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Abstract—The increasing integration of artificial intelligence 

(AI) within cybersecurity has necessitated stronger encryption 

methods to ensure data security. This paper presents a 

comparative analysis of symmetric (SE) and asymmetric 

encryption (AE) algorithms, focusing on their role in securing 

sensitive information in AI-driven environments. Through an in-

depth study of various encryption algorithms such as AES, RSA, 

and others, this research evaluates the efficiency, complexity, and 

security of these algorithms within modern cybersecurity 

frameworks. Utilizing both qualitative and quantitative analysis, 

this research explores the historical evolution of encryption 

algorithms and their growing relevance in AI applications. The 

comparison of SE and AE algorithms focuses on key factors such 

as processing speed, scalability, and security resilience in the face 

of evolving threats. Special attention is given to how these 

algorithms are integrated into AI systems and how they manage 

the challenges posed by large-scale data processing in multi-agent 

environments. Our results highlight that while SE algorithms 

demonstrate high-speed performance and lower computational 

demands, AE algorithms provide superior security, particularly in 

scenarios requiring enhanced encryption for AI-based networks. 

The paper concludes by addressing the security concerns that 

encryption algorithms must tackle in the age of AI and outlines 

future research directions aimed at enhancing encryption 

techniques for cybersecurity. 
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I. INTRODUCTION 

Algorithms are and were always the driving force behind 
cryptography and cybersecurity as we are marching towards the 
artificial intelligence (AI) and machine learning era. Several 
countermeasures, techniques, and cybersecurity practices are 
popular with the use of machine learning and deep learning 
algorithms apart from AI algorithms [1-2]. As we know 
cybersecurity combines information security and network 
security, the annual number of data breaches is growing every 
year. Loss of private information, malware attacks, use of smart 
gadgets, growing number of internet population, and several 
others are upcoming challenges for cryptography algorithms. 

Vulnerabilities and attacks on ciphers, private keys, and 
algorithms are increasing as we are considering “Security for 
AI” and vise-versa [3-4]. New and unexpected attacks, 
development of several frameworks and tools are going on as 
we discuss various encryption algorithms. From the initial use 
of symmetric algorithms like Data Encryption Standard (DES), 
and their several weaknesses we tend to know that hackers are 
exploiting the powerful algorithms (like SHA3, MD5, up to 
CRYSTALS) today. The use of “secret key” in symmetric 
algorithms (although asymmetric works a little better as 
compared to symmetric) is no longer secret as attackers have 
successfully compromised the key in both symmetric and 
asymmetric algorithms. 

The emergence of AI has revolutionized cybersecurity, 
providing adaptive and dynamic encryption techniques to 
combat swiftly changing cyber threats [1]. AI-driven 
methodologies have enhanced encryption systems' resilience, 
facilitating real-time identification of anomalies and threats that 
conventional methods find challenging to spot [2]. The use of 
AI, especially via machine learning (ML) and deep learning 
(DL) algorithms, has markedly improved the efficacy of 
encryption methods, rendering them more adept at managing the 
increasing complexity and volume of contemporary data 
environments. 

AI is becoming more and more integrated into cybersecurity 
and encryption as technology advances. AI is essential for 
protecting AI systems from complex cyberattacks, in addition to 
fortifying encryption procedures by streamlining key generation 
and data security techniques [3]. In an increasingly linked and 
insecure digital world, the synergy between AI and encryption 
is essential because it allows more effective, scalable, and 
proactive security measures, guaranteeing the security of both 
data and AI systems [4]. 

This paper is structured as follows to explore the 
comparative analysis of encryption algorithms and their 
relevance in modern cybersecurity, particularly in the AI era. 
Section II provides a background study, outlining the historical 
evolution and challenges of cryptographic algorithms, and 
establishing the role of AI in enhancing these methods. Section 
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III examines the technical aspects of various encryption 
algorithms, focusing on their contributions to safeguarding 
sensitive data in complex systems. Section IV offers a 
comparative analysis of symmetric encryption (SE) and 
asymmetric encryption (AE), highlighting key differences in 
terms of efficiency, security, and scalability. Section V discusses 
the role of AI in transforming encryption practices, focusing on 
how AI enhances real-time adaptability, tackles emerging 
threats, and enables personalized encryption strategies. Section 
VI focuses on the security challenges encryption faces in 
modern society, particularly against emerging cyber threats. 
Section VII presents the discussion and conclusions, 
summarizing the insights gained from the comparative analysis 
and suggesting improvements for existing encryption 
techniques. Lastly, Section VIII outlines the future scope of 
research, discussing potential advancements in encryption 
algorithms and their application in AI-driven cybersecurity 
solutions. 

II. BACKGROUND STUDY 

The foundation of contemporary encryption methodologies 
is well-examined in the literature, providing critical insights into 
their application in AI-driven contexts. Kapoor and Thakur [5] 
offer a thorough comparative analysis of symmetric and 
asymmetric key algorithms, underscoring the growing 
importance of encryption in safeguarding digital information in 
an increasingly networked environment. Their analysis 
highlights the superiority of asymmetric encryption, which 
employs two keys to enhance security through mathematical 
complexity. For symmetric algorithms, they emphasize the 
adaptability and efficiency of the Advanced Encryption 
Standard (AES), particularly its resilience against common 
attacks and its rapid execution speed. In contrast, the authors 
identify Elliptic Curve Cryptography (ECC) as the most secure 
asymmetric technique, noting its reliance on the algebraic 
properties of elliptic curves and finite fields. This detailed 
examination is a vital reference for algoTRIC, as it informs the 
optimization of AES and ECC within its architecture for large-
scale, multi-agent systems. By focusing on trade-offs between 
speed and security resilience, the paper addresses critical 
challenges in mitigating emerging cyber threats. 

Building on this foundation, Soomro et al. [6] conduct a 
comprehensive analysis of both symmetric and asymmetric 
cryptographic algorithms, focusing on their role in strengthening 
cybersecurity across diverse contexts. Their work identifies key 
cryptographic objectives—secrecy, integrity, authenticity, and 
non-repudiation—as essential for secure communication and 
data protection. They emphasize the speed and efficiency of 
symmetric algorithms, such as AES, making them suitable for 
high-throughput applications. Conversely, they highlight the 
robustness of asymmetric algorithms, notably RSA, for contexts 
requiring secure key management. This review contributes 
significantly to algoTRIC by elucidating how cryptographic 
strategies can be adapted to address the unique challenges of AI-
driven systems. By balancing performance, scalability, and 
security resilience, this work helps frame the escalating need for 
robust data protection in modern cybersecurity frameworks. 

Furthering these insights, Ustun et al. [7] introduce a 

machine learning-based intrusion detection system designed to 
address cybersecurity vulnerabilities in smart grids. Their 
approach leverages IEC 61850 Sampled Value (SV) messages 
to identify cyberattacks, particularly false data injection (FDI), 
within contemporary power system communication 
frameworks. By utilizing machine learning to distinguish 
between normal operations and cyberattacks, their system 
demonstrates high accuracy in identifying symmetrical and 
asymmetrical faults as well as FDI attacks. These findings are 
particularly relevant to algoTRIC’s efforts to incorporate 
advanced intrusion detection algorithms in AI-driven 
environments. Specifically, their approach underscores the 
importance of integrating encryption techniques, such as AES 
and ECC, to secure communication streams while ensuring real-
time intrusion detection in complex, multi-agent systems. 

Similarly, Arora [8] examines the critical role of 
cryptographic methods in cybersecurity, emphasizing the 
importance of encryption and decryption for protecting digital 
data. The study underscores the efficiency of symmetric 
encryption techniques, such as AES, for managing large-scale 
data, alongside the superior security of asymmetric algorithms, 
like RSA, for secure key management. By addressing the 
fundamental principles of cryptography—confidentiality, 
integrity, and authenticity—Arora provides essential guidance 
for incorporating encryption into AI-driven systems. This 
analysis highlights the trade-offs between the high performance 
of symmetric encryption and the enhanced security of 
asymmetric approaches, offering a roadmap for optimizing 
encryption methods in AI systems that must balance 
computational demands with robust data protection. 

Finally, Henriques and Vernekar [9] focus on the integration 
of symmetric and asymmetric cryptography to secure 
communication in Internet of Things (IoT) networks. They 
address the unique challenges posed by IoT systems, where 
sensitive data transmitted between devices demands heightened 
protection against cyberattacks. Their methodology combines 
the speed and efficiency of symmetric encryption, exemplified 
by AES, with the secure key management capabilities of 
asymmetric cryptography, such as RSA. This dual approach 
mitigates prevalent IoT vulnerabilities, including insecure 
network services and weak authentication mechanisms. Their 
work is particularly relevant to algoTRIC, as it explores how 
combining encryption algorithms can balance speed, scalability, 
and security in complex, large-scale AI-driven systems. 

III. ENCRYPTION ALGORITHMS FOR CYBERSECURITY 

Building on the foundational insights from prior studies on 
the comparative strengths and applications of symmetric and 
asymmetric encryption algorithms, the next section delves into 
the practical implementation of these techniques within 
contemporary cybersecurity solutions. Encryption techniques 
and complex algorithms with respect to privacy preserving, 
wireless sensor networks (WSN), and AI are rapidly used in 
several system applications and solutions [10-11]. Applications 
like healthcare monitoring, smart cities, advertising, logistics 
with analysis of energy, overhead, speed are used for several AI-
powered business models. Financial transactions (may consist 
of hash, public key, private key, and digital signature) today 
require high level security using Secure Hashing Algorithms 
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(SHA) and Message Digest (MD) algorithms used by distributed 
ledgers and blockchain technology (Table I). 

