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Abstract—Congenital Insensitivity to Pain (CIP) patients, 

particularly infants, are vulnerable to self-injury due to their 

inability to perceive pain, which can lead to severe harm, such as 

biting their hands. This research introduces "CIPHomeCare," a 

wearable monitoring solution designed to prevent self-injurious 

behaviors in CIP patients aged 6 to 24 months. The primary 

focus of this study is developing and applying machine learning 

algorithms to classify hand-biting behaviors. Using accelerometer 

data from the STEVAL-BCN002V1 sensor, which is a motion 

sensor, several machine learning models—K-Nearest Neighbors 

(KNN), Random Forest (RF), Naive Bayes (NB), Linear 

Discriminant Analysis (LDA), and Logistic Regression (LR)—

were trained to differentiate between normal and harmful 

behaviors. To address data imbalance due to the infrequency of 

biting events, oversampling techniques such as SMOTE, 

Borderline-SMOTE, ADASYN, K-means-SMOTE, and SMOTE-

ENN were employed to enhance classification performance. 

Among the algorithms, KNN achieved the highest accuracy 

(98%) and a sensitivity of 72%, highlighting its effectiveness in 

detecting harmful hand motions. The findings suggest that 

machine learning, in combination with wearable technology, can 

provide accurate, personalized monitoring and timely 

intervention for CIP patients, paving the way for broader clinical 

applications and real-time prevention of self-injury. The real-

time processing capability of the system enables immediate 

alerting of caregivers, allowing for timely intervention to prevent 

injuries, thus improving their quality of life. 

Keywords—Cognitive insensitivity to pain patients; CIP; 

machine learning; motion sensors; quality of life; wearable activity 
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I. INTRODUCTION 

One of the significant challenges that patients with CIP 
face is the late detection of injuries, as they are unable to feel 
pain. For instance, infants with CIP may inadvertently harm 
themselves while teething, sometimes biting their tongues to 
the point of cutting off the tip or gnawing on their hands 
until they bleed [1, 2, 3]. These behaviors can lead to severe 
self-mutilation or, in extreme cases, amputation [4]. 
Researchers have noted that due to the lack of pain 
perception and visible signs of distress, serious injuries can 
occur, including premature self-extraction of teeth [3, 5]. 
Therefore, it is crucial to provide patients, particularly 
infants and their caregivers, with coping strategies for this 
disorder. Such support can enhance their quality of life 

(QoL), defined as the impact of a disease, disability, or 
disorder on an individual's physical and mental well-being 
over time [6]. 

While most research on CIP has concentrated on 
understanding the disorder's characteristics [7, 8], there is a 
notable lack of studies that focus on developing coping 
mechanisms, especially in comparison to other conditions 
like attention deficit hyperactivity disorder. To date, and 
based on the authors’ knowledge, there has been only one 
significant attempt to address the challenges faced by CIP 
patients: the design and fabrication of an assistive 
technology glove that alerts patients to extreme temperature 
variations in their environment [9]. However, this solution 
has limitations, as it may not fully address the broader range 
of self-injurious behaviors these patients experience. The 
glove primarily targets temperature awareness, leaving other 
critical aspects of injury prevention unaddressed. This 
highlights the need for more comprehensive interventions 
that can provide holistic support for individuals with CIP. It 
is essential to develop targeted solutions that address their 
specific needs. One critical area of focus is the issue of 
finger-biting behaviors, which can lead to severe self-injury 
and long-term consequences. 

Providing a good quality of life for CIP disorder patients 
is the primary motivation of this research study. CIP disorder 
holds the potential to worsen the overall health of patients by 
limiting their capacity to live well and their functional status 
and productivity. This research focuses on finger-biting 
behaviors and aims to develop a solution called 
‘CIPHomeCare,’ specifically designed for infants with CIP 
aged 6 to 24 months and their caregivers during the teething 
stage. Addressing this behavior is vital, as it not only helps 
prevent immediate physical harm but also supports the 
overall emotional and psychological well-being of patients 
and their families. Equipping caregivers with practical tools 
to monitor and manage these behaviors is essential; however, 
a key challenge is determining how to alert caregivers when 
a child with CIP begins to injure their hands. Specifically, 
there is a need to detect when a child's biting reaches a 
predefined limit and notify caregivers of the risk of injury. 

Incorporating machine learning can be highly beneficial 
to address these challenges. Machine learning algorithms can 
analyze and identify patterns in patient datasets and 
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correlations that may not be immediately apparent through 
traditional methods. This facilitates the development of a 
dynamic threshold that adapts to individual behavior over 
time, ensuring personalized interventions. Furthermore, 
machine learning can enhance the estimation accuracy 
regarding when a child is likely to reach harmful biting 
levels, enabling caregivers to intervene proactively. By 
leveraging these advanced analytical techniques, the 
proposed solution not only improves safety but also 
empowers caregivers with actionable insights, ultimately 
contributing to better management of the disorder and 
enhanced QoL for CIP patients. 

To implement this innovative approach, data from 
typically developing children was used, as no datasets are 
available specifically for CIP patients. By tracking the 
frequency of hand-biting behaviors over time, the 
researchers identified moments when a child might be at risk 
of self-harm. This data established a baseline for behavior 
patterns, which was then used to train various machine-
learning algorithms. The analysis showed that the K-Nearest 
Neighbors (KNN) algorithm achieved the highest average 
accuracy rate of 98% in identifying abnormal hand motions. 
This predictive capability helps estimate the injury threshold, 
at which point the proposed solution would alert caregivers. 
The proactive alarm system is designed to notify caregivers 
before a child’s biting reaches a level that could cause harm, 
thereby enhancing safety and preventing injuries. 

