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Abstract—Detecting and regulating compliance at substation 

construction sites is critical to ensure the safety of workers. The 

complex backgrounds and diverse scenes of construction sites, as 

well as the variations in camera angles and distances, make the 

object detection models face low accuracy and missed detection 

problems. In addition, the high complexity of existing models 

creates an urgent need for effective parameter compression 

techniques to facilitate deployment at the edge server. To cope 

with these challenges, this study proposes a safety protection 

detection algorithm that fuses contextual information for 

substation operation sites, which enhances multi-scale feature 

learning through a two-path downsampling (TPD) module to 

effectively cope with changes in target scales. Meanwhile, the 

Global and Local Context Information extraction (GLCI) module 

is utilized to optimize the key information learning and reduce the 

background interference. Furthermore, the C3GhostNetV2 unit is 

utilized in discerning the interconnections of far-off spatial pixels, 

while enhancing the network's expressive power and reducing the 

number of parameters and computational costs. The outcomes of 

the experiments indicate that the present model improves upon the 

mAP50 metric by 4.5% compared to the baseline model, and the 

accuracy of the checks and the recall have seen respective 

increases of 4.8% and 10.1%, while there has been a reduction in 

both the count of parameters and the floating-point calculations 

by 16.5% and 12.6% respectively, which proves the validity and 

practicability of the method. 
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I. INTRODUCTION 

As societal demand for electrical energy continues to rise, 
there is an increasingly urgent need for power production in 
China. However, due to a combination of various factors, the 
frequency of power production accidents in the country remains 
relatively high, posing a serious threat to urban safety. The 
power construction process involves a wide range of complex 
scenarios, including tower assembly, hoisting, excavation work, 
hot work, edge work, and high-altitude operations. These tasks 
encompass numerous safety challenges, requiring workers to 
maintain a high level of vigilance and adhere to standardized 
procedures to prevent serious accidents [1-2].To ensure that 
power workers enhance their safety awareness, adopt compliant 
protective measures and procedures, and ultimately improve on-
site safety levels to ensure the normal operation of the power 
system, there is an urgent need for worksite compliance 
monitoring and supervision. Traditional manual management 
methods are costly and inefficient, making it difficult to meet the 
needs of effective supervision in multi-scenario, around-the-

clock power grid operations. Therefore, the application of deep 
learning algorithms for compliance monitoring at power grid 
work sites holds significant research value. This research 
introduces advanced visual technologies to the field of power 
production and provides substantial support for improving on-
site safety levels. 

With the tremendous achievements of deep learning 
algorithms in image recognition and detection [3-5], these 
algorithms have made significant progress in various 
applications. Thanks to their high detection accuracy and strong 
robustness [6-7], deep learning-based object detection 
algorithms have been widely applied in detecting standardized 
work clothing. Ren et al. [8] discussed the concept of deep 
learning-based intelligent substation system monitoring and 
analyzed the advantages and disadvantages of using traditional 
methods and deep learning for monitoring. Liu et al. [9] 
employed the Faster R-CNN algorithm for detecting whether 
standard work clothing is worn and introduced an L2 
regularization term into the loss function to improve the 
convergence speed of the model during training. The model 
demonstrated good generalization ability and robustness, with 
significant improvements in both accuracy and real-time 
performance compared to the baseline model. Reference [10] 
employed the lightweight network from MobileNet in the 
YOLOv2 structure to achieve a certain degree of network 
compression, reducing the computational complexity of the 
model and improving its convergence performance, but with 
lower accuracy in object detection. Xu et al. [11] proposed an 
improved YOLOv3 algorithm for safety helmet recognition, 
which enhanced the precision of safety helmet detection, but the 
detection speed was relatively slow. The study in [12] 
implemented a real-time video analysis algorithm based on 
YOLOv4 for monitoring whether workers in industrial facilities 
wear helmets, safety vests, and safety belts, but it ignored the 
influence of complex backgrounds and environmental factors on 
algorithm performance and did not analyze the algorithm's 
complexity. Du et al. [13] selected the Swin Transformer as the 
backbone network based on YOLOv5 to extract deeper semantic 
information and capture more detailed features of safety 
helmets, but it had false detection issues when the colors were 
the same. In addition to YOLO, Long et al. [14], Wu et al. [15], 
and Li et al. [16] proposed safety helmet detection methods 
based on SSD, which achieved good detection results. Although 
single-stage object detection algorithms have performed well in 
terms of real-time performance and efficiency, they still face 
some challenges, such as the use of dense grids or anchor boxes 
to generate candidate regions, which can lead to overlapping or 
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missed detections and relatively poor performance in detecting 
small objects [17]. 

