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Abstract—Sickle cell anemia is a hereditary disorder where 

abnormal hemoglobin causes red blood cells to become rigid and 

crescent-shaped, obstructing blood flow and leading to severe 

health complications. Early detection of these abnormal cells is 

essential for timely treatment and reducing disease progression. 

Traditional screening methods, though effective, are time-

intensive and require skilled technicians, making them less 

suitable for large-scale implementation. This paper presents a 

conceptual framework that integrates transfer learning, 

cryptographic algorithms, and service-oriented architecture to 

provide a secure and efficient solution for sickle cell detection. The 

framework uses MobileNet, a lightweight deep learning model, 

enhanced with transfer learning to identify sickle cells from 

medical images while operating on hardware-constrained 

environments. Advanced Encryption Standards (AES) ensure 

sensitive patient data remains secure during transmission and 

storage, while a service-oriented architecture facilitates seamless 

interaction between system components. Although not yet 

implemented, the framework serves as a foundation for future 

empirical testing, addressing the need for accurate detection, data 

privacy, and system efficiency in healthcare applications. 
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I. INTRODUCTION 

Sickle cell disease (SCD) is a genetic disorder that 
significantly impacts the shape and function of red blood cells. 
Under normal conditions, red blood cells are round and flexible, 
allowing them to move smoothly through blood vessels but they 
become rigid and crescent-shaped due to defective hemoglobin, 
the protein responsible for carrying oxygen throughout the 
body, in individuals with sickle cell disease, [1, 2]. This 
abnormal shape causes the cells to get trapped in small blood 
vessels, blocking blood flow, which leads to a range of serious 
health complications such as pain, organ damage, and an 
increased risk of infections [3]. Early detection of sickle cells is 
very important because timely treatment can reduce these 
complications and greatly enhance the quality of life for those 
affected [4]. 

Even though early detection is important, traditional 
diagnostic methods are often complex and require highly 
skilled technicians, making them unsuitable for large-scale 
screening, particularly in low-resource settings [5]. These 
limitations slow down the ability to diagnose SCD sufficiently 
early to prevent severe health consequences. Moreover, 

depending on manual analysis in traditional diagnostics creates 
challenges in terms of speed and accessibility. 

Recent advancements in artificial intelligence (AI), 
particularly in deep learning, have shown significant potential 
for automating medical image analysis with high accuracy [6]. 
These technologies offer faster and more efficient solutions, 
enabling early detection and scalable screening even in 
challenging settings. However, deploying AI in medical 
applications introduces unique challenges. For instance, 
ensuring patient data privacy is critical, given the sensitive 
nature of medical data and the strict regulations governing its 
use, such as HIPAA in the United States and GDPR in Europe 
[7]. Additionally, many deep learning models require 
substantial computational resources for training and inference, 
which limits their feasibility in environments with constrained 
hardware resources [8]. 

This paper proposes a novel framework that combines deep 
learning, cryptographic algorithms, and service-oriented 
architecture (SOA) to address these challenges. The framework 
uses MobileNet, a lightweight deep learning model optimized 
for efficient operation on hardware-constrained systems, to 
detect sickle cells in blood smear images. Transfer learning is 
employed to achieve high detection accuracy without requiring 
extensive computational resources. Advanced encryption 
techniques, such as AES, ensure patient data remains secure 
during transmission and storage, addressing critical privacy 
concerns. Furthermore, SOA enables seamless communication 
between system components, enhancing the system’s 
scalability, modularity, and flexibility. 

By integrating these components, the proposed framework 
offers a secure, efficient, and practical solution for sickle cell 
detection in diverse healthcare settings. 