To the best of our knowledge, ‘CIPHomeCare’ is the first 
comprehensive solution combining technology and machine 
learning to address the unique challenges CIP patients face, 
aiming to improve their quality of life. The remainder of this 
research is organized as follows: Section II reviews related 
works, including wearable activity recognition and 
classification algorithms. Section III provides an overview of 
the proposed solution. In Section IV, the experimental 
method is presented. Section V describes the evaluation 
methods used in this research. Section VI analyzes the 
results obtained. Discussion is given in Section VII. Finally, 
the conclusions are presented in Section VIII. 

II. RELATED WORK 

Recent studies underscore the pivotal role of technology 
in advancing motion recognition through wearable devices, 
which are crucial for applications ranging from fall detection 
in elderly individuals to monitoring hazardous movements 
and anticipating potential risks. These technologies enable 
early detection and effective intervention, reducing injury 
severity and mortality rates in vulnerable populations [10]. 
Motion recognition technology’s ability to analyze data, 
identify movements, and provide timely alerts has 
significantly improved patient safety and response times. 
Given its growing relevance, monitoring and investigating 
human gestures has become a central focus in commercial 
and biomedical research [11, 12]. The related work is 
organized as follows: the first part illustrates the new 
advancements in hand gesture monitoring technologies, the 
second part compares the use of one sensor against multiple 
sensors, and the last part provides insight into the impact of 
sensor placement on gesture recognition accuracy. 

A. Advancements in Hand Gesture Monitoring Technologies 

The field of hand gesture monitoring has seen rapid 
advancements, driven by the need for better rehabilitation 
tools and performance analysis systems. A notable study 
[10] introduced an intelligent wristband equipped with 
polymeric strain gauge sensors capable of detecting eight 
distinct hand gestures with 98% accuracy using Linear 
Discriminant Analysis (LDA). This innovation highlights the 
potential of simple yet highly accurate systems for 
recognizing complex hand gestures. Expanding on this, 
another study [13] examined hand gesture recognition in 
table tennis using multiple algorithms, including Support 
Vector Machine (SVM), LDA, K-Nearest Neighbor (KNN), 
Decision Tree (DT), and Naive Bayes (NB). The Decision 
Tree algorithm stood out, achieving an accuracy of 95%, 
demonstrating the effectiveness of ensemble methods in 
sports-related gesture recognition. 

Real-time gesture recognition has also been explored, 
particularly with Inertial Measurement Unit (IMU) sensors. 
Research from 2018 [14] reported an accuracy range of 72% 
to 100%, with an average accuracy of 86.99% when using 
algorithms such as SVM, LDA, Dynamic Time Warping 
(DTW), and Principal Component Analysis (PCA). These 
studies collectively illustrate the diversity of approaches 
used in gesture recognition, each tailored to the specific 
application domain, highlighting both the potential and 
challenges of integrating such technologies into everyday 
use. Thus, this current research study uses real-time gesture 
recognition and accelerometer-based bracelet-type sensor 
specified for CIP children’s patients. 

B. Comparison of Single vs. Multiple Wearable Sensors 

While many studies have focused on single-sensor 
configurations, others have explored using multiple sensors 
to enhance gesture recognition accuracy. Zhao et al. [15] 
developed a table tennis stroke classification system using 
three sensors placed on different body parts, achieving a 
recognition accuracy of 97.41% with SVM. This illustrates 
how combining multiple sensors can improve the precision 
of gesture detection in dynamic environments. In contrast, a 
study [16] compared single and multiple sensor setups, 
revealing only a modest difference in accuracy—90% for 
single sensors compared to 95% for multiple sensors. This 
finding suggests that the marginal improvement in accuracy 
with additional sensors may not justify the increased 
complexity and discomfort in practical applications, mainly 
when wearable devices are intended for daily use. Research 
has also shown that an increased number of sensors can 
interfere with everyday activities, reducing user comfort and 
compliance [17, 18]. These results emphasize the need to 
balance accuracy with usability, particularly in contexts like 
athletics or rehabilitation, where user comfort is paramount. 
Accordingly, this study considers children's comfort a 
priority, so only one sensor was used. 

C. Impact of Sensor Placement on Gesture Recognition 

Accuracy 

Sensor placement plays a critical role in determining the 
accuracy of gesture recognition systems. A study in [19] on 
fall detection using six sensors focused on wrist placement 
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achieved an accuracy of 96.63% using the K-NN algorithm. 
This highlights the importance of precise sensor placement 
in improving recognition rates. Similarly, research in [20] 
that compared wrist and below-elbow sensor placements for 
dynamic hand gestures found that wrist placement yielded a 
higher accuracy of 93.27%, likely due to the more extensive 
range of motion captured at the wrist. Despite the improved 
accuracy with multiple sensors, studies also noted that 
additional sensors can interfere with daily activities [17, 18], 
underscoring the trade-offs between accuracy and 
practicality. 

Several technological innovations have further enhanced 
gesture recognition accuracy. For instance, a study [21] 
introduced an accelerometer-based pen-type device 
combined with a Feedforward Neural Network and 
Similarity Matching system to detect primary and complex 
hand gestures, achieving an accuracy of 98.9%. Other 
advancements include axis-crossing code algorithms for 
wrist gestures, achieving accuracies as high as 96.9% and 

97.1%, respectively [21]. Additionally, specialized devices, 
such as a wristband developed for basketball shooting 
analysis, demonstrated the potential for highly accurate 
gesture recognition in sports, with up to 98.5% accuracy 
using the Artificial Neural Network (ANN) algorithm [22]. 
These studies underscore the importance of sensor placement 
and algorithmic improvements in achieving high accuracy in 
gesture recognition, particularly in practical, real-world 
applications. Hence, this research settles on the wrist as the 
best placement of the sensor. 

