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Abstract—Diagnosing fracture locations accurately is 

challenging, as it heavily depends on the radiologist's expertise; 

however, image quality, especially with minor fractures, can limit 

precision, highlighting the need for automated methods. The 

accuracy of diagnosing fracture locations often relies on 

radiologists' expertise; however, image quality, particularly with 

smaller fractures, can limit precision, underscoring the need for 

automated methods. Although a large volume of data is available 

for observation, many datasets lack annotated labels, and 

manually labeling this data would be highly time-consuming. This 

research introduces Albument-NAS, a technique that combines 

the One Shot Detector (OSD) model with the Albumentation image 

augmentation approach to enhance both speed and accuracy in 

detecting fracture locations. Albument-NAS achieved a mAP@50 

of 83.5%, precision of 87%, and recall of 65.7%, significantly 

outperforming the previous state-of-the-art model, which had a 

mAP@50 of 63.8%, when tested on the GRAZPEDWRI dataset—

a collection of pediatric wrist injury X-rays. These results establish 

a new benchmark in fracture detection, illustrating the advantages 

of combining augmentation techniques with advanced detection 

models to overcome challenges in medical image analysis. 
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I. INTRODUCTION 

Medical images are essential for modern healthcare and 
diagnostics. However, their limited resolution can make it 
challenging for healthcare providers to fully evaluate a patient's 
condition [1]. Medical image analysis also faces obstacles like 
insufficient data and the complexity of interpreting outcomes 
[2]. Recently, deep learning has shown promising potential to 
automate and enhance medical image analysis, boosting 
accuracy and efficiency in diagnosing fractures. Yet, limited 
data and challenges in result interpretation continue to hinder its 
application [3]. The lack of large, high-quality medical datasets 
is a major barrier in training effective deep learning models. 
Furthermore, although deep learning can deliver accurate 
predictions, healthcare professionals often find it challenging to 
interpret the outcomes produced by these models [4]. 

Detecting bone fractures is essential for timely medical 
intervention and effective rehabilitation [5]. Traditional methods 
depend on manual examination of images, a process that is both 
time-consuming and susceptible to human error [6]. Surgeons 
typically require comprehensive patient histories and detailed X-
ray analysis, which call for specialized expertise and training 
[7]. 

In terms of data availability, hospital datasets, such as X-
rays, vary in quality and completeness of information [8]. 
Sometimes, image quality can impact the speed of disease 
analysis for patients. Additionally, not all datasets have labels or 
annotations, making automated detection challenging [9]. 
Experts need to manually label these datasets, which is very 
time-consuming. Furthermore, when using Deep Learning 
model, a large amount of data is required, which is difficult to 
achieve in a short time [10] [11]. 

A useful strategy for overcoming dataset limitations is data 
augmentation. This technique creates synthetic data that 
introduces greater variation than the original dataset, expanding 
the data pool with a wider range of examples [12]. This 
increased diversity helps the model learn more effectively and 
generalize across various dataset conditions, including both high 
and low-quality data [13]. By simulating multiple potential 
scenarios, augmentation strengthens the model's ability to 
handle real-world data variability, while also reducing the 
reliance on large, high-quality labeled datasets. As a result, this 
process accelerates training and improves overall model 
performance [14] [15]. One of many augmentation method 
worth considering is Albumentation. It strives to achieve a 
balance between several key factors, delivering excellent 
performance across a wide range of transformations while 
offering a concise API and a flexible, extensible design [22]. 

This research aims to improve the accuracy of bone fracture 
detection using ‘Albument-NAS’. The approach seeks to 
automatically identify and locate fractures in medical images, 
addressing challenges posed by resolution limitations that hinder 
accurate assessment of patient conditions. The research 
highlights the use of data augmentation to expand the variety of 
training data, which is anticipated to enhance the model's ability 
to recognize different patterns in medical images, ultimately 
leading to more accurate detection of bone fracture locations. 
Albument-NAS not only improves fracture detection accuracy 
but also has the potential to assist radiologists in real-time 
diagnostics, reducing diagnostic time and improving 
accessibility in under-resourced medical settings. 