The remainder of this paper is organized as follows: Section 
II identifies the problem, and Section III reviews related work, 
focusing on previous efforts in using AI for sickle cell detection 
and employing cryptographic techniques to secure medical 
data. Section IV provides details on the proposed framework, 
explaining the roles of each component and how they are 
integrated. Section V illustrates the workflow of the system, 
showing how data is securely processed from start to finish. 
Section VI discusses the security and privacy considerations 
involved in the framework. Section VII outlines the feasibility 
and limitations of the approach, while Sections VIII and IX 
provide future directions and conclusions, respectively. 
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II. PROBLEM IDENTIFICATION 

A. Research Problem 

Creating an automated detection system for sickle cells 
comes with several challenges, one of the most important being 
data privacy. Medical data is very sensitive and needs to be 
handled according to strict regulations, such as the Health 
Insurance Portability and Accountability Act (HIPAA) in the 
United States and the General Data Protection Regulation 
(GDPR) in Europe [7]. Ensuring patient privacy is very 
important when using AI models which require large amounts 
of data for training and validation. Additionally, deploying deep 
learning models can require more computational resources, 
which is challenging in environments where advanced 
hardware is not easily available [8]. Therefore, there is a need 
for a solution that balances accuracy, privacy, and efficiency to 
provide a secure and practical way to detect sickle cells. 

B. Research Questions 

How to build a system that can correctly detect sickle cells, 
keep patient data private, and work well with limited hardware? 
How to create a solution that meets the increasing need for 
automated medical testing, follows important privacy rules like 
HIPAA and GDPR, and performs well without needing 
expensive hardware? These are the key challenges to solve in 
creating a reliable and easy-to-use system for sickle cell 
detection. 

C. Objective 

The study objective is to develop a secure and efficient 
framework for detecting sickle cells by integrating deep 
learning, cryptographic algorithms, and an SOA. This 
framework uses the capabilities of deep learning for analyzing 
medical images while ensuring that patient data remains 
protected through cryptographic methods. The use of SOA 
makes the framework modular, meaning that each 
component—such as encryption, model inference, and data 
communication—can be flexible, scalable, and easily 
integrated into existing healthcare systems. 

D. Significance 

The significance of this proposed framework is its novel 
integration of AI with secure computation techniques designed 
to address healthcare needs. The framework handles the critical 
issue of privacy-preserving AI in healthcare by combining deep 
learning for medical image analysis with cryptographic 
methods for secure data handling [9]. Furthermore, the use of 
SOA allows for flexibility and scalability, making the solution 
adaptable to different clinical environments. This combination 
of accurate detection, data security, and scalability represents a 
unique approach to addressing the challenges of sickle cell 
detection to provide accessible high-quality care while 
protecting patient data. 

III. RELATED WORK 

A. Existing Deep Learning Solutions for Sickle Cell Detection 

Deep learning has brought remarkable improvements to 
medical imaging, especially in automating the detection of 
diseases like SCD. Traditionally, diagnosing SCD requires 
visually examining blood smears under a microscope, which is 

not only time-consuming but also prone to human error. To 
overcome these challenges, researchers have turned to deep 
learning models, which make the process faster and more 
reliable. 

Goswami and colleagues used deep neural networks like 
ResNet50 and GoogleNet to classify sickle cells from digital 
blood smear images. They also applied explainable AI 
techniques, such as Grad-CAM to make the predictions easier 
for healthcare professionals to understand. This added 
transparency makes the diagnostic process more trustworthy. 
ResNet50 was the best-performing model, achieving an 
accuracy of 94.9%, which shows great potential for real-world 
clinical use [11]. 

Kawuma and his team compared different deep-learning 
techniques for detecting SCD, such as VGG16, VGG19, and 
Inception V3, demonstrating that Inception V3 achieved the 
highest accuracy at 97.3%, followed by VGG19 at 97.0%. 
These results highlight the effectiveness of pre-trained models 
for accurately identifying sickle cells [10]. 

Karunasena and colleagues took a different approach, using 
a region-based convolutional neural network (R-CNN) to detect 
sickle cells. Their model achieved over 90% accuracy and was 
particularly useful in segmenting and classifying specific 
regions within an image. This level of precision is important 
when dealing with complex blood smear images where cells 
may be crowded or overlap [12]. 

Another review by Balde et al. focused on recent advances 
in using AI to detect SCD, highlighting image segmentation and 
feature extraction techniques. These methods, particularly 
CNN, have been successful in analyzing microscopic images, 
even when they contain overlapping cells. However, there are 
still challenges in improving the robustness of these 
segmentation techniques to accurately distinguish between 
normal and sickled cells, especially in more complex or densely 
populated images [13]. 