Table I summarizes all the related work on gesture 
recognition. The first column lists the types of sensors used 
in each paper. The second column lists the algorithms used 
to classify and evaluate the data. Next, the hardware type is 
used to process the data. The next column illustrates the 
sensor’s placement. The last column shows the average 
accuracy of each study. While many wearable solutions 
target broad applications, focusing on specific, well-defined 
user groups can enhance effectiveness. 

TABLE I.  SUMMARY OF THE RELATED WORK 

# Work Sensor Model (algorithm) 
Computing 

Hardware 
Placement Accuracy 

1 [18] polymeric strain gauge SVM, LDA PC wrist 98% 

2 [23] 
MPU9250 includes (6-DOF inertial 
measurement unit (IMU), 3-DOF 

magnetometer sensor) 

K-NN, SVM, DT, LDA, NB Not mentioned wrist 95% 

3 [24] 
ADIS16448 inertial measurement 

unit 
SVM PC 

upper arm, lower 

arm, back 
97.41% 

4 [25] triboelectric motion sensor K-NN PC Not mentioned 80% 

5 [4] method 1 
ACC, HR, BVP, skin temperature 

(ST), galvanic skin response (GSR) 

Long short-term memory with deep 

learning (LSTM-DL) 
PC Wrist 95% 

6 [4] method 2 Only ACC LSTM-DL PC wrist 90% 

7 [26] MTw sensor unit 

k-NN, SVM, DTW, ANN, Bayesian 

decision making (BDM), least squares 

method (LSM) 

PC 

head, chest, waist, 

right-wrist, right-

thigh, right-ankle 

96.63% 

8 [27] 
3-dimensional accelerometer 
(ACC), blood volume pulse (BVP), 

heart rate (HR) 

Random Forest (RF) PC Hip and wrist 92% 

9 [28] ACC SVM mobile application Hip and wrist 89% 

10 [29] ACC 
K-NN, and SVM, LDA, ensemble 

method (EM) 
Not mentioned Hip or thigh 93% 

11 [30] IMU, electromyography K-NN, NB, RF, J48 PC Wrist 93.27% 

12 [3] 
Accelerometer-based pen-type 
sensing device 

FNN, SM PC hand 98.9% 

13 [7] inertial sensor DTW PC wrist 96.9% 

14 [16] IMU Axis-crossing code matching 
Cortex32-M0 

level MCU 
wrist 97.1% 

15 [13] 
Mpu9250, Power system, 

Communication 
SVM, K-NN, RF, ANN PC wrist 97.4% 

16 [31] 
accelerometer, gyroscope, compass 

sensor 

SVM, NB, RF, J48, AdaBoost, Hidden 

Markov Model (HMM) 
Not mentioned wrist 94% 

17 [12] 
IMU including Accelerometer, 

Gyroscope 
SVM, DTW, LDA, PCA Not mentioned wrist 86.99% 

18 [32] IMU 
restricted column energy (RCE) neural 

network, DTW 

Field-

programmable 
gate array (FPGA) 

hand 98.6% 

19 [33] single patchable six-axis IMU recurrent neural networks (RNN) PC wrist 95.3% 

20 
Original 
research 

Accelerometer-based bracelet-type 
sensor device 

K-NN, NB, RF, LDA, LR PC wrist 98% 

 

In summary, wearable-based gesture recognition systems 
have significantly improved, with various algorithms and 
sensor configurations improving accuracy and practicality. 

Using algorithms like K-NN, Decision Tree, and ANN, 
combined with appropriate sensor placement, has proven 
effective in diverse applications such as fall detection, sports 
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performance analysis, and rehabilitation. While integrating 
multiple sensors can improve accuracy, single-sensor setups 
offer comparable performance with greater user comfort, 
particularly in everyday settings. Moreover, advancements in 
sensor technology, such as the development of wrist-based 
devices and novel algorithms, continue to push the 
boundaries of gesture recognition accuracy. Despite these 
advancements, challenges remain in real-time applications; 
balancing accuracy, sensor placement, and user comfort is 
critical. While previous research has focused on sensor-
based systems for fall detection, this current study extends 
this by concentrating on CIP patients, who present unique 
challenges in gesture monitoring. The ongoing evolution of 
motion recognition technologies holds immense potential for 
improving patient safety and enhancing the quality of life for 
individuals across various domains. 

III. OVERVIEW OF THE PROPOSED SOLUTION: 

‘CIPHOMECARE’ 

The proposed solution, ‘CIPHomeCare,’ comprises three 
main components, as depicted in Fig. 1. Since it is not within 
the main scope of the research, the architecture is not 
illustrated in detail. The first component is a 
motion/wearable sensor designed to be comfortable for 
infants and continuously monitor hand motions. It counts 
instances of biting and collects data on the frequency and 
intensity of these behaviors. The sensor establishes a 
baseline for normal behaviors by tracking these movements 
over time, allowing for better identification of abnormal 
patterns. The second component is the CIPHomeCore Smart 
Component, which processes the collected data using the 
wearable sensor. It trains machine learning models to 
classify hand motions and estimate when biting behaviors 
may become dangerous. The last component is the mobile 
application for caregivers, which is out of this research 
study’s scope. The app provides real-time alerts to caregivers 
when the system detects a child approaching the predefined 
injury threshold. The application features an intuitive 
interface that displays data on the child’s hand motions and 
biting frequency, empowering caregivers with actionable 
insights. 

 
Fig. 1. The architecture of ‘CIPHomeCare’. 

