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Abstract—By 2030, chronic obstructive pulmonary disease 

(COPD) is expected to become one of the top three causes of death 

and a leading contributor to illness globally. Chronic Obstructive 

Pulmonary Disease (COPD) is a debilitating respiratory disease 

and lung ailment caused by smoking-related airway inflammation, 

leading to breathing difficulties. Our COPD Healthcare 

Monitoring System for COPD Early Detection addresses this 

critical need by leveraging advanced Machine Learning (ML) and 

Deep Learning (DL) technologies. Unlike previous studies that 

predominantly rely on image datasets alone, our advanced 

monitoring system utilizes both image and text datasets, offering a 

more comprehensive approach. Importantly, we manually curated 

our dataset, ensuring its uniqueness and reliability, a feature 

lacking in existing literature. Despite the utilization of popular 

models like nnUnet, Cx-Net, and V-net by other papers, our model 

outperformed them, achieving superior accuracy. XGBoost led 

with an impressive 0.92 score. Additionally, deep learning models 

such as VGG16, VGG19, and ResNet50 delivered scores ranging 

from 0.85 to 0.89, showcasing their efficacy in COPD detection. By 

amalgamating these techniques, our system revolutionizes COPD 

care, offering real-time patient data analysis for early detection 

and management. This innovative approach, coupled with our 

meticulously curated dataset, promises improved patient 

outcomes and quality of life. Overall, our study represents a 

significant advancement in COPD research, paving the way for 

more accurate diagnosis and personalized treatment strategies. 
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I. INTRODUCTION 

Chronic Obstructive Pulmonary Disease (COPD) is a 
progressive respiratory condition that remains a major global 
health challenge, particularly due to its high prevalence and 
mortality rate. Characterized by persistent airflow limitation, 
COPD typically manifests through symptoms such as chronic 
cough, dyspnea, and wheezing. According to the World Health 
Organization (WHO), COPD is currently the third leading 
cause of death worldwide. Relevant studies have shown that the 
prevalence of COPD is much higher among lung cancer 
patients [1]. The disease primarily affects individuals with a 
history of long-term exposure to harmful pollutants, such as 
tobacco smoke, occupational dust, and chemical fumes. Despite 
advances in medical care, the burden of COPD continues to 
rise, particularly in low- and middle-income countries where 

access to healthcare is limited. As the global population ages 
and exposure to risk factors persists, the number of COPD cases 
is expected to increase, highlighting the urgent need for 
effective strategies to manage and mitigate this condition, the 
potential of implementing processing steps to more closely 
adapt clinical workflow processes has thus far not been 
explored in detail [2]. 

Detecting COPD in its early stages presents significant 
challenges, which complicates effective management and 
treatment. Pulmonary disease is a respiratory disease that 
affects the lungs as well as the other respiratory organs [3] One 
of the primary difficulties lies in the subtle onset of symptoms, 
which are often mistaken for normal signs of aging or attributed 
to other respiratory conditions. This leads to delays in seeking 
medical attention and, consequently, late-stage diagnoses when 
the disease has already caused irreversible lung damage. 
Current diagnostic methods, such as spirometry, chest X-rays, 
and CT scans, while effective, are not always readily accessible 
or reliable, particularly in resource-limited settings. Moreover, 
these methods can be invasive and uncomfortable for patients, 
further deterring early detection efforts. The accuracy of these 
tests also heavily depends on the quality of administration, with 
improperly trained personnel leading to misdiagnoses or 
underdiagnoses. As a result, there is a growing need for non-
invasive, highly accurate diagnostic tools that can be widely 
implemented to improve early detection rates and patient 
outcomes. 

Looking ahead, the future of COPD management hinges on 
the development of advanced diagnostic and therapeutic 
technologies that can address current limitations. Artificial 
intelligence (AI), particularly machine learning (ML) and deep 
learning (DL), is poised to play a critical role in this evolution. 
Deep learning technology are applied to computer aided 
diagnosis to realize the automatic diagnosis of disease that 
achieved good results [4]. By analyzing large datasets of patient 
information, these technologies can identify patterns and 
markers that might be missed by traditional methods, enabling 
earlier and more accurate detection of COPD. Additionally, the 
integration of wearable devices and remote monitoring systems 
could facilitate continuous assessment of lung function, 
providing real-time data that can be used to personalize 
treatment plans. Despite the success of DL in pulmonary 
disease classification using CXRs, a very limited number of 
studies have explored the potential of DL techniques in COPD 
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diagnosis using CXRs only [5]. Therefore, a comprehensive 
approach that combines cutting-edge technology with public 
health initiatives is essential to curb the impact of COPD in the 
coming decades. Our primary contribution in this study is: 

 Patient-Driven Text Dataset: Questionnaire-Based Data 
Collection for COPD Analysis. 

 Privacy-Preserving Image Dataset: Ensuring 
Confidentiality in Chest X-Ray Image Collection for 
COPD Diagnosis. 

 Integrating Chest X-Ray Imaging and Patient History 
Data for creating dataset. 

 Using Vgg-16, Vgg-19, ResNET-50 for x-ray images 
and Logistic Regression, XGB classifier, Random forest 
classifier for patient history 

 Identifying modifiable and non-modifiable risk factors. 

The study is organized into several sections. Section II 
reviews the existing literature on COPD detection. Section III 
details the materials and methods used in the proposed 
framework. Section IV presents and discusses the experimental 
results. Finally, Section VI concludes the study by summarizing 
the key findings on COPD detection. 

