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Abstract—In modern power systems, with the increasing 

application of renewable energy, direct current transmission 

technology has put forward new requirements for energy 

metering. In order to solve the accuracy problem of traditional 

electric energy metering under DC energy, the research is based 

on the classical empirical modal decomposition (EEMD), and 

introduces the artificial chemical reaction optimization algorithm 

(ACROA) to enhance the global search capability and 

decomposition accuracy of the original algorithm, and at the same 

time safeguards the accuracy of metering equipment under 

extreme conditions through the wide quantitative constraints, and 

ultimately puts forward a new type of optimization model for the 

accuracy of DC electric energy metering. The highest 

measurement accuracy of this model could reach 90%, and it 

performed better in power signal decomposition and accuracy 

optimization. Especially under high-frequency interference and 

complex signal conditions, the measurement error could be 

reduced to 6.87%, the highest decomposition stability was 94.02%, 

and the shortest measurement time was 1.12 seconds. Therefore, 

the model constructed in this study exhibits excellent 

decomposition accuracy and robustness in complex energy 

environments, solving the shortcomings of traditional energy 

metering methods and providing new ideas for future optimization 

of DC energy metering. 
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I. INTRODUCTION 

In modern power systems, with the transformation of 
energy structure, Direct Current (DC) transmission technology 
has been increasingly widely used, especially in renewable 
energy generation such as wind power, photovoltaic power 
generation, and electric vehicle charging piles, where the 
demand for direct current energy is gradually increasing [1]. 
This trend has put forward new requirements for Direct Current 
Energy Metering (DCEM) technology. Existing power 
metering equipment is mainly designed for AC power grids, 
with low metering accuracy and stability in DC environments, 
making it difficult to cope with complex signal conditions and 
extreme operating conditions, such as significant increase in 
metering error under high voltage and high current, and 
insufficient decomposition capability when disturbed by noise 
and non-stationary signals [2]. Therefore, there is an urgent 
need to explore optimization methods that can maintain high-
precision metering in complex DC energy environments. The 
study aims to solve the core problem in DC energy metering, 
which is how to ensure the accuracy, stability and adaptability 

of metering equipment under complex working conditions and 
extreme conditions. To this end, the study proposes a metering 
accuracy optimization model that combines the improved 
EEMD with the artificial chemical reaction optimization 
algorithm, and further improves the adaptability and reliability 
of the model in different voltage and current ranges by 
introducing a wide-volume-limit constraint. The objective of 
the research is to improve the decomposition accuracy and 
robustness of DC energy signals, and to significantly reduce the 
metering error and computation time by improving the signal 
decomposition and optimization algorithm. The importance and 
significance of the study is to break through the limitations of 
the traditional DC energy metering methods, to provide an 
efficient, stable and adaptable metering technology for DC 
transmission and renewable energy, to provide new ideas for 
the optimization of power metering under complex working 
conditions in future smart grids, and to provide important 
theoretical and practical references for the researchers in the 
related fields to explore the signal processing methods based on 
EEMD. 