These components create a comprehensive monitoring 
solution that enhances safety for CIP patients and supports 
caregivers in managing the disorder effectively. 

IV. METHODOLOGY 

This research encompasses multiple phases, from the 
initial selection of the sensor to the final analysis of the 
results. 

Each phase was carefully designed to ensure the accuracy 
and reliability of data collection and analysis. Fig. 2. It 
illustrates the proposed workflow, which includes sensor 
selection, ethical considerations, data collection and 
processing, handling imbalanced dataset, training machine 
learning algorithms, and evaluating and comparing different 
approaches (illustrated in the Evaluation section). Statistical 
analysis was conducted using Python version 3.11, with 
libraries such as Pandas (version 2.2.2) for data processing 
and NumPy (version 1.26.4). The following subsections 
discuss all stages in detail. 

A. Sensor Selection 

The STEVAL-BCN002V1 multi-sensor is used to collect 
the data in this research study. The STEVAL- BCN002V1 is 
a multi-sensor board based on the BlueNRG-2 SoC 
Bluetooth Low Energy application processor and includes a 
6-DOF inertial measurement unit (IMU). Thus, the child's 
wrist motions were collected using this sensor. The overall 
size is as tiny as a coin, so children would not feel 
uncomfortable wearing the sensor. It was chosen because of 
its small size, high accuracy, and low power consumption, 
making it suitable for continuous monitoring of young 
children without causing discomfort. The high sensitivity of 
the IMU allows for capturing even subtle hand movements, 
which is crucial for distinguishing between normal and 
biting behaviors. The sensor complies with European 
EMI/EMC and safety directives and standards. 

 
Fig. 2. The proposed workflow of ‘CIPHomeCare’. 

B. Ethical Considerations 

This study followed the ethical principles outlined in the 
Declaration of Helsinki. Ethical approval was obtained from 
the Unit of Biomedical Ethics at King Abdulaziz University 
(No. HA-02-J-008) prior to the initiation of the research. 
Informed consent was secured from the guardians of all 
participants involved in the study. Each guardian was 
provided with detailed information regarding the purpose of 
the research, the procedures involved, and any potential 
benefits and risks. The study ensured that participation was 
voluntary, and participants could withdraw without 
consequences. To protect the confidentiality of participants, 
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all data was anonymized and stored securely. Identifiable 
information was removed to ensure that individual responses 
could not be traced back to specific participants, and each 
participant was assigned a random ID number to maintain 
patient confidentiality. Data access was restricted to 
authorized personnel only. 

Additionally, measures were implemented to minimize 
potential discomfort or distress to the children during data 
collection. The type and design of the wearable sensor were 
selected with the children’s comfort in mind, ensuring it was 
non-intrusive, and the children were monitored to ensure 
their well-being throughout the study. 

C. Data Collection and Processing 

This current study utilized a newly collected dataset of 
children's hand movements, with prior approval from their 
parents. Data were gathered from the King Abdulaziz 
University Hospital clinics and Childhood Centers in Jeddah 
City, Saudi Arabia. The only eligibility criterion was that the 
child had to be between 6 and 24 months old. This age group 
is chosen because it gets the most injuries among CIP 
patients due to their low cognitive ability [2, 3] and to 
protect them from injuries they could suffer from. The data 
collection employed an accelerometer-based sensor, which 
enabled real-time monitoring of the children's hand 
movements. The sensor was worn on the children’s dominant 
hand. Data were collected daily for a maximum of 35 
minutes per child to maintain consistency across participants 
and ensure comprehensive monitoring without causing 
fatigue. The data were collected between 9 am and 3 pm 
since the data is collected from a hospital and childhood 
center. 

Wrist motion data was collected from 41 normal children 
without CIP health conditions. The children are 19 females 
and 22 males. The youngest participants were 6 months old, 
while the oldest were 2. Each child wore a wristband sensor 
for a maximum of 35 minutes daily. To capture natural 
behavior, the children were not restrained in their 
movements and were not instructed to perform any specific 
actions, providing a realistic baseline for detecting abnormal 
hand motion (biting motion). The wristband recorded 
acceleration data across the X-axis, Y-axis, and Z-axis, 
capturing various wrist motions, including the intensity and 
frequency of movements. Upon analyzing the acceleration 
data, significant differences in the peak profiles across the X, 
Y, and Z axes were observed. 

Consequently, the acceleration data from all three axes 
was selected as this primary motion analysis dataset for 
subsequent motion recognition and detection. The recorded 
motion data was then manually classified by the first author 
(RA) into two categories: normal motion (no hand biting) 
and abnormal motion (hand biting), and then reviewed by 
three experts. Two experts, the second and the third co-
authors (HB and AH), are from the technology field and 
have at least seven years of experience in machine learning. 
The third expert is from the health sector; the last co-author 
(RA) is a physician with over fifteen years of experience in 
the pediatric department (neurology division).  However, 
some challenges arose during data collection: children did 

not frequently bite their hands, leading to an imbalanced 
dataset. To address this issue, oversampling techniques were 
employed to ensure a more balanced representation of both 
motion categories in the analysis phase. 

The data processing phase started after labeling the data 
with the expert’s assistance. The processing phase 
progressed through several stages until the appropriate stage 
was determined. Initially, we took the data as is and 
identified the abnormal biting behavior. Unfortunately, if the 
child bites his hand, the alarm will go off, which is not a 
practical solution. Then, we set a fixed threshold of 10 
seconds to define abnormal biting behavior without 
accounting for individual differences in pain tolerance. This 
threshold was used uniformly across all participants. 
However, this approach led to substandard results, as it 
failed to consider the natural variability in how different 
children responded to discomfort. 