Compressed sampling on encrypted images with a combined 
random Gaussian measurement matrix can also be used for AI 
based image encryption [12]. To resist several kinds of 
cyberattacks (primarily as primage attacks, collision attacks) 
that can pass plaintext sensitivity tests for successful 
communications. On the other hand, network security or 
endpoint security (of or partial of cryptography and/or 
cybersecurity), is fully achieved through data encryption using 
artificial intelligence [13]. Improving encryption speed, wireless 
sensors security, integrity of data proposed a proactive solution 
with remarkable performance as compared to static encryption 
methods. 

Homomorphic encryption has arisen as a formidable method 
to bolster data security in AI-driven applications, facilitating 
computations on encrypted data without necessitating 
decryption. This capacity is essential for preserving data privacy 
in sensitive domains such as healthcare, banking, and smart city 
infrastructures, where AI is extensively employed for decision-
making and data analysis. Homomorphic encryption 
encompasses several varieties, including fully homomorphic 
encryption (FHE), slightly homomorphic encryption (SWHE), 
and substantially homomorphic encryption (PHE), each 
presenting distinct trade-offs regarding computational 
complexity and efficiency [14]. Although Fully Homomorphic 
Encryption (FHE) permits infinite operations on encrypted data, 
its practical application is frequently constrained by substantial 
computing expenses and reduced processing velocities. 
Conversely, SWHE and PHE provide more efficient options by 
facilitating a limited range of actions, rendering them more 
appropriate for situations that emphasize performance while 
maintaining data security. In AI-driven contexts, including these 
encryption methods into machine learning models not only 
protects data during training and inference but also mitigates 
risks associated with emerging vulnerabilities such as data 
leakage and unauthorized access. As AI progresses, enhancing 
these encryption techniques will be essential for guaranteeing 
strong and scalable cybersecurity solutions. 

Furthermore, the computational complexity of 
cryptographic algorithms emerges as a central concern, 
influencing not only the feasibility of deploying large-scale 
encryption solutions but also the security posture of data 
processing pipelines. Evaluations of complexity commonly 
employ Big-O notation, time-to-encrypt metrics, key-size 
scaling factors, and throughput measurements, all of which help 
determine the practical utility of a given cryptographic method. 
For symmetric encryption algorithms such as the Advanced 
Encryption Standard (AES), computational efficiency often 
proves to be one of their distinguishing strengths, as the 
complexity scales linearly with data input size, resulting in O(n) 
operations and predictable performance outcomes even as 
datasets grow larger. In contrast, asymmetric algorithms like 
RSA exhibit more pronounced complexity, commonly 
represented as O(n³) or higher when operations on large integers 
are involved, reflecting the significant computational overhead 

associated with public-key cryptography. 

Moreover, the integration of AI-based threat detection and 
encryption acceleration further complicates these estimates, as 
machine learning heuristics and hardware-assisted 
optimizations can alter the baseline complexity by dynamically 
adjusting key distribution strategies, refining block-cipher 
rounds, or adopting hybrid encryption approaches. Evaluating 
complexity also demands close attention to scalability 
parameters in distributed environments, since multi-agent 
systems often require concurrent encryption-decryption 
operations across decentralized nodes, thereby magnifying the 
importance of parallelizable algorithms. Within this context, 
assessing complexity involves quantifying performance 
differentials over heterogeneous architectures, analyzing latency 
contributions from memory access patterns and cache line 
misses, and simulating the behavior of algorithms under diverse 
workload distributions. 

As such, the integration of AI approaches with conventional 
encryption algorithms such as AES has demonstrated 
effectiveness in augmenting data security, especially in volatile 
threat landscapes. Recent research indicates that the integration 
of machine learning models, such as k-Nearest Neighbors (k-
NN), with AES encryption markedly enhances the identification 
and mitigation of anomalies, facilitating real-time responses to 
new cyber threats. The k-NN's pattern recognition capabilities 
enhance the encryption process, adapting to emerging attack 
vectors and bolstering AES's resilience against advanced attacks 
[15]. This method enhances secure data transmission and 
bolsters the integrity of secret data storage. With the increasing 
volume and complexity of data in AI-driven systems, integrating 
machine learning with encryption methods such as AES is 
crucial for adopting a proactive approach to cybersecurity. 

Chaotic algorithms have arisen as an effective solution for 
image encryption in AI-driven networking systems, owing to its 
intrinsic characteristics such as sensitive dependence on 
beginning conditions, topological mixing, and long-term 
unpredictability [16]. These qualities are utilized to generate 
intricate encryption patterns, where even minor alterations in the 
original settings result in completely distinct encrypted outputs, 
hence substantially improving data security. Recent 
implementations indicate that chaotic algorithms, along with 
sophisticated encryption techniques, can provide non-linear 
transformations that effectively rearrange and disperse pixel 
positions, rendering the image data into a highly randomized 
state. This method guarantees that the encryption process 
emulates a dynamical system, rendering the reversal of the 
process without precise system parameters computationally 
impractical [16]. Through the application of repeated chaotic 
functions, these encryption methodologies guarantee elevated 
entropy in the encrypted data, so successfully countering brute-
force assaults and enhancing resilience against cryptographic 
scrutiny. In AI-driven environments, where data security is 
imperative against advanced threats, the amalgamation of 
chaotic systems with encryption enhances the security 
framework while preserving computational performance by 
reducing processing overhead. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

4 | P a g e  

www.ijacsa.thesai.org 

TABLE I. INTUITIONS (UP TO THREE) OF SOME COMMON ADVANCED ENCRYPTION ALGORITHMS FOR SECURITY AND CRYPTOGRAPHY IN THE ARTIFICIAL 

INTELLIGENCE (AI)-DRIVEN SOCIETY 

Ref Encryption Type Intuition I Intuition II Intuition III 

[10] Partial Homomorphic 

Enables privacy-preserving 

computations on encrypted 
blockchain data 

 

Mitigates risks from collision, 
preimage, and wallet attacks 

Optimizes computational 

overhead for AI-integrated 

blockchain environments 

[11] 
AI-Driven Data Solutions 
 

Adapts encryption parameters 

dynamically based on real-time 

network conditions 

Integrates anomaly detection to 

proactively adjust encryption 

settings against threats 

Optimizes computational and 

energy resources while 

maintaining high security levels 

[12] AI Image 

Utilizes hyperchaotic sequences for 

robust pixel scrambling and 
diffusion 

Enhances resistance against 

differential and brute-force 
attacks 

Achieves high randomness and 

compression efficiency with 
compressed sensing 

[13) 
Innovative Data for 

WSANs 

Adapts encryption parameters 

dynamically using AI for real-time 
threat response 

Leverages LSTM networks to 

optimize encryption based on 
sequential data analysis 

Employs Isolation Forests to 

enhance anomaly detection and 
network resilience 

[14] AI-based Homomorphic 

Enables privacy-preserving 

computations on encrypted data 
without decryption 

Mitigates data exposure risks in 

untrusted environments like cloud 
computing 

Supports collaborative AI tasks 

with multi-key encryption across 
multiple parties 

[15] AI and AES 
Combines AES’s robust encryption 

with AI for adaptive threat detection 

Utilizes AI-driven k-NN for real-

time anomaly analysis in 
encrypted data 

Enhances encryption efficiency 

through AI-optimized parameter 
selection 

[16] Image Transmission 

Leverages chaotic mapping for high 

sensitivity and complex key 
generation 

Enhances image confidentiality 

through pixel-level scrambling 
and diffusion 

Mitigates brute-force attacks via 

topological chaos and statistical 
uniformity 

IV. COMPARISONS OF ALGORITHMS W.R.T. SE AND AE 

As encryption techniques continue to evolve, their 
applications in various domains underscore the need for a 
nuanced understanding of their operational strengths and 
limitations. The exploration of how these algorithms integrate 
into modern cybersecurity frameworks provides a foundation for 
deeper analysis. Thus, a focused comparison follows between 
symmetric encryption (SE) and asymmetric encryption (AE) 
will elucidate the key distinctions that influence their use. By 
examining differences in key management, scalability, 
performance, and reliability, this analysis aims to identify the 
most suitable encryption methods for specific applications and 
highlight the critical trade-offs involved in their deployment 
within contemporary cryptographic systems. 

To evaluate the cryptographic algorithms, it is significant to 
contrast symmetric encryption algorithms with asymmetric 
encryption algorithms as modern cryptography is designed 
based on symmetric and asymmetric encryption which are two 
fundamental categories of encryption algorithms (Table II). The 
main purposes of both types of encryption are the same, that is 
to safeguard  the data security and integrity over the diverse 
applications. Although their purposes are the same, they have 
significant differences based on the way of managing encryption 
keys, evaluating performance and functionality requirements. 
To identify the most effective encryption method for a particular 
scenario, it is essential to distinguish the strength, weakness, 
functionalities and other features of both types of encryption 
methods. This section of the paper distinguishes the fundamental 
types of encryption algorithm based on key management, 
scalability, swiftness and reliability. 