Regardless of these advancements, one key issue remains 
largely unaddressed, data privacy. Most studies have focused 
primarily on improving detection accuracy but have not paid 
enough attention to the sensitive nature of medical data. This 
gap provides an opportunity for future research to explore 
privacy-preserving techniques, such as encryption, to protect 
patient information while maintaining the diagnostic accuracy 
of deep learning solutions. 

In summary, existing research shows significant progress in 
using deep learning for sickle cell detection but there is still a 
need for better handling of overlapping cells, and a stronger 
focus on data privacy to create a comprehensive solution that 
can be widely adopted. 

B. Cryptographic Techniques in Medical Data Security 

Securing medical data is important, especially when using 
AI and machine learning (ML) models, as these often require 
sensitive patient information for processing. Cryptographic 
techniques have been a core part of ensuring that this data 
remains safe throughout its lifecycle—whether during 
transmission, storage, or even analysis. 
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One interesting approach is the MASS framework which 
uses blockchain technology to securely share medical data 
collected from wearable IoT devices. In this system, health 
information is encrypted using Ciphertext-Policy Attribute-
Based Encryption (CP-ABE), which means that only authorized 
individuals can access specific parts of the data. This method 
not only keeps the data private but also ensures it cannot be 
altered, thus MASS is particularly effective for protecting data 
from wearable medical devices [14]. 

Amaithi Rajan and colleagues developed a secure way to 
retrieve medical images from encrypted cloud storage using a 
combination of deep learning and encryption techniques, 
ensuring that the images are not only safely stored but also 
easily retrievable when needed. This method relies 
on symmetric encryption and searchable encryption, allowing 
users to search through encrypted data and retrieve relevant 
images without compromising security [15]. 

Ahmad Al Badawi and Mohd Faizal Bin Yusof took another 
interesting approach by using fully homomorphic encryption 
(FHE). This allows medical data to be processed without ever 
decrypting it, meaning patient information remains secure even 
during analysis. They used this method for privacy-preserving 
pathological assessments using support vector machines 
(SVMs). This approach provides both strong data protection 
and effective analysis, making it highly suitable for privacy-
sensitive medical diagnostics [16]. 

A different system developed by Kusum Lata and her 
team focused on detecting brain tumors using deep learning 
while ensuring privacy through encryption. They used the AES-
128 algorithm to encrypt medical images before storage or 
transmission to keep patient data secure, even during the 
diagnosis. This system is a good example of balancing the need 
for secure data handling with the advanced diagnostic 
capabilities that AI offers [17]. 

Lastly, Runze Wu and colleagues developed a privacy-
preserving system that used Gaussian kernel-based support 
vector machines (SVMs) and a simpler cryptographic method 
known as additive secret sharing. This approach is less 
computationally intensive compared to more advanced 
methods like homomorphic encryption, making it better suited 
for real-time applications. It ensures that both the patient’s data 
and the healthcare provider’s model are kept private during the 
diagnostic process, all while maintaining efficiency [18]. 

Overall, these cryptographic approaches highlight the 
importance of keeping patient data secure while using the 
power of AI in healthcare. While robust encryption methods 
like homomorphic encryption offer high security, they can be 
quite demanding in terms of computation. Hence, lightweight 
cryptography and blockchain-based methods are becoming 
attractive alternatives because they balance effective security 
with practical resource use—especially important in healthcare, 
where computational power is often limited. 

C. Service-Oriented Architectures in Healthcare 

The SOA has become popular in healthcare because it 
allows systems to be broken down into smaller, independent 
services that work together efficiently. This approach makes 

healthcare technology more flexible and scalable—perfect for 
dealing with the complexities of modern medical institutions. 

Petrenko and Boloban explain how SOA can handle the 
increasing volume of healthcare data and provide efficient 
treatment by coordinating different services. By splitting a large 
healthcare system into smaller, interacting services, SOA 
improves how data is processed and how medical resources are 
managed, ultimately leading to better patient care. A major 
advantage is that new services can be easily added to the system 
without causing disruptions, making SOA both scalable and 
adaptable [19]. 