Existing detection methods exhibit certain limitations in 
practical application scenarios. They often focus on specific 
target detection while neglecting the diverse task requirements 
in power construction sites. For instance, Shen et al. [18] utilized 
convolutional neural networks to detect facial features and 
helmet usage on construction sites. However, this study did not 
sufficiently address the impact of environmental variations on 
detection performance. Additionally, the lightweight 
improvement of YOLOv5 proposed in [19] targets helmet 
detection only and still has room for improvement in 
adaptability and scalability in real-world scenarios. 
Furthermore, the methods in [20, 21] are only effective in 
environments with simple backgrounds. These approaches, 
which focus on single categories or specific scenarios, struggle 
to handle the complexity and variability of power construction 
environments, limiting their broader applicability in practical 
settings. 

In recent years, research on compliance detection for 
multiple categories of personal protective equipment (PPE) has 
increased. For instance, Zhang et al. [22] enhanced YOLOv4's 
feature extraction network and combined it with PANet to 
achieve effective detection of helmets and masks. Similarly, 
[23] utilized synthetic datasets to train an improved YOLOv5 
model, successfully applying it to real-time PPE detection in 
industrial environments. In study [24], an intelligent detection 
system was designed to notify supervisors when workers failed 
to wear helmets or vests, improving the efficiency of on-site 
safety management. Additionally, Gong et al. [25] adopted a key 
region localization method to optimize PPE detection 
performance further. While these methods have achieved 
notable advances in accuracy and detection capability, they still 
face certain limitations. The complex model structures demand 
significant hardware resources and result in low detection 
efficiency, making them challenging to apply in industrial 
scenarios requiring real-time performance and low power 
consumption. Therefore, reducing model complexity while 
maintaining detection accuracy remains a critical research 
direction in this field. 

The aforementioned methods have achieved detection and 
monitoring of power grid operation scenes with humans as the 
main objects to some extent, but the detection scenarios and 
categories are relatively limited, usually focusing on specific 
categories such as safety helmets or work clothing, with less 
attention to other scenes. This limits the comprehensiveness and 
applicability of the algorithms because power grid operation 
scenes involve various scenarios such as lifting operations, 
excavation work, hot work, work near edges, and work at 
heights, requiring more comprehensive detection capabilities. 
Additionally, the collected images from the power grid industry 
exhibit characteristics of diverse target types, inconsistent sizes, 
and complex and variable background environments. In 
complex backgrounds, the previous algorithms perform poorly 
in effectively extracting features from targets of different scales, 
resulting in weak adaptability to environmental changes. This 
can lead to issues of missed detections and low accuracy in 
practical applications, reducing the reliability of the algorithms. 
Furthermore, existing models have high complexity, requiring a 

reasonable and effective parameter simplification technique as a 
basis to address the challenges of deployment on remote server 
devices. Enhancing object detection performance in complex 
scenarios, improving the detection accuracy of multi-scale 
objects, and reducing model complexity have become key 
research focuses in substation safety monitoring. Therefore, this 
study presents an improved YOLOv7 network. A down-
sampling module was designed to enable the model to better 
learn multi-scale features. Additionally, a Global and Local 
Context Information extraction (GLCI) module was introduced, 
allowing the model to effectively capture critical information 
within complex backgrounds and reduce missed and false 
detections caused by background interference. Furthermore, 
structural optimization was implemented to reduce the model’s 
parameter count, enhancing the real-time performance and 
adaptability of the improved YOLOv7 model while maintaining 
high detection accuracy. These improvements enable efficient 
and compliant detection in power production scenarios. Our 
contributions are summarized as follows: 

 We design a global and local context information 
extraction (GLCI) module, enabling the network to 
capture both global contextual and local spatial 
information, effectively addressing the challenge of 
complex backgrounds in power construction site 
environments. 

 We propose a two path downsampling (TPD) module, 
which enhances the network’s ability to learn features 
across multiple scales, improving performance on multi-
scale target detection tasks. 

 We develop a novel C3GhostNetV2 unit, replacing all 
ELAN-H modules in the neck network and the ELAN 
modules at the backbone’s end. This design expands the 
receptive field, strengthens model representation, and 
significantly reduces model complexity, parameter 
count, and computational cost. 

II. PROPOSED METHOD 

This method consists of three modules: Global and Local 
Context Information extraction (GLCI) module Two-Path 
Downsample (TPD) module, and C3GhostNetV2 module. The 
TPD module enables the network to effectively capture and 
utilize spatial information from feature maps of different scales. 
The GLCI module helps the network learn key information more 
efficiently and reduces background interference. The 
C3GhostNetV2 unit not only expands the perception range to 
ensure the model's expressive effectiveness but also reduces the 
demand for floating-point calculations. 

The YOLO series algorithms have high similarity in terms 
of network structure and module composition. Taking YOLOv7 
as an example, Fig. 1 shows the network structure diagram of 
YOLOv7 with GLCI and TPD inserted and lightweight 
improvements applied. It mainly includes four components: 
Input, Backbone, Neck, and Head. The Backbone consists of 
CBS, C3, and SPPF, which are responsible for extracting 
information features from input images. After the Backbone, 
feature maps of three different sizes can be obtained. The Neck 
module combines the Feature Pyramid Network (FPN) and Pyr-
amid Attention Network (PAN) to fuse the features extracted by 
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the Backbone. The Prediction Head consists of three prediction 
layers of different scales, which are responsible for outputting 
the network's predictions. 

