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Abstract—Currently, most RAGs are cloud-based and include 

Bedrock. However, there is a trend to return from the cloud to on-

premises due to security concerns. In addition, it is common for 

APIs to call Lambda or EC2 for data access, but it is not easy to 

select the optimal framework depending on the data attributes. 

For this reason, the author devised a system for selecting the 

optimal framework using an AI agent. Furthermore, the author 

decided to use Dify, which is based on a DSL, as the user interface 

for the on-premises version of RAG, and ollama as a large-scale 

language model that can be installed on-premises as well. The 

author also considered the specifications of the hardware required 

to build this RAG and confirmed the feasibility of implementation. 
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I. INTRODUCTION 

The name RAG (Retrieval-Augmented Generation) and its 
specific methodology were proposed in 2020. In a paper 
published by researchers from Facebook AI Research (now 
Meta AI), University College London, and New York 
University, RAG was introduced as a "general-purpose fine-
tuning recipe"1. 

RAG research ran on a cluster of NVIDIAS GPUs2 and 
demonstrated how to make generative AI models more reliable. 
The research aimed to link generative AI services with external 
resources, especially those containing the latest technical 
details. 

The concept of RAG has spread rapidly since its 
introduction and is now adopted in hundreds of papers and 
many commercial services. This technology has significantly 
improved the capabilities of large-scale language models 
(LLMs) and taken question answering systems to a new level. 

The development of RAG is the culmination of many years 
of research in information retrieval and natural language 
processing and has become an important part of modern AI 
technology. It is expected that this technology will continue to 
evolve and contribute to improving the performance and 
reliability of AI systems. 

                                                           
1 https://blogs.nvidia.co.jp/2023/11/17/what-is-retrieval-augmented-

generation/ 

Research issues related to RAG play an important role in 
the development and practical application of this technology. 
Some of the main research issues are listed below. 

1) Chunking and embedding: The performance of RAG 

systems depends heavily on the chunking and embedding 

methods used. Optimal chunking methods: Research is needed 

to find effective ways to segment documents and extract 

relevant information appropriately [1]. Embedding multimedia 

content: Research is needed to find effective ways to embed 

non-text data (images, audio, video, etc.). 

2) Comparison of RAG and fine-tuning: RAG and fine-

tuning of LLMs (large-scale language models) take different 

approaches. Performance comparison: Research is needed to 

systematically compare the performance of both methods under 

various tasks and conditions. Cost-effectiveness: A 

comparative analysis of the costs of implementation and 

operation is also an important issue. Applicability: Research is 

needed to clarify in what situations and applications RAG and 

fine-tuning are suitable. 

3) Testing and monitoring of RAG systems: Quality 

assurance and continuous improvement of RAG systems are 

important research topics. Establishment of performance 

evaluation indicators: It is necessary to develop indicators to 

properly evaluate the performance of RAG systems. 

Monitoring methods during operation: Research is required on 

methods to continuously monitor and improve system 

performance in actual usage environments. 

4) Context optimization: Proper context management is 

essential for improving the performance of RAG systems. 

Optimization of chunk size: Research on the optimal chunk size 

is required, as larger contexts may produce better results. 

Balance with token restrictions: Optimization research is 

required that takes into account the trade-off with LLM token 

restrictions and latency. 

5) Efficiency and cost reduction: Improvements in 

efficiency and cost are important for practical use of RAG 

systems. Semantic cashing: Research is being conducted into 

methods to reduce the number of LLM calls and reduce costs 

and latency by cashing frequent queries and their answers. 

2 https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units 
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Utilization of open-source models: For small texts, open-source 

sentence embedding models may perform as well as 

commercial models, and research in this area is progressing. 

In this paper, open-source models utilizing RAG are 
investigated and designed to enhance cost-effectiveness. 
Currently, many RAG systems are cloud-based and use services 
such as Amazon Bedrock3. However, due to security concerns, 
there is a trend of moving from the cloud to on-premises 
environments. Traditionally, data access was typically achieved 
through API calls via AWS Lambda or EC24, but it was not 
easy to select the optimal framework according to the data 
attributes. 

To address this challenge, the author devised a system that 
utilizes an AI agent to select the optimal framework. In addition, 
they adopted DSL5 (Domain Specific Language)-based Dify6 
as the user interface for the on-premises version of RAG, and 
selected ollama7 as a large-scale language model that can be 
deployed on-premises. In this paper, ollama llama3.2 is used. 