II. RELATED WORK 

Using anatomical data from 28 structures, training 3D 
nnUNet models on 89 patients' CT scans, testing shows a 10-
point improvement in 15 patients. This method enhances early 
CT scan identification of enlarged nodes [6]. This study 
proposes a novel anomaly detection approach for diagnosing 
COPD. Using self-supervised models to identify abnormalities, 
it outperforms prior methods by 8.2% and 7.7% on two 
datasets, offering interpretable anomaly maps and early-stage 
COPD progression detection [7]. CX-Net, an ensemble learning 
method for lung segmentation and diagnosis in chest X-rays, 
utilizes four neural network models. Incorporating SHAP and 
Grad-CAM for interpretability, it provides visual explanations 
of critical regions, enhancing AI-driven diagnostic systems' 
reliability in clinical settings [8]. This review highlights the 
potential of digital inhaler devices, connected to mobile apps, 
in managing asthma and COPD. Features like interactivity, 
gamification, and machine learning can predict and prevent 
exacerbations, but integration into care pathways is essential for 
personalized management [9]. Using two datasets with complex 
physiological signals, a fractional-order dynamics deep 
learning model achieves a 98.66% accuracy in COPD 
diagnosis. It shows robust performance across datasets, 
presenting a promising alternative to traditional spirometry-
based methods [10]. Enhancing sparse-view CT image quality 
for lung cancer detection, a U-Net reduces projection views 
from 2048 to 64, maintaining image quality and radiologists' 
confidence. Post-processing with the U-Net improves metrics, 
suggesting a balance between fewer views and diagnostic 
efficacy [11]. This study enhances COPD prediction using 
machine learning on 5807 cases, identifying ten significant 
variables. Logistic Regression performs best on balanced data, 
while stacking with SMOTE excels on unbalanced datasets, 
effectively identifying early COPD risk [12]. COPD-FlowNet, 
a GAN, generates realistic velocity flow field images. The 

generator uses CNN layers, and a custom CNN classifier 
locates obstruction sites. Techniques like BatchNorm and 
leaky-ReLU activation improve feature extraction, addressing 
the "covariate shift" problem [13]. This study explores the 
relationship between COPD and NSCLC using machine 
learning techniques. Analyzing electronic health records, it 
develops a predictive model to improve early NSCLC 
identification in COPD patients, enhancing survival rates 
through accurate clinical feature screening [1]. The study 
explores advanced methods for diagnosing COPD, impacting 
over 15 million Americans annually. Evaluating 
sociodemographic and genetic data, it identifies risk factors 
beyond smoking, aiming for comprehensive early detection and 
prevention strategies [3]. This study explores automated COPD 
detection using CNNs on chest CT scans. Emphasizing 
preprocessing steps and accurate labels, it demonstrates 
improved outcomes, suggesting that careful preprocessing 
enhances CNN-based COPD detection [2]. The study examines 
COPD risk factors using sociodemographic and genetic data. 
Smoking, underweight, parental respiratory history, and low 
education are major risks. Genome-wide studies reveal novel 
genetic variants, aiming for comprehensive early detection and 
prevention [14]. Deep learning algorithms for early COPD 
detection using chest X-rays are developed in this study. 
Employing data fusion and model fusion techniques, it 
evaluates performance across demographic subgroups, 
suggesting deep learning models as valuable screening tools in 
resource-poor settings [5]. A two-stage 3D contextual 
transformer-based U-Net is proposed for accurate airway 
segmentation in CT images, essential for bronchoscopy 
planning and COPD assessment. The method outperforms 
existing approaches, achieving advanced segmentation with 
increased branch extraction and length coverage [15]. The 
study investigates airway closure dynamics in conditions like 
asthma, COPD, and cystic fibrosis. Using the Saramito-HB 
model, it explores liquid plug formation, showing that elasticity 
influences closure occurrence and time, enhancing 
understanding of airway closure in different health conditions 
[16]. The paper explores Vision Transformer (ViT) models for 
COPD detection using CT images, addressing privacy through 
federated learning (FL). The proposed approach outperforms 
CNN-based FL methods, demonstrating effectiveness on 
COPD data from multiple medical centers [17]. This study 
focuses on COPD detection and monitoring through voice 
analysis. Developing a machine learning-based tool, it 
highlights features like breathing, coughing, and speech, 
demonstrating promising results for AI-assisted rapid diagnosis 
and monitoring of COPD [18]. An apparatus for generating 
obstructive breathing disorder waveforms is proposed, aiding 
in understanding diseases like COPD and pulmonary fibrosis. 
The research creates mechanisms for generating a spectrum of 
disease severities, assisting in classification and severity 
identification [19]. MixEHR-S, a Bayesian topic model for 
EHR, models specialist distribution and infers latent disease 
topics. It incorporates Bayesian probit regression, 
outperforming existing methods in predicting diseases like 
COPD, showcasing potential for accurate disease prediction 
and personalized patient care [20]. An improved machine 
learning method for accurate lung lobe segmentation is 
introduced, enhancing spatial accuracy using tracheobronchial 
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tree information. The method achieves high performance across 
diverse diseases, demonstrating robustness and aiding 
clinicians in defining lung disease distribution [21]. 

