279 for competency, indicating 
that it explains a reasonable portion of variance in both 
constructs. 

V. DISCUSSION 

The hypothesis testing revealed that engagement and 
competency had a significant positive effect on students' interest 
in programming, while the constructs of interaction and 
challenge showed lower influence. The findings suggest that the 
developed model has moderate predictive power, indicating that 
students' experiences with robotics can moderately predict their 
interest in programming. Overall, this study provides valuable 
insights into how engagement and competency influence 
students' interest in programming through robotics. The results 
suggest that creating engaging learning experiences, aligned 
with students' skill levels, is essential for fostering interest in 
programming and preparing students for the demands of the 
Fourth Industrial Revolution. 

In terms of active involvement, students were deeply 
engaged, especially when the robot successfully moved toward 
a slipper. This engagement was driven by the necessity to 
program the robot, as it would not move without the students' 
input. For example, Fig. 5 depicts a group of students discussing 
the development of a program during the coding phase. 

 
Fig. 5. A group of students engaged in discussion while developing a 

program during the coding phase. 

Regarding enthusiasm, students were excited to tackle the 
tasks, primarily because the activity required problem-solving. 
The problems were presented in the form of a game, specifically 
making the robot knock over a slipper. This game was inspired 
by a traditional Malaysian game in which a player uses a slipper 
to topple a stack of slippers. By adapting the game to involve 
robots, students had the opportunity to explore programming 
while also appreciating a traditional Malaysian concept. This 
fusion of elements likely contributed to the increased 
enthusiasm among the students. Feedback from students 
supports this: 

"I was very happy to use robots in this programming learning 
session because I could understand the subject more deeply." 

"I was excited and curious to code for this robot." 

Persistence was another notable aspect, with students 
showing determination to complete the tasks despite challenges. 
Some groups encountered difficulties in making the robot move 
as intended, requiring them to repeatedly adjust program values, 
such as the delay. The robot’s movement varied depending on 
factors like battery power, tire condition, and servo motor 
settings. Through a series of tests, students eventually 
understood the relationship between the program and the robot's 
output. They also applied computational thinking techniques, 
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such as pattern recognition. Feedback reflecting this persistence 
includes: 

"It was fun yet tiring because of the repeated errors, but we 
got to learn something new in the end." 

"I felt skeptical at first about whether we would manage to 
finish, but as I worked with my group, I became confident we 
could succeed." 

Beyond engagement, the Interaction construct also 
demonstrated satisfactory factor loadings, indicating that 
students actively interacted with their peers during the activity. 
This was evident from responses like: 

"I feel happy because I got to discuss different ideas and 
solutions with other students." 

"I enjoyed this programming learning. Robots and friends 
made the activities fun." 

"I felt confused and worried that I wouldn’t be able to 
contribute to my team, but as the instructor helped us out, I felt 
more connected." 

The structural model results reveal that engagement and 
perceived competency play a crucial role in fostering students' 
interest in programming and robotics. Significant relationships 
were found between engagement and competency (H4) and 
between engagement and interest (H5). These findings suggest 
that when students are actively engaged in learning activities, 
they are more likely to feel competent, which in turn increases 
their interest in the subject. Additionally, the significant link 
between competency and interest (H3) indicates that as students 
perceive an improvement in their skills, their curiosity and 
eagerness to learn more also grow, reinforcing the positive cycle 
between competence and interest. 

However, the study also found that interaction did not have 
a significant impact on either competency or interest. Despite 
the common belief that peer discussions and collaborative 
learning enhance educational outcomes, the results indicate that 
these interactions did not translate into measurable 
improvements in students' competency. Although students 
enjoyed discussing ideas and solutions with their peers, as 
reflected in qualitative feedback, these exchanges may not have 
been sufficiently focused or impactful to deepen their 
engagement with the subject matter. To enhance the 
effectiveness of interactions in future implementations, it may 
be necessary to structure these activities more intentionally, 
ensuring that they promote meaningful cognitive engagement 
and skill development rather than just social interaction. 

Conversely, the hypotheses examining the impact of 
challenge on both competency (H1) and interest (H2) were not 
supported. This suggests that the level of difficulty presented by 
the activities did not significantly contribute to students' 
perceptions of their skills or their interest in the subject. While 
challenges are necessary for learning, they must be carefully 
balanced to avoid discouragement. Student responses, such as 
the view that programming was complicated and difficult or that 
the activity was interesting but challenging, underscore the 
importance of making challenges approachable. Maintaining 
this balance is crucial for sustaining engagement and fostering 
positive learning outcomes. These findings highlight the need 

for well-designed, appropriately challenging activities to 
enhance students' perceived competency and sustain their 
interest in STEM education. 