In YOLO series networks, the backbone is primarily 
responsible for feature extraction, transforming input images 
into high-level feature representations [26], which serve as the 
basis for subsequent detection. The insertion of the GLCI 
module enhances the network's learning ability for multi-scale 
information and its perception of global and local context, 
addressing the challenges posed by significant scale variations 
and complex backgrounds. The backbone is where the network 
learns and perceives information, making it a suitable location 
for the insertion of the GLCI module. Additionally, placing the 
GLCI plugin at the end of the backbone allows for effective 
utilization of high-level information in the feature maps, and the 
lower resolution of the end feature maps can alleviate the 
potential computational and memory costs introduced by the 

plugin. Furthermore, since the proposed GLCI plugin does not 
change the size of the input and output feature maps, it is not 
affected by the number of network layers and is applicable to all 
YOLO series algorithms. Taking YOLOv7 algorithm as an 
example, as shown in Fig. 1, the feature maps output by the last 
CBS module in the backbone have a size of 20×20×1024. After 
being processed by the GLCI plugin, the size and number of 
channels of the feature maps remain unchanged, meeting the 
data format requirements of the subsequent network structure. 
Therefore, it is reasonable to insert the GLCI module at the end 
of the backbone. Considering that the neck network contains 
rich information and serves as the direct input to the head 
network, the TPD module is inserted into the neck network. 
Finally, the C3GhostNetV2 unit is constructed in the neck 
network to expand the perception field and maintain the model's 
expressive power while significantly reducing the number of 
parameters and computational costs. 

 
Fig. 1. Schematic diagram of lightweighting methods structure. 

A. Global and Local Context Information Extraction Module 

To improve network adaptability in complex image 
backgrounds in real-world power construction site detection 
tasks, we propose the GLCI module (see Fig. 2). This module 
consists of two branches: Global and Local Context Extraction. 
It helps the object detection network learn more crucial 
information and attenuate background interference. The primary 
objects to be detected in input images—power construction site 
workers—are closely tied to their surrounding environments. 
Incorporating contextual information into the model enhances 
its understanding of the relationships between detected objects 
and their scenes, thereby improving detection performance. The 
global branch of the GLCI module, built on the traditional self-
attention mechanism, leverages not only the relationships 
between keys and queries but also emphasizes the contextual 

information among input keys. This approach enhances the 
network's capacity to extract contextual information and 
improves its ability to learn critical features through the 
guidance of the learned dynamic attention matrix. 

For a feature map X of size c h w  , linear processing is 

applied to yield K=X, Q=X,, and V=XWV, where K denotes the 
key, Q the query, and V the value, with WV representing a 1×1 
embedding convolution. In the spatial domain, group 
convolution is performed on adjacent keys within a 3×3 grid of 
K, with the number of groups set to 4. This is followed by batch 
normalization (BN) and ReLU activation, resulting in a feature 

map K1 of size c h w  . Through these operations, encoding is 

applied to the adjacent keys in the spatial domain, producing K1, 
which captures the static contextual information between 
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neighboring keys and is referred to as static contextual keys K1. 
Subsequently, K1 and Q are concatenated, and two successive 
1×1 convolutions generate an attention matrix A. This attention 
matrix A differs from the traditional self-attention mechanism, 
as it is derived from query features and static contextual features 

of k1, rather than key/query pairs. Thus, A effectively aggregates 
contextual information. 

1[ , ]A K Q W W 
  (1) 

 
Fig. 2. Structure diagram of GLCI module. 

In Eq. (1), W  represents a convolution with a ReLU 

activation function, and W  represents a convolution without an 

activation function. Next, the attention matrix A, which 
aggregates contextual information, is element-wise multiplied 
with V resulting in a feature map K2 weighted by V. Since K2 is 
obtained through self-attention computation on the input keys 
and values, it captures the dynamic feature interactions among 
the inputs and is named the dynamic contextual keys. The fusion 
of the static contextual keys K1 and the dynamic contextual keys 
K2 yields the output Y1 of the global attention network. 

In the Local Contextual Information (LCI) network, multiple 
convolution sizes capture spatial information at various scales, 
enhancing learning and addressing noisy, complex backgrounds. 

For an input feature map X of size c h w  , a 1×1 convolution 

reduces the channels to 1/16, minimizing parameters. The 
reduced map is processed by 1×1, 3×3, 5×5, and 7×7 

convolutions, concatenated into a tensor of size 1/4 c h w  , 

then passed through a 1×1 convolution to reduce the channels to 
1. Applying the sigmoid function produces a local spatial 
attention map B of size 1×H×W, which is element-wise 
multiplied with X to generate Y2. The outputs of the Global and 
Local Contextual Information networks, Y1 and Y2, are summed 
to produce Y, enabling the GLCI module to capture both local 
and global features and address challenges from complex 
backgrounds. 