II. RELATED WORK 

For power metering in DC environment, many researchers 
at home and abroad have successively explored the technology 
and proposed many accuracy optimization methods. Buchibabu 
et al. proposed a comprehensive control strategy to better 
manage the storage of DC microgrids such as AC power grids, 
by combining tuna swarm optimization algorithms, which 
could effectively improve the level of various DCEMs in 
microgrids [3]. Gao J et al. proposed an energy compensation 
algorithm limited to DC microgrids using intelligent 
optimization algorithms, whose error was also smaller than the 
traditional average EM algorithm, and the real-time power 
curve was closer to the theoretical value [4]. To further improve 
the accuracy of DCEM, Liaqat R et al. constructed a signal 
decomposition model using event matching energy 
decomposition algorithm after receiving non-invasive load 
monitoring, which could effectively distinguish various types 
of noise in electrical energy, thereby improving computational 
accuracy [5]. Kumar G et al. used optimized tracking 
algorithms to process data on appliance usage frequency, 
preferred operating interval, and average power consumption to 
better calculate household energy consumption within 
microgrids. This method could significantly improve the 
accuracy of electricity calculation and reduce time costs. But at 
this time, the usage cost and computational complexity actually 
increased, which had an impact on the overall calculation [6]. 
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However, most of these methods are optimized for specific 
scenarios, which makes it difficult to maintain high accuracy 
under complex or extreme electrical energy signals, and they 
are deficient in high-frequency noise processing and real-time 
optimization. In addition, currently, Empirical Mode 
Decomposition (EMD) and its improved algorithms, such as 
Ensemble Empirical Mode Decomposition (EEMD), have 
gradually attracted the attention of researchers due to their 
unique advantages in signal decomposition [7]. Liang C et al. 
proposed a control strategy combining EEMD to improve the 
power time series regulation accuracy of DC microgrid 
photovoltaic power generation and its hybrid energy storage 
system, which could achieve better control effects under 
different power fluctuation characteristics [8]. Jiang L et al. 
proposed a wavefront calibration method to accurately locate 
the fault location in DC distribution systems by combining 
EEMD and singular value decomposition algorithms. This 
method could accurately decompose DC power signals and had 
high accuracy in fault location [9]. Zhang N et al. proposed a 
novel accuracy prediction model for short-term photovoltaic 
power generation by combining EEMD and gated recursive 
units. The prediction accuracy and robustness of this model are 
superior [10]. Wang et al. proposed a novel fault localization 
strategy by combining EEMD and adaptive local mean 
decomposition methods. This method detected DC series arc 
faults in less than 1ms with an accuracy of 98.75% [11]. 

In summary, previous studies have made many useful 
explorations in improving the accuracy of DC energy metering 
and processing complex signals. However, these researches still 
have some shortcomings when facing extreme working 
conditions, such as high voltage and high current, for example, 
the accuracy degradation during signal decomposition and low 
arithmetic efficiency. For this reason, how to develop a DC 
energy metering method that is efficient, robust and applicable 
to complex working conditions has become a key issue to be 
solved. The research focuses on solving the lack of metering 
accuracy of traditional methods, and by improving the EEMD 
algorithm and introducing the Artificial Chemical Reaction 
Optimization Algorithm (ACROA), a new type of DC energy 
metering model is proposed, and at the same time, the metering 
equipment is enhanced by the wide quantitative constraints 
under extreme working conditions, such as high voltage and 
high current. The research objectives include improving the 

decomposition accuracy of complex signals, reducing the 
metering error, optimizing the real-time performance of the 
model, and enhancing the stability of the model under the wide 
quantitative constraints. The importance of this study is that it 
makes up for the shortcomings of the existing methods and 
provides theoretical support and technical guarantee for the DC 
transmission system in the future smart grid and energy internet, 
which is of great theoretical and engineering significance. 

III. METHODS AND MATERIALS 

A. DC Signal Decomposition 

Due to the complexity of DC electrical signals, traditional 
measurement methods are difficult to cope with non-stationary, 
nonlinear, and the superposition of various interference signals 
[12]. There are many factors that affect the error of EM, and to 
minimize the error in DCEM, the primary requirement is to 
ensure the stability of the data acquisition source. DC energy 
meters are core devices used to measure DC, voltage, and 
related electrical parameters [13]. It can directly complete 
DCEM independently, and Fig. 1 shows the working principle 
of a DC energy meter. 

In Fig. 1, firstly, the current sampling and voltage sampling 
modules collect the load current I  and load voltage U . The 

collected current signal is used for power calculation with the 
voltage signal through a multiplier, and then converted into a 
frequency signal through a power frequency converter. Next, 
the frequency divider processes the frequency signal for 
subsequent calculation and display. The signal processing unit 
calculates based on the divided data and transmits the final 
electrical energy information to the counting display module. 
In this process, the main challenges of DCEM are as follows: 
traditional measurement methods are difficult to effectively 
handle these complex signals; The range of the measuring 
device is limited, and when extreme conditions are encountered, 
the measuring equipment often experiences over range 
problems, leading to increased measurement errors; DCEM 
equipment is susceptible to environmental interference during 
long-term operation, leading to fluctuations in measurement 
results [14-15]. Taking into account the above factors, this 
study assumes the existence of an ideal DCEM. Fig. 2 shows 
the classification of DC electrical signals at this time. 
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Fig. 1. DC energy meter working principle diagram. 
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Fig. 2. DC signal composition classification. 

