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Abstract—Obstructive Sleep Apnea (OSA) is a prevalent
health issue affecting 10-25% of adults in the United States
(US) and is associated with significant economic consequences.
Machine learning methods have shown promise in improving the
efficiency and accessibility of OSA diagnoses, thus reducing the
need for expensive and challenging tests. A comparative analysis
of Logistic Regression (LR), Support Vector Machine (SVM),
Gradient Boosting (GB), Gaussian Naive Bayes (GNB), Random
Forest (RF), and K-Nearest Neighbors (KNN) algorithms was
conducted to predict Obstructive Sleep Apnea (OSA). To improve
the predictive accuracy of these models, Random Oversampling
was applied to address the imbalance in the dataset, ensuring
a more equitable representation of the minority class. Patient
demographics, including age, sex, height, weight, BMI, neck
circumference, and gender, were employed as predictive features
in the models. The RFC provided outstanding training and
testing accuracies of 87% and 65 %, respectively, and a Receiver
Operating Characteristic (ROC) score of 87%. The GBC and
SVM classifiers also demonstrated good performance on the test
dataset. The results of this study show that machine learning
techniques may be effectively used to diagnose OSA, with the
Random Forest Classifier demonstrating the best results.

Keywords—Machine learning; obstructive sleep apnea; random
Jorest classifier; oversampling; classification

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a prevalent disorder
affecting a substantial portion of the population. Characterized
by recurrent obstructions of the upper airway during sleep, it
results in intermittent cessation of airflow [1], [2]. A multitude
of factors have been identified as risk determinants for OSA,
including obesity, male gender, smoking, age, craniofacial
anomalies, and menopause in women [3]. Symptoms that sug-
gest OSA include chronic snoring, observed apneic episodes,
gasping during sleep, frequent awakenings, non-restorative
sleep, increased nighttime urination, and excessive daytime
sleepiness. Timely diagnosis of OSA is crucial as untreated
OSA can contribute to the development of cardiovascular
diseases, metabolic disorders, and neurocognitive impairments

[4].

The standard diagnostic method for OSA is overnight
polysomnography (PSG), however, it is expensive and often

limited in accessibility. Therefore, it is important to prior-
itize high-risk individuals for PSG, particularly those with
moderate to severe OSA, to optimize the utilization of sleep
laboratories [5]. The severity of OSA is commonly assessed
using the Apnea-Hypopnea Index (AHI), with cutoff values of
6 — 15/hour indicating mild OSA, 16 — 30/hour indicating
moderate to severe OSA, and values exceeding 30/hour
indicating severe OSA [5].

In recent years, machine learning has drawn considerable
interest as a potentially effective way to address complex prob-
lems in various sectors, most notably healthcare. Its strengths,
such as robustness, self-organization, adaptive learning, and
parallel processing, make it an attractive tool.

Machine learning algorithms, renowned for their ability
to discern patterns within intricate datasets, have garnered
significant attention. Prominent examples of such algorithms
encompass Support Vector Machines (SVM) [6], [7], Gradi-
ent Boosting Classifiers (GBC) [8], Gaussian Naive Bayes
(GNB) [9], Random Forest Classifiers (RFC) [10], [11], and
K-Nearest Neighbors Classifiers (KNC) [12]. Consequently,
machine learning models have seen increasing use in medical
healthcare, including the prediction of OSA, and have shown
promising outcomes.

This study conducts a comparative evaluation of traditional
regression modeling and a suite of machine learning algo-
rithms for predicting obstructive sleep apnea (OSA) based on
physical parameters. The succeeding sections of this paper
are structured as follows. Section II presents a comprehensive
review of existing machine learning approaches applied to
OSA prediction. Section III provides a detailed characteriza-
tion of the dataset employed in this study. In Sections IV and
V, the training and evaluation methodology for ML models,
including particular classification algorithms, is described.
Finally, in Section VI, we present the experimental results and
performance analysis concerning various evaluation metrics
and report the results obtained through this research endeavor.

II. RELATED WORKS

Machine learning has emerged as a preeminent paradigm
for classifying medical data owing to its ability to manage
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and extract insights from voluminous and intricate datasets
effectively. For instance, in the context of OSA diagnosis,
traditional methods like drug-induced sleep endoscopy (DISE)
rely on subjective observer evaluations, as seen in the VOTE
classification system proposed by Altintas et al. [13], which
showed only moderate to fair agreement among observers. This
highlights the potential of machine learning models to provide
objective, consistent, and accurate diagnoses by automating the
analysis of complex data, thereby addressing the limitations of
observer-dependent methods.

Various studies [14]-[16] have utilized machine learning
algorithms to improve diagnostic precision and patient out-
comes in various diseases. The authors in [17], highlighted the
utility of support vector machines (SVM) in classifying brain
MRI images for neurological disorders, which aligns with its
potential for OSA diagnosis. However, the authors in [18]
explored the use of various ML methods to predict obstructive
sleep apnea syndrome (OSAS) severity using demographic,
clinical, and spirometric data from 313 patients. Their study
demonstrated that SVMs and Random Forests (RFs) showed
the best classification performance.

Furthermore, ensemble learning methods, such as Gra-
dient Boosting Classifiers (GBCs) and RF classifiers, have
demonstrated robust performance in medical diagnostics due
to their ability to handle imbalanced and high-dimensional
data. Ramesh et al. [8] applied GBCs to classify OSA from
electronic health records, achieving an accuracy of 68.06%.
The authors in [11] further validated the performance of RFCs
for OSA detection, leveraging feature selection algorithms to
improve model interpretability and accuracy.

