
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

117 | P a g e

www.ijacsa.thesai.org

Design of On-Premises Version of RAG with AI

Agent for Framework Selection Together with Dify

and DSL as Well as Ollama for LLM

Kohei Arai

Department of Science and Engineering, Saga University, Saga City, Japan

Abstract—Currently, most RAGs are cloud-based and include

Bedrock. However, there is a trend to return from the cloud to on-

premises due to security concerns. In addition, it is common for

APIs to call Lambda or EC2 for data access, but it is not easy to

select the optimal framework depending on the data attributes.

For this reason, the author devised a system for selecting the

optimal framework using an AI agent. Furthermore, the author

decided to use Dify, which is based on a DSL, as the user interface

for the on-premises version of RAG, and ollama as a large-scale

language model that can be installed on-premises as well. The

author also considered the specifications of the hardware required

to build this RAG and confirmed the feasibility of implementation.

Keywords—RAG (Retrieval-Augmented Generation); API

(Application Programming Interface); Lambda; EC2 (Amazon

Elastic Compute Cloud); AI agent; Dify; DSL (domain specific

language); ollama; YAML (YAML Ain't Markup Language)

I. INTRODUCTION

The name RAG (Retrieval-Augmented Generation) and its
specific methodology were proposed in 2020. In a paper
published by researchers from Facebook AI Research (now
Meta AI), University College London, and New York
University, RAG was introduced as a "general-purpose fine-
tuning recipe"1.

RAG research ran on a cluster of NVIDIAS GPUs2 and
demonstrated how to make generative AI models more reliable.
The research aimed to link generative AI services with external
resources, especially those containing the latest technical
details.

The concept of RAG has spread rapidly since its
introduction and is now adopted in hundreds of papers and
many commercial services. This technology has significantly
improved the capabilities of large-scale language models
(LLMs) and taken question answering systems to a new level.

The development of RAG is the culmination of many years
of research in information retrieval and natural language
processing and has become an important part of modern AI
technology. It is expected that this technology will continue to
evolve and contribute to improving the performance and
reliability of AI systems.

1 https://blogs.nvidia.co.jp/2023/11/17/what-is-retrieval-augmented-

generation/

Research issues related to RAG play an important role in
the development and practical application of this technology.
Some of the main research issues are listed below.

1) Chunking and embedding: The performance of RAG

systems depends heavily on the chunking and embedding

methods used. Optimal chunking methods: Research is needed

to find effective ways to segment documents and extract

relevant information appropriately [1]. Embedding multimedia

content: Research is needed to find effective ways to embed

non-text data (images, audio, video, etc.).

2) Comparison of RAG and fine-tuning: RAG and fine-

tuning of LLMs (large-scale language models) take different

approaches. Performance comparison: Research is needed to

systematically compare the performance of both methods under

various tasks and conditions. Cost-effectiveness: A

comparative analysis of the costs of implementation and

operation is also an important issue. Applicability: Research is

needed to clarify in what situations and applications RAG and

fine-tuning are suitable.

3) Testing and monitoring of RAG systems: Quality

assurance and continuous improvement of RAG systems are

important research topics. Establishment of performance

evaluation indicators: It is necessary to develop indicators to

properly evaluate the performance of RAG systems.

Monitoring methods during operation: Research is required on

methods to continuously monitor and improve system

performance in actual usage environments.

4) Context optimization: Proper context management is

essential for improving the performance of RAG systems.

Optimization of chunk size: Research on the optimal chunk size

is required, as larger contexts may produce better results.

Balance with token restrictions: Optimization research is

required that takes into account the trade-off with LLM token

restrictions and latency.

5) Efficiency and cost reduction: Improvements in

efficiency and cost are important for practical use of RAG

systems. Semantic cashing: Research is being conducted into

methods to reduce the number of LLM calls and reduce costs

and latency by cashing frequent queries and their answers.

2 https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

118 | P a g e

www.ijacsa.thesai.org

Utilization of open-source models: For small texts, open-source

sentence embedding models may perform as well as

commercial models, and research in this area is progressing.