In Fig. 2, DC electrical signals are DC components, noise 
components, distortion components, and ripple components. 
The DC component represents the stable part of the signal and 
is the main carrier of energy transmission; the noise component 
is mainly generated by random interference brought by external 
environment or equipment, which may include the influence of 
external factors such as temperature and humidity [16]. The 
expression of the DC electrical signal at this time is shown in 
Eq. (1). 

0( ) ( ) ( ) ( )n i k

n i k

u t u u t u t u t        (1) 

In Eq. (1), ( )u t  represents the DC electrical signal; 

( )n

n

u t  represents the noise component; ( )n

i

u t  

represents the distortion component; ( )k

k

u t  represents the 

ripple component. The ideal expression of the DC component 
is shown in Eq. (2). 

1( ) ( )u t k t     (2) 

In Eq. (2), k  represents a constant; 
1( )u t  represents the 

DC component in the ideal state. The noise component in the 
ideal state is usually avoided by adding noise compensation or 
filtering devices. At this time, the white noise signal with a 
specific noise ratio is composed as shown in Eq. (3). 

2 ( ) ( )u t n t     (3) 

In Eq. (3), n  represents the white noise signal in the noise 

ratio; 
2 ( )u t  represents the noise component in the ideal state. 

The distortion component originates from the use of nonlinear 
loads, causing signal deformation. For example, the fluctuating 
charge and discharge signals generated when the load is 
involved or the power grid system is disconnected [17]. 
Common distortion signals such as square wave components 

and broadband components are expressed in Eq. (4). 

3 1 1 1

2

4 1 2 1 1 2

( ) ( ) ( ) 0

( ) ( ) ( ) ( )

u t u t A k t t t

u t u t B t t b t t t t

    


     
    (4) 

In Eq. (4), A  represents the amplitude multiple of the 

signal component; t  represents time, where 
1t  and 

2t  

represent the start and end times, respectively; 
1k  represents 

the time period 
1t  to 

2t  control constant. The ripple 

component reflects the periodic interference caused by power 
supply ripple, which is usually characterized by high-frequency 
and small amplitude periodic fluctuations. The expression of 
the ripple component is shown in Eq. (5). 

5 1 1

1

( ) ( ) cos(2 ),0 0.1
n

t

u t D u t i t D 


       (5) 

In Eq. (5), 
1  represents a constant; 

1  represents 

frequency. However, in the process of decomposing DC 
electrical signals, due to the discontinuity and complexity of the 
signal, Gibbs phenomenon is prone to occur, that is, oscillation 
occurs at the high-frequency components or abrupt points of the 
signal, resulting in overshoot or fluctuation during signal 
reconstruction, which affects the accuracy of measurement [18]. 
This phenomenon is particularly evident when dealing with 
non-stationary and nonlinear signals. Fig. 3 is a typical 
schematic diagram of Gibbs phenomenon. 

Both Fig. 3 (a) and Fig. 3 (b) show the time-domain 
waveform of Gibbs phenomenon. In Fig. 3, after Fourier series 
expansion of periodic functions with discontinuous points, 
finite terms are selected for synthesis. As the number of selected 
items increases, the peak in the synthesized waveform 
gradually approaches the discontinuity point of the original 
signal. When the number of terms is sufficient, the peak tends 
towards a constant, approximately 9% of the total jump variable. 
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Fig. 3. Example of the Gibbs phenomenon. 

B. DCEM Accuracy Optimization and WLC Based on 

Improved EEMD 

To overcome the Gibbs phenomenon, EEMD is introduced 
in this study. EEMD can effectively reduce the influence of 
Gibbs phenomenon in signal decomposition, improve the 
accuracy of signal reconstruction, and exhibit better robustness 
and stability in various complex signal environments [19]. Fig. 
4 shows the process of EEMD. 