Liviu Ilie and colleagues looked at how SOA could be used 
to create a framework that connects electronic health records 
with other healthcare services to boost interoperability—the 
ability of different systems to exchange and use information. 
Interoperability is important in healthcare, especially for large 
medical institutions that need to integrate multiple systems. 
SOA provides a framework that helps different services 
communicate effectively, improving both the quality and 
efficiency of healthcare. This approach makes the system more 
flexible, easier to upgrade, and less expensive to maintain [20]. 

Similarly, Petrenko and Tsymbaliuk developed a cloud-
based healthcare platform called "Clinic in Cloud" that uses 
SOA to bring together wearable sensors, data management 
systems, and user interfaces. This platform allows doctors to 
monitor patients remotely in real time, making diagnosis and 
treatment more accessible. The SOA approach ensures that all 
these different components, sensors, databases, and 
communication tools, work smoothly together, enabling timely 
and effective patient care. The modular design also makes it 
easy to add new features as healthcare needs develop [21]. 

In summary, SOA provides a strong foundation for building 
healthcare systems that are flexible and scalable. By breaking 
down complex systems into smaller, independent services, 
SOA makes integration easier, data management more 
efficient, and services more adaptable. This is especially 
valuable in healthcare, where technology is continuously 
changing and systems need to keep up. 

D. Summary of Related Work 

The research on deep learning, cryptographic techniques, 
and SOA has greatly advanced healthcare technology but there 
are still areas for improvement. 

Deep learning models like ResNet50 and Inception V3 have 
made diagnosing SCD faster and more reliable compared to 
traditional manual methods. However, data privacy has not 
been addressed, a major issue when dealing with sensitive 
health information. 

Methods like FHE and blockchain frameworks have been 
used to keep patient data secure and while they are highly 
effective, they can be computationally heavy, limiting their 
practicality in real-time applications or environments with 
limited computing resources. 

The SOA has been used to make healthcare systems more 
modular and scalable. SOA improves integration between 
different healthcare tools and makes it easier to expand systems 
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when needed by breaking down large systems into smaller, 
easier-to-manage services. 

The proposed framework builds on these existing solutions 
by combining the strengths of each approach while addressing 
their limitations. By integrating lightweight deep learning with 
efficient cryptographic techniques like AES and an SOA-based 
design, the framework prioritizes patient data privacy, 
operational efficiency, and system scalability. Unlike current 
solutions, this approach places patient privacy at the forefront 
while ensuring adaptability to evolving healthcare needs. 

IV. PROPOSED FRAMEWORK 

A. Overview of the Framework 

The proposed framework aims to provide a secure and 
efficient way to detect sickle cells in medical images. It consists 
of three main components that work together to ensure 
accuracy, privacy, and flexibility: 

 A deep learning model for detection 

 A cryptographic module 

 A service-oriented architecture (SOA) 

A pre-trained deep learning model, MobileNet [23], was 
employed to identify sickle cells in blood smear images. This 
model correctly detects sickle cells using transfer learning 
without requiring significant computational power, making it 
ideal for setups with limited hardware. The preprocessing steps 
include resizing the input images and normalizing pixel values 
to ensure compatibility with the MobileNet architecture. 
Performance evaluation metrics, such as detection accuracy and 
inference latency, will be used during the empirical validation 
phase to measure the effectiveness of the model. 

Advanced Encryption Standards (AES) were used to 
encrypt the medical images before analysis to protect sensitive 
patient information. This ensures that the data remains 
confidential during both transmission and storage, providing 
strong security to prevent unauthorized access. Although AES 
introduces some computational overhead, its efficiency makes 
it a practical choice for environments with limited resources, 
balancing security, and performance. Beyond encryption, the 
framework is designed to align with data protection regulations 
such as HIPAA and GDPR, ensuring secure and compliant 
handling of patient data throughout the system. 

SOA connects all the components, allowing perfect 
communication between the cryptographic module, the deep 
learning model, and the other system parts. Each function—
such as encryption, analysis, and reporting—is treated as an 
independent service, thus the system is modular and scalable so 
components can be updated or replaced without disrupting the 
rest of the system, making it easy to expand or adapt as needed. 