The author also considered the specifications of the 
hardware required to build this RAG system and confirmed the 
feasibility of implementation. This made it possible to build an 
efficient and flexible RAG system while placing emphasis on 
security. 

The following section described the related research works 
on RAG followed by proposed RAG system. Then, software 
and hardware requirements are described. After that, the 
conclusion is described with some remarks and discussions. 

II. RELATED RESEARCH 

There are the following RAG related papers, Retrieval-
augmented generation for knowledge-intensive NLP (Natural 
Language Processing) tasks is proposed. Natural Language 
Processing (NLP) tasks include sentiment analysis, entity 
recognition, text summarization, machine translation, speech 
recognition, text classification, chatbot interaction, keyword 
extraction, question answering, part-of-speech tagging, topic 
modeling, predictive text, conference resolution, and spam 
detection; essentially, any activity where a computer analyzes 
and understands human language to perform a specific function. 
This paper is the first to propose the RAG model, an approach 
that improves performance on knowledge-based tasks by 
integrating a retrieval component into a generative model [2]. 

 Improving zero-shot generalization in text classification 
using retrieval-augmented language models are proposed. In 
this study, the authors applied RAG to text classification tasks, 
aiming to improve zero-shot generalization performance. The 
authors showed that using a retrieval component improves 
classification accuracy for unseen classes [3]. 

RAG for knowledge-intensive NLP tasks is discussed. The 
paper provides a detailed description of RAG architecture and 
evaluates its performance on a variety of tasks, showing that it 

                                                           
3 https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/what-is-

bedrock.html 
4 https://www.serverless.direct/post/aws-lambda-vs-ec2-which-one-to-

choose-for-your-app 

performs particularly well on knowledge-based tasks such as 
question answering and sentence generation [4]. 

Dense passage retrieval for open-domain question 
answering is proposed. In this study, a density-based passage 
retrieval method is proposed for open-domain question 
answering tasks, which is often used as the retrieval component 
of the RAG model to improve the accuracy of question 
answering [5]. 

Other than these, there are the following recent research 
works, 

Self-RAG: Learning to Retrieve, Generate, and Critique 
through Self-Reflection is proposed which appears in the URL 
of  https://arxiv.org/abs/2310.11511, [6]. 

Atlas: Few-shot Learning with Retrieval Augmented 
Language Models are proposed which appears in the URL of 
https://arxiv.org/abs/2208.03299, [7]. 

Internet-Augmented Dialogue Generation is also proposed 
which appears in the URL of  https://arxiv.org/abs/2107.07566, 
[8]. 

REPLUG: Retrieval-Augmented Black-Box Language 
Models is proposed which appears in the URL of 
https://arxiv.org/abs/2301.12652, [9]. 

Dense Passage Retrieval for Open-Domain Question 
Answering is proposed which appears in the URL of 
https://arxiv.org/abs/2004.04906, [10]. 

Realm: Retrieval-Augmented Language Model Pre-
Training is proposed which appears in the URL of 
https://arxiv.org/abs/2002.08909, [11]. 

Improving language models by retrieving from trillions of 
tokens are proposed which appears in the URL of 
https://arxiv.org/abs/2112.04426, [12]. 

Query2doc: Query Expansion with Large Language Models 
are also proposed which appears in the URL of 
https://arxiv.org/abs/2303.07678, [13]. 

Chain-of-Note: Enhancing Robustness in Retrieval-
Augmented Language Models are proposed which appears in 
the URL of https://arxiv.org/abs/2311.09210, [14]. 

On the other hand, Dify related research works are as 
follows, 

The literature on data integration in general, DSLs, and Dify 
is as follows: "A Survey of Data Integration Systems" This 
paper provides an overview of data integration systems and 
various approaches [15]. 

"Domain-Specific Languages: An Annotated Bibliography" 
This paper provides an overview of DSLs and examples of 
various amana DSLs [16]. 

5 https://en.wikipedia.org/wiki/Domain-specific_language 
6 https://docs.dify.ai/ja-jp/guides/application-orchestrate/creating-an-

application 
7 https://ollama.com/library/llama3.2 

https://arxiv.org/abs/2310.11511
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https://arxiv.org/abs/2107.07566
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https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2002.08909
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https://arxiv.org/abs/2311.09210
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"Interactive Data Integration with User-Centric 
Approaches" This paper describes user-centric data integration 
approaches [17]. 