One of the main differences of symmetric and asymmetric 
encryption is the number of keys used in the encryption process. 
There are two types of keys used in encryption and decryption 
processes which are known as public key and private key. In a 
symmetric algorithm, a private key is used alone to encrypt and 
decrypt data [17]. On the other hand, an asymmetric algorithm 
uses both the public key and private key where the public key is 
used to encrypt data and private key is used to decrypt data. 
Public key encryption is designed based on intensive 
computational mathematical functions; therefore, asymmetric 
algorithms are not very suitable or efficient for minor devices. 

The second important term of differences between 
symmetric and asymmetric encryption is reliability. The 
encryption process of the symmetric method is simpler than the 
asymmetric method, however, in symmetric method both the 
sender and receiver share the common private key to encrypt and 
decrypt data which is a major concern about data security as 
eavesdropping can be conducted by attacker anytime in the 
channel of data exchange. Alternatively, in asymmetric 
encryption, the public key is used to encrypt the data while the 
private key is used to decrypt the data [18]. As the private key is 
secret and only the receiver knows the private key, it becomes 
very difficult for the attacker to decrypt the original data. As a 
result, asymmetric encryption is considered more reliable in 
comparison to symmetric encryption in case of data exchange. 

Swiftness of encryption and decryption is also a very 
powerful component that can be considered to differentiate 
symmetric and asymmetric encryption. Al-Shabi, in his paper, 
conducted an analysis to compare the performance for 
identifying the strengths and weaknesses of different types of 
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symmetric and asymmetric encryption based on various factors 
such as battery consumption, block size, structure, time 
consumption and types of attacks. His result shows that based 
on real-time encryption, a symmetric algorithm is much faster 
than asymmetric encryption [18]. Similar kind of study was 
conducted by Panda in 2010. Her paper indicates that a 
symmetric algorithm is almost 1000 times faster than an 
asymmetric algorithm as an asymmetric algorithm needs more 
powerful computational resources. To compare different types 
of algorithm, 3 types of file such as text, image and binary were 
used in her analysis where the performance factors were decided 
considering Encryption Time, Decryption Time and 
Throughout. The result of her study found better performance 
from the AES algorithm, a subcategory of symmetric 
encryption, in comparison to other encryption algorithms based 
on Encryption Time, Decryption Time and Throughout [19]. 

Use of blocks is also a considerable component that can be 
used to distinguish between symmetric and asymmetric 
algorithms. There are mainly two important components 
considered in symmetric encryption known as block cipher and 
stream cipher, which are significantly crucial for confidentiality 
of data and integrity of cryptography [21]. AES, a subcategory 
of symmetric encryption, is operated on plaintext where the size 
of the block is 128 bits. This block cipher can also utilize 
different key lengths such as 128 bits, 192 bits or 256 bits of 
cipher secret [20]. On the other hand, asymmetric encryption 

does not require block size to encrypt data, rather this method 
leverages the idea of chunk data processing that is correspondent 
to the key size. 

In the field of AI-driven cybersecurity, selecting between 
symmetric encryption (SE) and asymmetric encryption (AE) 
involves a thorough evaluation of performance, scalability, and 
security requirements. SE algorithms, such as AES, excel in 
real-time AI applications due to their high-speed encryption and 
low computational demands, which highlights as essential for 
AI tasks requiring rapid data processing [19]. However, AE 
algorithms like RSA provide enhanced security by leveraging 
public-private key pairs, a feature that underscores as crucial for 
maintaining confidentiality in sensitive data exchanges [18]. 
While SE is ideal for resource-constrained AI environments, 
such as IoT, due to its lower energy consumption, AE’s 
computational intensity makes it better suited for secure initial 
key exchanges in distributed AI systems [20]. This difference in 
resource demands directly impacts scalability; SE supports 
continuous, high-throughput data streams often required in AI 
workflows, while AE’s structure enables secure data sharing 
across complex, multi-agent networks through recent advances 
in secure communication protocols [21]. Effective cybersecurity 
in AI ultimately requires balancing SE’s efficiency and AE’s 
strong data protection, particularly in applications where threats 
to data integrity and confidentiality are significant [17]. 

TABLE II. COMPARISON OF SYMMETRIC ENCRYPTION AND ASYMMETRIC ENCRYPTION IN AI-DRIVEN CYBERSECURITY 

Aspect Symmetric Encryption (SE) Asymmetric Encryption (AE) Ref. 

Integration with AI 

SE algorithms like AES and Blowfish are efficient 

for real-time AI-driven data processing, supporting 

rapid encryption for high data volumes in AI 
workflows. 

AE algorithms such as RSA and ECC are suitable for 
securely establishing initial connections in AI 

systems, though slower for real-time processing. 

[19] 

Data Throughput 
High throughput makes SE ideal for handling large 
data in AI tasks (e.g., image processing or continuous 

data flows in AI-based IoT). 

Lower throughput is better for secure, one-time 
exchanges rather than sustained high-speed AI-

driven processing. 

[21] 

Resource Optimization 
Low computational demands allow SE to support AI 
applications in resource-constrained environments, 

like mobile AI/IoT. 

Higher resource needs make AE less suitable for 
low-power AI applications, though ideal for secure 

initial setup in complex AI networks. 

[20] 

Real-Time Efficiency 

SE provides rapid encryption/decryption, enhancing 

real-time AI functions like anomaly detection in 
cybersecurity. 

Slower speed limits AE in real-time AI scenarios; 

however, it provides robust security for secure data 
onboarding in AI systems. 

[18] 

Scalability in AI 

Systems 

SE scales well within high-speed AI environments, 

enabling quick encryption across multi-agent or large 
data environments. 

AE scales better for secure AI communications in 

distributed or cloud-based systems, especially for 
sensitive exchanges. 

[21] 

Battery and Power Use 
Low power consumption suits AI-based mobile or 
IoT cybersecurity applications, allowing efficient 

continuous data encryption. 

Higher power demand limits AE’s suitability for 
battery-dependent AI devices, though it's viable for 

centralized secure key exchanges. 

[20] 

Security Strength 

SE algorithms are faster but require secure key 

management in AI-driven environments to prevent 
compromise. 

AE’s public-private key pair provides greater 

security in AI-based networks with high 

confidentiality needs, particularly when securing data 

exchanges. 

[18] 

Complexity 
Simpler structures in SE make it easier to embed into 
AI cybersecurity models needing rapid, low-latency 

responses. 

AE’s complexity is suitable for initial secure 
connections but can slow down ongoing high-volume 

AI data processing. 

[19] 

Use in AI Applications 
Frequently applied in AI-driven real-time 
applications like intrusion detection, anomaly 

detection, and real-time threat monitoring. 

Used to establish secure connections for sensitive AI 
operations, such as secure federated learning or 

distributed AI models. 

[17] 
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V. ALGORITHMS IN THE AI ERA 

The comparative analysis of symmetric and asymmetric 
encryption algorithms reveals critical insights into their 
respective strengths and limitations, offering a clear framework 
for selecting appropriate methods based on specific 
requirements. However, as the cybersecurity landscape 
continues to evolve, traditional encryption approaches must 
adapt to emerging challenges. The next section explores how AI 
is evolving encryption by introducing adaptive and dynamic 
capabilities. Through the integration of ML and DL models, 
encryption techniques are becoming more resilient, enabling 
real-time detection of threats and enhancement of key 
generation processes. 

AI is increasingly integrated into encryption techniques, 
offering adaptive and dynamic solutions to address evolving 
cybersecurity threats. ML models play a pivotal role by 
analyzing large datasets to detect anomalies, making encryption 
protocols more resilient to cyberattacks [22] (Fig. 1). In recent 
years, there has been a surge in the application of deep learning 
to enhance cryptographic algorithms, particularly through 
convolutional neural networks (CNNs). These models help to 
create more robust key generation processes, as demonstrated in 
recent studies where CNNs were applied to Advanced 
Encryption Standard (AES) algorithms to improve encryption 
performance and security resilience [23]. Such AI-driven 
encryption systems are capable of continuously evolving, 
adapting to new security challenges, and countering 
sophisticated hacking attempts in real-time [24]. 

In addition to improving encryption processes, AI also aids 
in the proactive detection and mitigation of cyber threats. As 
Rangaraju [25] notes, through leveraging ML models, 
particularly deep learning algorithms, cybersecurity systems can 
predict potential vulnerabilities and strengthen encryption 
methods. These techniques not only enhance the overall security 
infrastructure but also allow for the development of intelligent, 
self-updating systems that can respond to newly emerging cyber 
threats. The real-time adaptability of AI in encryption is crucial, 
especially as traditional cryptography methods, such as RSA, 
become increasingly vulnerable to advanced cyberattacks [26]. 
This integration of AI into cryptography sets the stage for more 
secure communication and data protection in the AI era [27]. 

With the newly found ability to detect and mitigate 
cybersecurity threats, AI assists in offering advanced solutions 
that traditional encryption methods struggle to match. These 
solutions include CNNs, as noted, but also long short-term 
memory (LSTM), AI-driven systems that can analyze vast 
amounts of data in real-time, identifying patterns that signal 
potential threats. These AI-enhanced systems use data profiling 
techniques to categorize security events, enabling more accurate 
discrimination between legitimate threats and false positives 
[28]. For example, a study employing AI-based security 
information and event management (SIEM) demonstrated 
improved accuracy in detecting network intrusions by 
combining event profiling with various neural networks, 
outperforming traditional machine learning approaches [29] 
[30]. The ability to adapt to complex and evolving attack 
patterns makes these new technologies an essential tool for 
modern cybersecurity. 