Fig. 1 illustrates how these components interact to visualize 
the flow of the system. Additionally, Table I provides a detailed 
overview of each system component, outlining its function and 
purpose within the framework. 

B. Components 

1) Deep learning model for detection: MobileNet was the 

transfer learning model selected for detecting sickle cells as it 

is specifically designed for environments with limited 

resources, making it ideal for training on a CPU. It employs a 

technique called depthwise separable convolutions [25], 

reducing the number of parameters and computational 

complexity without sacrificing accuracy. 

MobileNet V2 is highly effective for different medical 
imaging tasks. For example, it achieved accuracy rates as high 
as 94% when used for brain tumor classification after being pre-
trained and fine-tuned on relevant datasets [22]. 

This suggests that MobileNet can also perform well for 
sickle cell detection tasks. 

MobileNet has also been applied for breast cancer 
classification, delivering fast execution times even on devices 
with limited computational resources without compromising 
accuracy [23]. This makes it an ideal choice for scenarios where 
only a CPU is available for training and inference. 

MobileNet has also been successfully integrated into 
ensemble models for detecting conditions like cardiomegaly, 
showing that it is robust and works well in combination with 
other models [24]. 

TABLE I. SYSTEM COMPONENTS OVERVIEW 

Component Function Purpose 

Data Input and 

Encryption 

Uploads and encrypts 

medical images using 
AES 

Protect patient data 

during transmission 

Service-Oriented 

Architecture (SOA) 

Connects system 

components and 

manages secure data 
flow 

Ensures modularity 

and scalability 

Deep Learning 

(MobileNet) 

Analyzes medical 

images to detect sickle 
cells 

Provides accurate 

detection of sickle 
cells 

Data Storage/ 

Transmission 

Encrypts and securely 

stores or sends results 

to the user 

Maintains data 

privacy throughout 

the process 

This flexibility demonstrates its capability to handle 
complex medical imaging challenges effectively. 

Its lightweight architecture makes it ideal for training and 
deploying on a CPU, which fits the hardware limitations of the 
proposed framework. Unlike heavier models like ResNet or 
VGG, MobileNet requires far less computational power while 
still delivering strong performance [25]. Additionally, pre-
trained weights can be used and fine-tuned on the sickle cell 
dataset, allowing for efficient training even without high-end 
hardware. 

2) Cryptographic module: AES was chosen for its well-

known efficiency and security when encrypting large datasets 

like medical images. AES supports different key lengths (e.g., 

128-bit or 256-bit) and provides an excellent balance between 

speed and security, making it suitable for both storing and 

transmitting medical data securely [33]. 
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AES has been successfully used in cloud-based medical 
data systems to secure sensitive patient information. It ensures 
that data remains protected during transmission and storage, 
which is important for maintaining privacy in healthcare 
settings [26]. 

In comparison studies, AES was faster than other 
encryption methods for both encrypting and decrypting data, 
making it a reliable option for handling medical images without 
slowing down performance [27]. 

AES is also effectively used in combination with techniques 
like watermarking [26] to guarantee both the security and 
integrity of medical images. This dual functionality shows the 
flexibility of AES in ensuring data remains protected while 
preserving image quality, which is essential in healthcare. 

AES offers strong encryption to protect patient information, 
ensuring confidentiality during transmission and storage. It 
efficiently secures large medical datasets without slowing down 
the system, thus is ideal for healthcare settings where both 
security and efficiency are important [26]. 

3) Service-oriented architecture (SOA): In this framework, 

SOA plays a key role in enabling the different components—

such as the cryptographic module, deep learning model, and 

data management processes—to communicate smoothly. Each 

function, like encryption, model analysis, and data sharing, 

operates as an independent service, making the system more 

flexible and scalable, allowing each part to be developed, 

updated, and managed separately. 