B. Two Path Downsampling (TPD) Module 

The challenge of handling multiscale data in deep learning 
lies in efficiently extracting and learning features from data of 

varying scales, such as different sizes and resolutions. To 
address the impact of multiscale issues on detection accuracy in 
images collected from power construction sites, this paper 
proposes the Two Path Downsampling (TPD) module. This 
module facilitates information exchange between different 
feature layers, enabling spatial channel dependencies between 
different scales and enhancing the performance of feature 
extraction across different scales. The TPD module's structure is 
illustrated in Fig. 3. 

The TPD module takes two input feature maps: the local 

feature map 
cF  with dimensions c h w   and the higher-level 

feature map 
uF  with dimensions 1 / 2 2 2c h w  . Unlike 

traditional stride-based convolutional downsampling, this 
module introduces a lossless downsampling process for the local 
feature map, preserving its fine-grained details. Additionally, 
the downsampling process is improved by preserving spatial 
information before and after downsampling, reducing the loss of 
detail. Furthermore, the module captures details from the higher-
level feature map and incorporates semantic information from 
the local small-scale feature map, enhancing interdependencies 
between feature maps at different levels. 

The downsampling process consists of two distinct paths. 
Path 1 involves lossless downsampling of the local feature and 
an enhanced convolutional downsampling process. The local 

feature 
cF  first undergoes feature extraction through average 

pooling and convolution with stride 1, resulting in the feature 

map 
clF  of size c h w  . Then, the feature map 

clF  is 
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reshaped to generate the pseudo lower-level feature 
nlF  of size 

1/ 2 1/ 2 4c h w   , which preserves the local feature without 

information loss. Subsequently, softmax normalization is 

applied to obtain the lossless downsampled result 
snlF  of size 

1/ 2 1/ 2 4c h w   . Meanwhile, the spatial information of the 

local feature 
cF  is preserved by applying a convolution 

operation with stride 1, resulting in the spatial information 

feature 
sF  of size 4c h w  . Then, a downsampling operation 

is performed using a convolutional operation with stride 2 to 

generate the lower-level feature 
slF  of size 

4 1 / 2 1 / 2c h w  ,which includes the preserved spatial 

information. Next, the feature 
slF  undergoes feature extraction 

using the BAM [27] attention mechanism, yielding the feature 

representation 
bslF . Finally, the previously preserved spatial 

information is restored through a reshaping operation, 

generating the lower-level feature representation 
elF  of size 

1/ 2 1/ 2 4c h w   , which includes enhanced spatial 

information. 

 
Fig. 3. Structure diagram of TPD module. 

Path 2 involves a lossless downsampling process for the 
higher-level feature. The higher-level feature undergoes 
downsampling for the first time through reshaping, resulting in 

a size of 2c h w  . Then, a convolution operation is applied to 

halve the number of channels, generating a pseudo local-level 

feature pcF  based on the reconstructed details from the higher-

level feature. Subsequently, a second downsampling is 

performed, yielding a pseudo lower-level feature plF  based on 

the reconstructed details from the higher-level feature, with a 

size of 1/ 2 1/ 2 4c h w   . Finally, softmax normalization is 

applied across the last dimension to obtain the output splF  of 

Path 2. 

The output splF  of Path 2 is element-wise added with the 

downsampling result 
snlF  of the local feature, resulting in a 

lower-level feature map of size 1/ 2 1/ 2 4c h w    that 

combines the detailed information from both the higher-level 

and local features. This lower-level feature, denoted as 
dlF , 

contains the detailed information from both the higher-level and 
local feature maps. The equation is as follows: 

( ( ( ( ))))

( ( ( ( ))))

dl u

c

F Softmax R Conv R F

Softmax R Conv Avgpool F

 

 (2) 

Here,  R  represents the reshape operation. The lower-

level feature map 
dlF  obtained from the fusion in (2) is 

multiplied and fused with the enhanced lower-level feature elF  

from Path 1, followed by summation across the last dimension. 

This yields the output feature map 
outF  of the TPD module, 

with a size of 1 / 2 1 / 2c h w  . The equation is as follows: 

( ( ( ( ))))el cF R BAM Conv Conv F
 (3) 

( )out dl elF Sum F F
         (4) 

C. C3GhostNetV2 Module 

The original YOLOv7 model has relatively high complexity 
due to deep layers and multiple convolution operations, leading 
to many parameters and computational redundancy [28]. To 
reduce floating-point operations and parameters, this paper 
introduces the C3GhostNetV2 module. As shown in Fig. 1, the 
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input feature map is split into two branches: one passes through 
CBS and the GhostNetV2 bottleneck[29], generating Feature 1, 
while the other passes through CBS to produce Feature 2. 
Feature 1 and Feature 2 are then concatenated and processed by 
CBS to produce the final output. 