Given that the data was collected from children, it was 
crucial to consider individual differences in pain tolerance, 
which naturally varies among them. Granted, we revised our 
approach by calculating each child’s average biting duration 
and using it to create a personalized threshold for abnormal 
behavior detection. We significantly improved the system 
accuracy compared to a generic threshold. This adjustment 
resulted in improved accuracy and consistency in detecting 
abnormal behaviors. 

Table II shows a sample of the average biting duration; 
some results are 0, which means those children did not bite 
their hands at all during the observation period. Table III 
illustrates that the children’s hand motion dataset consisted 
of four columns and more than eight million rows. Each row 
represents a part of the child's hand motion. The four 
columns represent the acceleration data across the X-axis, Y-
axis, and Z-axis, and the last column represents the child's 
status (label), whether they were biting their hand at the time 
or not. 

TABLE II.  AVERAGE BITING DURATION 

ID Average (Sec) 

1 2.7975 

2 0 

3 0 

4 1 

5 6.2 

TABLE III.  AVERAGE BITING DURATION STATUS 

X(mg) Y(mg) Z(mg) Status 

-184 1026 141 0 

-110 974 89 0 

-121 961 87 0 

-126 985 114 0 

-138 1011 168 0 

D. Data Balancing 

As mentioned earlier, children did not frequently bite 
their hands, which led to an imbalanced dataset. As shown in 
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Fig. 3, the children’s hand motion dataset suffers from a 
severe skew in the class distribution. This figure highlights 
the imbalance in the children’s hand motion dataset, with a 
significantly higher proportion of normal hand motion 
(99.7%) than abnormal hand biting motion (0.3%). This 
imbalance requires oversampling techniques to ensure 
balanced training of ML models due to the infrequency and 
importance of detecting biting events. 

 
Fig. 3. Class distribution in the children hand motion dataset. 

Several oversampling methods were investigated, such as 
the Synthetic Minority Over-sampling Technique (SMOTE), 
Borderline-SMOTE, Adaptive Synthetic Sampling 
(ADASYN), and K-means-SMOTE, to address class 
imbalance and mitigate overfitting in the collected dataset 
[34]. Each oversampling technique provides a dataset to be 
classified. SMOTE has gained significant attention due to its 
effectiveness and relative simplicity [34]. SMOTE is one of 
the earliest and most widely used methods, generating 
synthetic samples by interpolating between nearest neighbors 
within the minority class in the training set. This approach 
effectively blends features from original instances with those 
of randomly selected k-nearest neighbors [35]. An 
enhancement to SMOTE, known as Borderline-SMOTE 
[36], focuses on oversampling only those minority instances 
near the class boundary. Research indicates that Borderline-
SMOTE improves classification performance for the 
minority class more effectively than both SMOTE and 
random oversampling methods. Another method applied is 
ADASYN [37], which adjusts the classification boundary by 
emphasizing more challenging examples. ADASYN employs 
a weighted approach to generate synthetic samples, 
prioritizing difficult instances within the minority class, and 
results from various datasets and evaluation metrics support 
its effectiveness. 

K-means-SMOTE [38, 39] also leverages K-means 
clustering to identify clusters in the training data with an 
Imbalance Ratio (IR) below a specified threshold. SMOTE is 
then applied to these clusters, with the extent of 
oversampling determined by the sparsity and density of 
minority class objects. By implementing these four methods, 
the analysis aimed to effectively balance the dataset and 
reduce the risk of overfitting in the machine learning models. 

In addition to the previously discussed oversampling 
techniques (SMOTE, Borderline-SMOTE, ADASYN, and 
K-means-SMOTE), this study also applied the SMOTE-ENN 
technique to address the class imbalance. SMOTE-ENN 

combines the Synthetic Minority Over-sampling Technique 
(SMOTE) with Edited Nearest Neighbors (ENN), providing 
an enhanced balance of the dataset by generating synthetic 
samples for the minority class while removing ambiguous 
samples that could potentially confuse the classifier [40]. 
This hybrid approach aims to improve the quality of the 
training set by effectively handling noisy instances, leading 
to potentially better model performance. 

E. Machine Learning Algorithm Selection 

Several machine learning algorithms were carefully 
selected to analyze the collected hand motion data. They 
were chosen for their proven effectiveness, as illustrated in 
related work, in similar applications and widespread 
implementation across various software platforms [16, 33]. 
The classifier algorithms applied in this work are as follows: 
the first chosen algorithm is the K-Nearest Neighbors (K-
NN). It is a nonparametric, instance-based learning 
algorithm for classification and regression tasks. K-NN is 
recognized for its simplicity but can be computationally 
intensive due to its reliance on distance calculations between 
test instances and all training examples [41, 42].  The 
distance metric used in K-NN is typically the Euclidean 
distance, defined by Eq. (1). 

 𝒅(𝒙, 𝒚) = √∑ (𝒙𝒊 − 𝒚𝒊)
𝟐𝒏

𝒊=𝟏 

This formula calculates the distance 𝒅(𝒙, 𝒚) between two 
points, x and y, in an n-dimensional space, helping the 
algorithm classify new instances based on proximity to 
training examples [43]. 

The second algorithm used is Random Forest (RF), an 
ensemble-based technique known for its robustness in 
classification tasks. RF constructs multiple decision trees 
using randomly sampled subsets of data and features, 
aggregating results through majority voting [44]. It 
effectively handles complex interactions and diverse data 
types, although it can be computationally demanding [45]. 
The impurity measure used to evaluate the quality of splits in 
decision trees is often represented by Eq. (2). 