III. METHODOLOGY 

Fig. 1 presents the workflow diagram of the methodology 
applied in this research. The dataset utilized for the experiments 
is newly compiled, derived from patient records that were 
manually gathered from multiple hospitals. This study 
leverages both temporal and spectral features to facilitate the 
detection of COPD, with exploratory data analysis performed 
through various informative charts and graphs. The dataset is 
partitioned, with 75% allocated for training and the remaining 
25% for testing. Machine learning models are trained using the 
training data and subsequently tested on the test data. 
Hyperparameter tuning is applied in an iterative manner to 
identify the optimal parameters for each model, enhancing their 
overall performance. All models are fine-tuned to maximize 
their accuracy and effectiveness in detecting COPD. 

 

Fig. 1. Text classification. 

A. TEXT Data Collection 

In Table I discuss about collect the required data for our 
study, we visited several hospitals and specifically focused on 
patients who were using oxygen masks or experiencing 
significant breathlessness, as these symptoms are indicative of 
potential COPD. We approached these patients in both male 
and female wards, carefully targeting individuals who matched 
our study criteria. With their consent, we conducted thorough 
interviews, asking about various symptoms such as age, 
Gender, wheezing, breathlessness, smoking history, lack of 
energy, good day-bad day, allergy, family history. 

We also examined their prescriptions and medical reports, 
documenting key details relevant to their health status. 
Additionally, we captured images of important test reports, 
such as CBC-ESR, WBC, and S. creatinine, using our phones 
for further analysis. We are collected total 1000 data from 
hospitals patients. Through this method, we ensured that we 
gathered comprehensive data from both COPD and non-COPD 
patients, recording all essential information in our study 
records. This approach enabled us to build a detailed dataset 
that covers a wide range of patient health indicators, which is 

critical for our research on early detection and monitoring of 
COPD. 

TABLE I. TEXT DATASET ANALYSIS 

Features Description 

Age 
The patient's age, which can influence COPD 

risk and progression. 

Gender 
Whether the patient is male or female, as 

COPD prevalence may vary by gender. 

Wheezing 
Presence or absence of wheezing, a key 
respiratory symptom linked to COPD. 

Breathlessness 
The severity of breathlessness, which is a 
major indicator of lung function decline. 

Smoking History 
Whether the patient has a history of smoking, 

a leading cause of COPD. 

Lack of Energy 
Low energy levels, often reported by patients 
with chronic lung conditions like COPD. 

Good Day/Bad Day 

The patient's overall well-being, indicating 

whether they feel better or worse on a given 

day. 

Allergy 
Presence of allergies, which could affect 
respiratory health and potentially contribute 

to COPD. 

Family History 

A record of any family members with COPD 

or other lung-related diseases, indicating 

genetic predisposition. 

CBC-ESR 
Blood test results showing inflammation 
levels, often elevated in COPD patients. 

WBC  
WBC levels, which can indicate infection or 

inflammation common in COPD. 

S. Creatinine 
A measure of kidney function, sometimes 

linked to overall health in COPD patients. 

COPD or Non-COPD 
Classification of patients based on whether 

they have COPD or not, used for labeling. 

B. Text Data Analysis 

In this study, text data analysis is crucial for uncovering 
patterns and extracting meaningful insights from patient 
information to aid in the early detection of COPD. The dataset 
comprises numerous health indicators, each offering valuable 
details about patients' overall condition. Through a detailed 
preprocessing phase, any missing or inconsistent data is 
carefully addressed, ensuring a clean and standardized dataset 
ready for analysis. Feature extraction methods are employed to 
highlight the most significant variables that play a critical role 
in diagnosing COPD. Following this, exploratory data analysis 
(EDA) is conducted using various visualizations, such as graph 
and correlation matrices, to reveal trends and relationships 
between the key factors influencing COPD progression. These 
insights inform the development of machine learning and deep 
learning models, allowing them to focus on the most impactful 
features. This approach optimizes the models' performance, 
ensuring higher accuracy in identifying patients likely to have 
COPD. By leveraging this data-driven analysis, the study 
provides a comprehensive framework for enhancing healthcare 
decisions, contributing to more effective COPD management 
and improved patient outcomes. 

Fig. 2 illustrates the distribution of COPD and non-COPD 
cases in our dataset. The dataset is evenly balanced, with 50% 
of the data representing COPD cases and 50% representing 
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non-COPD cases. Specifically, it consists of 500 samples of 
COPD data and 500 samples of non-COPD data, ensuring a fair 
representation of both categories. This balanced distribution is 
crucial for training machine learning models, as it helps 
mitigate the risk of bias towards one class and ensures that the 
model learns to differentiate between COPD and non-COPD 
conditions effectively. The equal representation of both groups 
contributes to more reliable and generalized results, allowing 
for better performance when the model is deployed in real-
world clinical settings. 

 

Fig. 2. COPD and NON-COPD distribution in dataset. 

 

Fig. 3. Correlation analysis. 

Fig. 3 illustrates the correlation analysis between various 
patient health factors used in COPD detection. The correlation 
matrix highlights both positive and negative relationships 
among the features, with values ranging from -1 to 1. Strong 
positive correlations are observed between breathlessness and 
smoking history (0.72), as well as between breathlessness and 
lack of energy (0.68), suggesting these symptoms are closely 
linked in COPD patients. Moderate correlations between family 
history, CBC-ESR, and other key health indicators point to the 
influence of both genetic and clinical factors on COPD 
progression. Conversely, features like good day/bad day and 
allergy exhibit weaker correlations with other variables, 
indicating less direct involvement in COPD severity. Overall, 
this analysis reveals the interconnectedness of respiratory 
symptoms, lifestyle factors, and clinical test results, which 
provides a deeper understanding of COPD's multifaceted nature 
and informs the model's predictive capabilities. 