Integrating the STOP-BANG questionnaire with machine
learning models is employed in [12] to enhance OSA di-
agnosis. Among the four algorithms tested, the K-Nearest
Neighbor (K-NN) model demonstrated the best performance,
achieving 94% accuracy. The results highlight the potential of
combining ML with traditional tools to improve the reliabil-
ity and efficiency of OSA screening. However, in [19], the
SLEEPS model, a machine learning-based questionnaire using
nine items, accurately predicts OSA, COMISA, and insomnia
without polysomnography. The model trained on over 4,600
participants using XGBoost, achieved AUROC values above
0.89, outperforming tools like STOP-BANG.

In recent years, the authors in [20] have used the Swedish
National Study on Aging and Care electronic health data to
predict sleep apnea with a ML model. The XGBoost and
Bidirectional Long Short-Term Memory Networks modules
give the model 97% accuracy with 75 features and 10,765
samples. Furthermore, pre-screening symptoms were employed
to diagnose OSA [21], and the experimental findings revealed
that the Decision Tree Classifier (DTC) and RF outperformed
other comparable algorithms, achieving the highest classifi-
cation accuracies. Similarly to the authors in [22], the RF
classifier technique is utilized to predict sleep disorders and
has achieved the highest accuracy. The potential of ML models
for cost-effective OSA screening, with RF and LightGBM
showing the most promise for clinical use, is discussed in [23].

A concise overview of the utilization of machine learning
techniques in diagnosing, classifying, and treating sleep-related
respiratory problems is presented in [24]. The effectiveness
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of machine learning-based classifiers in OSA classification is
highly affected by the quality and quantity of input data and
the selection of the machine learning approach.

More advanced techniques, like deep learning models, have
demonstrated superior accuracy in sleep apnea and related
disorder detection. Studies like [10] combined ECG signals
with machine learning and deep learning to achieve 86.25%
accuracy, while advanced architectures like multi-resolution
residual network (MR-ResNet) [6] and CNN-based approaches
[9] reached accuracies of 90.8% and 79.61%, respectively,
leveraging polysomnographic (PSG) data. Wearable systems
[25] and single-lead electrocardiogram (ECG) classifiers [7]
achieved notable performance with accuracies up to 88.2% and
93.0%. Other studies, such as [26], employed EEG and/or elec-
trooculogram (EOG) signals for sleep staging, achieving up to
84.5% accuracy, while [27] explored microelectromechanical
system (MEMS)-based solutions. However, the computational
demands and reliance on specialized data limit the practicality
of these methods in resource-constrained environments.

Despite substantial progress in sleep apnea diagnosis, pur-
suing more accurate, efficient, and accessible methods remains
an active area of research. Many existing studies rely on costly
diagnostic tools like PSG, need help with imbalanced datasets,
and focus on computationally intensive deep-learning models
that lack practicality and generalizability. This study addresses
these challenges by using easily obtainable physical parame-
ters, applying oversampling to balance data, and evaluating
resource-efficient algorithms, offering scalable and accessible
solutions for diverse populations.

III. OSA DATA COLLECTION

Data were collected from adult individuals who were
referred to a community sleep center due to suspected ob-
structive sleep apnea (OSA) and had not received a previous
diagnosis. Each participant provided demographic details such
as age, gender, and ethnicity, and completed sleep-related
questionnaires, including the Epworth Sleepiness Scale. Prior
to undergoing polysomnography, a physical examination was
conducted, which included an assessment of the airway using
a modified Friedman grade, measurement of body mass index
(BMI), and neck circumference (NC). OSA was diagnosed
when the apnea-hypopnea index (AHI) was equal to or
greater than 15. Incomplete questionnaires or polysomnogra-
phy records with inadequate technical quality or insufficient
total sleep time were excluded from the analysis.

Retrospective data analysis and review were conducted
after the administrative approval of the data from the Torr Sleep
Center executive and institutional committee. The study was
conducted at Torr Sleep Center in their Corpus Christi, Texas
Location. The patients undergoing the second or split night
(titration night) were excluded. The patients have undergone
the first (diagnostic night were determined by the computerized
search using the CPT code 98510. The patient discussed the
study with the registered polysomnographic therapist during
the presentation. Baseline demographic information was col-
lected. Height, weight, Modified Friedman, Waist circumfer-
ence, and diameter were assessed, and Body Mass Index (BMI)
was computed. The patient underwent overnight polysomnog-
raphy. The nocturnal polysomnogram (NPSG) included the

www.ijacsa.thesai.org

105|Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

recording of electroencephalogram (EEG): F4-M1, F3-M2,
C4-M1, C3-M2, 02-M1, O1-M2, electrooculogram (EOG),
submental, intercostal and anterior tibialis electromyogram
(EMG), electrocardiogram (EKG), airflow by nasal pressure,
and oral thermistor, abdominal and chest wall excursion using
impedance plethysmography and oxygen saturation by pulse
oximetry attended by a sleep technologist. The sleep study
was staged and scored using AASM standards.