In Fig. 4, firstly, white noise of different intensities is added 
to the original signal and stacked multiple times. Next, each 
superimposed signal is subjected to empirical mode 
decomposition to obtain a series of Intrinsic Mode Functions 
(IMF). Then, all IMF components are averaged to eliminate 
uncertainty introduced by noise. However, as a signal 
decomposition method with non Fourier transform, EEMD may 
still face the problem of insufficient decomposition accuracy 
when dealing with specific complex signals. Therefore, 
ACROA is introduced in this study to further optimize the 
decomposition process. ACROA first generates a set of 
reactants through initialization. Secondly, in the subsequent 
iteration process, different chemical reaction operators are 

dynamically selected and operated based on the current signal 
state and optimization requirements to adapt to different signal 
conditions [20]. Then, after each reaction, the reactants are 
updated based on feedback, similar to a reversible reaction 
process. This process involves redox reactions, decomposition 
reactions, displacement reactions, and synthesis reactions. Fig. 
5 shows an example of the reaction. 

In Fig. 5 (a), the redox reaction mechanism optimizes the 
global search capability of the signal by adjusting the state of 
the reactants to change their energy levels; In Fig. 5 (b), the 
decomposition reaction decomposes complex signals into 
smaller units, thereby improving the local search accuracy of 
the algorithm; In Fig. 5 (c), the substitution reaction enables the 
algorithm to quickly jump out of local optima and improve 
global search efficiency through the exchange of reactants; In 
Fig. 5 (d), the synthesis reaction helps the algorithm find a 
better solution by combining multiple signal components. At 
this point, the optimized DC power signal decomposition is 
shown in Eq. (6). 

1

( ) ( ) ( )
n

i n

i

X t IMF t r t


      (6) 

Start

End

Original signal White noise Composite signal Signal decomposition
Is the number of iteration 

rounds reached?

N

Y

Get subgroup IMF
Screening fractions 

and residuals
Take the mean

 

Fig. 4. EEMD process schematic. 
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Fig. 5. Schematic of ACROA's four binary coded responses. 

In Eq. (6), ( )X t  represents the original DC electrical 

signal; ( )X t  represents the - i th eigenmode function; ( )nr t  

represents the residual term, which is the remaining part after 
signal decomposition; n  represents the number of 

decomposed eigenmode functions. After obtaining these IMF 
components through the EEMD algorithm, ACROA is used to 
further optimize the accuracy of the residual term ( )nr t  to 

reduce decomposition errors. The calculation equation is shown 
in Eq. (7). 

( ) min( ( ) ( ))opt nr t r t r t


      (7) 

In Eq. (7), ( )optr t  represents the residual term after 

optimization;   represents the optimal weight coefficient 

obtained during the ACROA optimization process;   

represents the adjustment amount during the ACROA iteration 
process, which is the correction value obtained through the 
reaction mechanism optimization in each iteration. The 
combination of the two results in the final optimization signal 

( )optX t  calculation equation is shown in Eq. (8). 

1

( ) ( ) ( )
n

opt i opt

i

X t IMF t r t


     (8) 

In addition, each frequency component in the signal may 
have different characteristics within different limits. To ensure 
the stability and reliability of the energy meter in the face of 
extreme conditions, this study has imposed constraints on the 
Wide Dynamic Range (WDR). Among them, WDR refers to a 
large range that can be accurately measured or processed in 
measuring or measuring equipment, that is, the equipment can 
maintain high accuracy and reliability over a wide range of 
input signal amplitudes. For DCEM, WDR usually means that 
the measuring equipment can maintain measurement accuracy 
without significant errors over a wide range of changes from 
low voltage and low current to high voltage and high current. 
The WDR constraint is shown in Eq. (9). 

min max( )optL X t L      (9) 

In Eq. (9), 
minL  and 

maxL  represent the upper and lower 

limits of the measured DC signal, respectively. The constraint 
error calculation equation at this time is shown in Eq. (10). 