"VLDB Conference Proceedings" The latest research 
results on data integration are presented at the VLDB 
conference [18]. 

"SIGMOD Conference Proceedings" Research results on 
data integration and DSLs are also presented at the SIGMOD 
conference [19]. 

"Technical Report: Data Integration Using DSLs" Some 
research institutes have published technical reports on data 
integration using DSLs [20]. 

"Data Integration: A Theoretical Perspective" This book 
provides a detailed explanation of the theoretical background of 
data integration [21]. 

"Domain-Specific Languages in Action" This book gives 
practical examples of the application of various DSLs [22]. 

GitHub Repository: Some open-source projects publish 
code for data integration tools using DSLs [23]. 

III. PROPOSED RAG SYSTEM  

A. System Configuration 

The on-premises version of RAG is intended to be created. 
The author devised a system that utilizes an AI agent to select 
the optimal framework. In addition, they adopted DSL-based 
Dify as the user interface for the on-premises version of RAG, 
and selected ollama as a large-scale language model that can be 
deployed on-premises. 

Fig. 1 shows the block diagram of the proposed RAG. 

 

Fig. 1. Block diagram of the proposed RAG system. 

The process from query to answer generation in the RAG 
system goes through the following steps: 

1) Query processing: The system receives a question or 

task (query) from the user and converts it into a format that the 

system can easily understand. The system uses natural language 

processing technology to analyze the meaning of the query. 

Converts it into a format suitable for search. 

2) Information retrieval: Based on the converted query, the 

system searches the knowledge base for relevant information. 

Query vectorization: Converts the question into a numerical 

expression (vector). Similarity calculation: Calculates the 

similarity between the query vector and the vector of 

information in the knowledge base. Ranking: Ranks the most 

relevant information based on the similarity. 

3) Context generation: Based on the information obtained 

from the search results, the system generates a context related 

to the question. 

4) Answer generation: A generative model (usually a large-

scale language model) takes the query and context as input and 

generates an appropriate answer. Integrates the given 

information and then creates an answer in natural language. 

5) Post-processing: The generated answer is further 

processed to be formatted into the final output format. 

Formatting the answer and filtering inappropriate content as 

                                                           
8 https://note.com/jolly_dahlia842/n/n41bf7cf085fd 

well as adding additional information where necessary (e.g. 

citing sources). After that, adjust the length and complexity of 

the answer. 

6) Output: The final answer is presented to the user. 

Answer in text form and possibly include relevant images, links, 

and/or additional references. 

7) Feedback and learning: Many RAG systems have 

mechanisms for collecting user feedback and continually 

improving the system's performance. Recording user responses 

(e.g. clicking the "helpful" button) and evaluating the accuracy 

and relevance of answers as well as tweaking search algorithms 

and generative models based on feedback. 

As for the user interface, Dify is featured as follows: 

Dify has all the features to develop AI apps. It also supports 
hundreds of AI language models, allowing creating custom 
chatbots with intuitive operations. It also has a high-
performance and flexible RAG engine, allowing building AI 
agents to use a variety of tools. It can also be freely designing 
workflows. 

Dify Studio8 offers three ways to create an application: It 
can be used on an application template. It can start with a blank 
application. You can create one (locally or online) by importing 
a DSL file. To get a quick overview of the types of applications 
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you can create with Dify, select "Studio" from the navigation 
menu, then "Create from Template" from the application list. 

When creating the first application with Dify, it is important 
to understand the basic concepts behind the four different types 
of applications: chat voice, text generators, agents, and 
workflows. Also, when creating an application, give it a name, 
choose an appropriate icon, and briefly describe the purpose of 
this application to make it easier to use within your team. 

Dify DSL is a standard file format (YML) 9  for AI 
application development defined by Dify.AI. This standard 
includes basic information about the application, model 
parameters, orchestration settings, etc. Firstly, import local 
DSL files. Then if a DSL file (template) exists, provided by the 
community or others, select "Import DSL file" from Studio. 
After importing, the original application settings will be loaded 
directly. After that, import a DSL file via URL. It can import a 
DSL file via URL using the following format: 
https://example.com/your_dsl.yml 

DSL is a specialized language designed to efficiently build 
and configure AI applications on the Dify platform. The 
features of Dify DSL are: YAML format10: Dify DSL is written 
in YAML format, Workflow definition: It can concisely define 
the workflow and settings of your application and sharing and 
reuse: It can easily share and reuse the workflow you created 
by exporting and importing it as a DSL file. 