All methods described in this study adhere to relevant
guidelines and regulations. The research protocol obtained
ethical approval from the Research Ethics Committee of
NTUH. (protocol number 201603113RIND), and the commit-
tee waived the requirement for participant consent. Table I
presents dataset statistics, including sample size, mean values,
and ranges. Additionally, Table II displays randomly selected
data samples to provide insight into the dataset’s structure.

Fig. 1 depicts the distribution of the dataset across OSA,
Sex, and BMI attributes. These attributes play a crucial role
in the modeling process. Notably, Body Mass Index (BMI) is
one of these attributes. BMI is a measure to estimate body fat
using an individual’s height and weight. It is a standard adult
screening tool for weight-related health problems. According
to the classifications given in Table III, it sorts people into four
groups: underweight, normal weight, overweight, or obese.
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Fig. 1. Distribution of some attributes of the data: OSA, Sex, and BMIL.

Fig. 2 shows the dataset box plot, and Fig. 3 shows a
correlation between dataset parameters; it can be seen that the
most correlated parameter with OSA is Neck circumference
and then weight, which means that these two parameters will
play a significant role in classification results.
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Fig. 2. Dataset Box plot.

A. Oversampling

The OSA data set is imbalanced; we adopted a Random
oversampling technique to balance the data. RandomOver
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Fig. 3. Correlation heatmap.

Sampler is a machine learning technique used to handle
imbalanced datasets. It addresses class imbalance by creating
a more equally distributed dataset by randomly oversampling
the minority class as follows:

e  First, the minority class is identified in the dataset.
This is the class with fewer instances than the majority
class.

e  Then, the “RandomOverSampler” algorithm randomly
selects instances from the minority class. It oversam-
ples the minority class by duplicating its instances to
match the population of the majority class.

e  After the oversampling, the resulting dataset is bal-
anced or nearly balanced, with an equal number of
instances for each class.

e  Finally, a machine learning model is trained using
the balanced dataset; the model should outperform its
counterpart trained on an unbalanced dataset.

Oversampling techniques, such as Random Oversampling
and Synthetic Minority Oversampling Technique (SMOTE),
have been widely used to address this issue. The authors in [24]
employed SMOTE to enhance the performance of ML models
in detecting OSA, demonstrating its effectiveness in reducing
classification errors for minority classes. It’s worth noting
that the Oversampling can be prone to overfitting, especially
if the minority class is oversampled too much. Tuning the
oversampling ratio is essential to finding the optimal balance
between reducing class imbalance and avoiding overfitting.

B. Data Scaling

Data scaling is an essential pre-processing stage for the
machine learning classification process. The purpose of scaling
the data in this way is to make it easier to compare features
with different units and scales. This can potentially enhance
the efficiency of machine learning algorithms, especially those
like k-nearest neighbors and support vector machines that are
sensitive to input data size.

The “StandardScaler” is a preprocessing technique used in
machine learning to scale numerical data. Standardization is
achieved by transforming the data to exhibit a zero mean and
unit variance. Specifically, it can be done according to the
following steps.

e  First, the mean of each feature (column) in the data
is calculated.
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TABLE 1. STATISTICS OF THE OSA DATA SET

Age Sex Height (in) Weight (Ib) BMI>30 Neck>17 Airway MF
count 1000 1000 1000 1000 1000 1000 1000
mean  54.031  0.592 67.037 227.653 0.689 0.661 2.722
std 14320  0.492 4.624 58.218 0.463 0.474 1.008
min 19.000 0.00 15.000 49.000 0.000 0.000 0.000
25% 44.000  0.000 64.000 186.750 0.000 0.000 2.000
50% 54.000  1.000 67.000 220.000 1.000 1.000 3.000
75% 65.000  1.000 70.000 262.000 1.000 1.000 4.000
max 96.000  1.000 79.000 500.000 1.000 1.000 4.000
TABLE II. SAMPLE OF THE OSA DATA SET
Sample No. Age  Sex  Height (in)  Weight (Ib) BMI>30  Neck>17  Airway MF
652 45 1 73.0 284 1 1 1
939 71 0 59.0 192 1 0 0
319 51 1 77.0 280 1 1 1
626 41 1 66.0 180 0 1 0
808 85 0 59.0 178 1 1 1

TABLE III. BMI CATEGORIES

BMI Category BMI Range
Under_weight < 18.5
Normal 18.5 — 24.9
Over_weight 25 — 29.9
Obese > 30

e  Then, the StandardScaler subtracts the mean from each
value in the feature. This centers the data around zero.

e Next, the StandardScaler divides each value in the
feature by its standard deviation. This scales the data
to have a standard deviation of 1.

e  After the scaling is done, the resulting dataset has a
mean value of zero and a standard deviation value of
one.

IV. PROPOSED METHODOLOGY

The machine learning process consists of multiple steps,
beginning with data collection. The collected data might be
raw and unstructured, so the subsequent step involves pre-
processing. In this step, missing data is eliminated and thor-
oughly cleaned to ensure its suitability for analysis.

Following the pre-processing stage, the next step is feature
extraction, which involves identifying and extracting pertinent
features from the data. This step is significant since the ML
model’s performance relies heavily on the quality of the
extracted features. After extracting the features, the dataset
was divided into several subsets for training and testing. The
training subset was used to develop the model, while the testing
subset was used to evaluate how well the model can be applied
to new data. The subsequent step is classification, where the
machine learning algorithm utilizes the extracted features to
classify new data into distinct categories. Various classification
algorithms, such as RF, SVM, or ANN, can be employed to
train the model on the training set.