II. LITERATURE REVIEW 

A. Research about Bone Fracture 

Through data augmentation techniques, the recent study by 
Ju and Cai [7] improves YOLOv8's performance on the 
GRAZPEDWRI-DX dataset, which is a collection of pediatric 
wrist injury X-rays. With a state-of-the-art mean average 
accuracy (mAP@50) of 0.638, their suggested model 
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outperformed the original YOLOv8 model and an enhanced 
YOLOv7 model, which had respective scores of 0.634 and 
0.636. This work contributes to the development of object 
detection models by demonstrating the importance of data 
augmentation in boosting YOLOv8's efficacy, especially for 
pediatric X-ray analysis. 

Ahmed and Hawezi's research [16] addresses inaccuracies in 
bone fracture diagnoses due to blurry images from conventional 
X-ray scanners, which increase misdiagnosis risks. Their study 
aims to develop a machine learning-based system to assist 
surgeons in detecting fractures more accurately. Among several 
algorithms tested, the Support Vector Machine (SVM) model 
achieved the highest accuracy at 92.8%, followed by the 
Random Forest model with 85.7%, highlighting the potential of 
machine learning to improve diagnostic precision. 

To meet the demand for quick, precise fracture diagnosis 
utilizing X-ray and CT images, Hareendranathan et al. [17] 
employed classification approaches to differentiate bone 
fractures from normal bone. Large data quantities and visual 
blurriness in MRI and CT scans make manual diagnosis 
difficult. The goal of this project was to develop an image-
processing system that can classify fractures with speed and 
accuracy. On a dataset of 100 training and testing photos, the 
system demonstrated a high accuracy rate of 99.5%, indicating 
potential for effective fracture diagnosis. 

B. Research about Data Augmentation 

Su et al. [18] use Generative Adversarial Networks (GANs) 
for data augmentation in order to handle class imbalance and 
data scarcity. Particularly in minority classes, traditional GANs 
suffer from mode collapse or unequal distributions. They 
suggest Self-Transfer GAN (STGAN), a two-stage technique for 
producing varied 256×256 skin lesion pictures, as a solution to 
this problem. For a high-quality synthesis, STGAN first learns 
generic information from all classes and then blends it with 
information unique to each subject. When tested on the 
HAM10000 dataset, STGAN outperformed StyleGAN2 by up 
to 33% in terms of FID, Inception Score, Precision, and Recall. 
The STGAN framework shown efficacy for balanced 
classification with 98.23% accuracy, 88.85% sensitivity, 
90.23% precision, 89.48% F1-score, and 98.34% specificity. 

Cubuk et al. [19] introduce AutoAugment, an automated 
method for finding optimal data augmentation policies, 
enhancing image classifier accuracy. Unlike manual 
approaches, AutoAugment uses an automated search, achieving 
state-of-the-art accuracy on datasets like CIFAR-10, CIFAR-
100, SVHN, and ImageNet. Notably, it achieved 83.5% Top 1 
accuracy on ImageNet, surpassing the previous 83.1%, and 
reduced CIFAR-10’s error rate to 1.5%, a 0.6% improvement. 

The research by Elbattah et al. [8] presents an interesting 
study in the field of data augmentation. The data they aim to 
augment is a representation of eye-tracking known as scanpath. 
This research is intriguing because various aspects can be 
extracted from human eye movements, such as emotion 
recognition. The data augmentation method used is Variational 
Autoencoder (VAE) [20]. The results show that the accuracy of 

the model without augmentation increased from 67% to 70% 
with the use of augmentation. 