The study's findings highlight the importance of carefully 
structuring interactions and challenges to enhance competency 
and interest effectively. Without adequate support, these 
elements may fail to produce the desired outcomes. Creating 
meaningful learning experiences in programming requires 
thoughtful technology integration, including appropriate 
applications, media, systems, and approaches. Misaligned or 
improper use of technology can hinder students' confidence and 
problem-solving skills. A well-designed framework that 
incorporates contextual and meaningful learning objectives is 
essential for optimizing technology integration [26]. 
Furthermore, technologies such as augmented reality (AR) can 
support STEM-based activities [27] and be seamlessly 
integrated into such a framework. 

Despite these insights, the study has limitations. The 
relatively lower factor loadings for the Interaction construct 
indicate that the measurement of this construct could benefit 
from refinement. Additionally, the reliance on a single item for 
the Challenge construct may not fully capture the multifaceted 
nature of the challenge experienced by students. Future research 
should address these limitations by developing more 
comprehensive measures for these constructs and exploring their 
impact in different educational contexts 

VI. CONCLUSIONS 

In conclusion, this study highlights the critical factors 
influencing students' interest in programming through robotics 
education. To enhance engagement, educators must focus on 
creating interactive and enjoyable learning experiences that 
actively involve students. Incorporating hands-on robotics 
activities can significantly stimulate curiosity and motivation, 
leading to improved learning outcomes. Additionally, fostering 
students' perceived competency in programming is essential; 
scaffolded learning activities and continuous feedback should be 
implemented to reinforce their skills and confidence. While 
interaction and challenge play vital roles in the learning process, 
they must be carefully structured with adequate support to avoid 
overwhelming students. Thus, educators should ensure that 
challenges are appropriate to students' skill levels, enabling 
meaningful interactions that enhance learning without causing 
disengagement. 

A significant limitation of this study was the students' 
tendency to hasten through the reflection phase, which limited 
opportunities for deeper learning. To address this, future 
iterations of the module could include additional activity cycles 
with structured reflection phases, allowing students to analyze 
algorithms and their outcomes to better understand cause-and-
effect relationships. Incorporating guided reflection tasks, 
supported by AI tools such as ChatGPT, could further enhance 
this process by fostering thoughtful analysis and encouraging 
meaningful insights. 

As advancements in AI continue to reshape education, future 
modules could also introduce a dedicated phase for students to 
explore AI concepts and applications. While this presents an 
exciting opportunity to align with emerging technological 
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trends, it also raises challenges related to resource allocation and 
the need for specialized teacher training. By addressing these 
aspects, robotics education can adopt a forward-looking 
approach, equipping students with essential skills for navigating 
and contributing to the evolving technological landscape, while 
maintaining a structured and engaging learning environment. 

ACKNOWLEDGMENT 

The author acknowledges the Prototype Development 
Research Grant (PRGS), grant number 
PRGS/1/2021/ICT01/UKM/02/2, funded by the Ministry of 
Higher Education (MOHE), Malaysia. 

REFERENCES 

[1] A. Peremol, R. Latih, and M. Abu Bakar, “MyJavaSchool: Students’ 
Perceptions and Motivation for Computer Programming,” Asia-Pacific 
Journal of Information Technology and Multimedia, vol. 8, no. 2, pp. 71–
78, Dec. 2019, e-ISSN: 2289-2192. 

[2] L. Holland, “Robotics education: Engaging students in programming and 
computational thinking,” J. STEM Educ., vol. 11, no. 2, pp. 45–58, 2020. 

[3] R. N. Jawawi et al., “Enhancing computational thinking and programming 
skills through educational robotics: A longitudinal study,” Comput. 
Educ., vol. 183, pp. 104728, 2022. 

[4] H. Susilo et al., “Increasing STEM graduates: Strategies and challenges,” 
Int. J. STEM Educ., vol. 3, no. 1, p. 12, 2016. 

[5] S. Ziaeefard et al., “STEM education in the UK: Status and challenges,” 
Brit. J. Educ. Technol., vol. 47, no. 6, pp. 1234–1246, 2016. 

[6] A. Nasa and S. Anwar, “STEM education in Malaysia: Achievements and 
prospects,” Malaysian J. Educ., vol. 40, no. 2, pp. 87–102, 2016. 

[7] D. A. Kolb, Experiential Learning: Experience as the Source of Learning 
and Development. Prentice Hall, 1984. 

[8] D. A. Kolb and A. Y. Kolb, “Learning styles and learning spaces: 
Enhancing experiential learning in higher education,” Acad. Manag. 
Learn. Educ., vol. 4, no. 2, pp. 193–212, 2005. 