Finally, precision, recall, and Fl-score metrics evaluate
the model’s performance. The model exhibiting the highest

performance is chosen and employed for classifying new
data. It should be emphasized that this process is iterative
and typically requires multiple iterations of adjustments and
enhancements to attain optimal performance. Algorithm 1
summarizes all the process stages of machine learning. Fig.
4 shows the proposed methodology utilized for OSA detection
using various machine-learning techniques.

Algorithm 1: Machine Learning Process

1: Input: Raw data

2: Output: Trained model

3: Step 1: Data Collection

4: Collect raw data from various sources
5: Step 2: Data Pre-processing

6: Remove missing data and outliers

7: Normalize or scale the data if necessary
8: Step 3: Feature Extraction

9 Extract relevant features from the pre-processed data

10: Reduce the dimensionality of the data if necessary
11: Step 4: Model Selection

12: Choose appropriate machine learning algorithms
13: Select hyperparameters for the algorithms

14: Step 5: Model Implementation

15: Train the selected models on the pre-processed data
16: Evaluate the performance of the trained models

17: Step 6: Model Evaluation

18: Test the trained models on new data

19: Evaluate the performance of the tested models

20: Step 7: Model Deployment

21: Deploy the best-performing model in production

V. ML METHODS
A. Logistic Regression (LR)

Logistic regression is a statistical technique that shares
similarities with linear regression and is utilized for pre-
dicting binary outcomes. Unlike the Mantel-Haenszel odds
ratio, which is limited to discrete explanatory variables, lo-
gistic regression can simultaneously handle continuous and
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Fig. 4. The proposed methodology for utilizing various ML models to detect
OSA.

multiple explanatory variables. This capability is essential
when studying the impact of various factors on the response
variable. Logistic regression models the probability of an
outcome by considering the covariance among variables and
accounting for individual characteristics. This approach helps
address confounding effects when analyzing multiple variables
independently. The logarithm of the odds is used in modeling,
as odds represent a ratio, as explained by Sperandei [28].

log (17_T7T> = Bo+ iy + oz + -+ B (D

The symbol 7 represents the likelihood of an event, such
as the incidence of OSA. The regression coefficients 3; corre-
spond to the reference group and the explanatory factors x;.

B. Support Vector Machines (SVM)

The Support Vector Machine (SVM) is a widely used
supervised learning model for prediction and classification
tasks. It was developed in 1995 by Vladimir Vapnik and his
team at AT&T Bell Laboratory. SVM utilizes a nonlinear
mapping function to transform the training data set into a
higher dimensional space. It then employs linear regression to
separate the data within this transformed space. This approach
has demonstrated effectiveness across various applications,
enabling the learning of complex decision boundaries and
improving classification accuracy. The author in [29] described
this process of SVM as approximating the training data set
within a higher dimensional space and employing linear re-
gression to separate the data. Fig. 5 illustrates the SVM model.
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Fig. 5. Optimal hyperplane in support vector machine.

C. Gradient Boosting Classifier (GBC)

As an ensemble machine learning approach, the Gradient
Boosting Classifier combines many weak models into one
more potent model, increasing the prediction power of the
combined model [30]. It operates iteratively by training de-
cision trees on the residuals of the preceding tree, utilizing
gradient descent optimization to minimize the loss function.
This technique enables the algorithm to learn more intricate
decision boundaries, improving prediction accuracy. The spe-
cific structure of the algorithm, including its formulas, is highly
influenced by the chosen designs of ® (y, f) and h (x, ). More
detailed examples of these algorithms can be found in the work
of Friedman [30].

Algorithm 2: Friedman’s Gradient Boost Algorithm

Input: Training Dataset D = (x1,91),-- -, (Xn, Yn)s
number of iterations M, learning rate «, base
model ho(x), loss function L(y, F(x))
Output: Ensemble model
F(x) =Y m=1M8,,h,(x)
1 Initialize ensemble model Fy(x) = ho(x);

2formel,...,M do

3 Calculate the negative gradient
Tim = — [76%%51”{(;%(“)] i = 1" for each
training instance x3

4 Fit a base model h,,(x) to the negative gradient
Tim

5 Compute the optimal step size 3, =
argming > L(y;, Fp—1(x;) 4+ Bhum(xi))

6 Update the ensemble model:
F(x) = Fm — 1(x) + afmhm(x);

7 end
return Ensemble model F(x) = Zn]\le Brnhm (X)

o®

The Gradient Boosting is used for creating an ensemble
model on a training set D consisting of n instances, where
each instance has a pair of features x: and label y;. It
requires several iterations M, a learning rate «, a base model
ho(x), a loss function L(y, F(x)) to evaluate the quality of
the ensemble model, and a set of hyper-parameters for the
base model. The algorithm initializes the ensemble model to
Fy(x) = ho(x), and then iteratively improves it by fitting
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a base model h,,(x) to the negative gradient of the loss
function concerning the current ensemble model F'm — 1(x).
The optimal step size (3, is computed using line search, and
the ensemble model is updated by adding a scaled version of
the new base model h,,(x) to the previous ensemble model
F,,—1(x). The final output of the algorithm is the resulting
ensemble model F'(x).