III. PROBLEM STATEMENT 

The challenges in bone fracture detection include issues with 
image quality and the expertise of doctors in analyzing X-ray 
scan results. Sometimes, the fractures are very small and almost 
imperceptible. This difficulty can certainly consume time when 
analyzing to determine the exact location of the fracture. There 
are many publicly available datasets that can be used for 
machine learning training, but not all of them are good quality. 
Some have poor image quality, some lack annotations for 
fracture locations, and others have excessive labels that provide 
unnecessary information for identifying fracture locations. 
Therefore, proper processing of the dataset is needed so that it 
can be easily learned by the model, allowing the model to 
capture patterns to predict the location of bone fractures. 

IV. METHODOLOGY 

Bone fracture detection in medical imaging plays a crucial 
role in various applications, particularly in supporting faster and 
more accurate diagnoses and treatments. This research aims to 
enhance bone fracture detection performance by applying data 
augmentation techniques within a one-shot detector model, 
namely as Albument-NAS method. In this chapter, the 
methodology employed in this research is described in detail. 
The process begins with the collection of medical image samples 
containing fractures, followed by data augmentation to increase 
data variability, and concludes with the implementation of the 
detection model architecture. Sample images and the overall 
procedure will be presented and thoroughly discussed. 

A. Dataset 

For this study, two datasets will be used: the COCO Bone 
Fracture Dataset and the GRAZPEDWRI dataset. The COCO 
dataset will be used for training and validation, while the 
GRAZPEDWRI dataset, similar to the dataset used by previous 
researchers Ju and Cai [3], will be used as test data to compare 
with the model applied in this research. Both datasets contain 
the same types of data—images and annotation files. However, 
the COCO dataset is in COCO format, while the 
GRAZPEDWRI dataset is in Pascal VOC format. For the COCO 
dataset, all images have a uniform size of 416x416, while for the 
GRAZPEDWRI dataset, the images vary in size. 908 images 
from COCO dataset will be augmented to varying dataset, and 
for testing will be using 300 images from GRAZPEDWRI 
dataset. For the image quality of each dataset, both datasets 
exhibit similar levels of variation in terms of brightness. Some 
images have high brightness, while others are relatively dim. 
The COCO Bone dataset (Fig. 1) has additional variation in 
terms of image color, with some images featuring a blue 
background, while the majority are grayscale. In contrast, the 
GRAZPEDWRI dataset consists entirely of grayscale images. 
Regarding data distribution, all the provided images depict 
fractures; there are no images of normal bones, and the specific 
types of fractures or patient details are not explained. This 
indicates that both datasets are specifically designed for fracture 
detection research. 
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Fig. 1. COCO bone fracture dataset sample. 

 

Fig. 2. GRAZPEDWRI dataset sample. 

B. Preprocessing 

Preprocessing is necessary to ensure that the images are 
prepared for training with the chosen deep learning model. Since 
the model to be used is YOLO, it is beneficial to resize all 
images to a uniform size. For this purpose, the target size is set 
to 640x640 to provide better clarity of the fracture areas. The 
image size of 640x640 was selected as it provides a good 
balance between computational efficiency and model accuracy. 
Larger image sizes can increase accuracy but also require more 
computational resources, while smaller sizes can reduce 
processing time but may miss finer details. The chosen size 
ensures that the model can detect fractures effectively while 
maintaining reasonable training and inference times. 

The next step is to apply bounding box labels using the 
annotation files provided for the training and validation datasets. 
YOLO requires images to be pre-labeled for object detection 
tasks. The test data will also be labeled, but only for comparison 
and validation purposes to check whether the model’s predicted 
bounding boxes are accurate. However, it appears that in the 
GRAZPEDWRI dataset (Fig. 2), there are some labels that are 
not necessary for locating fractures. Therefore, label extraction 
will be performed to retain only the fracture location bounding 
boxes, while other labels will be disregarded. 

C. Albumentation 

The study by Ju & Cai [7] provided brightness and exposure 
enhancement augmentation for each image. This research will 
do the same, but with the addition of several other 
augmentations. Augmentation will be carried out using the 
Albumentations method provided by Roboflow, allowing the 
author to directly utilize the augmented dataset. As a result, 
Roboflow produced 2,360 augmented images to be used as the 
training and validation dataset. What sets Albumentations apart 
from typical augmentation techniques is its ability to apply 
augmentations probabilistically. This means that augmentations 
are applied randomly to images based on predefined constraints 
and probability values. 