Fig. 4 illustrates the structure of the GhostNetV2 bottleneck, 
comprising three steps: First, the input feature map is 
transformed into a compressed low-dimensional vector through 
downsampling and convolution. Next, this vector is processed 
by fully connected layers in vertical and horizontal directions, 
expanding its receptive field across multiple dimensions. Finally, 
the attention weights are normalized using the Sigmoid 
activation function to enhance the network's utility and stability. 
As a result, the network is able to perceive long-range 
dependencies between spatial pixels, enhancing the expressive 
power of the model. The DFC attention output [30] is combined 
with the first Ghost module's output. Depth-wise separable 
convolution is used to further reduce computational and memory 
overhead, improving inference speed. After generating features 
from the second Ghost unit, a skip connection merges the initial 
input with the new features, producing the final output. This 
design captures long-range spatial dependencies while 
significantly reducing computational and parameter costs. 

 
Fig. 4. GhostNetV2 bottleneck structure. 

III. EXPERIMENTAL PREPARATIONS 

A. Experimental Setup and Dataset 

The software environment for this experiment includes 
Ubuntu 16.04, PyTorch 1.11, and CUDA 11.3. The hardware 
setup is described in detail in Table Ⅰ. The ablation experiments 
were conducted using the stochastic gradient descent (SGD) 
strategy with 100 epochs of training. The initial learning rate 
was set to 0.01 and decayed with a minimum value of 0.0001. 
The batch size was set to 8. The momentum parameter was set 
to 0.9, and the weight decay was set to 0.0005. 

TABLE I.  EXPERIMENTAL HARDWARE SETUP 

Hardware 

Name 
Model Quantity 

CPU Intel Core i7-10700 CPU 1 

Memory Kingston 16G DDR4 2 

Graphics Card NVIDIA RTX-3090 1 

Hard Drive Western Digital 10TB 1 

The experimental dataset used in this study consists of 4,030 
images collected by a power company. The dataset includes four 
different work scenarios: lifting operations (1,104 images), hot 
work operations (1,028 images), edge operations (973 images), 
and high-altitude operations (925 images). These scenarios 
cover samples with different target sizes and brightness levels 
(see Fig. 5). 

 
Fig. 5. Examples of 18 types of detection target datasets. 

These work scenario data consist of eighteen categories: (1) 
crane, (2) all personnel on site, (3) wearing safety helmets, (4) 
work barriers, (5) control room, (6) hooks, (7) wearing safety 
harnesses, (8) not wearing safety harnesses, (9) safety harnesses 
properly suspended, (10) safety harnesses improperly suspended, 
(11) personnel performing hot work, (12) supervisors 
overseeing hot work, (13) protective face shields, (14) ignition 
source, (15) fire extinguisher, (16) improper wearing of safety 
gloves, (17) mobile phones. The dataset contains a total of 
96,419 instances, which reflects the complexity and diversity of 
the work scenarios. The training set and validation set are split 
in an 8:2 ratio. Evaluation metrics 

For the evaluation of the performance of the object detection 
model, a specific evaluation system was adopted. In this paper, 
the model's floating-point operations (GFLOPs) and the total 
number of parameters were calculated to assess its runtime and 
memory requirements. Meanwhile, the average precision (AP) 
and mean average precision (mAP) were used as standards to 
measure the accuracy of the model. The detection efficiency of 
the model on different categories was determined by the average 
precision rate, which is comprehensively determined by the 
recall and precision. 

The recall is calculated using the following formula: 
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  (5) 

The precision is calculated using the following formula: 

100%
p

re

p p

T
P

T F
 


  (6) 

Where Tp represents the true positive, FN represents the false 
negative, and Fp represents the false positive. Precision-recall 
(PR) curve plots recall on the x-axis and maximum precision on 
the y-axis. The area under the PR curve is calculated by 
integrating over the curve, resulting in the value of AP (average 
precision). The mean average precision (mAP) is obtained by 
calculating the average of the AP values for all individual classes. 
The calculation formula is as follows: 

1

0
( )AP P r dr 

   (7) 

0

c

k

k

AP

mAP
C





   (8) 

In the formula, ( )P r  represents the PR curve, 
0

c

k

k

AP


  

represents the average precision for each class, and C  

represents the total number of classes. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Ablation Study 

To evaluate the performance of the proposed approach in 
object detection tasks and study the effectiveness of various 
optimization strategies, we conducted ablation experiments on 

the YOLOv7 model as a baseline. In the table, the symbol "√" 

indicates that the corresponding optimization unit has been 
applied. All experimental groups were conducted with the same 
hyperparameters and training strategies to analyze the impact of 

optimization strategies on the network more clearly. The 
experimental results are shown in Table Ⅱ. 