D. Gaussian Naive Bayes (GNB)

One machine learning algorithm based on the concepts of
Bayes’ Theorem is the Naive Bayes Classifier [31]. These
classifiers rely on the assumption of strong independence
among the features used for predictions.

Under this premise, it is assumed that the value of one
characteristic does not affect the value of any other feature. A
notable advantage of Naive Bayes Classifiers is their ability to
be efficiently trained in supervised learning scenarios, even
when working with limited training data. Moreover, their
straightforward design and ease of implementation make them
popular for various real-world applications.

In machine learning, continuous data is frequently assumed
to adhere to a normal (Gaussian) distribution, mainly when
dealing with classification tasks. This assumption suggests that
the continuous values corresponding to each class follow a
normal distribution. By making this assumption, it becomes
possible to estimate the likelihood of the features using the
Gaussian probability density function:

2
- Uy) ) )

1 (l‘i
P(ily) = ——cap (—22
\/ 2702 Ty

One strategy for constructing a simple model is to assume
that a Gaussian distribution with no covariance among dimen-
sions can characterize the data. In other words, each dimension
is considered independent of the others. This type of model can
be easily built by calculating the mean and standard deviation
of the data points within each label, as these parameters define
the distribution.

’rob (X |Target = true)

rob (X |Target = false)

|
5

Fig. 6. Demonstration of working with a continuous variable in naive bayes.

The provided illustration, as shown in Fig. 6 demonstrates
the functioning of a Gaussian Naive Bayes (GNB) classifier.
For each data point, the classifier calculates the z-score dis-
tance, which is the difference between the data point and the
mean of each class divided by the standard deviation of that
class.
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E. Random Forest Classifier (RFC)

The term “random forest” refers to an ensemble of tree
predictors. A randomly distributed vector, which is sampled
individually and distributed uniformly among all trees in the
forest, is relied upon by each individual tree [32]. As the
random forest expands in terms of the number of trees,
its generalization error stabilizes. The predictive capacity of
individual trees and their interrelationships impact the ultimate
level of this error.

Random forests use a random feature selection method for
splitting nodes, which leads to error rates comparable to Ad-
aboost while being more resilient to noise. The forest’s internal
estimates monitor various factors such as error, strength, and
correlation and can assess the impact of increasing the number
of features used for splitting. These estimates are also useful
in determining the importance of different variables, and the
approach is applicable to regression tasks as well.

RFC constructs decision trees by randomly selecting sub-
sets of the training data and features for each node [33],
[34]. Finding the optimal feature to divide the data at each
node is how the trees are iteratively developed until a stop-
ping requirement is satisfied [35]-[37]. During prediction,
the ensemble of trees votes on the class label for a new
input instance, with the class receiving the most votes being
predicted as the output. This approach mitigates overfitting and
enhances classification accuracy by leveraging the collective
ability of the tree ensemble to capture diverse patterns and
relationships within the data. RFC has demonstrated successful
applications in various domains, including sleep apnea research
[11], [38]. Refer to Fig. 7 for an illustrative example of the
RFC mechanism.

e e

DA LN

DECISION TREE-1 DECIsIoN TREE-1 DEclsloN TREE-1

RESULT-1 RESULT-2 RESULT-N

|—’I MAJORITY VOTING / AVERAGING I 4—|

FINAL RESULT

Fig. 7. Random forest mechanism.

To train individual trees, the Random Forest Algorithm
requires a training set D, a certain number of trees to be
included in the forest (1'), a random number of features (K)
to be chosen for each tree, and a decision tree algorithm .A.
To build the forest, the algorithm iteratively constructs 7' trees.
At each iteration ¢, the algorithm randomly selects K features
from the available features and draws a bootstrap sample D,
from the training set D. A decision tree f; is then trained
on the sampled features and the bootstrap sample D;, using
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Algorithm 3: Random Forest Classifier Algorithm

Input: Training Dataset D, number of trees T,
number of features K, decision tree algorithm
A
Output: Random Forest F
1fortel,...,T do

2 Sample K features from the p available features
without replacement

3 Draw a bootstrap sample D, from D

4 Train a decision tree f; on D; using the selected
features and A

5 end

6 return Random Forest F = f1,..., fr

the given decision tree algorithm .A. The final output of the
algorithm is the resulting random forest F, which consists of
the T decision trees f1,..., fr (see Algorithm 3).

F. K—Neighbors Classifier (KNN)

One supervised machine learning technique that is com-
monly employed for classification problems is the K-Nearest
Neighbors (KNN) classifier. It sorts unlabeled data points
according to the similarity principle, which states that it should
consider the class of nearby data points in the training dataset.
The number of neighbors to consider is represented by the “K”
in KNN.

The algorithm computes the Euclidean distance between
the unclassified data instance and each labeled training instance
to inform the classification decision. After that, it uses the
distances to choose the K closest neighbors. The unlabeled
data point’s class identification is decided by a majority vote
among its K nearest neighbors. KNN is a simple and intuitive
algorithm that does not require training. It uses the entire
training dataset for classification. The KNN algorithm is easy
to understand, and its pseudocode is provided in Algorithm 4.

In this algorithm, the input is a training set D consisting
of labeled instances, a test instance x that we want to classify,
and the number of neighbors K to consider. The output is the
predicted class label for the test instance.