                                       𝐺 = 1 −  ∑ 𝑝𝑖
2𝑛

𝑖=1   

In this formula, G denotes the Gini impurity, where pipi 
represents the probability of a class 𝑖  within the dataset, 
allowing the algorithm to assess the homogeneity of splits 
[43]. 

Naive Bayes (NB), the third chosen algorithm, employs 
the Bayesian theorem for classification by calculating the 
mean and variance of feature variables within clusters. It is 
particularly effective for high-dimensional data and is 
recognized for its simplicity and computational efficiency 
[27,28]. The probability of a class 𝐶𝑘  given a feature 𝑥  is 
computed as in Eq. (3). 

                        𝑃(𝐶𝑘|𝑥) =  
𝑃(𝑥|𝐶𝑘)×𝑃(𝐶𝑘)

𝑃(𝑥)


This formula illustrates how the algorithm updates the 
probability of class membership based on observed features, 
leveraging prior knowledge and likelihood [43]. 
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The fourth chosen algorithm is the Linear Discriminant 
Analysis (LDA), which finds a linear combination of 
features that best separates different classes, transforming 
features into lower-dimensional space to enhance class 
separability [46]. Although effective, it assumes a standard 
feature distribution and may struggle with non-linearly 
separable classes. The within-class scatter matrix is 
represented in Eq. (4). 

                𝑆𝑤 =  ∑ ∑ (𝑥𝑖 − 𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)𝑇
𝑥𝑖∈𝐶𝑘

𝐾
𝑘=1 

In this formula, 𝑆𝑤 captures the variance of data points 𝑥𝑖 
within each class 𝐶𝑘, where 𝜇𝑘 is the mean of class k [43]. 

The last algorithm used is logistic regression (LR). This 
algorithm predicts the probability of a target variable by 
analyzing relationships between independent variables [47]. 
The logistic function, which models the probability, is Eq. 
(5). 

                                           𝜎(𝑧) =  
1

1+𝑒−𝑧                                  (5) 

Here, 𝜎(𝑧)  represents the predicted probability of the 
target variable, where z is a linear combination of the 
independent variables, ensuring outputs are constrained 
between 0 and 1[43]. 

V. EVALUATION 

Muraina et al. [48] and Nguyen et al. [49] showed that 
selecting a 70/30 ratio to be the training/testing ratio impacts 
and improves the predictive capability of the ML models. 
Thus, the dataset was split into 70% for learning and 30% for 
testing to evaluate all classifier models. To determine which 
machine learning algorithm best estimates hand motion 
behaviors using the collected dataset, we evaluated a 
combination of five classification techniques: KNN, RF, NB, 
LDA, and LR. Along with various oversampling techniques: 
SMOTE, ADASYN, Borderline-SMOTE, K-means-SMOTE, 
and the newly added SMOTE-ENN. The effectiveness of 
these different combinations is compared in terms of three 
key metrics: accuracy, sensitivity, and specificity. Accuracy 
is the ratio of the total number of correct predictions to the 
total number of predictions made [50]. 

                          𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁


Sensitivity refers to the proportion of actual positive 
cases (the abnormal motion) that the model correctly 
identifies [50]. 

                             𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁


While specificity measures how accurately the model 
classifies negative cases (the normal motion), indicating its 
effectiveness in predicting normal hand motion [50].  

                                   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                             (8) 

VI. RESULTS 

The primary objective of this study was to evaluate the 

performance of several machine learning algorithms in 
detecting abnormal hand motions (specifically hand biting) 
in children with CIP using wearable sensors. The findings 
from the classification algorithms and oversampling 
techniques reveal valuable insights into the effectiveness of 
these approaches in addressing data imbalance and 
accurately classifying hand motions. 

Tables IV-IX summarize the performance metrics of the 
classification algorithms, including accuracy, sensitivity, and 
specificity, for each oversampling method. Each table details 
the performance of the various algorithms, with the first 
column listing the different algorithms, the second column 
displaying the accuracy results, the third column showing 
specificity values, and the last column presenting sensitivity 
values. Table IX displays the result of the original 
imbalanced dataset. 

Initially, a fixed threshold of 10 seconds for pain 
tolerance across all children led to poor performance as it did 
not adequately capture individual differences in pain 
perception. By individualizing the threshold, accounting for 
differences in average biting duration, the accuracy, 
sensitivity, and specificity of the models improved 
significantly, offering a more personalized and effective 
monitoring mechanism. 

TABLE IV.  COMPARISON OF CLASSIFICATION TECHNIQUES USING 

SMOTE 

Techniques Accuracy Sensitivity Specificity 

K-NN 0.99 0.69 1.00 

RF 0.61 0.69 0.61 

NB 0.64 0.62 0.64 

LDA 0.56 0.60 0.56 

LR 0.56 0.61 0.55 
 

TABLE V.  COMPARISON OF CLASSIFICATION TECHNIQUES USING 

BORDERLINE-SMOTE 

Techniques Accuracy Sensitivity Specificity 

K-NN 1.00 0.65 1.00 

RF 0.67 0.53 0.67 

NB 0.58 0.63 0.58 

LDA 0.60 0.64 0.60 

LR 0.59 0.64 0.59 

TABLE VI.  OMPARISON OF CLASSIFICATION TECHNIQUES USING 

ADASYN 

Techniques Accuracy Sensitivity Specificity 

K-NN 0.99 0.69 1.00 

RF 0.80 0.44 0.80 

NB 0.50 0.61 0.50 

LDA 0.60 0.42 0.60 

LR 0.60 0.42 0.60 
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TABLE VII.  COMPARISON OF CLASSIFICATION TECHNIQUES USING K-
MEANS-SMOTE  