To use DSL, it can import it from the Dify dashboard by 
selecting "Create an app" and then "Import DSL file". Then 
select the YAML file and click the "Create" button. Customize 
it: After importing, it can adjust the workflow and settings as 
needed. Finally, export it: it can export the workflow it created 
as a DSL file and share it with other users. 

It can easily create chatbots specialized for specific 
industries or purposes using knowledge bases. This application 
can be developed without programming expertise by combining 
Dify's no-code interface with the flexibility of DSL. In addition, 
it can export and import the workflow it created as a DSL file, 
making it easy to share and reuse within a team or community. 

B. Ollama of LLM 

Next, the author will explain ollama, a small-scale LLM that 
can run on-premises on a local machine. It has the following 
features: 

Local execution: With ollama, you can run LLM on your 
own computer without an Internet connection. 

Multiplatform support: Currently it supports Mac and Linux 
and will support Windows in the future. 

Various models: It supports large-scale language models 
such as Llama. Users can select and use various models. 

Easy environment construction: It is relatively easy to 
install and configure, and you can easily obtain and run models 
from the command line. 

                                                           
9 https://docs.dify.ai/guides/application-orchestrate/creating-an-

application 

Python integration: ollama can be used from Python 
environments using the ollama-python library. This allows you 
to leverage local LLMs through APIs and integrate them into 
RAGs and agents. 

Customizability: Since it is open source, users can 
customize it to suit their needs. 

Security: Since it runs locally, it is suitable for projects that 
value data privacy and security. 

Ollama is a powerful tool for individuals and businesses to 
effectively leverage AI technology, allowing them to run 
advanced natural language processing tasks such as text 
generation, question answering, and text summarization in a 
local environment. 

To install ollama, follow the steps below: 

Download the installer from the ollama official website. 

Open the downloaded file and follow the instructions to 
install. 

Once the installation is complete, a llama icon will appear 
in the taskbar on Windows. 

Download and run the model 

Open Command Prompt (Windows) or Terminal 
(Mac/Linux). 

Run the following command to download and run the 
model: 

bash 

ollama run gemma2:2b 

This command downloads and runs the Gemma 2b model. 
If the model is not already available locally, it will be 
downloaded automatically. 

To interact with the AI, once the model is running, a prompt 
will appear. Enter users’ message and press Enter, and the AI 
will respond. 

Users can customize and manage your models using the 
following commands: 

ollama create: Create a custom model 

ollama show: Show model information 

ollama list: Show a list of installed models 

ollama rm: Delete a model 

C. Python Code for Knowledgebase Creation 

In this example we'll create a simple knowledge base with a 
dictionary structure and show how to perform some basic 
operations. Python code for creation of Knowledgebase System 
is as follows, 

python 

class KnowledgeBase: 

10 https://spacelift.io/blog/yaml 

https://example.com/your_dsl.yml
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def __init__(self): 

self.knowledge = {} 

def add_fact(self, key, value): 

""Add a new fact to the knowledge base""" 

self.knowledge[key] = value 

def get_fact(self, key): 

""Get a fact from the knowledge base""" 

return self.knowledge.get(key, "No information found") 

def update_fact(self, key, value): 

""Update an existing fact""" 

if key in self.knowledge: 

self.knowledge[key] = value 

return True 

return False 

def remove_fact(self, key): 

""Remove a fact from the knowledge base""" 

if key in self.knowledge: 

del self.knowledge[key] 

return True 

return False 

def list_all_facts(self): 

""List all facts in the knowledge base""" 

return self.knowledge 

# Knowledge Base Usage Example 

if __name__ == "__main__": 

kb = KnowledgeBase() 

# Add fact 

kb.add_fact("Python", "High-level programming 
language") 

kb.add_fact("AI", "Artificial intelligence") 

kb.add_fact("ML", "Machine learning") 

# Get fact 

print(kb.get_fact("Python")) # Output: High-level 
programming language 

print(kb.get_fact("Database")) # Output: No information 
found 

# Update fact 

kb.update_fact("AI", "Artificial intelligence technology") 

print(kb.get_fact("AI")) # Output: Artificial intelligence 
technology 

# Remove fact 

kb.remove_fact("ML") 

# List all facts 

print(kb.list_all_facts()) 

This simple implementation can be extended as follows: 

1) Persistence: Use a database (e.g. SQLite) to store the 

knowledge base and maintain the information even after the 

program ends. 