Such capacity to adapt and learn from emerging threats is 
critical as cybercriminals continuously develop more 
sophisticated attack methods. Deep learning models, especially 
when applied to real-time cybersecurity monitoring, can detect 
anomalies much faster than traditional methods, providing 
organizations with the agility to respond to cyberattacks 
proactively [31]. Recent advancements in deep learning-based 
intrusion detection systems (IDS) have shown promising results 
in identifying zero-day attacks, reducing detection time, and 
improving overall system security [32]. This proactive approach 
allows for not only quicker detection but also the anticipation of 
future attacks, helping organizations stay one step ahead of 
cybercriminals. 

On the other hand, although integrating AI into encryption 
processes provides significant advancements and benefits, there 
are also numerous challenges and ethical concerns. One of the 
primary issues is the risk of over-reliance on AI-based systems, 
which could lead to complacency in monitoring and updating 
security protocols [33]. The dynamic nature of these tools can 
make encryption systems highly efficient, but this reliance also 
increases the risk that undetected vulnerabilities could be 
exploited by adversaries using AI for malicious purposes [34]. 
Furthermore, as AI-driven encryption systems become more 
widespread, the sheer volume of data processed raises concerns 
about privacy violations. AI models often require vast amounts 
of personal or sensitive information to function optimally, which 
can lead to unintended privacy breaches if not managed properly 
[35]. 

Another ethical concern involves the dual-use nature of AI 
technologies in encryption. While AI enhances security, it also 
opens avenues for adversaries to exploit AI systems to breach 
encrypted communications. AI-based algorithms could 
potentially be reverse-engineered or manipulated to bypass 
security protocols, creating a new type of cyber threat [36]. The 
sophistication of AI tools allows attackers to uncover hidden 
patterns or weaknesses in encryption systems, potentially 
leading to large-scale data breaches. This highlights the need for 
comprehensive governance frameworks that address not only 
the technical challenges but also the ethical risks associated with 
deploying AI in encryption and cybersecurity [37]. 

Looking ahead, ever-advancing AI tools are expected to play 
an increasingly central role in the future of encryption, evolving 
alongside the cyber threat landscape. The adaptability of AI to 
real-time data allows for personalized encryption solutions 
tailored to the behaviors and preferences of individuals, making 
it more difficult for cybercriminals to execute successful attacks 
[38]. Through learning from patterns in network traffic and user 
behavior, AI can continuously optimize encryption protocols, 
ensuring that they remain effective against emerging threats 
[39]. This ability to adapt to new challenges positions the 
technology as a vital tool in maintaining robust cybersecurity 
defenses in the coming years. 

Moreover, integration into encryption technologies opens 
possibilities for more seamless and efficient security solutions. 
The use of AI to automate encryption processes could lead to 
faster, real-time encryption adjustments without human 
intervention. This is particularly valuable in dynamic 
environments, such as the Internet of Things (IoT), where 
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devices continuously communicate and exchange data [40]. The 
ability to monitor and respond to security threats in real-time 
ensures that encryption methods are always up to date, thus 
reducing the risk of breaches [41]. However, these 
advancements must be balanced with considerations for ethical 
use and the prevention of potential misuse of AI in malicious 
hacking activities. 

 

Fig. 1. AI-driven enhancements in encryption (including symmetric and 

asymmetric) and cybersecurity. 

In the era of rapid technological progress, artificial 
intelligence has emerged as a revolutionary influence across 
several domains, including cybersecurity. As AI systems 
advance, the algorithms utilized for data protection as well as 
encryption must adapt to the intricacies of contemporary threats. 
The convergence of AI and encryption offers prospects for 
bolstering cybersecurity resilience via real-time monitoring, 
adaptive response strategies, and intelligent automation. 

A. Artificial Intelligence-Enhanced Encryption for Improved 

Cybersecurity 

As AI increasingly integrates with encryption, its 
transformative impact on cybersecurity becomes evident. The 
prior discussion outlined the potential of AI-driven 
methodologies in enhancing traditional encryption systems, 
offering adaptive and dynamic capabilities. This section delves 
deeper into the specific mechanisms by which AI enhances both 
symmetric and asymmetric encryption techniques, focusing on 
how AI-driven solutions address emerging cybersecurity threats 
through improved key generation, anomaly detection, and real-
time responsiveness. 

Conventional encryption techniques, such as the Advanced 
Encryption Standard (AES) in symmetric encryption and RSA 
in asymmetric encryption, have been significantly augmented by 
AI to boost their security and efficiency. AI's capacity to analyze 
vast datasets, identify trends, and adapt to evolving threats 
positions it as an ideal collaborator for cryptographic systems. 

In symmetric encryption, AI-driven optimization strategies 
dynamically create, and update AES encryption keys based on 
real-time threat assessments. Machine learning (ML) algorithms 
now anticipate vulnerabilities and pre-empt brute-force attacks 
by identifying anomalous patterns across encrypted data. This 
dynamic methodology transforms AES into a more adaptable 
and resilient system, capable of addressing diverse threats 
without compromising operational speed [32]. 

For asymmetric encryption, RSA benefits from AI's ability 
to refine the key generation process. Genetic algorithms, a 
subset of AI methodologies, enhance the selection of prime 
numbers, ensuring that encryption keys are robust and less 
vulnerable to attacks [23]. These advancements reduce 
computational demands for both encryption and decryption 
processes while maintaining high levels of security, particularly 
in environments requiring secure communications. 

Deep learning methodologies further expand the potential of 
AI-enhanced encryption. Techniques such as convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs) 
are now integrated into cryptographic frameworks to monitor 
encrypted communications in real-time. These algorithms detect 
irregularities in data streams, identify potential breaches, and 
enable pre-emptive responses to system intrusions [33]. By 
adding this layer of real-time detection, AI provides an 
additional safeguard that static encryption technologies cannot 
match. 

Moreover, the incorporation of AI into cryptographic 
processes enhances both efficiency and effectiveness. For 
instance, CNNs within AES key generation operations not only 
improve security but also lower computational costs [28]. In 
resource-limited environments such as the Internet of Things 
(IoT), asymmetric cryptographic methods like RSA leverage 
AI-driven approaches to optimize encryption and decryption 
processes, ensuring secure communication without 
overburdening system resources [29]. 

B. Homomorphic Encryption and Privacy-Enhancing 

Artificial Intelligence Methodologies 

The integration of AI into conventional encryption 
techniques highlights its transformative potential to enhance 
security, efficiency, and adaptability. While these advancements 
address many existing challenges, the need for encryption 
methods that maintain data confidentiality during processing is 
paramount, particularly in fields requiring large-scale data 
analysis. As such, one of the most exciting advancements in AI-
driven encryption involves the progression of homomorphic 
encryption. Homomorphic encryption enables calculations upon 
encrypted data without necessitating decryption, so 
safeguarding sensitive information during processing. This is 
especially beneficial in AI applications requiring the analysis of 
large data sets, such as in finance, healthcare as well as cloud 
computing. Also, AI is significantly enhancing the efficiency 
and scalability of homomorphic encryption techniques. 
Utilizing AI methodologies might enhance the efficacy of 
homomorphic encryption by reducing the noise typically 
accumulated during calculations, hence making these 
techniques more appropriate for practical use [35]. 

This advancement is particularly significant for privacy-
preserving AI applications, in which sensitive data, such as 
health-related records and financial information, must be 
safeguarded throughout the analytical process [22]. 
Homomorphic encryption, in conjunction with AI, allows 
businesses to cooperate upon encrypted data without disclosing 
the underlying knowledge. This privacy-preserving 
methodology has considerable ramifications for sectors such as 
healthcare, where patient information may be safely exchanged 
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and evaluated across institutions without jeopardizing privacy or 
regulatory adherence [39]. 

Moreover, AI-based methodologies have begun to influence 
the design, evaluation, and implementation of encryption 
algorithms, offering novel avenues for both enhancing and 
challenging traditional security paradigms. Such approaches 
incorporate machine learning-based techniques to identify 
patterns in cipher operations, anticipate potential vulnerabilities, 
and recommend key management strategies tailored to diverse 
computational contexts. By employing deep learning models 
trained on large-scale encryption datasets, researchers can detect 
subtle correlations in encrypted traffic and refine key scheduling 
protocols, leading to more resilient cryptographic schemes. In 
addition to bolstering algorithmic integrity, AI-driven 
methodologies assist in automating threat detection, as real-time 
analytics enable dynamic adjustments to key sizes, modes of 
operation, and encryption parameters based on evolving 
adversarial tactics. The infusion of AI elements further 
empowers hybrid encryption approaches where neural networks 
guide the selection between symmetric and asymmetric 
algorithms, optimizing both security and computational 
efficiency. 

Lastly, reinforcement learning agents can adaptively 
determine when to apply advanced cryptographic primitives, 
such as fully homomorphic encryption, by weighing 
computational overhead against security gains. Beyond 
defensive capabilities, AI-based methodologies facilitate the 
detection and prevention of side-channel attacks, since carefully 
tuned machine learning classifiers recognize subtle anomalies in 
power consumption or electromagnetic emissions. Although 
these techniques hold immense promise, they also raise new 
ethical and regulatory questions regarding data privacy, 
algorithmic transparency, and model interpretability, 
necessitating continuous oversight and methodological rigor in 
future AI-cryptography research. 