Techniques Accuracy Sensitivity Specificity 

K-NN 1.00 0.65 1.00 

RF 0.61 0.69 0.61 

NB 0.64 0.63 0.64 

LDA 0.56 0.59 0.56 

LR 0.55 0.61 0.55 

TABLE VIII.  COMPARISON OF CLASSIFICATION TECHNIQUES USING 

SMOTE-EEN 

Techniques Accuracy Sensitivity Specificity 

K-NN 0.98 0.72 0.98 

RF 0.60 0.69 0.60 

NB 0.63 0.64 0.63 

LDA 0.56 0.50 0.56 

LR 0.55 0.61 0.55 

TABLE IX.  ORIGINAL DATASET CLASSIFICATION 

Techniques Accuracy Sensitivity Specificity 

K-NN 1.00 0.63 1.00 

RF 1.00 0.00 1.00 

NB 1.00 0.00 1.00 

LDA 1.00 0.00 1.00 

LR 1.00 0.00 1.00 

Additionally, Oversampling techniques such as SMOTE, 
Borderline-SMOTE, ADASYN, K-means-SMOTE, and 
SMOTE-ENN played a crucial role in addressing class 
imbalance by generating synthetic samples for 
underrepresented classes and eliminating noisy data. These 
methods were particularly effective in enhancing model 
sensitivity across classifiers like KNN, RF, and NB, limiting 
the challenges posed by the rarity of abnormal behavior 
hand-biting in CIP patients. 

From the results obtained, K-NN consistently 
outperformed the other algorithms across all oversampling 
methods especially with SMOTE-ENN, SMOTE and 
ADASYN where the sensitivity scores reached 0.72, 0.69 
and 0,69, respectively. A sensitivity of 0.72 implies that it 
flagged the abnormal motion correctly, which means the 
children’s risky motion is detected. Due to its instance-based 
learning approach, which effectively leveraged high-
dimensional data for classifying hand movements. SMOTE-
ENN, K-means-SMOTE, and SMOTE specifically 
contributed to improved sensitivity and specificity, with 
KNN showing the highest accuracy across all conditions. 
Similarly, RF demonstrated strong performance, particularly 
with ADASYN and SMOTE-ENN, indicating its capacity to 
handle complex data patterns. In contrast, NB maintained 
moderate accuracy (0.50-0.64), while linear models like 
LDA and LR struggled with non-linear data separability, 
yielding lower accuracies of 0.55-0.60. 

As mentioned earlier, oversampling techniques were 
crucial in addressing class imbalance, which significantly 
enhanced the model’s ability to detect rare hand-biting 
behaviors. SMOTE-based methods improved sensitivity 
across all algorithms, notably increasing KNN’s sensitivity 
from 0.65 to 0.72 with SMOTE-ENN. However, ADASYN, 
while boosting RF's sensitivity, reduced its specificity to 
0.44, illustrating the trade-off between enhanced detection of 
abnormal behaviors and increased false positives. This 
underscores the importance of choosing oversampling 
techniques aligned with specific clinical goals. 

VII. DISCUSSION 

To validate the result of this study, we compared our 
results with similar research studies regarding the 
performance of oversampling techniques, ML algorithm 
results, and the integration of wearable sensors with machine 
learning. These findings align with prior research in 
healthcare, where oversampling techniques such as SMOTE-
ENN have been shown to enhance model performance across 
various applications, including healthcare fraud detection 
and diabetic risk prediction. For example, Bounab et al. 
demonstrated that SMOTE-ENN improved accuracy and 
reliability by balancing datasets and eliminating noise [51], 
while Aruleba and Sun found similar benefits in credit risk 
prediction [52]. 

In prior research, the application of deep neural networks 
for emergency department triage demonstrated improved 
sensitivity and specificity compared to conventional triage 
models [53]. Similarly, KNN and RF in our study achieved 
high sensitivity, especially when paired with K-means-
SMOTE, reinforcing the idea that careful model selection 
and oversampling techniques can substantially enhance the 
ability to identify critical behaviors, which is crucial in 
clinical settings where missing abnormal events could have 
severe consequences. 

The effectiveness of oversampling methods such as 
SMOTE and ADASYN was also observed in other domains, 
including healthcare data privacy and diabetic risk prediction 
[54]. These studies found that oversampling significantly 
improved the detection capabilities of models for minority 
class events, such as high-risk patients, which aligns with 
our finding that oversampling increased sensitivity and 
specificity for detecting abnormal hand-biting behaviors. 
This enhancement in sensitivity, while sometimes 
compromising specificity, underscores the necessity of 
selecting an oversampling technique that aligns with specific 
clinical objectives—whether prioritizing sensitivity for early 
detection or specificity to reduce false alarms. 

Fig. 4 illustrates the sensitivity comparison for each 
algorithm, demonstrating that KNN outperforms other 
techniques, such as LDA and LR, and also shows promising 
results, particularly with the SMOTE technique, and even 
better performance with K-means-SMOTE. Additionally, 
NB maintains a relatively consistent accuracy of around 
63%. 
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Fig. 4. Sensitivity. 

 

Fig. 5. Specificity. 

Fig. 5 presents the specificity comparison across each 
oversampling technique. Here, KNN achieves the highest 
specificity again, while RF excels with the ADASYN 
method, showing comparable results to NB across the other 
three oversampling techniques. Moreover, while RF 
demonstrates overall good results, the NB algorithm 
achieves higher accuracy than LR. This can likely be 
attributed to the interdependence of the acceleration data 
across the X, Y, and Z axes; each feature contributes 
individually to the predictions made by the NB classifier. 

Conversely, both LDA and LR underperformed, yielding 
a low average accuracy of 58% across all oversampling 
techniques. This highlights the need for careful selection of 
algorithms in future implementations to enhance detection 
capabilities for abnormal hand motions in children. 