Brightness in an image refers to the overall light intensity or 
luminance, which affects how light or dark an image appears. 

Increasing brightness makes an image appear lighter, while 
decreasing it makes it darker. The brightness of each pixel can 
be adjusted by adding a constant value to the pixel's intensity, 
represented by Formula 1: 

𝐼′ = 𝐼 +  𝛽                       (1) 

where 𝐼 is the original intensity of the pixel, 𝐼′ is the adjusted 
intensity, and 𝛽 is a constant that controls the level of brightness. 

Exposure in an image relates to the amount of light captured 
by the camera sensor, influencing the brightness and detail 
visible in the image, especially in the highlights and shadows. 
Proper exposure ensures that an image retains detail without 
being overly bright (overexposed) or too dark (underexposed). 
Exposure adjustments can be achieved by scaling pixel intensity, 
often represented by Formula 2: 

𝐼′ = 𝐼 × 𝛼                  (2) 

where 𝐼  is the original pixel intensity, 𝐼′  is the adjusted 
intensity, and 𝛼 is the multiplier that controls the exposure level. 
Values of 𝛼 > 1 will increase exposure, brightening the image, 
while 0 < 𝛼 < 1 reduces exposure, darkening it. 

The final augmentation performed by the author is the 
addition of noise. In this case, the applied noise is salt and pepper 
noise. Salt and pepper noise is a type of image noise 
characterized by random occurrences of white (salt) and black 
(pepper) pixels throughout the image, creating isolated bright 
and dark spots that disrupt the image's smooth appearance. The 
effect of salt and pepper noise is typically applied by randomly 
setting a percentage of pixels to the minimum intensity (0, 
representing black) or maximum intensity (255, representing 
white) in an 8-bit grayscale image. Mathematically, it can be 
represented as Formula 3: 

𝐼(𝑥, 𝑦) = {

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑠

255 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑝

𝐼(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (3) 

pixel intensity, 𝑝𝑠 is the probability of salt noise, and 𝑝𝑝 is 

the probability of pepper noise. The addition of this noise 
enriches the dataset quality and trains the model to learn from 
various unpredictable dataset conditions. Fig. 3 shows the 
sample of augmented images. 

 

Fig. 3. Augmented images sample. 

Fig. 4 shows the overall architecture and functionality of the 
proposed work, which includes augmentation with Roboflow 
Albumentation and object detection using YOLO-NAS creating 
author proposed method, Albument-NAS, while Algorithm I 
shows the pseudocode for the proposed method. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

193 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 4. Overall procedure of albument-NAS. 

Algorithm 1: Albument-NAS method: Albumentation 
augmentation and YOLO-NAS detection 
Inputs:  COCO Bone Fracture dataset 

Outputs:  X-Ray images with bounding box labelled 

1. Initialize image 

2. Initialize Albumentation technique 

3. Compute augmentation into images 

4. Initialize YOLO-NAS model and hyperparameter 

5. While (training not converged or early stopping not 
reached) do 

6. Load augmented images and their bounding box 
label 

7. For (every image in batch) do 

8. For (every region in the image with a bounding box) 
do 

9. Apply YOLO-NAS detection 

10. Update 

11. Adjust model parameter based on accuracy 
and loss 

12. End 

13. End 

14. End 

15. Evaluate mAP@50, precision, recall 

16. End 

D. YOLO-NAS Model 

For the object detection model, the author used YOLO-NAS. 
YOLO-NAS is an object detection model developed by Deci AI 

using neural architecture search (NAS) techniques to 
automatically design the network architecture. This allows the 
model to find the optimal settings for recognizing objects in 
images or videos without requiring extensive human input. The 
advantage of YOLO-NAS over other YOLO models is its higher 
accuracy, faster speed, and better efficiency, making it ideal for 
use on low-power hardware such as mobile devices. YOLO-
NAS is based on the modified CSPNet backbone architecture 
and uses the YOLOv5 detection head. The combination of the 
efficient CSPNet backbone, the powerful YOLOv5 detection 
head, and advanced NAS enables YOLO-NAS (Fig. 5) to 
achieve exceptional accuracy and speed. 