C. Blockchain and Artificial Intelligence: A Collaborative 

Strategy for Security 

As homomorphic encryption exemplifies the potential of AI-
driven methodologies for securing sensitive data during 
processing, the integration of AI with blockchain technology 
offers a complementary avenue for advancing cybersecurity. 
Blockchain, known for its decentralized and secure architecture, 
has emerged as a critical tool for safeguarding digital 
transactions across industries such as finance, healthcare, and 
supply chain management. However, the growing complexity of 
blockchain applications demands greater efficiency, scalability, 
and resilience. AI’s integration with blockchain not only 
addresses these challenges but also enhances the foundational 
security and operational efficiency of blockchain networks. 

Blockchain’s inherent security lies in its decentralized 
structure, which distributes data across multiple nodes to prevent 
tampering and ensure transparency. When combined with AI, 
this architecture is further fortified by novel cryptographic 
techniques such as AI-driven homomorphic encryption. These 
advanced methods secure data transmission across blockchain 
networks, even as the volume and complexity of transactions 
increase. The incorporation of AI enhances blockchain’s ability 
to handle sophisticated encryption requirements, making it a 

more robust framework for industries that rely on secure, high-
throughput digital transactions. 

AI also revolutionizes blockchain’s consensus mechanisms, 
which are essential for verifying transactions and maintaining 
data integrity. Traditional methods like proof-of-work (PoW) 
and proof-of-stake (PoS) are often criticized for their high 
energy consumption and computational inefficiencies. AI-
augmented consensus algorithms address these limitations by 
streamlining the validation process, significantly increasing 
transaction speed while reducing energy demands [40]. This 
optimization makes blockchain networks more sustainable and 
scalable, enabling their adoption in diverse and resource-
intensive applications without compromising security. 

Beyond efficiency, AI contributes to blockchain’s real-time 
security capabilities by identifying and mitigating threats as they 
arise. Machine learning and anomaly detection algorithms 
enable blockchain networks to detect irregular transaction 
patterns, prevent unauthorized access, and counter distributed 
denial-of-service (DDoS) attacks. These proactive measures 
ensure that blockchain remains a reliable and resilient platform 
for secure digital transactions [37]. The fusion of AI’s adaptive 
intelligence with blockchain’s decentralized infrastructure not 
only addresses existing challenges but also sets new benchmarks 
for trust, scalability, and security in an evolving digital 
ecosystem. 

D. Artificial Intelligence and Quantum-Resistant 

Cryptography 

The integration of AI with blockchain technologies 
demonstrates its potential to address contemporary 
cybersecurity challenges, but the emergence of quantum 
computing introduces a new frontier of threats. Quantum 
computers, with their unparalleled ability to solve complex 
mathematical problems, threaten to undermine traditional 
cryptographic methods such as RSA and elliptic curve 
cryptography (ECC). As this technological shift looms, AI is 
playing a pivotal role in developing quantum-resistant 
cryptographic methods to ensure the continued security of 
digital communications. 

One of the most promising approaches to quantum-resistant 
cryptography involves lattice-based algorithms, which rely on 
the computational difficulty of solving lattice problems—a 
complexity that remains formidable even for quantum 
computers. AI methodologies enhance the development and 
evaluation of these post-quantum cryptographic algorithms by 
identifying potential weaknesses and optimizing their 
implementation in practical systems [30]. By leveraging AI-
driven simulations and predictive modelling, researchers can 
refine lattice-based encryption techniques to ensure their 
resilience against both theoretical and practical quantum attacks. 

In addition to fortifying cryptographic algorithms, AI also 
contributes to preparing for the broader implications of quantum 
computing. Through the simulation of quantum assaults, AI 
enables the rigorous testing of existing encryption methods 
under quantum conditions. This proactive approach not only 
helps to identify vulnerabilities but also informs the creation of 
robust cryptographic standards designed to safeguard sensitive 
information in the quantum age [27]. Moreover, AI models are 
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used to predict the pace and direction of quantum computing 
advancements, enabling the development of encryption methods 
that stay ahead of potential threats [26]. The synergy between 
AI and quantum-resistant cryptography exemplifies the 
forward-thinking strategies required to navigate this impending 
technological shift. As quantum computing capabilities grow, 
the collaboration of AI and cryptography will be instrumental in 
ensuring that encryption techniques evolve to meet new 
challenges. 

E. Ethical Implications in AI-Enhanced Cryptography 

As advancements in AI-driven encryption and quantum-
resistant cryptography push the boundaries of cybersecurity, 
they also introduce complex ethical considerations. The 
deployment of such powerful technologies raises critical 
questions about transparency, accountability, and equitable 
access, necessitating a careful examination of the broader 
societal implications of AI-enhanced cryptography. The 
incorporation of AI within encryption systems presents 
significant ethical dilemmas. As AI algorithms increase in 
complexity, the need for openness and accountability in their 
decision-making processes, especially in encryption and 
cybersecurity, is intensifying. It is essential to design AI-driven 
cryptography systems with ethical concerns to foster confidence 
and avoid abuse. 

A primary worry is the dual-use characteristic of AI 
technology. Although AI may improve encryption as well as 
cybersecurity, it may also be utilized by nefarious individuals to 
develop more advanced assaults or to avoid detection. 
Developing AI-driven encryption systems with strong ethical 
standards is crucial to avoid their misuse for bad reasons [36]. 
Furthermore, as AI along with encryption technologies 
proliferate, it is essential to guarantee their accessibility and 
equity. It includes tackling the digital divide including 
guaranteeing that modern encryption technologies are accessible 
to all societal sectors, not just to those with the means to use 
them [24]. 

To get farther into the AI age, encryption algorithms must 
advance to match the increasing sophistication of cyber threats. 
Artificial intelligence is significantly transforming both 
asymmetric and symmetrical encryption systems, which renders 
them more adaptable, effective, and safe. The integration of AI 
in key generation and real-time threat detection is transforming 
cybersecurity methodologies. Nonetheless, the prospect of AI-
driven cryptography has concerns as well. It is essential for these 
systems to be morally robust, transparent, and resilient against 
new dangers, including those from quantum computing, to 
ensure their success. Advancing and perfecting AI-driven 
encryption methods will enable the establishment of an 
increased secure digital future which safeguards sensitive 
information while promoting innovation. 

VI. ALGORITHM SECURITY IN MODERN SOCIETY 

Encryption algorithms are essential tools in maintaining the 
confidentiality and integrity of digital communications in 
modern society (Fig. 2). With the increasing reliance on digital 
platforms for both personal and professional interactions, 
ensuring secure communication has become a priority [42]. 
Algorithms such as the AES and RSA are widely adopted to 

protect sensitive data, including emails, financial transactions, 
and other online communications. AES, a symmetric key 
algorithm, is favored for its speed and efficiency in encrypting 
large volumes of data, making it suitable for applications where 
rapid data processing is critical [43]. In contrast, RSA, an 
asymmetric key algorithm, is often used for secure key 
exchanges and digital signatures due to its robust security 
features, although it operates at a slower speed [44]. Together, 
these algorithms form the foundation of secure digital 
communications, providing the first line of defense against 
unauthorized access and cyberattacks. 

As society becomes more dependent on digital 
communication, the application of encryption algorithms 
continues to expand. For instance, hybrid encryption schemes 
that combine the strengths of both AES and RSA are becoming 
more popular. These hybrid systems leverage the efficiency of 
AES in data encryption and the strength of RSA in secure key 
management, ensuring that both the data and the encryption keys 
are protected during transmission [45]. Such combined 
approaches offer enhanced security, particularly in 
environments where large volumes of sensitive information are 
frequently exchanged, such as in e-commerce or financial 
institutions [46]. As encryption technologies evolve, they 
continue to play a vital role in safeguarding digital 
communication, adapting to new threats and ensuring that 
sensitive information remains confidential and secure [47]. 
Thus, actionable risk assessment methodologies are particularly 
valuable for organizations that rely heavily on algorithms for 
their security, as they provide a clear framework to assess 
vulnerabilities, adapt to evolving threats, and reduce reliance on 
external vendors [48]. 

Yet, as noted, the rapid adoption of IoT devices and cloud 
computing has created new vulnerabilities in cybersecurity 
systems, particularly due to the limited computing capabilities 
of many IoT devices [34]. Many of these devices rely on 
lightweight encryption algorithms, such as the Data Encryption 
Standard (DES) or AES, which are efficient but may be more 
susceptible to attacks due to their reduced complexity [49]. 
Additionally, IoT devices often lack regular security updates, 
making them easy targets for cybercriminals. Cloud computing 
environments further complicate the situation, as data in transit 
and at rest in the cloud are vulnerable to interception, especially 
during migration between different cloud platforms [49]. This 
growing complexity necessitates the development of more 
robust encryption techniques tailored to the needs of both IoT 
and cloud environments [51]. 

Furthermore, the rise of supply chain attacks, where third-
party software or hardware components are compromised, 
presents another significant challenge. As Hammi Zeadally and 
Nebhen (2023) point out, since many organizations rely on 
cloud services that integrate multiple external vendors, ensuring 
the security of every component is increasingly difficult [52]. In 
such environments, traditional encryption methods may not 
provide sufficient protection against sophisticated attacks. 
Emerging encryption models, such as lattice-based 
cryptography and hybrid encryption schemes, have been 
proposed as solutions to strengthen security, especially in 
resource-constrained IoT devices and cloud platforms [53]. As 
IoT and cloud ecosystems continue to expand, the demand for 
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an advanced encryption methods that can effectively address 
these new vulnerabilities [50] will only increase [54]. Also, the 
escalating sophistication of cryptojacking and ransomware 
highlights the importance of robust encryption algorithms to 
safeguard against unauthorized access and financial disruptions 
who are using blockchain technology for their security [55]. 