Experiment 1 was conducted on the original YOLOv7 
without any improvements. In Experiment 2, the GLCI module 
was added. In this case, the precision did not change much, but 
the recall increased by 7.2%, and the mean average precision 
(mAP50) improved by 2.1%. This indicates that the GLCI 
module has a significant advantage in handling object detection 
tasks with complex backgrounds. By applying global and local 
attention mechanisms, the network learns key information more 
efficiently and reduces background interference. In Experiment 
3, the TPD module was added. In this case, the precision 
increased by 2.5%, the recall increased by 8.7%, and mAP50 
improved by 2.3%. This suggests that the introduction of the 
TPD module effectively enhances the network's learning ability 
for feature maps of different scales. By extracting and fusing 
multi-scale spatial and channel information, it effectively solves 
the problem of detecting objects with multi-scale variations and 
improves detection performance. From the results of 
Experiments 2 and 3, it can be seen that after integrating the TPD 
and GLCI modules, there is no significant difference in the 
number of parameters and the scale of floating-point operations. 
The introduction of the C3GhostNetV2 module in Experiment 4 
resulted in a significant reduction of 87.2% in the scale of 
floating-point operations and a decrease in the parameter scale 
to 83.0%, effectively reducing the complexity of the model. The 
mAP50 metric of the model also increased by 0.4%, with 
corresponding improvements of 1.7% in precision and 9.6% in 
recall. This indicates that even with a reduction in parameters 
and computational complexity, the detection accuracy of the 
model was not compromised. This confirms that the 
C3GhostNetV2 unit not only reduces the complexity of the 
model but also enhances its performance. When all three 
modules (GLCI, TPD, and C3GhostNetV2) were 
simultaneously inserted into YOLOv7, the network showed the 
best improvement. The average precision (mAP50) increased by 
4.5% compared to the original model, and precision and recall 
improved by 4.8% and 10.1% respectively. Moreover, 
compared to the baseline model, the complexity of the model 
was also reduced to a certain extent. This demonstrates that the 
simultaneous use of the three proposed improvement methods 
can yield better results. 

TABLE II.  IMPROVED YOLOV7 ALGORITHM ABLATION STUDY RESULTS 

Experiment GLCI TPD C3GhostNetV2 
mAP50 Precision Recall Parameters GFLOPs 

/% /% /% /M /G 

1    86.3 85.3 78.5 37.6 107.3 

2 √   88.4 85.2 85.7 37.6 107.6 

3  √  88.6 87.8 87.2 37.6 107.5 

4   √ 86.7 87.0 88.1 31.2 93.6 

5 √  √ 88.7 90.5 88.4 31.4 93.8 

6  √ √ 88.8 87.7 87.8 31.4 93.7 

7 √ √ √ 90.8 90.1 88.6 31.4 93.8 
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B. Comparative Experimental Analysis of Applicability of 

YOLO Series 

The fundamental idea of the YOLO series algorithms is to 
divide the image into fixed-sized grids and make predictions for 
each grid, thereby achieving object detection. To validate the 
general applicability of the three proposed modules in the 
YOLO series algorithms, we conducted comparative 
experiments on the YOLOv4-YOLOv7 [31-33] algorithms. The 
experimental results are shown in Table Ⅲ. 

From the data in the table, it can be observed that when 
detecting on the dataset of eighteen classes used in this paper, 
the original YOLO series algorithms achieved average 
precisions of 80.7%, 85.7%, 84.5%, and 86.3% respectively. 
After integrating the proposed improvement methods into each 
model, the average precisions were improved by 1.8%, 1.6%, 
2.3%, and 4.5% respectively. The experimental results 
demonstrate that by adding the three proposed modules to the 
backbone networks of each YOLO algorithm, the average 
precisions of the models were improved to varying degrees. This 
is attributed to the fact that the proposed modules refine the 
feature extraction process, enhance the network's adaptability to 
multi-scale targets, and bolster the network's robustness in 
complex backgrounds through structural improvements. 
Therefore, the proposed improvement methods can be widely 
applied in various YOLO series algorithms to reduce model 
complexity, enhance the learning ability and feature extraction 
capability of the networks, and solve the problems of multi-scale 
targets, complex backgrounds, and diverse scenes in images 
captured in power construction sites. 

C. Comparative Experimental Analysis with Other Models 

To validate the advantages of the proposed improved model 
compared to the current state-of-the-art object detection 
algorithms, we compared our method with commonly used 
object detection methods, including Faster-RCNN [34], SSD 
[35], RetinaNet[36], YOLOv5, TPH-YOLOv5 [37], YOLOv7, 
and YOLOv8. Using the same dataset and partitioning strategy, 

we trained each model while keeping the parameters consistent. 
The experimental results are shown in Table Ⅳ. 

From Table Ⅳ, it can be observed that compared to the 
current state-of-the-art small object detection algorithm TPH-
YOLOv5 and other mainstream algorithms, the proposed 
algorithm in this paper achieves higher accuracy on most 
categories. The improved algorithm outperforms Faster R-CNN, 
SSD, and RetinaNet algorithms, with increases in average 
precision (mAP) of 11.7%, 28.5%, and 7.1% respectively. 
Compared to the previous version of YOLOv7, the improved 
algorithm achieves a 4.5% increase in mAP. The experimental 
results demonstrate that the improved YOLO model achieves 
better detection accuracy. 