 Benefits of Using SOA

 

Fig. 1. High-level overview of the proposed framework showing the flow of data between components. Encrypted data is processed through the service-oriented 

architecture (SOA), analyzed by the Deep Learning Model (MobileNet), and securely transmitted and stored. 

a) Modularity: SOA breaks down the system into 

smaller, reusable services so that each part, like data encryption, 

detection, or reporting, can be independently maintained. This 

modular approach makes it much easier to update or modify 

components without affecting the entire system. Essentially, the 

rest of the system can keep running smoothly if one part needs 

an upgrade [20, 28]. 

b) Interoperability: The framework includes different 

components such as cryptographic modules and AI models, and 

SOA makes sure they work well together. By using 

standardized protocols like SOAP and REST, SOA ensures that 

these services can easily communicate, even if they are built on 

different platforms or by different developers. This is important 

for smooth integration and effective communication between 

all system parts [28]. 

c) Scalability: Healthcare systems often need to handle 

growing amounts of data and SOA-based systems are 

inherently scalable, meaning new services can be added without 

disrupting the existing setup. This is particularly useful when 

integrating with cloud-based services or IoT devices for real-

time monitoring, ensuring that the system can grow and adapt 

as needed [21]. 

 How SOA Enables Communication Between Modules: 

SOA-based frameworks often use middleware and APIs to 
manage how different services interact. This not only helps 
standardize the flow of data but also supports plug-and-play 
integration, making it easy to add new components, such as an 
improved encryption method or an updated AI model, without 
causing disruptions to the rest of the system [28]. 

V. SYSTEM WORKFLOW 

This section describes how data moves through each stage 
of the proposed framework, from the initial encryption of 
medical images to the secure return of prediction results. Each 
step is designed to ensure data privacy, accuracy, and 
efficiency. 

The process starts by encrypting the medical images using 
AES [29] to ensure that sensitive patient data is protected from 
the beginning and remains confidential throughout 
transmission and processing. 
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Once encrypted, the data is securely transmitted to the deep 
learning service using an SOA. SOA allows the encrypted data 
to be passed easily between different services, making 
communication between the cryptographic module and the 
deep learning model smooth and secure [30]. This modular 
design ensures that the different system parts work together 
effectively without compromising sensitive information. 

When the encrypted data reaches the deep learning model, 
it is first decrypted for analysis and then processed by 
the MobileNet [22] deep learning model to detect sickle cells in 
the medical images. This step generates predictions, helping 
identify any abnormalities in the blood smear images. 

After the analysis is complete, the results are encrypted 
using AES to ensure privacy before they are sent back to the 
client. This step keeps the prediction results protected during 
transmission, maintaining the confidentiality of patient data at 
all times [30]. 

Fig. 2 illustrates the entire workflow, showing the 
interactions between each component: 

1) Data encryption: Medical images are encrypted using 

AES for privacy. 

2) Data transmission via SOA: Encrypted data is sent to the 

deep learning service. 

3) Model inference: The deep learning model processes the 

data (after decryption) and generates predictions. 

4) Result encryption and return: The analysis results are 

encrypted and returned securely to the client. 

VI. SECURITY AND PRIVACY ANALYSIS 

The proposed framework includes different security and 
privacy protections to keep patient data safe and private. This 
section explains how privacy issues are managed, what security 
features are used, and how the framework balances being secure 
while still running efficiently. 

A major concern with medical data is protecting patient 
privacy. The framework handles this by using AES encryption 
to secure medical images at every step. By locking the data 
before analysis and again when sending the results back, the 
system ensures that no one without permission can access 
sensitive patient information during transmission or storage. 
Using AES helps prevent data breaches that could compromise 
patient privacy in line with established privacy standards 
like HIPAA and GDPR which require strict protection for 
medical data to prevent unauthorized access [31].

 

Fig. 2. System workflow diagram illustrating the flow of data within the proposed framework. The process begins with AES encryption of medical images, 

followed by secure transmission through SOA, analysis using the MobileNet model, and encryption of results before returning to the client. Each step ensures 
privacy, accuracy, and secure data handling. 
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The framework uses AES and other cryptographic 
algorithms to keep data secure and intact throughout the 
process. AES encrypts the data both when it is being sent and 
after analysis, providing: 

 Confidentiality: AES keeps patient data private from the 
moment it is collected until the results are returned. 

 Integrity: Encryption ensures that if anyone tries to 
tamper with the data during transmission, it becomes 
unreadable, keeping it accurate. 

The framework also uses an SOA to safely transfer 
encrypted data between services, adding extra protection by 
reducing the risk of data exposure during transfers [30]. 