Algorithm 4: K-Nearest Neighbors Classifier Algo-
rithm
Input: Training Dataset D = (X1,91),-- -, (Xn, Yn)>
new instance x, number of neighbors K
Output: Predicted label 3 for x
1foriel,...,ndo
2 Compute the Euclidean distance d(x,x;) between
x and each training instance X;;

3 end

4 Identify the K training instances with the smallest
distances to x; Assign the majority class label among
these K instances as the predicted label § for x;

5 return Predicted label 7

Each instance in the training set D has a pair of features
x; and a label y;, and the K-Nearest Neighbors Classifier
Algorithm is applied to this set. The algorithm calculates the

Vol. 15, No. 12, 2024

Euclidean distance between each training instance x; and x
when given a fresh instance x. Next, it chooses the K training
examples that are closest to x, and the projected label ¢ for
x is the majority class label among these K examples. The
algorithm returns the predicted label g.

VI. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS

The following section presents the findings from utilizing
the proposed machine learning models in the OSA dataset. The
performance of each model is evaluated using a comprehensive
set of metrics, and a comparative analysis is conducted to
identify the most effective approach. These metrics provide
quantitative measures of model quality. Most of them mainly
depend on calculating T'P (i.e. count of model-correct pos-
itives), F'P (i.e. number of positive cases misclassified as
negative), T'N (i.e. the number of true negatives the model
identified), and F'N (i.e. the model predicts a negative result
while it is positive). The total number of instances is Total
(i.e. Total = TP+ TN + FP + FN). These metrics include
accuracy, precision, recall, and Fl-score, as computed using
the following formulas.

TP+ TN

A = 3
ccuracy Total 3)
TP

Precision = m (4)
TP

Recall = m (5)

Pl — o i Precision x recall ©)

precision + recall

Table IV provides a comparative analysis of various clas-
sification algorithms (LR, SVM, GBC, GNB, RFC, and KNC)
based on their performance metrics: accuracy, precision, recall,
and F1-score, calculated for both training and testing datasets.
Our findings indicate that:

e  The analysis results show that RFC has the highest
performance on the training set across all metrics,
with a training accuracy of 86.78%, precision of
92.64%, and F1-score of 87.80%. Howeyver, its testing
performance drops significantly (accuracy of 65.02%).

e The GBC achieves relatively balanced performance
between training and testing datasets, with a testing
accuracy of 66.08% and the highest test Fl-score of
67.79% among the models, indicating better gener-
alization compared to RFC and other models except
KNC.

e The SVM shows testing accuracy (64.66%) and mod-
erate performance across metrics. However, its per-
formance on the training dataset is slightly lower than
that of RFC, KNC, and GBC.

e KNC demonstrates balanced and consistent perfor-
mance, achieving a training accuracy of 74.14% and
testing accuracy of 67.14%. However, its recall on the
test set decreases to 62.59%.
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TABLE IV. CALCULATED PERFORMANCE CRITERIA BASED ON VARIOUS ML MODELS

Method  Train Accuracy  Train Precision ~ Train Recall Train F1 Test Accuracy  Test Precision ~ Test Recall Test F1

LR 0.665880 0.666667 0.698851 0.682379 0.650177 0.596273 0.738462 0.659794
SVM 0.704841 0.706935 0.726437 0.716553 0.646643 0.594937 0.723077 0.652778
GBC 0.822904 0.807775 0.85977 0.832962 0.660777 0.60119 0.776923 0.677852
GNB 0.645809 0.675862 0.649007 0.662162 0.650177 0.707692 0.601307 0.650177
KNC 0.741440 0.763218 0.741071 0.751982 0.671378 0.707692 0.625850 0.664260
RFC 0.867769 0.926437 0.834369 0.877996 0.650177 0.753846 0.593939 0.664407

e LR achieves moderate training accuracy (66.59%) and
a balanced F1 score (68.24%). However, in the test,
it maintains a consistent performance accuracy of
65.02% but suffers from lower precision (59.63%),
indicating a higher false positive rate compared to
algorithms such as KNC and GBC.

e The GNB has the lowest accuracy on the training
dataset, with a value of 64.58%, but has a high test
precision of 70.77%. This highlights the model’s abil-
ity to correctly classify positive cases, despite lower
overall accuracy and recall.

The results align well with existing literature on applying
ML models for OSA diagnosis. Consistent with prior studies,
the RFC emerged as the best-performing model regarding
training accuracy (87%), reflecting its robustness in handling
complex datasets and its effectiveness as highlighted in stud-
ies like [8], [10]. Similarly, the GBC demonstrated strong
generalization capabilities, achieving a balanced performance
across metrics, which is in line with findings in [8], where
GBC was noted for its ability to capture intricate patterns in
data. Overall, the alignment between this study’s findings and
existing research underscores the validity of these ML models
for OSA prediction.

Furthermore, confusion matrices were generated to gain
a comprehensive understanding of each machine learning al-
gorithm’s predictive capabilities. These visual representations
offer a detailed breakdown of correct and incorrect classifica-
tions. Fig. 8 through 13 provide a graphical depiction of these
training and testing data results, enabling a thorough analysis
of each model’s performance characteristics.

From Fig. 8, the total number of correctly predicted OSA
cases is 564 out of 847 (i.e. in the case of training) and
184 out of 283 (i.e., in the case of testing). However, the
percentage of incorrectly classified instances is 33.41% and
34.98% in training and testing, respectively; the LR model
shows a moderate performance.