Additionally, to visually demonstrate the superiority of the 
improved algorithm, this paper provides visual results under 
different detection algorithms (see Fig. 6). From Fig. 6, it can be 
observed that when detecting in operation scenes with diverse 
and complex backgrounds, the Faster R-CNN algorithm shows 
missing detections and inaccurate bounding box localization. 
For small-scale object categories, such as the "hook" category in 
lifting operations and the "aqs_hang" category in elevated work 
scenarios, RetinaNet, SSD, and the previous version of 
YOLOv7 algorithms suffer from missing detections. 
Encouragingly, the model constructed in this paper does not 
exhibit such issues. This can be attributed to the addition of the 
GLCI module, which enhances the learning ability of the model, 
allowing the network to focus on the core information of the 
features and reduce noise interference from the background. 
Therefore, this method displays high adaptability in recognizing 
the clothing and equipment of operators, reducing the 
occurrence of missed detections, and achieving significant 
improvements in detection accuracy. For unevenly distributed 
scale categories, such as the "fence" category in lifting operation 
scenes and the "protective mask" category in hot work scenarios, 
other algorithms tend to have missing detections, while the 
proposed algorithm effectively addresses this issue. This is 
because the TPD module introduced in this paper enhances the 
network's learning ability for features at different scales, 
improving the detection accuracy of multi-scale objects. 

TABLE III.  APPLICABILITY EXPERIMENTS OF YOLO SERIES ALGORITHMS 

Model 
AP50/% 

crane person head fence czs hook belt 
wrong_ 

belt 
aqs_hang 

YOLOv4 81.2 84.7 79.8 76.4 80.4 81.5 80.9 81.8 83.3 

Improved YOLOv4 81.6 85.2 80.8 75.2 83.3 83.7 81.8 84.9 86.0 

YOLOv5 85.8 90.6 83.6 78.5 86.3 91.0 84.6 88.8 89.7 

Improved YOLOv5 88.3 92.4 84.7 81.7 88.5 91.9 86.2 89.1 92.0 

YOLOv6 83.6 91.2 83.8 75.2 86.2 89.3 81.0 89.3 90.5 

Improved YOLOv6 83.7 89.7 88.3 76.1 89.1 90.0 82.3 90.2 92.3 

YOLOv7 87.4 95.6 86.3 78.7 85.7 91.1 82.5 83.1 91.4 

Improved YOLOv7 91.7 97.8 89.7 88.2 89.8 93.3 87.9 90.7 95.3 

Model 
AP50/% mAP50 

aqs_ 

nohang 
fire operator fire watcher 

protective 

face shield 
fire extinguisher 

hand_ 

false 
phone /% 

YOLOv4 79.9 83.4 83.3 91.8 78.2 81.5 75.9 68.6 80.7 
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Improved YOLOv4 82.1 83.8 85.1 92.7 79.6 82.3 81.5 73.4 82.5 