In this paper, open-source models utilizing RAG are
investigated and designed to enhance cost-effectiveness.
Currently, many RAG systems are cloud-based and use services
such as Amazon Bedrock3. However, due to security concerns,
there is a trend of moving from the cloud to on-premises
environments. Traditionally, data access was typically achieved
through API calls via AWS Lambda or EC24, but it was not
easy to select the optimal framework according to the data
attributes.

To address this challenge, the author devised a system that
utilizes an AI agent to select the optimal framework. In addition,
they adopted DSL5 (Domain Specific Language)-based Dify6
as the user interface for the on-premises version of RAG, and
selected ollama7 as a large-scale language model that can be
deployed on-premises. In this paper, ollama llama3.2 is used.

The author also considered the specifications of the
hardware required to build this RAG system and confirmed the
feasibility of implementation. This made it possible to build an
efficient and flexible RAG system while placing emphasis on
security.

The following section described the related research works
on RAG followed by proposed RAG system. Then, software
and hardware requirements are described. After that, the
conclusion is described with some remarks and discussions.

II. RELATED RESEARCH

There are the following RAG related papers, Retrieval-
augmented generation for knowledge-intensive NLP (Natural
Language Processing) tasks is proposed. Natural Language
Processing (NLP) tasks include sentiment analysis, entity
recognition, text summarization, machine translation, speech
recognition, text classification, chatbot interaction, keyword
extraction, question answering, part-of-speech tagging, topic
modeling, predictive text, conference resolution, and spam
detection; essentially, any activity where a computer analyzes
and understands human language to perform a specific function.
This paper is the first to propose the RAG model, an approach
that improves performance on knowledge-based tasks by
integrating a retrieval component into a generative model [2].

 Improving zero-shot generalization in text classification
using retrieval-augmented language models are proposed. In
this study, the authors applied RAG to text classification tasks,
aiming to improve zero-shot generalization performance. The
authors showed that using a retrieval component improves
classification accuracy for unseen classes [3].

RAG for knowledge-intensive NLP tasks is discussed. The
paper provides a detailed description of RAG architecture and
evaluates its performance on a variety of tasks, showing that it

3 https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/what-is-

bedrock.html
4 https://www.serverless.direct/post/aws-lambda-vs-ec2-which-one-to-

choose-for-your-app

performs particularly well on knowledge-based tasks such as
question answering and sentence generation [4].

Dense passage retrieval for open-domain question
answering is proposed. In this study, a density-based passage
retrieval method is proposed for open-domain question
answering tasks, which is often used as the retrieval component
of the RAG model to improve the accuracy of question
answering [5].

Other than these, there are the following recent research
works,

Self-RAG: Learning to Retrieve, Generate, and Critique
through Self-Reflection is proposed which appears in the URL
of https://arxiv.org/abs/2310.11511, [6].

Atlas: Few-shot Learning with Retrieval Augmented
Language Models are proposed which appears in the URL of
https://arxiv.org/abs/2208.03299, [7].

Internet-Augmented Dialogue Generation is also proposed
which appears in the URL of https://arxiv.org/abs/2107.07566,
[8].

REPLUG: Retrieval-Augmented Black-Box Language
Models is proposed which appears in the URL of
https://arxiv.org/abs/2301.12652, [9].

Dense Passage Retrieval for Open-Domain Question
Answering is proposed which appears in the URL of
https://arxiv.org/abs/2004.04906, [10].

Realm: Retrieval-Augmented Language Model Pre-
Training is proposed which appears in the URL of
https://arxiv.org/abs/2002.08909, [11].

Improving language models by retrieving from trillions of
tokens are proposed which appears in the URL of
https://arxiv.org/abs/2112.04426, [12].

Query2doc: Query Expansion with Large Language Models
are also proposed which appears in the URL of
https://arxiv.org/abs/2303.07678, [13].