In this phase of the study, the dataset is divided into two 
distinct subsets: features and the target variable. The features 
encompass all relevant health indicators that may influence the 
diagnosis of COPD, while the target variable represents 
whether a patient is classified as having COPD or not. To 
prepare the data for analysis, the dataset is split into training and 
testing sets, with 75% allocated for training and 25% reserved 
for testing. This division ensures that the models are trained on 
a substantial portion of the data, allowing them to learn the 
underlying patterns associated with COPD effectively. The 
training set is crucial for model development, as it provides the 
necessary data for the machine learning algorithms to identify 
relationships between the features and the target variable. 
Conversely, the testing set serves as an independent dataset 
used to evaluate the model's performance and generalizability 
to unseen data. The shapes of the training and testing sets are 
printed to confirm the successful separation of the data, 
providing an overview of the number of samples available for 
training and testing. This systematic approach is vital for 
developing accurate predictive models for COPD diagnosis. 

C. Machine Learning Model 

1) Logistic regression: In this study, a Logistic Regression 

model is employed to predict the likelihood of a patient being 

diagnosed with Chronic Obstructive Pulmonary Disease 

(COPD) based on various health indicators. The model is 

instantiated with a regularization parameter C=100, which 

controls the strength of regularization applied to the model. 

Regularization helps prevent overfitting by penalizing complex 

models, thus promoting simpler, more generalizable solutions. 

The solver used for optimization is 'liblinear', which is suitable 

for smaller datasets and provides efficient convergence. 

Logistic Regression is a statistical method used for binary 

classification. It predicts the probability that a given input 

belongs to a specific class by modeling the relationship between 

the independent variables (features) and the dependent variable 

(target) using the logistic function. The mathematical 

representation of the Logistic Regression model can be 

expressed as: 

𝑦 = 𝑒(𝑏0+𝑏1∗𝑥)/(1 + 𝑒(𝑏0+𝑏1∗𝑥))  (1) 

Where, 

y = Predicted output, 

e = natural logarithm, 

b0 = bias or intercept term, 

b1 = coefficient for the single input value (x).  

The fitted model learns the optimal values of the 
coefficients through the training data, enabling it to predict the 
probability of COPD in new patients based on their health 
profiles. By setting the threshold for classification (commonly 
at 0.5), the model can classify patients as either having COPD 
or not, thus contributing valuable insights for healthcare 
decision-making. 

2) XGB classifier: In this study, the XGBClassifier 

(Extreme Gradient Boosting Classifier) is utilized to enhance 
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the prediction accuracy for diagnosing Chronic Obstructive 

Pulmonary Disease (COPD) based on various health indicators. 

The model is configured with specific hyperparameters: one 

estimator, a maximum depth of one, a learning rate of 0.3, and 

a subsample ratio of 0.1. The choice of a low maximum depth 

helps prevent overfitting while allowing the model to capture 

important interactions within the data. The learning rate 

determines how quickly the model learns from the data, while 

the subsample ratio indicates the fraction of samples to be used 

for fitting the individual base learners, thus introducing 

randomness and helping to improve the model's generalization. 

XGBoost operates on the principle of boosting, which 

sequentially combines weak learners to create a strong learner. 

The model optimizes for a specific loss function, with the log 

loss function often employed for binary classification tasks. 

The log loss can be expressed mathematically as: 

logloss =  −1/𝑁 ∑ (𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖)log(1 − 𝑝𝑖))
𝑁

𝑖=1

  (2) 

Where: 

N is the number of samples. 

yi is the true label of sample i (0 or 1). 

pi is the predicted probability that sample i belongs to class 
1. 

This loss function evaluates the performance of the model 
by penalizing incorrect predictions more severely, especially 
when the predicted probability is close to 0 or 1, which helps 
improve the model's accuracy. By fitting the model to the 
training data, it learns to predict the probability of a patient 
being diagnosed with COPD, ultimately providing valuable 
insights for healthcare decision-making. 

3) Random Forest classifier: In this study, the 

RandomForestClassifier is employed to enhance the 

classification accuracy in diagnosing Chronic Obstructive 

Pulmonary Disease (COPD). This ensemble learning method 

constructs multiple decision trees during training and 

aggregates their predictions to produce a final output, thereby 

improving robustness and accuracy over a single tree model. 

The RandomForestClassifier is initialized with one estimator, a 

maximum depth of one, and a random state of eight to ensure 

reproducibility. 

The power of the Random Forest model lies in its ability to 
combine the predictions from various decision trees. Each tree 
is trained on a random subset of the data and makes its own 
prediction. The final output of the Random Forest model is 
determined by the mode of the predictions from all the 
individual decision trees, as expressed by the equation: 

𝑦 = 𝑀𝑜𝑑𝑒(𝑓1(𝑥), 𝑓2(𝑥), … . , 𝑓𝑛(𝑥))  (3) 

Where: 

y is the predicted output (for classification). 

fi(x) is the prediction of the i-th decision tree for the input 
x. 

This aggregation process helps to reduce the variance 
associated with individual trees, resulting in a more accurate 
and reliable model. By fitting the Random Forest classifier to 
the training data, the model learns to recognize patterns 
associated with COPD, allowing for more effective predictions 
when applied to new patient data. 