( ) ( ) ( )optt X t X t        (10) 

In Eq. (10), ( )t  represents the error between the 

measured signal and the optimized signal; ( )X t  represents 

the actual measured DC signal;   represents the maximum 

allowable error limit. To adapt to the dynamic changes in the 
measurement environment and ensure that the signal can be 
adaptively adjusted under WDR, the dynamic range expression 
of WDR at this time is shown in Eq. (11). 

max min

( ) ( )
( ) max( ), min( )opt

X t X t
X t and

L L
   (11) 

This study combines EEMD-ACROA and WDR to propose 
a novel DCEM model. Fig. 6 shows the process of the model. 

In Fig. 6, the DC electrical signal is first collected and 
preprocessed through current and voltage sampling modules to 
ensure signal stability. Then, the DC electrical signal 
decomposition model is constructed, and the signal is divided 
into DC components, noise components, distortion components, 
and ripple components to reflect the main characteristics of the 
signal. Then, the EEMD algorithm is used to decompose the 
signal, obtain the intrinsic mode functions of different 
frequencies, and optimize the residual terms through the 
ACROA algorithm to dynamically adjust the reaction path and 
reduce decomposition errors. WLC is introduced to ensure that 
equipment maintains high-precision measurement under 
extreme conditions such as high voltage and high current. The 
signal processing process is optimized through an error control 
mechanism, and the optimized electrical energy data is 
transmitted to the display module for real-time monitoring and 
accurate measurement.
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Fig. 6. Novel DCEM modeling process. 

IV. RESULT 

A. Performance Testing of the New DCEM Model 

The experimental hardware was Keysight E36312ADC 
power supply, with an output range of 0-100V and a maximum 
current of 10A. The load simulator was Chroma 63206A-150-
600, which supported a maximum of 600W. The precision 
current sensor was LEM HAZ 1000-S, with a current range of 
0-1000A and an accuracy of ±0.1%. The data was collected 
through the National Instruments NI USB-6343 high-precision 
data acquisition card. The software part was Dell Precision 
5820 Tower, equipped with Intel Core i9-10900X processor, 
64GB DDR4 memory, 2TB SSD hard drive, and NVIDIA 
Quadro RTX 4000 GPU. Python 3.10 was used for data analysis 
and visualization. The IEEE PES Distribution Test Feeder 
Dataset (IEEE PES) and Electric Power Consumption Dataset 
(EPC) datasets were the sources of test data. IEEE PES included 
various typical electrical energy signals in distribution systems, 
especially voltage and current waveform data for different loads 
and grid conditions; EPC contained a series of energy 
consumption data for household users, including current, 

voltage, power, and other related information. This study first 
conducted ablation testing on the proposed algorithm model. 
Fig. 7 shows the test results. 

In Fig. 7 (a), after 200 iterations, the measurement accuracy 
of EEMD-ACROA-WDR continued to remain at a high level 
and reaches nearly 90% accuracy at 600 iterations. It performed 
even better in terms of global optimization capability and 
robustness. In Fig. 7 (b), EEMD-ACROA-WDR achieved a 
measurement accuracy of over 90% after 300 iterations. 
Although EEMD-ACROA performed well in the early 
iterations, there were significant fluctuations in the later stages, 
and the measurement accuracy did not steadily improve. 
Overall, the modules of EEMD-ACROA-WDR demonstrated 
stronger adaptability and stability on both datasets. The study 
introduced advanced DCEM precision optimization methods 
for comparison, namely Bispectral Analysis (BA), Extreme 
Learning Machine (ELM), and Adaptive Local Mean 
Decomposition (ALMD). The signal decomposition rate was 
used as the indicator to test the power processing capability 
under different bandwidth ranges, as shown in Fig. 8. 
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Fig. 7. Ablation test results. 
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Fig. 8. Signal decomposition rate test results of different methods. 

In Fig. 8, within different bandwidth ranges, the proposed 
method maintained a signal decomposition rate of around 85% 
with minimal fluctuations at higher bandwidths, such as 800Hz 
to 1200Hz, demonstrating good stability. The decomposition 
rates of BA and ELM showed significant fluctuations at high 
bandwidth, especially the decomposition rate of BA method 
was relatively unstable throughout the entire bandwidth range, 
with an average decomposition rate of only 78%. Overall, the 
proposed optimization algorithm exhibited stronger 
adaptability and decomposition ability in processing high 
bandwidth signals, especially maintaining high signal 
decomposition rates on IEEE PES and EPC, verifying the 
effectiveness of the algorithm in complex signal environments. 
In Table I, the precision, recall, F1 value, and average time for 
precision optimization in DCEM were used as indicators for 
this study. 