Chain-of-Note: Enhancing Robustness in Retrieval-
Augmented Language Models are proposed which appears in
the URL of https://arxiv.org/abs/2311.09210, [14].

On the other hand, Dify related research works are as
follows,

The literature on data integration in general, DSLs, and Dify
is as follows: "A Survey of Data Integration Systems" This
paper provides an overview of data integration systems and
various approaches [15].

"Domain-Specific Languages: An Annotated Bibliography"
This paper provides an overview of DSLs and examples of
various amana DSLs [16].

5 https://en.wikipedia.org/wiki/Domain-specific_language
6 https://docs.dify.ai/ja-jp/guides/application-orchestrate/creating-an-

application
7 https://ollama.com/library/llama3.2

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2107.07566
https://arxiv.org/abs/2301.12652
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2303.07678
https://arxiv.org/abs/2311.09210

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

119 | P a g e

www.ijacsa.thesai.org

"Interactive Data Integration with User-Centric
Approaches" This paper describes user-centric data integration
approaches [17].

"VLDB Conference Proceedings" The latest research
results on data integration are presented at the VLDB
conference [18].

"SIGMOD Conference Proceedings" Research results on
data integration and DSLs are also presented at the SIGMOD
conference [19].

"Technical Report: Data Integration Using DSLs" Some
research institutes have published technical reports on data
integration using DSLs [20].

"Data Integration: A Theoretical Perspective" This book
provides a detailed explanation of the theoretical background of
data integration [21].

"Domain-Specific Languages in Action" This book gives
practical examples of the application of various DSLs [22].

GitHub Repository: Some open-source projects publish
code for data integration tools using DSLs [23].

III. PROPOSED RAG SYSTEM

A. System Configuration

The on-premises version of RAG is intended to be created.
The author devised a system that utilizes an AI agent to select
the optimal framework. In addition, they adopted DSL-based
Dify as the user interface for the on-premises version of RAG,
and selected ollama as a large-scale language model that can be
deployed on-premises.

Fig. 1 shows the block diagram of the proposed RAG.

Fig. 1. Block diagram of the proposed RAG system.

The process from query to answer generation in the RAG
system goes through the following steps:

1) Query processing: The system receives a question or

task (query) from the user and converts it into a format that the

system can easily understand. The system uses natural language

processing technology to analyze the meaning of the query.

Converts it into a format suitable for search.

2) Information retrieval: Based on the converted query, the

system searches the knowledge base for relevant information.

Query vectorization: Converts the question into a numerical

expression (vector). Similarity calculation: Calculates the

similarity between the query vector and the vector of

information in the knowledge base. Ranking: Ranks the most

relevant information based on the similarity.

3) Context generation: Based on the information obtained

from the search results, the system generates a context related

to the question.

4) Answer generation: A generative model (usually a large-

scale language model) takes the query and context as input and

generates an appropriate answer. Integrates the given

information and then creates an answer in natural language.

5) Post-processing: The generated answer is further

processed to be formatted into the final output format.

Formatting the answer and filtering inappropriate content as

8 https://note.com/jolly_dahlia842/n/n41bf7cf085fd

well as adding additional information where necessary (e.g.

citing sources). After that, adjust the length and complexity of

the answer.

6) Output: The final answer is presented to the user.

Answer in text form and possibly include relevant images, links,

and/or additional references.

7) Feedback and learning: Many RAG systems have

mechanisms for collecting user feedback and continually

improving the system's performance. Recording user responses

(e.g. clicking the "helpful" button) and evaluating the accuracy

and relevance of answers as well as tweaking search algorithms

and generative models based on feedback.

As for the user interface, Dify is featured as follows:

Dify has all the features to develop AI apps. It also supports
hundreds of AI language models, allowing creating custom
chatbots with intuitive operations. It also has a high-
performance and flexible RAG engine, allowing building AI
agents to use a variety of tools. It can also be freely designing
workflows.