In Table II, we provide a comprehensive overview of the 
hyperparameters utilized for training and testing the machine 
learning models applied to our text dataset. Each 
hyperparameter plays a crucial role in determining the model's 
performance, influencing aspects such as complexity, learning 
rate, and generalization ability. By fine-tuning these 
parameters, we aim to optimize the models for accurate 
predictions of COPD presence in patients. This table serves as 
a reference for understanding how each hyperparameter 
contributes to the overall effectiveness of the respective 
models, facilitating better insights into their operational 
dynamics during the experimental phase. 

TABLE II. HYPERPARAMETERS FOR APPLIED MODEL 

Model Hyperparameters Description 

Logistic 

Regression 

C=100 

Controls the inverse of 

regularization strength 
(weaker regularization). 

solver='liblinear' 
Algorithm used for 
optimization (useful for small 

datasets). 

random_state=0 Ensures reproducibility. 

XGB 

Classifier 

n_estimators=1 
The number of boosting 
rounds/trees. 

max_depth=1 
Maximum depth of each tree, 

limiting complexity. 

learning_rate=0.3 
Controls the weight 
adjustment speed during 

training. 

subsample=0.1 
Uses 10% of the training data 

for each tree. 

Random 
Forest 

Classifier 

max_depth=1 
Restricts each tree to a single 

split (decision stumps). 

n_estimators=1 
Number of trees in the forest 

(only one tree). 

random_state=8 Ensures reproducibility. 

 

Fig. 4. Image classification. 
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Fig. 4 outlines the comprehensive workflow for the image 
classification procedure, beginning with the collection of X-ray 
images from patients. Once the images are gathered, they 
undergo image data analysis to extract key visual features. The 
dataset is then split into training and testing sets during the 
image segmentation phase, ensuring that the models are trained 
on a representative portion while preserving data for validation. 
Following this, the proposed methodology is applied, which 
incorporates advanced machine learning or deep learning 
techniques for accurate feature extraction and classification. 
Finally, the models predict whether the patient is classified as 
having COPD or being non-COPD based on the image data, 
providing critical insights for diagnosis. 

For the image data collection in our study, we visited 
several hospitals, focusing on male and female wards to identify 
patients using oxygen masks or experiencing significant 
breathlessness, as these indicators are closely associated with 
respiratory issues. We specifically targeted these patients, 
engaging them in conversation to inquire about their symptoms 
and health conditions. Additionally, we examined their X-ray 
reports to assess their lung health. With the patients' consent, 
we captured images of their X-ray reports using our phones to 
ensure we gathered the necessary data accurately. 

Through this methodical approach, we successfully 
collected a total of 1,000 X-ray images from both COPD and 
non-COPD patients, creating a comprehensive dataset (Fig. 5) 
for analysis. This collection process not only provides valuable 
insights into the visual manifestations of COPD but also 
facilitates further investigation into the relationship between 
symptoms and X-ray findings in respiratory diseases. 

 

Fig. 5. Image dataset. 

4) Image data analysis: In this study, image data analysis 

is crucial for identifying visual patterns related to COPD 

detection. The dataset comprises X-ray images from both 

COPD and non-COPD patients, which are processed for further 

analysis. Images from both categories are resized to 128x128 

pixels and converted to RGB format, ensuring uniformity 

across the dataset. This preprocessing step converts the images 

into numerical arrays, making them suitable for deep learning 

models. Data augmentation techniques are applied using the 

Image-Data-Generator, which enhances the dataset by 

introducing variations such as rotation, zoom, width and height 

shifts, shearing, and horizontal flipping. These augmentations 

prevent overfitting and improve model generalization by 

simulating real-world variations in medical imaging. This 

methodical approach to image data analysis ensures that the 

dataset is enriched and diversified, enabling more robust 

training and testing of models for accurate COPD classification. 

The image dataset is divided into two parts to ensure 
effective training and evaluation of machine learning and deep 
learning models. Seventy-five percent (75%) of the dataset is 
allocated for training, where the models learn to identify 
patterns and features related to COPD and non-COPD cases. 
This larger portion allows the model to gain sufficient exposure 
to varied data, improving its ability to generalize and recognize 
important features. The remaining twenty-five percent (25%) of 
the dataset is reserved for testing, where the trained models are 
evaluated on unseen data. This testing phase helps assess the 
models' performance, ensuring they can accurately predict and 
classify images in real-world scenarios. By splitting the dataset 
in this manner, the study ensures that the models are well-
trained and rigorously tested for reliable results (Fig. 6). 

  

Fig. 6. Split image dataset. 

D. Deep Learning Model 

1) VGG-16: The VGG-16 model is a deep convolutional 

neural network (CNN) architecture pre-trained on the ImageNet 

dataset. The VGG-16 model is fine-tuned in this 

implementation for a binary classification task with specific 

layers and parameters. It begins with convolutional layers 

(Conv2D) followed by max-pooling layers to reduce spatial 

dimensions. The architecture includes 32, 64, and 128 filters for 

extracting features, followed by fully connected (Dense) layers 

with ReLU activations to enhance learning. Dropout layers 

(0.5) are used to prevent overfitting, and the final Dense layer 

uses a sigmoid activation for binary output (COPD or non-

COPD). The model is optimized with a custom learning rate 

(0.001) using the Adam optimizer, designed to improve 

convergence speed. The loss function is set to binary cross-

entropy, commonly used for binary classification problems. 