 

Fig. 2. Encryption algorithms (symmetric, asymmetric, and hybrid) securing 

digital communications. 

While these tools can enhance encryption and cybersecurity, 
it also introduces new vulnerabilities, particularly through 
adversarial AI attacks. These attacks exploit the weaknesses in 
AI models by introducing adversarial inputs, causing the system 
to make incorrect decisions. In the context of encryption, 
adversaries can manipulate these models designed to detect 
anomalies in encrypted communications or tamper with ML 
algorithms that generate encryption keys [56]. For example, 
recent studies have shown that adversarial ML techniques can 
be used to bypass AI-driven encryption models by generating 
synthetic data that mimics normal traffic patterns, thereby 
fooling detection systems [57]. 

Moreover, adversarial attacks can target not just encryption 
algorithms but the entire AI-based cybersecurity framework. 
These attacks can render AI-based defenses ineffective by 
exploiting weaknesses in neural networks used for real-time 
threat detection [58]. For instance, Generative Adversarial 
Networks (GANs) have been employed to create realistic attack 
scenarios that deceive AI systems, making it harder for 
traditional encryption methods to safeguard data [59]. The 
increasing sophistication of adversarial AI raises the stakes for 
maintaining secure systems, requiring not only advancements in 
encryption but also in AI model robustness [60]. As these threats 
evolve, the integration of more secure AI models into encryption 
protocols will be vital for protecting sensitive information in the 
digital age. 

Moreover, the widespread use of encryption technologies in 
sectors such as finance, healthcare, and national security brings 
with it significant ethical and legal challenges. Governments and 
regulatory bodies face the difficult task of balancing individual 

privacy rights with the need for surveillance to prevent criminal 
activities [61]. Encryption ensures that sensitive data remains 
confidential, but it also makes it harder for law enforcement 
agencies to access potentially crucial information [63]. As a 
result, there has been ongoing debate about the implementation 
of encryption backdoors, which would allow authorized entities 
to decrypt data under specific circumstances. However, these 
backdoors present a serious ethical dilemma, as they could be 
exploited by malicious actors if not properly secured [63]. As 
encryption continues to play a critical role in modern society, it 
will be essential for policymakers to develop clear, globally 
consistent frameworks that address both the ethical and legal 
challenges posed by these technologies [37]. In addition to the 
ethical concerns, encryption technologies also raise legal 
questions regarding jurisdiction and data ownership. As data 
crosses international borders, determining which country’s laws 
apply to encrypted information becomes increasingly 
complicated [64]. For instance, different nations have varying 
regulations regarding data privacy and encryption standards, 
which can lead to conflicts when encrypted data is stored in one 
country but accessed or processed in another [65]. 

As encryption continues to play a critical role in modern 
society, it will be essential for policymakers to develop clear, 
globally consistent frameworks that address both the ethical and 
legal challenges posed by these technologies [37]. In addition to 
the ethical concerns, encryption technologies also raise legal 
questions regarding jurisdiction and data ownership. As data 
crosses international borders, determining which country’s laws 
apply to encrypted information becomes increasingly 
complicated [62]. For instance, different nations have varying 
regulations regarding data privacy and encryption standards, 
which can lead to conflicts when encrypted data is stored in one 
country but accessed or processed in another [63]. 

VII. DISCUSSION AND LIMITATIONS 

The integration of AI with encryption signifies a pivotal 
change in cybersecurity, offering both prospects and complex 
obstacles. The significance of AI in encryption has led to 
significant progress constantly in real-time threat detection as 
well as flexible security mechanisms, which are more vital in the 
contemporary linked and susceptible digital environment. This 
capacity allows encryption systems to promptly address 
abnormalities and emerging attack patterns, hence providing 
resilience unattainable by conventional static encryption 
approaches. Nonetheless, this progress entails an increasing 
dependence on machine learning as well as deep learning 
models, that, whilst augmenting encryption capabilities, can 
present weaknesses like adversarial assaults. These assaults 
target vulnerabilities in AI models using misleading inputs, 
compromising the precision and resilience of systems intended 
to identify and counter cyber threats. Thus, the dual-use 
characteristic of AI technology requires a measured and 
attentive strategy, especially in vital sectors such as healthcare, 
banking, and national security, wherein AI-driven encryption 
plays a crucial role in safeguarding extremely sensitive 
information. 

Nonetheless, this progress is not without limitations. First, 
the over-reliance on AI systems for encryption may create blind 
spots, wherein undetected vulnerabilities can be exploited by 
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adversaries leveraging AI for malicious purposes. Second, the 
ethical and legal challenges surrounding AI-driven encryption, 
such as potential breaches of data privacy [62] and concerns 
about surveillance misuse, demand robust governance 
frameworks. These frameworks must include clear ethical 
guidelines and enforceable regulations to prevent the unintended 
misuse of AI-enhanced encryption technologies. 

Additionally, accessibility disparities pose significant 
challenges. AI-driven encryption technologies, while offering 
scalable solutions, often require substantial technological 
resources and compliance capabilities. This raises questions 
about equity, as organizations with limited resources may 
struggle to implement these advanced systems effectively. 
Addressing such disparities is vital to ensuring the widespread 
and fair adoption of AI-powered encryption. 

As such, the following validation approach should be used 
in future studies. In evaluating the proposed cryptographic 
solutions, employing a rigorous validation process establishes a 
credible foundation for comparative analysis and subsequent 
knowledge generation. This process begins with controlled 
laboratory testing, where encryption algorithms undergo 
quantitative benchmarking against standardized datasets, fixed 
key lengths, and pre-defined plaintext-ciphertext pairs to ensure 
reproducibility. By comparing time-to-encrypt, CPU utilization, 
memory usage, and latency across multiple cryptographic 
methods, researchers gain insights into both efficiency and 
scalability. The application of formal verification techniques, 
such as model checking and theorem proving, bolsters 
confidence in algorithmic correctness, ensuring that keys, modes 
of operation, and cipher primitives function as intended under a 
range of computational scenarios. 

Beyond laboratory environments, field testing in distributed 
AI-driven systems delivers validation grounded in practical 
contexts, as real-time data streams reveal how well the chosen 
cryptographic methods withstand dynamic adversarial tactics. 
For comprehensive comparative analysis, conducting multi-
criteria decision-making (MCDM) evaluations allows 
researchers to weigh performance metrics, security robustness, 
and resource overhead against one another. Statistical tests, 
including ANOVA or Wilcoxon signed-rank tests, further 
enhance credibility by confirming that observed differences in 
performance are significant and not attributable to random 
variation. Iterative refinement informed by validation feedback 
cycles contributes to continual improvement, bridging the gap 
between theoretical design and practical deployment. Through 
meticulous validation and comparison, the resulting 
cryptographic frameworks achieve a higher degree of reliability, 
fostering trust among stakeholders and ensuring that deployed 
solutions fulfill the intended security objectives in increasingly 
complex AI ecosystems. 

Furthermore, the widespread use of AI-driven encryption 
systems raises urgent accessibility and ethical issues. Even while 
these technologies provide scalable solutions, their use in a 
variety of international businesses raises concerns about 
transparency and equality, particularly when firms have varying 
levels of technological resources as well as regulatory 
compliance skills. The fair distribution of these cutting-edge 

technologies must be given equal weight with technological 
resilience in the advancement of AI-powered encryption. These 
technologies also raise significant ethical and legal issues, 
including surveillance, data privacy, and the possible abuse of 
AI-enhanced encryption to provide vulnerabilities for illegal 
data access. To prevent AI-encrypted systems from 
unintentionally jeopardizing the same security and 
confidentiality they are meant to safeguard, strict governance 
structures and ethical standards must be established. Therefore, 
this open conversation covers both the enormous possibilities 
and the serious threats of AI-driven encryption, necessitating a 
thorough, interdisciplinary response to responsibly influence 
cybersecurity's future. 

To sum up, the combination of encryption and artificial 
intelligence has brought about a new age in cybersecurity that 
offers increased resistance to a wide range of online dangers. AI-
driven encryption is essential in today's fast-paced, data-
intensive digital environment because of its adaptable, real-time 
features, which provide major benefits over conventional 
encryption methods. Homomorphic encryption and AI-
enhanced algorithms are only two examples of the encryption 
techniques that have advanced because of this integration, 
strengthening data security and enabling sophisticated 
calculations on encrypted data. AI algorithms provide a strong 
defense against complex cyberattacks as they become better at 
managing the complexities of threat detection including 
adaptive encryption key management. However, this 
development raises fresh moral and legal issues. The ethical 
conundrums around privacy, transparency, and equality, 
together with the dual-purpose possibilities for AI technology, 
highlight the need for a concerted effort from all parties 
involved. To create moral guidelines including legal 
frameworks that encompass both the technical aspects of AI-
enhanced encryption and its wider social ramifications, 
cooperation between government, business, and academia is 
crucial. 

In the future, establishing a safe and flexible cybersecurity 
framework will require a proactive approach to the creation and 
management of AI-driven encryption systems. To reduce new 
dangers and protect sensitive data in a variety of industries, 
further research in fields like adversarial resilience, quantum-
resistant encryption, and ethical AI will be essential. Through 
adopting this forward-thinking viewpoint, the cybersecurity 
industry can capitalize on AI's ability to develop encryption 
technologies while additionally making certain that those 
solutions are just, ethically appropriate, as well as resilient to the 
constantly changing cyberthreat scenario. In this sense, 
incorporating AI into encryption seems not just a technological 
development but also a step toward a digital future that is safe, 
sustainable, as well as considerate of privacy. 