Dify Studio8 offers three ways to create an application: It
can be used on an application template. It can start with a blank
application. You can create one (locally or online) by importing
a DSL file. To get a quick overview of the types of applications

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

120 | P a g e

www.ijacsa.thesai.org

you can create with Dify, select "Studio" from the navigation
menu, then "Create from Template" from the application list.

When creating the first application with Dify, it is important
to understand the basic concepts behind the four different types
of applications: chat voice, text generators, agents, and
workflows. Also, when creating an application, give it a name,
choose an appropriate icon, and briefly describe the purpose of
this application to make it easier to use within your team.

Dify DSL is a standard file format (YML) 9 for AI
application development defined by Dify.AI. This standard
includes basic information about the application, model
parameters, orchestration settings, etc. Firstly, import local
DSL files. Then if a DSL file (template) exists, provided by the
community or others, select "Import DSL file" from Studio.
After importing, the original application settings will be loaded
directly. After that, import a DSL file via URL. It can import a
DSL file via URL using the following format:
https://example.com/your_dsl.yml

DSL is a specialized language designed to efficiently build
and configure AI applications on the Dify platform. The
features of Dify DSL are: YAML format10: Dify DSL is written
in YAML format, Workflow definition: It can concisely define
the workflow and settings of your application and sharing and
reuse: It can easily share and reuse the workflow you created
by exporting and importing it as a DSL file.

To use DSL, it can import it from the Dify dashboard by
selecting "Create an app" and then "Import DSL file". Then
select the YAML file and click the "Create" button. Customize
it: After importing, it can adjust the workflow and settings as
needed. Finally, export it: it can export the workflow it created
as a DSL file and share it with other users.

It can easily create chatbots specialized for specific
industries or purposes using knowledge bases. This application
can be developed without programming expertise by combining
Dify's no-code interface with the flexibility of DSL. In addition,
it can export and import the workflow it created as a DSL file,
making it easy to share and reuse within a team or community.

B. Ollama of LLM

Next, the author will explain ollama, a small-scale LLM that
can run on-premises on a local machine. It has the following
features:

Local execution: With ollama, you can run LLM on your
own computer without an Internet connection.

Multiplatform support: Currently it supports Mac and Linux
and will support Windows in the future.

Various models: It supports large-scale language models
such as Llama. Users can select and use various models.

Easy environment construction: It is relatively easy to
install and configure, and you can easily obtain and run models
from the command line.

9 https://docs.dify.ai/guides/application-orchestrate/creating-an-

application

Python integration: ollama can be used from Python
environments using the ollama-python library. This allows you
to leverage local LLMs through APIs and integrate them into
RAGs and agents.

Customizability: Since it is open source, users can
customize it to suit their needs.

Security: Since it runs locally, it is suitable for projects that
value data privacy and security.

Ollama is a powerful tool for individuals and businesses to
effectively leverage AI technology, allowing them to run
advanced natural language processing tasks such as text
generation, question answering, and text summarization in a
local environment.

To install ollama, follow the steps below:

Download the installer from the ollama official website.

Open the downloaded file and follow the instructions to
install.

Once the installation is complete, a llama icon will appear
in the taskbar on Windows.

Download and run the model

Open Command Prompt (Windows) or Terminal
(Mac/Linux).

Run the following command to download and run the
model:

bash

ollama run gemma2:2b

This command downloads and runs the Gemma 2b model.
If the model is not already available locally, it will be
downloaded automatically.

To interact with the AI, once the model is running, a prompt
will appear. Enter users’ message and press Enter, and the AI
will respond.