 

Fig. 5. YOLO-NAS architecture. 

As for the backbone using CSPNet, Formula 4 shows how 
the backbone works: 

𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒(𝐼) = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐼)            (4) 

where 𝐼 is the input image, and 𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒(𝐼) produces the 
feature used by detection head. YOLOv5 detection head is used 
to predict 𝐵𝑝𝑟𝑒𝑑, which is the bounding box and object class for 

image 𝐼. The function can be seen in Formula 5 below. 

𝐵𝑝𝑟𝑒𝑑 = 𝑌𝑂𝐿𝑂𝑣5(𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒(𝐼))                   (5) 

For the optimal network architecture searching, YOLO-NAS 
uses NAS (Neural Architecture Search) method to optimize the 
model's architecture by selecting the best components such as 
the number of layers, the number of neurons, and connections 
between layers. 

𝐴∗ = arg 𝑚𝑎𝑥  𝐿(𝐴, 𝐷)                            (5) 
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where 𝐴 is the network architecture being searched, 𝐿(𝐴, 𝐷) 
is the loss function for the architecture 𝐴 on dataset 𝐷 and 𝐴∗ is 
the optimal architecture that maximizes performance. 

YOLO-NAS also compute loss function, typically combines 
classification loss and bounding box regression loss. Formula 6 
shows how YOLO-NAS handle loss function: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔_𝑏𝑜𝑥 + 𝐿𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠      (6) 

𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 measures the error in classifying object class, 

𝐿𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔_𝑏𝑜𝑥 measures the error in predicting the bounding box 

location, and 𝐿𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠  measures the error in predicting the 

probability of the object presence in a grid. 

V. RESULT AND DISCUSSION 

This research is implemented in Python 3.10. The 
environment used for this study, including the hardware and 
software specifications, is outlined in Table I. These 
specifications define the necessary resources for implementing 
the proposed object detection system effectively. The hardware 
setup provides sufficient processing power, while the software 
components offer the required tools and libraries to support 
model training and evaluation. 

TABLE I.  RESEARCH ENVIRONMENT DETAILS 

Type Device Type Name 

Hardware 

Processor 
13th Gen Intel(R) Core™ i7-13620H, 
2400 Mhz 

Graphics 

processor 

NVIDIA GeForce RTX 4060 Laptop 

GPU 

Storage 1 TB 

Memory 16 GB 

Software 

IDE Visual Studio Code 

Albumentation Roboflow 

Important libraries 

cpython, cython, ipython, ipykernel, 

jedi, numpy, onnx, pillow, pytorch 

(make sure it is CUDA supported), 
scipy, super-gradients (YOLO model),  

supervision, torchvision, torchaudio 

This research will observe three key metrics employed to 
evaluate the some of the object detection model’s performance. 
By focusing on these metrics, a comprehensive understanding of 
the model’s detection precision and overall effectiveness can be 
observed. 

A. Metrics 

To assess how well the model’s bounding box predictions 
identify fracture locations, the mAP@50 metric will be 
analyzed. A higher mAP value indicates that the model is more 
successful in accurately placing bounding boxes that match the 
ground truth. Additionally, precision will be calculated to 
evaluate how accurately the proposed model predicts the correct 
class, and recall will be used to determine how many fracture 
images are correctly identified as fractures. 