Although there are several issues in algorithms for both 
encryption and decryption, some of the major ones (in 
symmetric encryption and asymmetric encryption) are shown in 
Fig. 3 below. The challenges in algorithm generation, algorithm 
writing, and algorithm difficulty continues as the use of various 
language models including Artificial Intelligence (AI), Deep 
Learning (DL), and Machine Learning (ML) keeps growing. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

12 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. Encryption algorithms (symmetric, asymmetric, and hybrid) securing 

digital communications. 

VIII. CONCLUSION AND FUTURE SCOPE 

We provided an in-depth study focusing on securing 
sensitive information with comparative analysis for symmetric 
encryption and asymmetric encryption algorithms for 
cryptography. The comparison on the study focuses on key 
factors like security resilience, scalability, speed in the light of 
evolving cyber threats. We have addressed the security concerns 
tackled by encryption algorithms in the Artificial Intelligence 
(AI) and Large Language Models (LLMs) age along with 
research directions to enhance overall cybersecurity and 
cryptography. The aspect comparison between symmetric 
encryption and asymmetric comparison allows us to decide the 
environments used including AI environments, key-pairs 
leveraging via secure key exchanges, and/or decision in secure 
protocols for secure data sharing. 

Future scope of algorithms whether it be symmetric 
encryption and asymmetric encryption algorithms, largely rely 
upon use of AI models, reliability, scalability, and key 
management. Enabling machines to learn is always a future 
challenge that may require human intelligence in the next step 
for decision-making. As we progress into several AI algorithms 
in the future, all three types of learning (supervised learning, 
unsupervised learning, and reinforcement learning) we must be 
more intuitive in the future on how we process data and 
information. 

REFERENCES 

[1] Thiyagarajan, P. (2020). A review on cyber security mechanisms using 
machine and deep learning algorithms. Handbook of research on machine 
and deep learning applications for cyber security, 23-41. 

[2] Terumalasetti, S., & Reeja, S. R. (2022, August). A comprehensive study 
on review of AI techniques to provide security in the digital world. In 
2022 third international conference on intelligent computing 
instrumentation and control technologies (ICICICT) (pp. 407-416). IEEE. 

[3] Al-Arjan, A., Rasmi, M., & AlZu’bi, S. (2021, July). Intelligent security 
in the era of AI: The key vulnerability of RC4 algorithm. In 2021 
International Conference on Information Technology (ICIT) (pp. 691-
694). IEEE. 

[4] Bertino, E., Kantarcioglu, M., Akcora, C. G., Samtani, S., Mittal, S., & 
Gupta, M. (2021, April). AI for Security and Security for AI. In 

Proceedings of the Eleventh ACM Conf on Data and Appn Security and 
Privacy (pp. 333-334). 

[5] Kapoor, J., & Thakur, D. (2022). Analysis of symmetric and asymmetric 
key algorithms. In ICT analysis and applications (pp. 133-143). Springer. 

[6] Soomro, S., Belgaum, M. R., Alansari, Z., & Jain, R. (2019, August). 
Review and open issues of cryptographic algorithms in cyber security. In 
2019 Int Conf on Comp, Elect & Comm Engineering (iCCECE) (pp. 158-
162). IEEE. 

[7] Ustun, T. S., Hussain, S. S., Yavuz, L., & Onen, A. (2021). Artificial 
intelligence-based intrusion detection system for IEC 61850 sampled 
values under symmetric and asymmetric faults. Ieee Access, 9, 56486-
56495. 

[8] Arora, S. (2022). A review on various methods of cryptography for cyber 
security. Journal of Algebraic Statistics, 13(3), 5016-5024.  

[9] Henriques, M. S., & Vernekar, N. K. (2017, May). Using symmetric and 
asymmetric cryptography to secure communication between devices in 
IoT. In 2017 International Conf on IoT and Application (ICIOT) (pp. 1-
4). IEEE. 

[10] Yaji, S., Bangera, K., & Neelima, B. (2018, December). Privacy 
preserving in blockchain based on partial homomorphic encryption 
system for AI applications. 25th Int Conf on HPC Workshops (HiPCW) 
(pp. 81-85). IEEE.  

[11] Arulmurugan, L., Thakur, S., Dayana, R., Thenappan, S., Nagesh, B., & 
Sri, R. K. (2024, May). Advancing Security: Exploring AI-driven Data 
Encryption Solutions for Wireless Sensor Networks. In 2024 Int Conf on 
Advances in Comp, Comm and Applied Informatics (ACCAI) (pp. 1-6). 
IEEE.  

[12] Xu, D., Li, G., Xu, W., & Wei, C. (2023). Design of artificial intelligence 
image encryption algorithm based on hyperchaos. Ain Shams Engineering 
Journal, 14(3), 101891. 

[13] Dharmateja, M., Rama, P. K., Asha, N., Nithya, P., Lalitha, S., & 
Manojkumar, P. (2024, March). Innovative Data Encryption Techniques 
using AI for Wireless Sensor Actuator Network Security. In 2024 Int Conf 
on Distributed Comp and Optimization Techniques (ICDCOT) (pp. 1-6). 
IEEE. 

[14] Hamza, R. (2023, October). Homomorphic Encryption for AI-Based 
Applications: Challenges and Opportunities. In 2023 15th International 
Conference on Knowledge and Systems Engineering (KSE) (pp. 1-6). 
IEEE. 

[15] Budhewar, A., Bhumgara, S., Tekavade, A., Nandkar, J., & Zanwar, A. 
(2024, April). Enhancing Data Security through the Synergy of AI and 
AES Encryption: A Comprehensive Study and Implementation. In 2024 
MIT Art, Design and Tech Sch of Comp Int Conf (MITADTSoCiCon) (pp. 
1-5). IEEE. 

[16] Tian, H., Yuan, Z., Zhou, J., & He, R. (2024). Application of Image 
Security Transmission Encryption Algorithm Based on Chaos Algorithm 
in Networking Systems of Artificial Intelligence. In Image Processing, 
Electronics and Computers (pp. 21-31). IOS Press. 

[17] Abd Elminaam, D. S., Abdual-Kader, H. M., & Hadhoud, M. M. (2010). 
Evaluating the performance of symmetric encryption algorithms. Int. J. 
Netw. Secur., 10(3), 216-222. 

[18] Al-Shabi, M. A. (2019). A survey on symmetric and asymmetric 
cryptography algorithms in information security. International Journal of 
Scientific and Research Publications (IJSRP), 9(3), 576-589. 

[19] Panda, M. (2016, October). Performance analysis of encryption 
algorithms for security. In 2016 International Conference on Signal 
Processing, Communication, Power and Embedded System (SCOPES) 
(pp. 278-284). IEEE. 

[20] Hintaw, A. J., Manickam, S., Karuppayah, S., Aladaileh, M. A., 
Aboalmaaly, M. F., & Laghari, S. U. A. (2023). A robust security scheme 
based on enhanced symmetric algorithm for MQTT in the Internet of 
Things. IEEE Access, 11, 43019-43040. 

[21] Kuznetsov, O., Poluyanenko, N., Frontoni, E., & Kandiy, S. (2024). 
Enhancing Smart Communication Security: A Novel Cost Function for 
Efficient S-Box Generation in Symmetric Key Cryptography. 
Cryptography, 8(2), 17. 

[22] Halewa, A. S. (2024). Encrypted AI for Cyber security Threat Detection. 
International Journal of Research and Review Techniques, 3(1), 104-111. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

13 | P a g e  

www.ijacsa.thesai.org 

[23] Negabi, I., El Asri, S. A., El Adib, S., & Raissouni, N. (2023). 
Convolutional neural network based key generation for security of data 
through encryption with advanced encryption standard. International 
Journal of Electrical & Computer Engineering (2088-8708), 13(3).  

[24] Rehan, H. (2024). AI-Driven Cloud Security: The Future of Safeguarding 
Sensitive Data in the Digital Age. Journal of Artificial Intelligence 
General science (JAIGS) ISSN: 3006-4023, 1(1), 132-151. 

[25] Rangaraju, S. (2023). Ai sentry: Reinventing cybersecurity through 
intelligent threat detection. EPH-International Journal of Science And 
Engineering, 9(3), 30-35. 

[26] Saha, A., Pathak, C., & Saha, S. (2021). A Study of Machine Learning 
Techniques in Cryptography for Cybersecurity. American Journal of 
Electronics & Communication, 1(4), 22-26. 

[27] Yanamala, A. K. Y., & Suryadevara, S. (2023). Advances in Data 
Protection and Artificial Intelligence: Trends and Challenges. 
International Journal of Advanced Eng Technologies and Innovations, 
1(01), 294-319. 

[28] Feisheng, L. (2024, April). Systematic Review of Sentiment Analysis: 
Insights Through CNN-LSTM Networks. In 2024 5th Int Conference on 
Industrial Engineering and Artificial Intelligence (IEAI) (pp. 102-109). 
IEEE. 

[29] Pacheco, J., Benitez, V. H., Felix-Herran, L. C., & Satam, P. (2020). 
Artificial neural networks-based intrusion detection system for internet of 
things fog nodes. IEEE Access, 8, 73907-73918. 