Users can customize and manage your models using the
following commands:

ollama create: Create a custom model

ollama show: Show model information

ollama list: Show a list of installed models

ollama rm: Delete a model

C. Python Code for Knowledgebase Creation

In this example we'll create a simple knowledge base with a
dictionary structure and show how to perform some basic
operations. Python code for creation of Knowledgebase System
is as follows,

python

class KnowledgeBase:

10 https://spacelift.io/blog/yaml

https://example.com/your_dsl.yml

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

121 | P a g e

www.ijacsa.thesai.org

def __init__(self):

self.knowledge = {}

def add_fact(self, key, value):

""Add a new fact to the knowledge base"""

self.knowledge[key] = value

def get_fact(self, key):

""Get a fact from the knowledge base"""

return self.knowledge.get(key, "No information found")

def update_fact(self, key, value):

""Update an existing fact"""

if key in self.knowledge:

self.knowledge[key] = value

return True

return False

def remove_fact(self, key):

""Remove a fact from the knowledge base"""

if key in self.knowledge:

del self.knowledge[key]

return True

return False

def list_all_facts(self):

""List all facts in the knowledge base"""

return self.knowledge

Knowledge Base Usage Example

if __name__ == "__main__":

kb = KnowledgeBase()

Add fact

kb.add_fact("Python", "High-level programming
language")

kb.add_fact("AI", "Artificial intelligence")

kb.add_fact("ML", "Machine learning")

Get fact

print(kb.get_fact("Python")) # Output: High-level
programming language

print(kb.get_fact("Database")) # Output: No information
found

Update fact

kb.update_fact("AI", "Artificial intelligence technology")

print(kb.get_fact("AI")) # Output: Artificial intelligence
technology

Remove fact

kb.remove_fact("ML")

List all facts

print(kb.list_all_facts())

This simple implementation can be extended as follows:

1) Persistence: Use a database (e.g. SQLite) to store the

knowledge base and maintain the information even after the

program ends.

2) Complex data structures: Store objects or structured data

instead of simple strings.

3) Search capabilities: Implement advanced search

capabilities using keyword searches or regular expressions.

4) Version control: Add the ability to track changes to each

fact.

5) Relationship expression: Be able to express relationships

between facts (e.g. a graph database-like approach).

6) Inference engine: Implement a simple inference function

to derive new facts from existing facts.

D. Required Hardware Specifications

The hardware specifications for building a RAG using
ollama are as follows.

1) CPU

a) Best choice: Intel CPU of 11th generation or later that

supports the AVX512 instruction set, or AMD CPU based on

Zen4. An AMD CPU based on the "Zen 4" architecture is the

first AMD processor to support the AVX-512 instruction set,

meaning if you're looking for an AMD CPU with AVX-512

capability, you should choose one based on the Zen 4

microarchitecture.

b) Reason: To speed up the matrix calculations required

for AI models

c) Minimum requirement: Any CPU that supports the

AVX instruction set will work

2) RAM

a) Recommendation: 16GB or more

b) Reason: To comfortably run models with 7B

parameters

c) Minimum requirement: May work with around 8GB

3) Storage

a) Recommendation: 50GB of freer space

b) Breakdown: Docker container (2GB+), model file,

vector store, etc.

4) GPU

a) Recommended: Equipped with NVIDIA GPU (e.g.

GTX 1080 Ti or higher)

b) Reason: Can significantly speed up model inference

c) Not required: Can be run with CPU only, but

processing speed will be reduced.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

122 | P a g e

www.ijacsa.thesai.org

In this connection, GIGABYTE AORUS GeForce GTX
1080 Ti 11GB Video Card - GV-N108TAORUS-11GD11 is one
of the candidates.

Other points to consider are that if you are using larger
models (13B or more), a high-performance GPU and 32GB or
more of RAM are recommended. Users also need to consider
the amount of VRAM (depending on the model size and
quantization level). ollama can run on relatively lightweight
systems, but to get comfortable user experience, it is
recommended that you use the above recommended
specifications as a guide. Especially in the RAG system, it is
desirable to have a generous specification because building and
searching the vector store also requires resources.

E. AI Agent

Although the definition of an AI agent may vary slightly
depending on the technical field, it generally refers to software
that interacts with its environment, collects data, and
autonomously executes tasks based on that data to achieve a
specific goal. In particular, our focus here is on AI agents based
on LLMs. Using an AI agent as the user interface of the RAG
system is a good approach to achieve a more flexible and
advanced conversational interface. Below are some
recommended implementation ideas.