TABLE II.  MODEL COMPARISON ON GRAZPEDWRI DATASET 

Model 
Metric 

mAP Precision Recall 

YOLOv8 (SOTA) [3] 63.8% - - 

Baseline (ResNet50) 71.4% 80.5% 61.3% 

Baseline + Albumentation 76.2% 88.2% 63.6% 

Faster R-CNN 73.3% 81.4% 62.3% 

Faster R-CNN + Albumentation 78.3% 83.4% 64.3% 

YOLO-NAS 74.3% 79.2% 59.8% 

Albument-NAS (proposed 

method) 
83.5% 87% 65.7% 

Table II compares performance metrics across different 
models, focusing on mAP, precision, and recall. YOLOv8 
(SOTA) achieves a mAP of 63.8%, though Precision and Recall 
metrics are not available. The baseline model (ResNet50) attains 
a mAP of 71.4%, with a precision of 80.5% and a Recall of 
61.3%, demonstrating strong true positive accuracy but 
moderate recall. With Albumentation augmentation, the 
Baseline model improves to a mAP of 76.2%, while Precision 
rises to 88.2% and recall to 63.6%, indicating a notable increase 
in true positive identification. Faster R-CNN achieves a mAP of 
73.3%, with a Precision of 81.4% and a Recall of 62.3%. This 
result highlights its strong precision and balanced performance 
in recall, surpassing the Baseline model in mAP. When 
augmented with Albumentation, Faster R-CNN improves 
further to a mAP of 78.3%, with a Precision of 83.4% and a 
Recall of 64.3%. This demonstrates that augmentation enhances 
both precision and recall, solidifying Faster R-CNN as a robust 
model for object detection tasks. YOLO-NAS without 
augmentation achieves a mAP of 74.3%, with a Precision of 
79.2% and a Recall of 59.8%, slightly below the Baseline with 
augmentation. However, the proposed method, Albument-NAS, 
achieves the highest mAP at 83.5%, with a precision of 87% and 
recall of 65.7%, demonstrating that augmentation significantly 
enhances both accuracy and completeness of detections across 
all metrics. Precision and recall values for YOLOv8 were not 
available due to limitations in the original study's reporting. This 
metric should be considered when comparing the performance 
of YOLO-based models. The inclusion of Faster R-CNN results 
underscores its competitive performance, especially when 
paired with augmentation, although it does not surpass the 
Baseline with augmentation or Albument-NAS in overall 
accuracy. 

The results demonstrate that an appropriate augmentation 
process can enhance object detection accuracy, specifically in 
identifying fracture locations. The YOLO-NAS model also 
proves superior due to its ability to optimize parameters during 
training. Consequently, the architecture of YOLO-NAS 
achieves greater convergence compared to YOLOv8, whose 
structure is already pre-defined and fixed. The ResNet50 model 
achieves higher precision because its architecture is optimized 
to focus on fine-grained feature extraction [21], which reduces 
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false positives. ResNet50’s deep residual connections help 
capture subtle details and ensure that detected regions are more 
likely to correspond accurately to true fractures, thus improving 
precision. This focus makes ResNet50 particularly effective in 
tasks where high specificity (true positive accuracy) is crucial, 
even though it might not reach the same level of overall recall 
as YOLO-based models optimized for real-time, comprehensive 
detection. Additionally, Faster R-CNN achieves higher 
precision compared to ResNet50 due to its two-stage detection 
mechanism, which separates region proposal from 
classification. This architecture allows Faster R-CNN to focus 
on high-quality region proposals, reducing the likelihood of 
false positives during object classification. 

The YOLO-NAS model without augmentation performed 
below the baseline augmented model due to the limited diversity 
of the training data. Data augmentation significantly improves 
model generalization by simulating various real-world 
conditions, thus enhancing its ability to detect fractures across 
different image qualities. 

B. Bone Fracture Detection 

To ensure a fair comparison in bone fracture detection, the 
detection results will be evaluated using the GRAZPEDWRI 
dataset, which serves as the testing dataset. The object detection 
results can be seen in Fig. 6 below. 

 

Fig. 6. Fracture detection result by proposed method, albument-NAS. 

 

Fig. 7. Fracture detection ground truth. 