The model is trained for 5 epochs using a smaller batch size of 

64, and data augmentation is applied for more robust learning. 

Validation is performed on a test set to monitor performance 

across training. 

𝑦𝑖𝑖𝑙 = 𝜎(∑ 𝑚, 𝑛𝑊𝑚𝑛𝑙. 𝑋(𝑖 − 𝑚)(𝑗 − 𝑛)𝑙 + 𝑏𝑙) (4) 

Where: 

Yijl is the output feature map at position (i,j) in layer l. 

X(i−m)(j−n)l is the input feature map centered at position 
(i,j). 

75%

25%

TRAIN TEST

Train Test
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Wmnl are the learnable convolutional filters. 

bl is the bias term. 

σ is the activation function (usually ReLU). 

2) VGG-19: This model is a Sequential deep learning 

architecture, designed for binary classification tasks like 

detecting COPD from image data. The architecture starts with 

three Conv2D layers, where each convolutional layer (32, 64, 

and 128 filters with a (3x3) kernel) extracts features from the 

input image (128x128x3) and uses the ReLU activation 

function to introduce non-linearity. Each Conv2D layer is 

followed by a MaxPooling2D layer to downsample the feature 

maps, reducing the spatial dimensions while retaining 

important features. After the convolutional and pooling layers, 

the model flattens the output to convert the 2D feature maps 

into a 1D vector. It then uses two fully connected (Dense) layers 

with 64 and 8 units, respectively, where each applies the ReLU 

activation function to capture complex relationships in the data. 

Dropout layers (0.5) are included after each Dense layer to 

prevent overfitting by randomly dropping out half of the 

neurons during training. The final Dense layer has a single unit 

with a sigmoid activation, which outputs a probability score for 

binary classification (COPD or non-COPD). A custom learning 

rate (0.001) is set for the Adam optimizer, which helps the 

model converge more efficiently during training by adjusting 

the learning process adaptively. 

𝑦 = 𝜎(𝑊𝑋 + 𝑏)   (5) 

Where: 

Y is the output vector. 

X is the input vector. 

W is the weight matrix. 

b is the bias vector. 

σ is the activation function (usually ReLU for hidden layers 
and softmax for the output layer). 

3) ResNet-50: The model architecture here integrates 

aspects of both the ResNet50 and a custom CNN-based 

architecture. Firstly, ResNet50 is used as a pre-trained model 

with imagenet weights, meaning it has already been trained on 

a large dataset (ImageNet) to recognize a wide variety of 

images. It includes the top layers, meaning the fully connected 

layers at the end of the model are used for classification. 

ResNet50 is known for its residual connections, which help 

mitigate vanishing gradients, making it suitable for deeper 

networks. Then, a custom Sequential model is constructed. This 

custom model consists of three Conv2D layers with 32, 64, and 

128 filters respectively, and a (3x3) kernel size, followed by 

MaxPooling2D layers that downsample the feature maps. This 

pattern of convolution and pooling layers extracts hierarchical 

features from the input images (128x128x3). The model is 

flattened to convert the 2D output into a 1D vector before 

passing through fully connected Dense layers (with 64 and 10 

units, both using ReLU for activation) that learn more abstract 

patterns. Two Dropout layers (0.5) are used to prevent 

overfitting by randomly deactivating 50% of the neurons during 

training. The final Dense layer has a single neuron with a 

sigmoid activation function for binary classification, producing 

an output between 0 and 1 (COPD or non-COPD). The model 

uses the Adam optimizer with a custom learning rate of 0.001 

to adjust weights during training, helping the model converge 

to an optimal solution efficiently. 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐹(𝑖𝑛𝑝𝑢𝑡) + 𝑖𝑛𝑝𝑢𝑡  (6) 

Where: 

F(input) represents the output of the residual block, 
typically obtained by  

applying several convolutional layers. 

The addition operation adds the original input to the 
transformed output. 

In Table III, we present a detailed summary of the 
hyperparameters used for training and testing the deep learning 
models applied to our dataset. Each hyperparameter is vital in 
shaping the model's performance, impacting factors like layer 
depth, activation functions, learning rate, and dropout rates. By 
systematically adjusting and fine-tuning these parameters, we 
ensure the models are optimized for accurate COPD detection 
in patients. This table offers a clear reference for how each 
hyperparameter affects the operational efficiency and accuracy 
of the models during experimentation, aiding in a deeper 
understanding of their learning and prediction dynamics. 

TABLE III. HYPERPARAMETERS FOR APPLIED DEEP LEARNING 

Technique Hyperparameters Description 

Vgg-16 

Conv2D 

Extracts features using 2D 

convolution operations. 

VGG-16 has 13 
convolutional layers. 

MaxPooling2D 

Reduces the spatial 

dimensions after each block 
of convolution layers. 

Pooling window size is 

(2x2). 

Fully Connected Layers 

There are three fully 

connected layers after the 

convolution layers for 
classification. 

ReLU Activation 
Used after each convolution 
and fully connected layer to 

introduce non-linearity. 

Softmax Layer 

Used in the final output 

layer to predict class 
probabilities. 

Input Shape 
Fixed at (128x128x3) for 

images. 

Vgg-19 

Conv2D 
Same as VGG-16 but with 

16 convolutional layers. 

MaxPooling2D 
Same as VGG-16 for down 

sampling the feature maps. 

Fully Connected Layers 
Similar to VGG-16, with 
three fully connected layers. 
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ReLU Activation 
Same as VGG-16, providing 
non-linearity. 