1) Multi-agent system: This method uses a combination of

multiple specialized agents.

a) Triage agent: Analyzes the user's question and assigns

it to the appropriate specialized agent.

b) Search agent: Responsible for the search function of

the RAG system to retrieve related information.

c) Answer generation agent: Generates an appropriate

answer based on the search results.

d) Dialogue management agent: Manages the flow of

dialogue with the user and asks additional questions as

necessary.

In this method, each agent specializes in a specific role,
allowing complex tasks to be handled efficiently.1.

2) Plan-and-Execute agent: This method is performed by a

single advanced agent that plans and executes the plan.

Analyzes the user's question and plans the steps required to
answer it.

Based on the plan, it sequentially searches the RAG system,
integrates information, generates answers, etc.

The plan is revised as necessary to generate the final answer.

This method is particularly effective when complex
questions or multi-step processing are required.1.

3) Conversational RAG Agent: An agent that collects

information through dialogue with the user and gradually

refines its answer.

11 https://www.gigabyte.com/jp/Graphics-Card/GV-N108TAORUS-

11GD#kf

It first provides a concise answer to the user's initial
question.

It then asks the user if additional information or clarification
is needed.

Based on the user's response, it re-uses the RAG system to
complement the information and expand the answer.

This method allows for flexible information provision
tailored to the user's needs.

4) Self-improving RAG Agent: An agent system that

incorporates a feedback loop.

After answering the user's question, it asks for feedback on
the quality and appropriateness of the answer.

Based on the feedback, it automatically adjusts how it
generates search queries and constructs answers.

Continuous learning improves performance over time.

This method is particularly effective in long-term use,
allowing the system to continually improve its accuracy and
usefulness.

Implementation Considerations:

1) Model selection: Using high-performance models such

as GPT-4 allows for more sophisticated dialogue and accurate

information processing.

2) Context management: It is important to properly manage

long-term dialogue history and maintain consistent dialogue.

3) Error handling: Users need to implement a way to handle

cases when the agent cannot respond appropriately and provide

appropriate feedback to the user.

4) Security and privacy: Be careful with user data, filtering

and anonymizing information where necessary.

By using these recommendations as a starting point and
customizing them for specific use cases and requirements, it can
implement an AI agent as an effective RAG user interface.

F. Swarm AI Agent

Swarm is a framework for multi-agent orchestration
released by OpenAI on October 12, 202412. This framework
uses Python and is designed to enable AI agents to work
together and autonomously complete complex tasks. By using
Swarm, it becomes easy to build multi-agent systems.

Another library for building AI agents is LangGraph 13 .
LangGraph is feature-rich and highly flexible but tends to be
complicated to implement. In contrast, Swarm has fewer
features but is very easy to implement.

Table I shows the classes for creating AI agents. Users can
set the agent's name, behavior, model to be used, etc.
client.run() is a function to execute the created agent. The
arguments of this function are shown in Table II.

It processes messages for the agent and advances
conversation. Furthermore, run_demo_loop() is a function to

12 https://github.com/openai/swarm
13 https://langchain-ai.github.io/langgraph/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

123 | P a g e

www.ijacsa.thesai.org

repeatedly run the created agent on the console as shown in
Table III. It uses client.run() internally to run the agent.

TABLE I. THE CLASSES FOR CREATING AI AGENTS

Field_Name Type Default Description

name str "Agent" Name_of_the_agent

model str "gpt-4o" AI_model_to_use

instruction str
You_are_a_help

ful_agent.
Instructions_to_the_agent

functions List []
List_of_functions_availab
le_to_the_agent

tool_choice str None
Specific_tool_to_be_used

_by_the_agent

TABLE II. THE ARGUMENT FOR CLIENT.RUN ()