Based on Fig. 6, Albument-NAS successfully detects bone 
fractures accurately. Fig. 7 displays the actual locations of the 
fractures. Despite the inconsistent quality of the X-ray images 
(with the fourth image in Fig. 7 appearing darker than the 
others), the model still performs well in making inferences. 
These variations are largely attributed to challenges in detecting 
small or subtle fractures in images with low resolution or 
significant noise. Nonetheless, the model demonstrates strong 
performance in accurately identifying larger fractures. 

The Albument-NAS model has the potential to be 
incorporated into clinical workflows via cloud-based diagnostic 

systems, providing remote access for healthcare professionals in 
underprivileged regions. Additionally, its capability to swiftly 
and accurately detect fracture locations can help alleviate the 
workload of radiologists, especially in emergency scenarios 
where prompt action is essential. 

C. Grad-CAM Visualization 

Grad-CAM (Gradient-weighted Class Activation Mapping) 
can help radiologists and healthcare providers understand how 
the model identifies fracture locations by generating visual 
heatmaps that highlight the regions of an image most influential 
to the model's decision. When applied to X-ray images, Grad-
CAM produces an overlay that indicates which areas the model 
"focused on" to predict the presence of a fracture. Radiologists 
are more inclined to embrace AI systems when they can confirm 
that the model's decision-making process aligns with their 
clinical knowledge and judgment. By providing visual insights 
into how predictions are generated, Grad-CAM facilitates a 
collaborative dynamic between AI and healthcare providers, 
positioning the AI as a supportive tool rather than a replacement. 
This clarity not only strengthens trust but also encourages 
broader adoption of AI solutions in clinical settings by ensuring 
patient safety and adhering to medical decision-making 
standards. As for this research, Fig. 8 shows how Grad-CAM 
can clarify the model's prediction results by focusing on the 
fracture location. 

 

Fig. 8. Grad-CAM visualization. 

VI. CONCLUSION AND FUTURE WORK 

The results of this study demonstrate that appropriate data 
augmentation, specifically with Albumentation, significantly 
improves object detection performance in identifying fracture 
locations. The Albument-NAS model achieved the highest 
performance in terms of mAP@50, Precision, and Recall when 
augmented, suggesting its advantage over other models due to 
its ability to dynamically optimize parameters during training. 
This adaptability allows YOLO-NAS to achieve greater 
convergence, whereas YOLOv8, with a more rigid architecture, 
is less flexible in parameter optimization. Meanwhile, the 
ResNet50 model, although not reaching the highest recall, 
excels in precision due to its residual architecture, which 
effectively captures detailed features, thereby reducing false 
positives. This characteristic makes ResNet50 particularly 
useful in applications requiring high specificity and accuracy. 
The reason behind the significant drop in mAP@50 for the 
SOTA model is that it was designed for multi-object detection, 
requiring accurate predictions across a large number of classes. 
However, this approach is less relevant to the original goal, 
which is to precisely determine the location of bone fractures. 
Although YOLO-based models like YOLOv5 and YOLOv8 
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perform well in general object detection tasks, they frequently 
encounter challenges in detecting small objects like bone 
fractures due to resolution constraints and the high precision 
requirements of medical imaging. The Albument-NAS model 
overcomes these challenges by utilizing advanced augmentation 
methods and refining its architecture to enhance the detection of 
fine-grained fracture details. 

Future research could further investigate the impact of 
different types of augmentation techniques on fracture detection, 
especially in enhancing model robustness across diverse and 
inconsistent image qualities. Additionally, integrating hybrid 
architectures that combine the fine-grained feature extraction of 
ResNet50 with the dynamic optimization abilities of YOLO-
NAS could yield a model with both high precision and recall. 
Finally, evaluating these models on a broader dataset of fracture 
types or on 3D imaging data might enhance their applicability 
and reliability in clinical diagnostics. Another hybrid method is 
combining YOLO-NAS with transformer-based models like 
DETR (DEtection TRansformers) could enhance the model's 
capability to identify intricate fracture patterns. This approach 
would capitalize on YOLO-NAS's spatial efficiency and the 
transformers' ability to capture contextual information. 
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