TABLE I. INDICATOR TEST RESULTS FOR EACH METHOD 

Data Set Method P/% R/% F1/% 
Average Time 

Spent/S 

IEEE 

PES 

BA 87.63 84.12 85.88 2.11 

ELM 84.25 85.36 84.81 2.03 

ALMD 89.74 87.15 88.45 1.54 

Our 

method 
90.11 89.63 89.87 1.02 

EPC 

BA 88.53 85.16 86.85 2.12 

ELM 89.68 86.84 88.26 1.76 

ALMD 90.08 88.45 89.27 1.52 

Our 

method 
90.87 89.74 90.31 1.08 

In Table I, on IEEE PES, the proposed method had the 
highest P-value of 90.11%, R-value of 89.63%, and F1 value of 
89.87%, all of which were higher than other methods, 
indicating its higher accuracy and stability in signal processing 
and EM aspects. Meanwhile, the average time was 1.02 seconds, 
which was much lower than other methods, reflecting the 

efficiency advantage of this algorithm. In contrast, although 
ALMD performs better in accuracy and F1 score, it took 1.54 
seconds and had a relatively slower processing speed. BA and 
ELM were slightly lower than the proposed method in various 
indicators, especially in terms of time. BA took 2.11 seconds, 
which was more time-consuming. For EPC, the proposed 
method achieved a P-value of 90.87%, an R-value of 89.74%, 
and an F1 value of 90.31%, demonstrating excellent 
performance with a time of 1.08 seconds and a significant 
advantage in speed. 

B. New DCEM Model Simulation Testing 

This study set the amplitude of the original current signal to 
2A and simulated the input of electrical energy signals under 
different operating conditions. The simple EEMD model and 
the proposed method were compared and tested for signal 
decomposition to evaluate the robustness and decomposition 
accuracy of different models in processing complex DC signals, 
as shown in Fig. 9. 

In Fig. 9 (b) - Fig. 9 (d), the decomposed electric energy 
signals IMF1, IMF2, and IMF3 of the EEMD model exhibited 
significant oscillations and noise, especially in IMF1 and IMF3, 
where multiple irregular pulse points appear, which had a 
negative impact on the stationarity and decomposition accuracy 
of the signal. This indicated that EEMD still faced certain noise 
aliasing problems when processing complex electric energy 
signals. The proposed method decomposed IMF1, IMF2, and 
IMF3 to be smoother, with significantly reduced oscillation 
amplitude, indicating that this method had better performance 
in noise suppression and signal smoothing. Especially in the 
decomposition of IMF3, the proposed method effectively 
eliminated high-frequency noise and irregular fluctuations in 
the original signal, preserving the main features of the signal. 
This indicated that the proposed method could better capture 
the true characteristics of signals when dealing with non-
stationary signals and high-frequency interference, improving 
the accuracy and stability of DCEM. In Fig. 10, this study 
conducted signal accuracy tests on EEMD before and after 
improvement. 
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Fig. 9. Decomposition testing of electrical energy signals for two types of models. 

In Fig. 10 (a) -10 (c), the measured values of EEMD in the 
IMF1 signal deviate significantly from the true values and 
fluctuated greatly, indicating that EEMD had insufficient 
accuracy in processing high-frequency signals. In the IMF2 and 
IMF3 signals, although the matching between the measured 
values and the standard values improved, there were still 
significant errors, especially at certain peak points, indicating 
that the EEMD method also had certain errors in processing 
low-frequency signals. In Fig. 10 (d) -10 (f), the measured 
values almost completely coincided with the standard values in 
the IMF2 and IMF3 signals, indicating that the proposed 
method outperformed traditional EEMD in processing low-
frequency signals. Meanwhile, the error of IMF1 signal was 
effectively controlled, demonstrating better signal 
reconstruction capability. Overall, the proposed method 
performed better in terms of measurement accuracy and 
stability, especially when dealing with complex signals, with 
significantly reduced errors, verifying the practical application 
effect of the model in EM. In Table II, this study tested the 

number of IMF decompositions, measurement error, 
decomposition stability, and computation time as indicators. 