[30] Tashfeen, M. T. A. (2024). Intrusion detection system using AI and 
machine learning algorithms. In Cyber security for next-generation 
computing technologies (pp. 120-140). CRC Press. 

[31] Mallick, M. A. I., & Nath, R. (2024). Navigating the Cyber security 
Landscape: A Comprehensive Review of Cyber-Attacks, Emerging 
Trends, and Recent Developments. World Scientific News, 190(1), 1-69. 

[32] Alionsi, D. D. D. (2023). AI-driven cybersecurity: Utilizing machine 
learning and deep learning techniques for real-time threat detection, 
analysis, and mitigation in complex IT networks. Advances in Eng 
Innovation, 3, 27-31. 

[33] Orner, C., & Chowdhury, M. M. (2024). AI and Cybersecurity: 
Collaborator or Confrontation. Proceedings of 39th Int Confer, 98, 150-
158. 

[34] Jimmy, F. N. U. (2024). Cyber security Vulnerabilities and Remediation 
Through Cloud Security Tools. JAIGS, ISSN: 3006-4023, 2(1), 129-171. 

[35] Gupta, A., Wright, C., Ganapini, M. B., Sweidan, M., & Butalid, R. 
(2022). State of AI ethics report (vol 6, feb 2022). arXiv preprint 
arXiv:2202.07435. 

[36] Riebe, T. (2023). Dual-Use and Trustworthy? A Mixed Methods Analysis 
of AI Diffusion between Civilian and Defense R&D. In Technology 
Assessment of Dual-Use ICTs: How to Assess Diffusion, Governance and 
Design (pp. 93-110). Wiesbaden: Springer Fachmedien Wiesbaden. 

[37] Gupta, M., Akiri, C., Aryal, K., Parker, E., & Praharaj, L. (2023). From 
chatgpt to threatgpt: Impact of generative ai in cybersecurity and privacy. 
IEEE Access. 

[38] Evren, R., & Milson, S. (2024). The Cyber Threat Landscape: 
Understanding and Mitigating Risks. Tech. rep. EasyChair. 

[39] Morley, J., & Floridi, L. (2020). An ethically mindful approach to AI for 
health care. The Lancet, 395(10220), 254-255. 

[40] Javadpour, A., Ja’fari, F., Taleb, T., Zhao, Y., Bin, Y., & Benzaïd, C. 
(2023). Encryption as a service for IoT: opportunities, challenges and 
solutions. IEEE Internet of Things Journal. 

[41] Gupta, A., Royer, A., Heath, V., Wright, C., Lanteigne, C., Cohen, A., 
Ganapini, M., Fancy, M., Galinkin, E., Khurana, R., Akif, M., Butalid, R., 
Khan, F., Sweidan, M., (2020). The State of AI Ethics Report. arXiv, 
abs/2011.02787. 

[42] Thabit, F., Can, O., Aljahdali, A. O., Al-Gaphari, G. H., & Alkhzaimi, H. 
A. (2023). Cryptography algorithms for enhancing IoT security. Internet 
of Things, 22, 100759. 

[43] Kuppuswamy, P., Al, S. Q. Y. A. K., John, R., Haseebuddin, M., & 
Meeran, A. A. S. (2023). A hybrid encryption system for communication 
and financial transactions using RSA and a novel symmetric key 
algorithm. Bulletin of Electrical Engineering and Informatics, 12(2), 
1148-1158. 

[44] Pandey, P. K., Kansal, V., & Swaroop, A. (2023). Security challenges and 
solutions for next-generation VANETs: an exploratory study. In Role of 
Data-Intensive Distributed Computing Systems in Designing Data 
Solutions (pp. 183-201). Cham: Springer International Publishing. 

[45] Akter, R. I. M. A., Khan, M. A. R., Rahman, F. A. R. D. O. W. S. I., 
Soheli, S. J., & Suha, N. J. (2023). RSA and AES based hybrid encryption 
technique for enhancing data security in cloud computing. Int. J. Comp. 
Appl. Math. Comput. Sci, 3, 60-71. 

[46] Liu, Y., Gong, W., & Fan, W. (2018). Application of AES and RSA 
Hybrid Algorithm in E-mail. 2018 IEEE/ACIS 17th International 
Conference on Computer and Information Science (ICIS), 701-703. 
https://doi.org/10.1109/ICIS.2018.8466380. 

[47] Subramanian, A., Donta, L. S., & Supraja, P. (2024, May). Assessing the 
Strength of Hybrid Cryptographic Algorithms: A Comparative Study. In 
2024 Int Conf on Intelligent Systems for Cybersecurity (ISCS) (pp. 1-6). 
IEEE. 

[48] Rahman, M. M., Kshetri, N., Sayeed, S. A., & Rana, M. M. (2024). 
AssessITS: Integrating procedural guidelines and practical evaluation 
metrics for organizational IT and cybersecurity risk assessment. Journal 
of Information Security, 15(4), 564–588. 
https://doi.org/10.4236/jis.2024.154032 

[49] Singh, S., Sharma, P. K., Moon, S. Y., & Park, J. H. (2024). Advanced 
lightweight encryption algorithms for IoT devices: survey, challenges and 
solutions. Journal of Ambient Intelligence and Humanized Computing, 1-
18. 

[50] Siwakoti, Y. R., Bhurtel, M., Rawat, D. B., Oest, A., & Johnson, R. C. 
(2023). Advances in IoT security: Vulnerabilities, enabled criminal 
services, attacks, and countermeasures. IEEE Int of Things Jou, 10(13), 
11224-11239. 

[51] Zhou, J., Cao, Z., Dong, X., & Vasilakos, A. (2017). Security and Privacy 
for Cloud-Based IoT: Challenges. IEEE Communications Magazine, 55, 
26-33. https://doi.org/10.1109/MCOM.2017.1600363CM  

[52] Hammi, B., Zeadally, S., & Nebhen, J. (2023). Security threats, 
countermeasures, and challenges of digital supply chains. ACM 
Computing Surveys, 55(14s), 1-40. 

[53] Bagla, P., Sharma, R., Mishra, A., Tripathi, N., Dumka, A., & Pandey, N. 
(2023). An Efficient Security Solution for IoT and Cloud Security Using 
Lattice-Based Cryptography. Int Conf on Eme Trends in Net and Comp 
Comm (ETNCC), 82-87. 
https://doi.org/10.1109/ETNCC59188.2023.10284931. 

[54] Ahmed, S., & Khan, M. (2023). Securing the Internet of Things (IoT): A 
comprehensive study on the intersection of cybersecurity, privacy, and 
connectivity in the IoT ecosystem. AI, IoT & the 4th Ind Rev Rev, 13(9), 
1-17. 

[55] Kshetri, N., Rahman, M. M., Sayeed, S. A., & Sultana, I. (2024). 
cryptoRAN: A review on cryptojacking and ransomware attacks w.r.t. 
banking industry - Threats, challenges, & problems. 2nd InCACCT (pp. 
523–528). IEEE. 
https://doi.org/10.1109/InCACCT61598.2024.10550970 

[56] Craighero, F., Angaroni, F., Stella, F., Damiani, C., Antoniotti, M., & 
Graudenzi, A. (2023). Unity is strength: Improving the detection of 
adversarial examples with ensemble approaches. Neurocomputing, 554, 
126576. 

[57] Shroff, J., Walambe, R., Singh, S. K., & Kotecha, K. (2022). Enhanced 
security against volumetric DDoS attacks using adversarial machine 
learning. Wireless Communications and Mobile Computing, 2022(1), 
5757164. 

[58] Sathupadi, K. (2023). Ai-based intrusion detection and ddos mitigation in 
fog computing: Addressing security threats in decentralized systems. Sage 
Science Review of Applied Machine Learning, 6(11), 44-58. 

[59] Zhang, C., Yu, S., Tian, Z., & Yu, J. J. (2023). Generative adversarial 
networks: A survey on attack and defense perspective. ACM Computing 
Surveys, 56(4), 1-35. 

[60] Fernando, P., & Wei-Kocsis, J. (2021). A Novel Data Encryption Method 
Inspired by Adversarial Attacks. ArXiv, abs/2109.06634. 

[61] Allahrakha, N. (2023). Balancing cyber-security and privacy: legal and 
ethical considerations in the digital age. Legal Iss in the Dig Age, (2), 78-
121. 

https://doi.org/10.1109/ICIS.2018.8466380
https://doi.org/10.1109/ICIS.2018.8466380
https://doi.org/10.4236/jis.2024.154032
https://doi.org/10.4236/jis.2024.154032


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

14 | P a g e  

www.ijacsa.thesai.org 

[62] van Daalen, O. L. (2023). The right to encryption: Privacy as preventing 
unlawful access. Computer Law & Security Review, 49, 105804. 

[63] Taddeo, M., McCutcheon, T., & Floridi, L. (2019). Trusting artificial 
intelligence in cybersecurity is a double-edged sword. Nature Machine 
Intelligence, 1-4. https://doi.org/10.1038/s42256-019-0109-1. 

[64] Lubin, A. (2023). The prohibition on extraterritorial enforcement 
jurisdiction in the datasphere. In Research Handbook on 

Extraterritoriality in International Law (pp. 339-355). Edward Elgar 
Publishing. 

[65] Nguyen, M. T., & Tran, M. Q. (2023). Balancing security and privacy in 
the digital age: an in-depth analysis of legal and regulatory frameworks 
impacting cybersecurity practices. Int Jou of Int Auto & Comp, 6(5), 1-
12. 

 