2) Complex data structures: Store objects or structured data 

instead of simple strings. 

3) Search capabilities: Implement advanced search 

capabilities using keyword searches or regular expressions. 

4) Version control: Add the ability to track changes to each 

fact. 

5) Relationship expression: Be able to express relationships 

between facts (e.g. a graph database-like approach). 

6) Inference engine: Implement a simple inference function 

to derive new facts from existing facts. 

D. Required Hardware Specifications 

The hardware specifications for building a RAG using 
ollama are as follows. 

1) CPU 

a) Best choice: Intel CPU of 11th generation or later that 

supports the AVX512 instruction set, or AMD CPU based on 

Zen4. An AMD CPU based on the "Zen 4" architecture is the 

first AMD processor to support the AVX-512 instruction set, 

meaning if you're looking for an AMD CPU with AVX-512 

capability, you should choose one based on the Zen 4 

microarchitecture. 

b) Reason: To speed up the matrix calculations required 

for AI models 

c) Minimum requirement: Any CPU that supports the 

AVX instruction set will work 

2) RAM 

a) Recommendation: 16GB or more 

b) Reason: To comfortably run models with 7B 

parameters 

c) Minimum requirement: May work with around 8GB 

3) Storage 

a) Recommendation: 50GB of freer space 

b) Breakdown: Docker container (2GB+), model file, 

vector store, etc. 

4) GPU 

a) Recommended: Equipped with NVIDIA GPU (e.g. 

GTX 1080 Ti or higher) 

b) Reason: Can significantly speed up model inference 

c) Not required: Can be run with CPU only, but 

processing speed will be reduced. 
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In this connection, GIGABYTE AORUS GeForce GTX 
1080 Ti 11GB Video Card - GV-N108TAORUS-11GD11 is one 
of the candidates. 

Other points to consider are that if you are using larger 
models (13B or more), a high-performance GPU and 32GB or 
more of RAM are recommended. Users also need to consider 
the amount of VRAM (depending on the model size and 
quantization level). ollama can run on relatively lightweight 
systems, but to get comfortable user experience, it is 
recommended that you use the above recommended 
specifications as a guide. Especially in the RAG system, it is 
desirable to have a generous specification because building and 
searching the vector store also requires resources. 

E. AI Agent 

Although the definition of an AI agent may vary slightly 
depending on the technical field, it generally refers to software 
that interacts with its environment, collects data, and 
autonomously executes tasks based on that data to achieve a 
specific goal. In particular, our focus here is on AI agents based 
on LLMs. Using an AI agent as the user interface of the RAG 
system is a good approach to achieve a more flexible and 
advanced conversational interface. Below are some 
recommended implementation ideas. 

1) Multi-agent system: This method uses a combination of 

multiple specialized agents. 

a) Triage agent: Analyzes the user's question and assigns 

it to the appropriate specialized agent. 

b) Search agent: Responsible for the search function of 

the RAG system to retrieve related information. 

c) Answer generation agent: Generates an appropriate 

answer based on the search results. 

d) Dialogue management agent: Manages the flow of 

dialogue with the user and asks additional questions as 

necessary. 

In this method, each agent specializes in a specific role, 
allowing complex tasks to be handled efficiently.1. 

2) Plan-and-Execute agent: This method is performed by a 

single advanced agent that plans and executes the plan. 

Analyzes the user's question and plans the steps required to 
answer it. 

Based on the plan, it sequentially searches the RAG system, 
integrates information, generates answers, etc. 

The plan is revised as necessary to generate the final answer. 

This method is particularly effective when complex 
questions or multi-step processing are required.1. 

3) Conversational RAG Agent: An agent that collects 

information through dialogue with the user and gradually 

refines its answer. 

                                                           
11 https://www.gigabyte.com/jp/Graphics-Card/GV-N108TAORUS-

11GD#kf 

It first provides a concise answer to the user's initial 
question. 

It then asks the user if additional information or clarification 
is needed. 