Fig. 9 demonstrates the strong overall performance of the
SVM model, with a significantly higher number of correct
predictions (diagonal elements) compared to incorrect predic-
tions (off-diagonal elements). The model seems balanced in
predicting classes 0 and 1, with a relatively even distribution
of correct predictions for each class. The values in the off-
diagonal (119 and 131) in training and (36 and 64) in test-
ing indicate relatively low rates of false positives and false
negatives, suggesting that the model effectively distinguishes
between the two classes.

According to the GBC confusion matrix (as shown in Fig.
10), the GBC model exhibits strong overall performance, with

a significantly higher number of correct predictions of OSA
instances equal to 697 (i.e. 82.92%) and 187 (i.e. 66.08%) in
training and testing, respectively.

The GNB classifier demonstrates solid performance on the
training and testing sets, as shown in Fig. 11. The GNB model
correctly classified 294 cases as positive OSA and 253 as
negative cases in the case of training. In testing, the overall
number of correctly classified cases is 184 out of 283 (i.e.
65.02%). While there’s a minor decrease in performance on
the testing set, the model still maintains a good balance in
predicting both classes.

According to the confusion matrix of the random forest
classifier (as shown in Fig. 12), the number of correctly classi-
fied instances is 735 (TP+TN) in training and 184 (TP+TN) in
testing, while the total number of misclassified is 112 (FP+FN)
in training and 99 (FP+FN) in testing. However, in Fig. 13,
the K-Neighbors classifier, the model Correctly predicted 332
instances as class 1, 296 as class 0, 116 incorrectly predicted
as class 1, and 103 incorrectly predicted as class O in training.
In testing, The model achieves moderate results of 67.14%,
indicating that it correctly predicts the class in 67.14% of cases.

Each methodology’s efficacy depends on complex factors,
including the problem domain, dataset characteristics (size
and quality), and computational constraints. Moreover, the
receiver operating characteristic (ROC) curve visually shows a
binary classifier’s performance. The area under the ROC curve
(AUC) estimates the general model performance. A higher
AUC denotes better discriminative capability; a perfect model
achieves an AUC of 1.0, while a random classifier generates
an AUC of 0.5. Fig. 14 and 15 present the ROC curves and
box plots for the respective classification algorithms.

A. Statistical Test Analysis

Friedman’s statistical test, a non-parametric test technique,
was employed to identify the classification technique that
outperformed other competing classifiers to conduct a more
detailed investigation of the performance of the classification
techniques. Table V presents the mean ranks derived from a
Friedman test conducted to statistically compare the classifica-
tion performance of the competing algorithms across accuracy,
precision, recall, and F1-measure.

The lowest ranking finding reflects a higher level of per-
formance, as seen in Table V. Friedman’s test was used to
determine the p-value, displayed in Table V. Some of the
p-values found by Friedman’s statistical test were less than
the significance level, identified as o = 0.5. The alternative
hypothesis is supported, while the null hypothesis is refuted.
The alternative hypothesis contends that there are different
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Fig. 10. GBC confusion matrices.

margins in the performance behaviors of the classification tech-
niques, in contrast to the null hypothesis, which holds that all
classification techniques have the same performance behavior
when employed to address classification problems. According
to the statistical findings shown in Table V, the GBC method is
the most accurate classifier. This shows that the GBC technique

came in first for classification accuracy shared with the KNC
classifier while coming in third rank for precision rate, behind
RFC and KNC classifiers, first in recall rate, and first in F1
metric measure shared with the RFC classifier. These findings
demonstrate the GBC classification method’s breadth is better
than that of its competitors. In drawing things to a close, it is
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Fig. 13. KNC confusion matrices.

evident that the GBC classification method received the most ~ was then demonstrated using Holm’s statistical test as a
excellent rank in terms of the total quantity of recall rate, with ~ post-hoc statistical method. Friedman’s test findings confirm
a rank of 1.0, the lowest rank of all the ranks that the other  this, demonstrating that the control classification technique
classifiers have. outperforms all others in each evaluation metric measure. The

. . L. statistical findings from Holm’s statistical process are shown
The difference between the control classifier and its rivals & p
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TABLE V. AVERAGE RANKING RESULTS OF ALL RIVAL CLASSIFICATION TECHNIQUES REGARDING ACCURACY, PRECISION, RECALL, AND F1 METRIC
MEASURES USING FRIEDMAN’S TEST

Classifier =~ Accuracy  Precision Recall F1 Total ranking

LR 5.25 5.5 4.0 5.0 19.75
SVM 4.75 5.0 3.0 4.0 16.75
GBC 2.0 3.0 1.0 1.5 7.5
GNB 4.75 3.75 5.5 6.0 20
KNC 2.0 2.75 35 3.0 11.25
RFC 2.25 1.0 4.0 1.5 8.75

p-value 0.220640  0.177047  0.279401  0.083747

Receiver Operating Characteristic

1.0 —

o
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o
o

o
'S

LR ROC = 0.66
SVM ROC = 0.69
GBC ROC = 0.81
GNB ROC = 0.64
KNN ROC = 0.75
RF ROC = 0.87
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o
[N}
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Fig. 14. The Receiver Operating Characteristic curve for the different

techniques.
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Fig. 15. Box-and-whisker plot for the used techniques.

in Table VI. As per the data reported in Table VI, the control
classifier’s rank is Ry, the ith classifier’s rank is R?, the effect
size of the control classifier’s classification technique on the
ith classifier is ES, and the statistical difference between two
classification techniques is z.