YOLOv5 88.7 85.3 86.5 91.4 81.3 86.9 80.9 76.4 85.7 

Improved YOLOv5 89.5 88.3 89.5 92.1 84.2 87.1 82.6 75.3 87.3 

YOLOv6 88.9 85.2 87.2 91.4 81.7 80.2 79.0 72.7 84.5 

Improved YOLOv6 88.5 87.5 94.7 93.8 84.5 88.3 81.5 75.9 86.8 

YOLOv7 90.1 87.4 84.2 94.7 84.8 89.0 80.1 75.2 86.3 

Improved YOLOv7 93.4 90.7 95.2 94.8 90.3 91.8 85.3 77.7 90.8 

TABLE IV.  COMPARISON OF MODEL PERFORMANCE DIFFERENCES 

Model 
AP50/ % 

crane person head fence czs hook belt 
wrong_ 

belt 
aqs_hang 

Faster R-CNN 80.1 84.1 78.3 63.7 79.2 89.4 75.4 81.6 76.9 

SSD 63.5 78.7 68.9 55.2 71.8 60.8 63.5 64.2 52.0 

RetinaNet 80.4 87.6 86.8 76.5 79.8 89.8 84.2 76.9 83.1 

YOLOv5 85.8 90.6 83.6 78.5 86.3 91.0 84.6 88.8 89.7 

TPH-YOLOv5 88.4 91.6 89.3 83.3 84.7 91.4 81.3 81.7 90.8 

YOLOv7 87.4 95.6 86.3 78.7 85.7 91.1 82.5 83.1 91.4 

YOLOv8 91.2 95.5 90.8 86.1 88.6 91.6 92.5 82.1 93.5 

Ours 91.7 97.8 89.7 88.2 89.8 93.3 87.9 90.7 95.3 

Model 
AP50/ % mAP50 

aqs_ 

nohang 
fire operator fire watcher 

protective 

face shield 
fire extinguisher 

hand_ 

false 
phone /% 

Faster R-CNN 88.3 79.6 65.3 88.5 77.2 84.9 78.6 74.4 79.1 

SSD 59.7 71.4 60.3 62.4 61.7 59.1 51.3 53.9 62.3 

RetinaNet 89.7 87.3 89.2 84.7 82.3 83.7 79.4 81.2 83.7 

YOLOv5 88.7 85.3 86.5 91.4 81.3 86.9 80.9 76.4 85.7 

TPH-YOLOv5 90.6 88.4 89.7 91.4 91.3 87.9 81.8 80.3 87.3 

YOLOv7 90.1 87.4 84.2 94.7 84.8 89.0 80.1 75.2 86.3 

YOLOv8 94.9 87.2 83.1 93.8 87.6 86.3 85.9 84.7 89.1 

Ours 93.4 90.7 95.2 94.8 90.3 91.8 85.3 77.7 90.8 
 

D. Dataset Comparison and Model Scalability Experiments 

To evaluate the scalability and generalization capabilities of 
the proposed model, we conducted assessments on two publicly 
available datasets, SHWD [38] and Pictor-v3 [39], and 
compared our model with other object detection models. The 
SHWD dataset focuses on safety helmet detection and contains 
7,581 images, including 9,047 instances of workers wearing 
helmets and 111,514 instances of workers not wearing helmets. 
The Pictor-v3 dataset primarily focuses on detecting compliance 
with personal protective equipment (PPE) at construction sites, 
comprising 1,472 labeled images, which cover various 
combinations of PPE: 1,209 worker-only instances (W), 2,206 
worker instances with helmets (WH), 328 worker instances with 
vests (WV), and 983 worker instances wearing both helmets and 
vests (WHV). The evaluation on these two datasets further 
validates the model’s detection capability in different scenarios, 
as shown in Table V. 

As can be seen in Table V, the proposed improvement 
outperforms other YOLO-based models in both helmet 
detection and worker PPE compliance detection, with notable 
improvements in detection accuracy and inference speed. 
Compared to the TPH-YOLOv5 model, which specializes in 
small object detection, our improved model demonstrates 
superior performance in detecting small-scale targets, with 
significant increases in mAP (0.50) and AP (0.50:0.95) metrics. 
Additionally, our model also achieves faster inference speeds 
per image than the original model. Fig. 7 and Fig. 8 show the 
visual detection results of the improved model and the original 
model on the SHWD and Pictor-v3 datasets. From the figures, it 
is evident that the original model exhibits certain false positives 
and missed detections, particularly when detecting small-scale 
helmet targets and workers with inconsistent scales. In contrast, 
the improved YOLOv7 model demonstrates higher precision 
and robustness in detecting such targets, significantly 
outperforming the original model, thus further validating the 
effectiveness of the proposed improvements. 
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Fig. 6. Comparison of visual outcomes across diverse models. 

TABLE V.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON SHWD AND PICTOR-V3 DATASETS 

Model 
SHWD Pictor-v3 

mAP50 /% mAP(0.50:0.95) /% Inference Time /ms mAP50 /% mAP(0.50:0.95) /% Inference Time /ms 

TPH-YOLOv5 86.7 64.2 26.4 88.4 54.8 19.3 

YOLOv7 87.2 64.6 29.6 89.7 53.9 25.8 

YOLOv8 90.8 65.7 41.9 91.3 55.1 33.5 

Ours 91.5 66.1 26.2 92.6 56.9 20.7 
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Fig. 7. Comparison of visualization results on the SHWD dataset. 

 
Fig. 8. Comparison of visualization results on the Pictor-v3 dataset. 

V. CONCLUSION 

To achieve intelligent compliance recognition in power 
construction sites, we propose a YOLOv7-based method for 
detecting personnel behavior that integrates contextual 
information. This method is designed to address the challenges 
of high complexity, insufficient scale adaptability, complex 
image backgrounds, and varying target sizes in existing 
detection models. 

We introduced the GLCI module, which significantly 
enhances object detection accuracy in complex backgrounds 
through global and local attention mechanisms. Simultaneously, 
the TPD module improves the network's ability to learn multi-
scale features, leading to better detection performance across 
varying target scales. Additionally, the C3GhostNetV2 module 
enhances the model's representational power while reducing 
computational and parameter complexity. Experimental results 
demonstrate that the improved YOLOv7 model surpasses the 
original baseline in detection accuracy, model complexity, and 
miss rate, showing exceptional adaptability in complex 
environments. These findings offer effective solutions for object 
detection tasks in complex scenarios, such as power construction 
sites, and contribute positively to the advancement of intelligent 
vision. Furthermore, the dataset comparison and model 
scalability experiments validate the robustness and 
generalization capabilities of the proposed model across diverse 
scenarios. In the future, we aim to enhance the model's 
robustness across diverse scenarios and lighting conditions, 

improving adaptability and generalization for deployment on 
edge devices. 
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