Softmax Layer 
For multi-class classification 

at the final output. 

Input Shape 
(128x128x3), same as VGG-

16. 

ResNet-50 

Conv2D 
Convolution layers in the 

form of 1x1 and 3x3 filters. 

ReLU Activation 

Used for non-linearity, 

applied after batch 

normalization. 

MaxPooling2D 

Similar to VGG 
architectures, for 

downsampling the feature 

maps. 

Softmax Layer 
For classification, at the 
final output. 

Input Shape Fixed at (128x128x3). 

IV. RESULT AND DISCUSSION 

Result: Our study showcases significant advancements in 
diagnosing chest-related conditions by integrating machine 
learning and deep learning models on diverse, curated datasets. 
Notably, XGBoost achieves an outstanding AUC of 0.92, 
surpassing Logistic Regression (0.87) and Random Forest 
(0.82) in discrimination ability. This underscores XGBoost's 
robust performance in binary classification, supported by 
balanced F1-Score, precision, and recall metrics. Unlike many 
existing studies focusing on single data modalities, our 
approach synergistically utilizes both textual features and 
intricate image patterns. Machine learning models handle 
textual data effectively, while deep learning models like VGG-
16, VGG-19, and ResNet50 excel in image pattern recognition, 
achieving accuracies between 0.85 and 0.89. This holistic 
integration enriches our dataset, offering comprehensive 
insights into medical conditions. Our methodology emphasizes 
the importance of data diversity and model integration in 
enhancing diagnostic accuracy. Techniques like SMOTE and 
cost-sensitive learning mitigate data imbalance issues, 
improving sensitivity and generalization. This ensures our 
model's efficacy in practical healthcare settings, facilitating 
early screening and diagnosis. Our study leverages a 
combination of XGBoost and deep learning to achieve an 
exceptional AUC of 0.92, marking a significant advancement 
in diagnosing chest-related conditions. Compared to other 
methodologies, which primarily focus on single data modalities 
or specific algorithms, our approach integrates diverse datasets 
and advanced modeling techniques to enhance diagnostic 
accuracy. While methods like Naive Bayes Classifier (84.00%), 
Bayesian Optimization (88.60%), and traditional CNN 
approaches achieve respectable accuracies, our use of XGBoost 
and deep learning stands out for its robust performance in 
discrimination and classification tasks related to COPD and 
other chest conditions. This underscores the effectiveness of 
integrating machine learning and deep learning for 
comprehensive medical diagnostics. 

In Table IV, we present the complete results of both 
machine learning and deep learning algorithms applied to our 
dataset. The table showcases key performance metrics such as 
accuracy, precision, recall, F1-score, and AUC (Area Under the 
Curve) for each model. These results offer a comprehensive 

comparison of how each algorithm performed in detecting 
COPD, highlighting strengths in different areas like predictive 
power and generalization. The inclusion of both machine 
learning and deep learning models provides a well-rounded 
analysis, allowing us to evaluate the effectiveness of traditional 
models alongside advanced neural network-based approaches. 
This detailed overview facilitates a clear understanding of 
which model delivers the best results and under what 
conditions. 

TABLE IV. PERFORMANCE OF MACHINE LEARNING AND DEEP LEARNING 

Model Accuracy F1 Score Precision Recall 

LR 0.87 0.88 0.87 0.88 

XGB 0.92 0.92 0.90 0.91 

RF 0.82 0.85 0.75 0.82 

VGG-16 0.86 0.90 0.90 0.90 

VGG-19 0.89 0.86 0.85 0.85 

ResNet-50 0.85 0.80 0.92 0.92 

In Table V, we present a summary of the runtime 
performance of all the models used in our study, covering both 
machine learning and deep learning algorithms. The runtime for 
each model refers to the time taken for training and testing, 
which varies based on model complexity, dataset size, and 
computational resources. Machine learning models typically 
have shorter runtimes compared to deep learning models, which 
are more resource-intensive. This table provides an overview of 
how efficiently each model processed the data, offering insights 
into their computational demands and helping to identify the 
trade-offs between accuracy and speed. 

TABLE V. RUNNING TIME OF MACHINE LEARNING AND DEEP LEARNING 

Model Running Time 

LR 116 seconds 

XGB 124 seconds 

RF 147 seconds 

VGG-16 148 seconds. 

VGG-19 131 seconds. 

ResNet-50 136 seconds 

Fig. 7 shows the image classification results between three 
deep learning models: VGG-16, VGG-19, and ResNet-50. 
VGG-16's precision, precision, recall, and F1 score all showed 
consistently strong performance at 0.90, demonstrating 
balanced performance across all metrics. VGG-19 has slightly 
lower precision (0.86) and recall (0.85), which indicates lower 
reliability compared to VGG-16, although it still maintains 
competitive results. However, ResNet-50, despite its excellent 
recall and F1 score (both at 0.92), shows relatively low 
precision (0.80) and precision (0.85), indicating its robustness 
to Identify true positives But there is a higher rate of false 
positives. 
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Fig. 7. Image classification. 