In Table II, in terms of the number of IMF decompositions, 
the proposed method was the same as methods such as BA and 
ALMD, both of which decomposed into 6 IMF components, 
indicating its high decomposition ability in processing complex 
electrical energy signals. In terms of measurement error, the 
proposed method had an error of 6.87%, significantly lower 
than other methods, indicating higher accuracy in EM and 
stronger robustness, especially when dealing with noise and 
non-stationary signals. In terms of decomposition stability, the 
proposed method had a decomposition stability of up to 94.02%, 
which was better than the 92.48% of Wang L et al.'s method, 
demonstrating stability and consistency in signal 
decomposition, greatly reducing error fluctuations. In terms of 
computation time, the proposed method took 1.12 seconds, 
which was the fastest among all methods, far lower than the BA 
method's 2.34 seconds, demonstrating its high efficiency in 
practical applications. 
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Fig. 10. Results of the comparison of the measurement errors of the two types of methods. 

TABLE II. MULTI-INDICATOR TEST RESULTS FOR DIFFERENT MEASUREMENT METHODS 

Method 
Number of IMF 

Decompositions 
Measurement Error/% 

Decomposition 

Stability/%/% 
Operation Time/S 

BA 6 12.34 85.56 2.34 

ELM 5 10.89 87.12 1.89 

ALMD 6 9.78 88.34 1.52 

EEMD 7 11.56 86.47 1.74 

The method proposed by Liang C et al. 6 8.98 89.65 1.62 

The method proposed by Jiang L et al. 5 8.45 90.12 1.58 

The method proposed by Zhang N et al. 7 7.89 91.05 1.43 

The method proposed by Wang L et al. 6 7.34 92.48 1.32 

Our method 6 6.87 94.02 1.12 
 

V. CONCLUSION 

In response to the problems of low accuracy of DCEM and 
insufficient robustness of traditional methods in complex 
electrical signals, this study proposes a DCEM accuracy 
optimization method that combines improved EEMD and 
ACROA, and improves the adaptability of measuring 
equipment in extreme working conditions by introducing WLC. 
The proposed model could achieve an accuracy of nearly 90% 
in the lowest 300 iterations. Compared with the BA, ELM, and 
ALMD models, the signal decomposition rate of the proposed 
model was significantly better than other methods, especially 
under higher bandwidth conditions such as 800Hz to 1200Hz. 
Its signal decomposition rate was as high as nearly 85%, with 

the highest P value of 90.87%, the highest R value of 89.74%, 
and the highest F1 value of 90.31%. The average optimization 
time for accuracy was as short as 1.02 seconds. The proposed 
model decomposed IMF1, IMF2, and IMF3 to be smoother, 
with significantly reduced oscillation amplitude, indicating 
better performance in noise suppression and signal smoothing. 
Meanwhile, the proposed model significantly reduced the error 
between the measured values of the three types of IMF signals 
and the true values, and had better processing accuracy than 
traditional EEMD. The maximum number of IMF components 
was 6, the lowest measurement error was 6.87%, the highest 
decomposition stability was 94.02%, and the shortest 
measurement time was 1.12 seconds. In summary, the proposed 
model has advantages in efficiency in practical applications. 
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However, the model has not carried out an in-depth study on 
the impact of external factors such as changes in environmental 
temperature and humidity on the metering accuracy. Future 
research can consider introducing an environmental adaptive 
mechanism, monitoring environmental changes in real time 
through temperature and humidity sensors, and dynamically 
adjusting the metering model by combining with adaptive 
algorithms. In addition, the expansion of the model can include 
improving the processing capability of ultra-high frequency 
noise signals, optimizing the model parameters to further 
reduce the computation time, as well as combining with the 
Internet of Things and big data analysis technology to achieve 
multi-device collaborative metering, and constructing a more 
comprehensive power monitoring system. These improvements 
will help to further enhance the practicality and adaptability of 
the model to meet the needs of more complex and diverse 
application scenarios. 
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