Based on the user's response, it re-uses the RAG system to 
complement the information and expand the answer. 

This method allows for flexible information provision 
tailored to the user's needs. 

4) Self-improving RAG Agent: An agent system that 

incorporates a feedback loop. 

After answering the user's question, it asks for feedback on 
the quality and appropriateness of the answer. 

Based on the feedback, it automatically adjusts how it 
generates search queries and constructs answers. 

Continuous learning improves performance over time. 

This method is particularly effective in long-term use, 
allowing the system to continually improve its accuracy and 
usefulness. 

Implementation Considerations: 

1) Model selection: Using high-performance models such 

as GPT-4 allows for more sophisticated dialogue and accurate 

information processing. 

2) Context management: It is important to properly manage 

long-term dialogue history and maintain consistent dialogue. 

3) Error handling: Users need to implement a way to handle 

cases when the agent cannot respond appropriately and provide 

appropriate feedback to the user. 

4) Security and privacy: Be careful with user data, filtering 

and anonymizing information where necessary. 

By using these recommendations as a starting point and 
customizing them for specific use cases and requirements, it can 
implement an AI agent as an effective RAG user interface. 

F. Swarm AI Agent 

Swarm is a framework for multi-agent orchestration 
released by OpenAI on October 12, 202412. This framework 
uses Python and is designed to enable AI agents to work 
together and autonomously complete complex tasks. By using 
Swarm, it becomes easy to build multi-agent systems. 

Another library for building AI agents is LangGraph 13 . 
LangGraph is feature-rich and highly flexible but tends to be 
complicated to implement. In contrast, Swarm has fewer 
features but is very easy to implement. 

Table I shows the classes for creating AI agents. Users can 
set the agent's name, behavior, model to be used, etc. 
client.run() is a function to execute the created agent. The 
arguments of this function are shown in Table II. 

It processes messages for the agent and advances 
conversation. Furthermore, run_demo_loop() is a function to 

12 https://github.com/openai/swarm 
13 https://langchain-ai.github.io/langgraph/ 
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repeatedly run the created agent on the console as shown in 
Table III. It uses client.run() internally to run the agent. 

TABLE I.  THE CLASSES FOR CREATING AI AGENTS 

Field_Name Type Default Description 

name str "Agent" Name_of_the_agent 

model str "gpt-4o" AI_model_to_use 

instruction str 
You_are_a_help

ful_agent. 
Instructions_to_the_agent 

functions List [] 
List_of_functions_availab
le_to_the_agent 

tool_choice str None 
Specific_tool_to_be_used

_by_the_agent 

TABLE II.  THE ARGUMENT FOR CLIENT.RUN () 

Argument

_Name 
Type Initial_Value Description 

agent Agent Required Initial_agent_to_be_called 

messages List Required List_of_message_objects 

context_var
iables 

dict {} 
Context_with_additional_in
formation 

max_turns int float("inf") 
Maximum_number_of_turn

s_in_conversation 

model_over

ride 
str None Option_to_change_model 

stream bool False 
Whether_to_show_streamin

g_responses 

debug bool False Debug_mode 

TABLE III.  THE ARGUMENT FOR RUN_DEMO_LOOP () 

Argument_

Name 
Type Initial_Value Description 

starting_age

nt 
Agent Required Initial_agent_to_be_called 

context_vari
ables 

dict {} 
Context_containing_additio
nal_information 

stream bool False 
Whether_to_display_the_re

sponse_in_streaming_mode 

debug bool False Debug_mode 

IV. CONCLUSION 

On-premises version of RAG is proposed for secure reasons. 
The proposed RAG utilizes Swarm-based AI agent which 
allows easy to select the optimal framework depending on the 
data attributes. Furthermore, the Dify which is based on a DSL 
is used as the user interface for the on-premises version of RAG. 
Also, ollama is used as a large-scale language model that can 
be installed on-premises as well. 

Other than that, the specifications of the hardware required 
to build this RAG and confirmed the feasibility of 
implementation. It is confirmed that the proposed RAG system 
can be created with just one PC with a GPU card. 

V. FUTURE RESEARCH WORKS 

Although it is confirmed that the proposed RAG system can 
be feasible, knowledgebase system is not being developed. 
There are so many applications of the proposed RAG system. 
Therefore, one of the business use cases will be attempted in 
the near future. 
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