While security is very important, it is also necessary to 
consider how encryption affects system performance. AES 
encryption performs well at keeping data safe but can slow 
systems down, especially those with limited resources or using 
large amounts of data. Nonetheless, it is still more efficient than 
other options like RSA. AES finds a good middle 
ground between security and speed. It works well with large 
datasets, like medical images, because it provides strong 
protection without using too much computational power 
compared to heavier encryption methods [32]. 

1) Optimized workflow: Using the MobileNet model for 

analysis allows the framework to work efficiently, even on 

systems with just a CPU [23]. This helps lower the overall 

workload of both the encryption and the AI tasks, making the 

system both secure and practical for real-world healthcare use. 

VII. FEASIBILITY AND LIMITATIONS 

The framework is designed to work efficiently, even on 
systems with limited hardware like a standard CPU. This is 
possible through the use of MobileNet [24] with transfer 
learning. MobileNet is a lightweight deep learning model that 
reduces the computational workload by using fewer parameters 
compared to heavier models. By starting with a pre-trained 
model and only adjusting the final layers, the framework can 
achieve high accuracy without requiring advanced hardware, 
making it practical for environments with limited resources. 

While the framework offers a balance between security and 
efficiency, a few challenges and limitations need to be 
addressed: 

 Resource Limitations: Even though MobileNet is 
optimized for efficiency, using a CPU for processing 
may still be slower compared to a GPU, particularly 
when handling large datasets. This could limit the 
framework's scalability when analyzing a high volume 
of images. 

 Balancing Privacy and Efficiency: There is a trade-off 
between ensuring data privacy and maintaining fast 
processing speeds. AES encryption provides strong data 
protection, but it adds steps to the workflow, which 
could slow down real-time performance. 

This paper proposes a theoretical framework, and its 
implementation has not yet been carried out. While the 

framework integrates validated techniques such as MobileNet 
for deep learning, AES for encryption, and SOA for modularity, 
empirical testing will be conducted in future work. Metrics such 
as accuracy, latency, encryption strength, and scalability will be 
used to validate the framework's performance. The absence of 
implementation results reflects the current focus on the 
framework design, which serves as a foundation for future 
development and testing. 

VIII. FUTURE WORK 

The current goal is to design the framework and create a 
basic prototype to show how it works. In the future, the full 
system will be built, with all parts working together and tested 
in real-world situations. This full implementation will help 
identify practical limitations to improve the system's 
performance. 

Once the system is fully built, a detailed evaluation of its 
performance will be performed, assessing the accuracy (how 
well it finds sickle cells) and speed (how long it takes to process 
each image) of the deep learning model, as well as the strength 
of the encryption (to keep patient data safe) and how efficiently 
the system runs (the encryption does not slow the system too 
much). The goal of this evaluation is to find the right balance 
between security, accuracy, and speed. 

Another important future task is to determine how well the 
framework can handle larger datasets, like more medical 
images from different sources, to help understand how the 
system can be used in real-world healthcare, where securely and 
efficiently managing large amounts of data is essential. 

IX. CONCLUSION 

A. Summary 

This paper presented a framework to help detect sickle cells 
in medical images securely and efficiently. The framework 
comprises three main parts: a deep learning model to identify 
sickle cells, a cryptographic module to protect patient data, and 
an SOA for efficient communication between all system parts. 
Together, these parts ensure that patient information stays safe 
during every step—from encryption to analysis and sending 
back the results. 

B. Contribution 

The main contribution of this work is creating a unique 
framework that combines deep learning and cryptographic 
techniques using an SOA-based structure. This design makes it 
possible to securely analyze medical images while maintaining 
patient confidentiality. Using MobileNet and transfer learning, 
the framework is also efficient for environments with limited 
hardware, making it useful in more healthcare settings. 

C. Implications 

This work is important for the future of secure AI in 
healthcare. This framework provides a way to develop AI 
solutions that not only work well but also protect patient 
privacy by combining strong encryption with deep learning in 
a scalable system. This approach can be applied to other types 
of medical imaging, improving diagnostics while keeping data 
safe—something that is becoming more important in today's 
digital healthcare world. 
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