Argument

_Name
Type Initial_Value Description

agent Agent Required Initial_agent_to_be_called

messages List Required List_of_message_objects

context_var
iables

dict {}
Context_with_additional_in
formation

max_turns int float("inf")
Maximum_number_of_turn

s_in_conversation

model_over

ride
str None Option_to_change_model

stream bool False
Whether_to_show_streamin

g_responses

debug bool False Debug_mode

TABLE III. THE ARGUMENT FOR RUN_DEMO_LOOP ()

Argument_

Name
Type Initial_Value Description

starting_age

nt
Agent Required Initial_agent_to_be_called

context_vari
ables

dict {}
Context_containing_additio
nal_information

stream bool False
Whether_to_display_the_re

sponse_in_streaming_mode

debug bool False Debug_mode

IV. CONCLUSION

On-premises version of RAG is proposed for secure reasons.
The proposed RAG utilizes Swarm-based AI agent which
allows easy to select the optimal framework depending on the
data attributes. Furthermore, the Dify which is based on a DSL
is used as the user interface for the on-premises version of RAG.
Also, ollama is used as a large-scale language model that can
be installed on-premises as well.

Other than that, the specifications of the hardware required
to build this RAG and confirmed the feasibility of
implementation. It is confirmed that the proposed RAG system
can be created with just one PC with a GPU card.

V. FUTURE RESEARCH WORKS

Although it is confirmed that the proposed RAG system can
be feasible, knowledgebase system is not being developed.
There are so many applications of the proposed RAG system.
Therefore, one of the business use cases will be attempted in
the near future.

ACKNOWLEDGMENT

The author would like to thank Prof. Dr. Hiroshi Okumura
and Prof. Dr. Osamu Fukuda of Saga University for their
valuable comments and suggestions.

REFERENCES

[1] Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu, Zach Brannelly,
Mohamed Abdelrazek, Seven Failure Points When Engineering a
Retrieval Augmented Generation System, URL ：
https://arxiv.org/abs/2401.05856, Applied Artificial Intelligence Institute,
Geelong, Australia, 2024.

[2] Lewis, P., Perez, E., Pott, C., & Riedel, S., "Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks" by Patrick Lewis et al.,
Retrieval-augmented generation for knowledge-intensive NLP tasks. In
Proceedings of the 34th International Conference on Neural Information
Processing Systems (NIPS 2020) (pp. 1–12), 2020.

[3] Sap, M., Lourie, N., & Riedel, S., "Improving Zero-Shot Generalization
in Text Classification using Retrieval-Augmented Language Models" by
Maarten Sap et al., Improving zero-shot generalization in text
classification using retrieval-augmented language models. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2021) (pp. 1–12), 2021.

[4] Riedel, S., Lewis, P., & Perez, E. (2020). RAG: Retrieval-augmented
generator for knowledge-intensive nlp tasks. arXiv preprint
arXiv:2005.11401., "RAG: Retrieval-Augmented Generator for
Knowledge-Intensive NLP Tasks" by Sebastian Riedel et al., 2005.

[5] Karpukhin, V., Oğuz, B., Min, S., Wu, L., Edunov, S., Chen, D., & Yih,
W. T. (2020). Dense passage retrieval for open-domain question
answering. In Proceedings of the 34th International Conference on Neural
Information Processing Systems (NIPS 2020) (pp. 1–12)., "Dense
Passage Retrieval for Open-Domain Question Answering" by Vladimir
Karpukhin et al.,

[6] Akari Asai, et al., "Self-RAG: Learning to Retrieve, Generate, and
Critique through Self-Reflection", https://arxiv.org/abs/2310.11511,
2023.

[7] Gautier Izacard, et al., "Atlas: Few-shot Learning with Retrieval
Augmented Language Models", https://arxiv.org/abs/2208.03299, 2023.

[8] Mojtaba Komeili, et al., "Internet-Augmented Dialogue Generation",
https://arxiv.org/abs/2107.07566, 2022.

[9] Weijia Shi, et al., "REPLUG: Retrieval-Augmented Black-Box Language
Models", https://arxiv.org/abs/2301.12652, 2023.