Holm’s test was utilized to assess the competing classifi-
cation systems. This test eliminates hypotheses with p-values
of < 0.010000 for classification accuracy, < 0.010000 for
precision, < 0.010000 for recall, and < 0.010000 for F1 rates,
respectively. Table VI demonstrates that GBC outperforms
LR, SVM, GNB, KNC, and RFC in terms of classification
accuracy, even if there is no statistically significant difference
between GBC and the other classification techniques (i.e.
LR, SVM, GNB, KNC, and RFC). Friedman’s and Holm’s
test-based statistical precision findings show that the RFC
technique and the GNB, KNC, and GBC classification methods
do not vary significantly from one another. The RFC approach,
however, differs dramatically from the two classification tech-
niques (LR and SVM). The findings in terms of the recall
rate show that while GBC differs significantly from the GNB
classification technique, it does not differ from the other three
competing classifiers (i.e. LR, SVM, KNC, and RFC).

Tables VI and V display the results of Holm’s and Fried-
man’s tests, respectively, which demonstrate that the GBC clas-
sification method outperforms the other competing methods
in achieving promising accuracy and precision rates for the
datasets being studied. Overall, the GBC classification method
outperformed a number of cutting-edge classification methods
disclosed in the literature, including LR, SVM, KNC, and
RFC, according to the results of the statistical study discussed
above. This demonstrates the GBC method’s consistent per-
formance and attests to the fact that it successfully solves
classification issues with low, medium, and high dimensions.
In addition, GBC’s performance degree is close to that of
RFC and KNC classifiers as per the average rankings of
classification techniques regarding precision rate. Still, the
performance level of GNB and LR classifiers falls far short of
its RFC and KNC competitors. This leads one to the conclusion
that the GBC as a classification model gives it such exceptional
capacity to handle classification difficulties. These statistical
analysis tests demonstrate the reliability and suitability of the
GBC tool as a classification method. These findings provide
compelling justifications for employing the GBC classifier to
classify difficult datasets progressively.

VII. CONCLUSIONS AND FUTURE WORK

This research aims to examine the feasibility of using
machine learning techniques to identify cases of OSA. Tradi-
tional techniques of diagnosing OSA are costly and logistically
difficult, even though they impact a large percentage of adults.
Methods for diagnosing OSA in this study included Logis-
tic Regression, Support Vector Machines, Gradient Boosting
Classifier, Random Forest Classifier, Gaussian Naive Bayes,
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TABLE VI. RESULTS OF HOLM’S TEST BETWEEN SEVERAL CLASSIFICATION TECHNIQUES

Classification accuracy (GBC is the control classifier)

_ (Rg—R")

i Algorithm =z = p-value a1 Hypothesis

5 LR 1.737198 0.0823522  0.010000  Not_Rejected

4 SVM 1.469936 0.141578 0.012500  Not_Rejected

3 GNB 1.469936 0.141578 0.016666  Not_Rejected

2 RFC 0.133630- 0.893694 0.025000  Not_Rejected

1 KNC 0.000000 1.000000 0.050000  Not_Rejected

Precision (RFC is the control classifier)

i Algorithm  z = M p-value a =1 Hypothesis

5 LR 2.405351 0.016156 0.010000  Rejected

4 SVM 2.138089 0.032509 0.012500  Rejected

3 GNB 1.469936 0.141578 0.016666  Not_Rejected

2  GBC 1.069044 0.285049 0.025000  Not_Rejected

1 KNC 0.935414 0.349574 0.050000  Not_Rejected

Recall (GBC is the control classifier)

i Algorithm  z = @ p-value a =4 Hypothesis

5 GNB 2.405351 0.016156 0.010000  Rejected

4 LR 1.603567 0.108809 0.012500  Not_Rejected

3 RFC 1.603567 0.108809 0.016666  Not_Rejected

2 KNC 1.336306 0.181449 0.025000  Not_Rejected

1 SVM 1.069044 0.285049 0.050000  Not_Rejected

F1 (GBC is the control classifier)

i Algorithm z = Fo—£) _ERZ) p-value a -+ Hypothesis

5 GNB 2.405351 0.016156 0.010000  Rejected

4 LR 1.870828 0.061368 0.012500  Not rejected

3 SVM 1.336306 0.181449 0.016666  Not rejected

2 KNC 0.801783 0.422678 0.025000  Not rejected

1 RFC 0.000000 1.000000 0.050000  Not rejected
and K-Nearest Neighbors Classifier. Results showed that the e  FEthical Approval: The authors declare that ethical
Random Forest Classifier performed the best, with an accuracy standards have been followed and that no human
of 0.87 during training and 0.65 during testing. The ROC participants or animals were involved in this research.
curve produced a score of 0.87. The proposed work achieved . .
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classification accuracy comparable to other related studies.
However, unlike most existing pieces that utilize PSG or ECG,
which can be costly and time-consuming for physicians and
patients, we employed physical parameters that are easy to
obtain. Future research may explore the potential of other
machine learning (ML) techniques, including artificial neural
networks (ANN) and decision trees (DT), to address the
problem at hand. By exploring these different ML techniques,
it may be possible to improve the accuracy and generalizability
of the model and gain new insights into the problem domain.
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