[9] M. Masril, B. Hendrik, H. T. Fikri, A. H. Hazidar, B. Priambodo, E. 
Naf’an, I. Handriani, Z. P. Putra, and A. K. Nseaf, “The Effect of Lego 
Mindstorms as an Innovative Educational Tool to Develop Students' 
Creativity Skills for a Creative Society,” J. Phys. Conf. Ser., vol. 1339, 
Int. Conf. Computer Science and Engineering (IC2SE), pp. 012082, Apr. 
2019 

[10] N. Pellas, “Assessing Computational Thinking, Motivation, and Grit of 
Undergraduate Students Using Educational Robots,” J. Educ. Comput. 
Res., vol. 62, no. 2, pp. 620–644, 2024. 

[11] N. F. A. Zainal, R. Din, M. F. Nasrudin, S. Abdullah, A. H. A. Rahman, 
N. H. S. Abdullah, K. A. Z. Ariffin, S. M. Jaafar, and N. A. Majid, 
“Robotic Prototype and Module Specification for Increasing the Interest 

of Malaysian Students in STEM Education,” Int. J. Eng. Technol., vol. 7, 
no. 3.25, pp. 286–290, 2018, doi: 10.14419/ijet.v7i3.25.17583. 

[12] N. F. A. Zainal et al., “Primary and Secondary School Students’ 
Perspective on Kolb-Based STEM Module and Robotic Prototype,” Int. 
J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 4-2, pp. 1394–1401, Sept. 2018, 
doi: 10.18517/ijaseit.8.4-2.6794. 

[13] G. P. Fernández and C. Cossio-Mercado, “AelE: A Versatile Tool for 
Teaching Programming and Robotics Using Arduino,” Proc. Latin Am. 
Comput. Conf. (CLEI), Buenos Aires, Argentina, 2024, pp. 1–10, doi: 
10.1109/CLEI64178.2024.10700288. 

[14] A. Konak, C. Clark, and M. Nasereddin, “Exploring the impact of 
interaction, engagement, and challenge on students' learning 
experiences,” J. Inform. Technol. Educ.: Res., vol. 13, pp. 141–154, 2014. 

[15] T.-C. Huang, C.-C. Chen, and Y.-W. Chou, “Animating eco-education: 
To see, feel, and discover in an augmented reality-based experiential 
learning environment,” Comput. Educ., vol. 96, pp. 72–82, 2016. 

[16] A. D’Ausilio, “Arduino: The advantages and potential applications in 
educational robotics,” J. Educ. Robotics, vol. 4, no. 1, pp. 25–36, 2012. 

[17] J. F. Hair et al., A Primer on Partial Least Squares Structural Equation 
Modeling (PLS-SEM), 2nd ed. SAGE Publications, 2017. 

[18] R. P. Bagozzi and Y. Yi, “On the evaluation of structural equation 
models,” J. Acad. Market. Sci., vol. 16, no. 1, pp. 74–94, 1988. 

[19] C. Fornell and D. F. Larcker, “Evaluating structural equation models with 
unobservable variables and measurement error,” J. Market. Res., vol. 18, 
no. 1, pp. 39–50, 1981. 

[20] J. Henseler, C. M. Ringle, and M. Sarstedt, “A new criterion for assessing 
discriminant validity in variance-based structural equation modeling,” J. 
Acad. Market. Sci., vol. 43, no. 1, pp. 115–135, 2015. 

[21] W. W. Chin, “The partial least squares approach to structural equation 
modeling,” Modern Methods for Business Research, vol. 295, no. 2, pp. 
295–336, 1998. 

[22] J. Henseler, C. M. Ringle, and R. R. Sinkovics, “The use of partial least 
squares path modeling in international marketing,” Adv. Int. Market., vol. 
20, pp. 277–319, 2009. 

[23] J. F. Hair, C. M. Ringle, and M. Sarstedt, “PLS-SEM: Indeed a silver 
bullet,” J. Market. Theory Pract., vol. 19, no. 2, pp. 139–152, 2011. 

[24] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd ed. 
Lawrence Erlbaum Associates, 1988. 

[25] S. Geisser, “A predictive approach to the random effect model,” 
Biometrika, vol. 61, no. 1, pp. 101–107, 1974. 

[26] N. F. Husin, H. M. Judi, and S. A. Hanawi, “Meaningful Programming 
Learning Using Technology Integration: Implementation and Application 
Level,” Asia-Pacific Journal of Information Technology and Multimedia, 
vol. 10, no. 2, pp. 77–94, Dec. 2021. 

[27] N. A. A. Nordin, N. A. Majid, and N. F. A. Zainal, “Mobile Augmented 
Reality Using 3D Ruler in a Robotic Educational Module to Promote 
STEM Learning,” Bull. Electr. Eng. Informat., vol. 9, no. 6, pp. 2499–
2506, 2020, doi: 10.11591/eei.v9i6.2067. 

 