[10] Vladimir Karpukhin, et al., "Dense Passage Retrieval for Open-Domain
Question Answering", EMNLP 2020, https://arxiv.org/abs/2004.04906,
2020.

[11] Kelvin Guu, et al., "Realm: Retrieval-Augmented Language Model Pre-
Training", ICML 2020, https://arxiv.org/abs/2002.08909, 2020.

[12] Sebastian Borgeaud, et al., "Improving language models by retrieving
from trillions of tokens", ICML 2022, https://arxiv.org/abs/2112.04426,
2022.

[13] Zhuyun Dai, et al., "Query2doc: Query Expansion with Large Language
Models", https://arxiv.org/abs/2303.07678, 2023.

[14] Wenhao Yu, et al., "Chain-of-Note: Enhancing Robustness in Retrieval-
Augmented Language Models", https://arxiv.org/abs/2311.09210, 2023.

[15] Halevy, A. Y., et al. "Enterprise information integration: successes,
challenges and controversies." Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. 2005.

[16] Mernik, M., Heering, J., & Sloane, A. M. "When and how to develop
domain-specific languages." ACM Computing Surveys (CSUR) 37.4
(2005): 316-344, 2005.

[17] Sarma, A. D., et al. "Interactive data integration." Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data. 2010,
2010.

[18] International Conference on Very Large Data Bases (VLDB). VLDB
Conference Website, https://vldb.org/2024/, accessed on 19 December
2024.

[19] ACM SIGMOD International Conference on Management of Data.
SIGMOD Conference Website,

https://arxiv.org/abs/2401.05856
https://vldb.org/2024/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

124 | P a g e

www.ijacsa.thesai.org

https://dl.acm.org/doi/proceedings/10.1145/3626246, accessed on 19
December 2024.

[20] Technical report series of research institutes (e.g. MIT CSAIL Technical
Reports), https://libguides.mit.edu/c.php?g=176306&p=1159542,
accessed on 19 December 2024.

[21] Lenzerini, M. "Data integration: a theoretical perspective." ACM
SIGMOD Record 33.3 (2004): 66-73, 2004.

[22] Fowler, M. "Domain-specific languages." Addison-Wesley Professional,
2010.

[23] GitHub (e.g. Apache NiFi, Apache Beam).
https://github.com/apache/beam, accessed on 19 December 2024.

AUTHOR’S PROFILE

Kohei Arai, He received BS, MS and PhD degrees in 1972, 1974 and 1982,
respectively. He was with The Institute for Industrial Science and Technology
of the University of Tokyo from April 1974 to December 1978 also was with

National Space Development Agency of Japan from January 1979 to March
1990. During from 1985 to 1987, he was with Canada Centre for Remote
Sensing as a Post-Doctoral Fellow of National Science and Engineering
Research Council of Canada. He moved to Saga University as a Professor in
Department of Information Science in April 1990. He was a councilor for the
Aeronautics and Space related to the Technology Committee of the Ministry of
Science and Technology during from 1998 to 2000. He was a councilor of Saga
University for 2002 and 2003. He also was an executive councilor for the
Remote Sensing Society of Japan for 2003 to 2005. He is a Science Council of
Japan Special Member since 2012. He is an Adjunct Professor at Brawijaya
University. He also is an Award Committee member of ICSU/COSPAR. He
also is an adjunct professor of Nishi-Kyushu University and Kurume Institute
of Technology Applied AI Research Laboratory. He wrote 119 books and
published 728 journal papers as well as 569 conference papers. He received 98
of awards including ICSU/COSPAR Vikram Sarabhai Medal in 2016, Science
award of Ministry of Mister of Education of Japan in 2015 and so on. He is now
Editor-in-Chief of IJACSA and IJISA. http://teagis.ip.is.saga-
u.ac.jp/index.html

https://dl.acm.org/doi/proceedings/10.1145/3626246
https://libguides.mit.edu/c.php?g=176306&p=1159542
https://github.com/apache/beam