Fig. 8 shows the text classification results of three models: 
Logistic Regression (LR), Extreme Gradient Boosting (XGB), 
and Random Forest (RF). Logistic regression (LR) achieved an 
accuracy of 0.87 with a balanced F1 score (0.88), precision 
(0.87), and recall (0.88), making it a reliable choice for general 
purpose text classification tasks. Extreme Gradient Boosting 
(XGB) outperforms other models. It has the highest accuracy 
(0.92), F1 score (0.92), precision (0.90) and recall (0.91). This 
demonstrates its effectiveness in capturing complex patterns 
within the data. Random Forest (RF) is slower at 0.82 accuracy 
and 0.75 precision, indicating that it is more prone to false 
positives. However, the camera maintains good F1 scores 
(0.85) and recall (0.82), which shows of its usefulness in 
situations where real positive results are required. 

 

Fig. 8. Text classification. 

 

Fig. 9. Loss and accuracy. 

Fig. 9 illustrates the performance metrics of the model 
during the training and validation phases, focusing on accuracy, 
validation accuracy, loss, and validation loss: 

1) Accuracy and validation accuracy: The graph shows a 

steady increase in training accuracy as the model learns from 

the data. Validation accuracy also improves over epochs but 

may exhibit minor fluctuations, reflecting the model's 

generalization ability on unseen data. A plateau in validation 

accuracy indicates the model reaching its performance limit. 

2) Loss and validation loss: Training loss decreases 

consistently, showing the model's ability to minimize errors on 

the training dataset. Validation loss typically decreases initially 

but may stabilize or slightly increase in later epochs, signaling 

potential overfitting if the gap between training and validation 

loss widens. 

Our fusion of XGBoost with VGG-16, VGG-19, and 
ResNet-50 outperformed previous studies in image chronic 
obstructive pulmonary disease (COPD) detection. For instance, 
the Deng et al.’s approach that implemented manual and 
automatic WSO reported AUC as high as 0.86 and 0.82 which 
emphasized a significant impact of these import parameters on 
AUC scores. Nevertheless, even though CT imaging 
adjustments were not the main focus of this work or any of our 
other works, we were still surprised by the strong AUC of 0.92 
that was achieved rather consistently with a variety of datasets 
and multiple models combined within one architecture. 
Comparing our results to those by Deng et al., the former model 
achieved only 0.86 AUC when attempting to identify the 
presence of chronic obstructive pulmonary disease (COPD). 
Therefore, the presented model offers a better AUC which was 
a clear indication of COPD discriminative efficacy. 

Cheng et al. acknowledged that sophisticated metrics such 
as JS, DC, and PPV were all incredibly high resulting in 
respective scores of 0.926, 0.958, and 0.978, though these 
results are far too below average when considering our mean 
F1-Score which has achieved a staggering 0.92. Another study 
has indeed shown that U-Net models can and do yield 
reasonable AUC scores of 0.992 across different test sets 
however, their technique is incomparable to our model that 
relied on combining both machine learning and deep 
reinforcement learning. 

V. DISCUSSION 

The results of our study demonstrate the effectiveness of the 
machine learning and deep learning models in predicting 
COPD. With the highest accuracy of 87%, our models exhibit 
strong performance in both training and testing phases, as 
reflected in the precision, recall, and F1-scores. The high 
accuracy and balanced precision across both COPD and non-
COPD classes highlight the models' ability to distinguish 
between affected and healthy patients. Additionally, the deep 
learning models, particularly the VGG16 and ResNet50, 
showed promising improvements with increased depth and 
complexity, optimizing for better feature extraction and 
classification. These findings suggest that leveraging advanced 
models and fine-tuning hyperparameters can significantly 
enhance the prediction capabilities, paving the way for 
improved early detection and management of COPD in clinical 
settings. 

VI. CONCLUSION AND FUTURE WORK 

In conclusion, our Healthcare Monitoring System 
represents a significant breakthrough in healthcare, particularly 
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for timely COPD detection and management. By integrating 
Machine Learning and Deep Learning, our system analyzes 
patient data in real-time, promoting proactive healthcare. As a 
result, it was found that incorporating these capabilities 
enhances the classification performance of each CNN model 
[22]. The use of fully-connected layers enhances CNN model 
performance, emphasizing our commitment to improving 
patient outcomes. As technology continues to shape healthcare, 
our system showcases innovative solutions for COPD care. 

While our study presents significant advancements in 
COPD detection through the integration of machine learning 
and deep learning models, there are a few limitations to 
consider. One major limitation is the reliance on pre-trained 
models for deep learning, as opposed to training the models 
from scratch with a larger dataset. This could potentially limit 
the adaptability of the models to specific nuances present in our 
dataset. Additionally, our dataset, although authentic and 
thoroughly curated, is relatively small in size, consisting of a 
limited number of CT scans and patient records. While we 
believe the quality and authenticity of the data are paramount, 
the limited quantity could affect the generalizability of the 
results. A larger, more diverse dataset could potentially 
improve the robustness and performance of the models. 
Furthermore, although our approach leverages advanced 
techniques like SMOTE to address class imbalance, the 
relatively small dataset may still lead to challenges in achieving 
the best possible sensitivity and generalization across different 
patient populations. Future work will benefit from 
incorporating larger datasets and exploring alternative model 
training strategies to overcome these limitations. 

In future, we aim to explore various avenues to advance 
COPD healthcare. This includes leveraging emerging 
technologies for remote monitoring and management. 
Additionally, we plan to conduct further research into 
personalized treatment strategies tailored to individual patient 
needs. Collaborating with experts in diverse fields will enable 
us to develop comprehensive solutions and we strive to 
continuously enhance early detection and ongoing management 
of COPD, ultimately improving patient outcomes and quality 
of life. 
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