The results are also consistent with the work by Viloria et 
al., which demonstrated the efficacy of combining methods 
like SMOTE and random oversampling to address class 
imbalances in biomedical datasets [30]. Our use of SMOTE 
and ADASYN parallels these findings by effectively 
mitigating imbalance issues in hand motion data, thereby 
improving the models' ability to differentiate between 
harmful and non-harmful behaviors. 

The integration of wearable sensors with machine 
learning for real-time monitoring, as demonstrated in this 
study, parallels prior applications in cardiovascular and 
neurological health monitoring [55]. This technology offers a 
viable solution for detecting harmful behaviors in CIP 
patients, enabling timely intervention and improving patient 
safety. 

The high sensitivity achieved by KNN and RF, especially 
with SMOTE, K-means-SMOTE, and SMOTE-ENN, has 
important implications for real-world monitoring systems for 
CIP patients. Detecting abnormal hand motions like hand 
biting is critical for preventing self-injury in children who 
cannot feel pain. The wearable sensor system evaluated in 
this study offers a viable solution for real-time detection and 
intervention. By incorporating machine learning models that 
adapt to individual behavior patterns, caregivers can be 
alerted before harmful behaviors escalate, improving patient 
safety. 

Moreover, the successful application of oversampling 
methods indicates that similar approaches could be used to 
detect other critical healthcare behaviors, such as monitoring 
involuntary movements in patients with neurological 
disorders. These findings are consistent with prior research 
on motion classification using wearable sensors. For 
example, previous studies have demonstrated the 
effectiveness of KNN and RF in recognizing activities and 
detecting critical health events when combined with 
appropriate data augmentation techniques. Additionally, 
machine learning models in real-time monitoring, similar to 
wearable devices used in cardiovascular health monitoring, 
underscores the transformative potential of AI in healthcare 
applications. 

Studies have also validated the effectiveness of machine 
learning models like KNN and RF in recognizing critical 
health events across different domains. For example, KNN's 
success in heart sound analysis with an accuracy of 93.50% 
[56] and RF's compelling performance in fraud detection and 
credit risk analysis [57,58] demonstrate their robustness 
across varied datasets. These findings validate our approach, 
as KNN and RF were well-suited for highly dimensional 
accelerometer data, requiring distinguishing subtle variations 
in hand motion patterns. 

Finally, addressing imbalanced datasets in healthcare has 
consistently been highlighted as a critical issue, especially in 
applications where the cost of false negatives can be severe. 
This research study extends previous literature by evaluating 
multiple oversampling techniques, providing a 
comprehensive understanding of how these methods can be 
applied to healthcare datasets with imbalanced classes, such 
as CIP-related hand-biting data. This emphasizes the 
importance of a tailored approach to handling imbalance, 
especially in clinical contexts where false negatives could 
harm patients [59]. 

In conclusion, this study demonstrates that KNN, 
particularly when paired with oversampling techniques like 
SMOTE-ENN, performs best for detecting abnormal hand 
motions in children with CIP. These findings support the 
potential for more effective intervention systems for CIP 
patients. 

VIII. CONCLUSION, LIMITATIONS, AND FUTURE WORK 

This research explores the use of wristband sensors to 
investigate abnormal hand motions, explicitly focusing on 
hand biting. We collected and analyzed hand movement data 
from children to distinguish subtle differences between 
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normal and abnormal motions. The wristband sensor, 
equipped with motion detection technology, provides a 
portable and easily deployable solution. We utilized the 
STEVAL-BCN002V1 sensor to capture motion acceleration 
data, which was transmitted via Bluetooth for analysis. Our 
classification was based on acceleration data from three 
axes, resulting in an impressive average recognition accuracy 
of 98% and a sensitivity of 72%, highlighting the system's 
potential for future applications. The high sensitivity allows 
for capturing even subtle hand movements, which is crucial 
for classifying abnormal behaviors in real-world and other 
future applicability. Our findings underscore the value of 
detecting subtle differences in hand movements as a 
proactive measure for monitoring and preventing harmful 
behaviors. Furthermore, gaining deeper insights into these 
movements could substantially improve the quality of life for 
children affected by Congenital Insensitivity to Pain (CIP). 

Despite these promising results, several limitations need 
to be addressed. The dataset used for model training and 
testing was relatively small, comprising data from only 41 
children, which may affect the generalizability of our models 
to larger and more diverse populations. While we mitigated 
class imbalance using oversampling techniques, real-world 
datasets are often more complex and may introduce noise 
into synthetic samples. Additionally, sensor data were 
collected over a short period (35 minutes per day), 
potentially missing key variations in hand motions. 

As a future direction, we plan to extend data collection 
over longer periods to improve model robustness and capture 
a broader range of motion variations. Future research should 
also focus on expanding the dataset to include a larger, more 
diverse population and incorporate additional relevant 
motions, such as eye rubbing, particularly for CIP patients. 
Integrating advanced deep learning techniques, such as 
Convolutional Neural Networks (CNNs), could enhance 
classification accuracy, especially for more complex motion 
patterns. Additionally, we will prioritize expanding the 
dataset and exploring similar behaviors to broaden the 
applicability of our findings. For CIP patients, even minor 
advancements could significantly improve their well-being 
and that of their caregivers. This research could also be 
extended to other conditions, such as autism, where motion 
detection is critical in managing behaviors. Another future 
direction after getting the necessary IRP approval is 
designing and building the whole system to ensure it is as 
safe as possible; we will conduct a clinical control trial study 
in a hospital to measure the system's effectiveness and 
scalability. 
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