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Abstract—Identifying interactions between transcription 

factors (TFs) and target genes is critical for understanding 

molecular mechanisms in biology and disease. Traditional 

experimental approaches are often costly and not scalable. We 

introduce FKMU, a K-means-based under-sampling method 

designed to address data imbalance in predicting TF-target 

interactions. By selecting low-frequency TF samples within each 

cluster and optimizing the balance ratio to 1:1 between known and 

unknown samples, FKMU significantly improves prediction 

accuracy for unobserved interactions. Integrated with a deep 

learning model that uses random walk sampling and skip-gram 

embeddings, FKMU achieves an average AUC of 0.9388 ± 0.0045 

through five-fold cross-validation, outperforming state-of-the-art 

methods. This approach facilitates accurate and large-scale 

predictions of TF-target interactions, providing a robust tool for 

molecular biology research. 

Keywords—K-means clustering; imbalanced data; TF-target 

gene interactions; heterogeneous network; meta-path 

I. INTRODUCTION 

Transcription Factors (TFs) are essential regulatory proteins 
in the process of gene transcription, which is the mechanism of 
transferring genetic information from DNA to RNA [8]. TFs 
perform their role by binding to specific DNA sequences, often 
located in or near gene promoters. Upon binding to DNA, TFs 
can either activate or inhibit the function of RNA polymerase, 
the enzyme responsible for transcribing DNA into RNA. 
Through this mechanism, TFs regulate gene expression, playing 
a crucial role in the development and maintenance of cellular 
functions. TFs are found in almost all living organisms and are 
vital for gene expression regulation. However, when TFs lose 
their function, the balance in gene regulation is disrupted, 
leading to severe diseases. Accurately identifying the 
relationships between TFs and target genes is a crucial step in 
understanding the complex molecular mechanisms involved in 
biological and pathological processes. These insights will pave 
the way for extensive research in molecular biology and applied 
medicine, laying the foundation for more effective diagnostic 
and therapeutic methods in the future. 

Previously, identifying interactions between TFs and target 
genes relied primarily on experimental methods, which were 
costly and time-intensive. The emergence of large-scale 
techniques such as ChIP-seq and RNA-seq has made it more 
feasible to predict TF target genes across the entire genome [12, 
13]. ChIP-seq maps TF-DNA interactions, while RNA-seq 
provides RNA expression data, shedding light on genes 

influenced by TFs [20]. However, these methods reveal only a 
small fraction of the complex gene regulatory network. 

Many interactions between TFs and target genes remain 
unclear in existing databases. Datasets on TF-target gene 
interactions collected from ChIP-seq techniques provide a 
limited view of the complex gene regulatory network. 
Specifically, most current computational methods only identify 
binding sites without addressing the nature of these interactions. 
Although some recent studies have made progress in predicting 
these interactions, building high-quality datasets with both 
positive and negative samples remains a significant challenge. 
Furthermore, current methods often fail to effectively address 
the data imbalance issue, particularly in selecting negative 
samples. This limitation can result in the failure to detect 
potential interactions between TFs and target genes, reducing 
the accuracy of prediction models. Additionally, failure to 
address the data imbalance issue can introduce bias during the 
training process [2-4], impairing the ability to detect important 
interactions in the gene regulatory network. Therefore, the 
development of new methods focused on data balancing is 
crucial to improve prediction performance and provide a solid 
foundation for molecular biology and applied medicine 
research. 

This paper introduces a novel approach to address data 
imbalance for improving the prediction of TF-target gene 
interactions. Key contributions of this study include: 

a) We present the FKMU method, an under-sampling 

technique based on the K-means clustering algorithm and the 

inverse information principle, designed to enhance efficiency 

and stability in predicting TF-target gene interactions. 

b) A novel meta-path schema has been developed to 

extend the capability of capturing potential links within 

heterogeneous networks, significantly improving the predictive 

performance of the model. 

c) The FKMU model incorporates substantial 

advancements, achieving superior performance in identifying 

unknown TF-target gene interactions compared to existing 

approaches. 

d) The effectiveness of the proposed method is validated 

through rigorous experiments, demonstrating outstanding 

results in terms of accuracy and predictive efficiency over 

current methods. 

e) Experimental results confirm that FKMU is an 

effective and accurate solution, achieving an average AUC value 
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superior to many existing methods, demonstrating its potential 

for widespread application in molecular biology research. 

The remainder of this paper is organized as follows. Section 
II reviews related works on predicting interactions between TFs 
and target genes based on TF binding sites, gene expression data, 
and heterogeneous networks. Section III introduces the FKMU 
method, which combines K-means clustering and negative 
sampling. Section IV presents the experimental results, 
including evaluation metrics, parameter optimization, and 
performance comparisons. Finally, Section V concludes with 
the contributions of the study and suggests potential directions 
for future development. 

II. RELATED WORKS 

Predicting interactions between TFs and target genes is a 
critical topic in the field of computational biology. Traditional 
experimental methods are often time-consuming, costly, and 
challenging to apply at scale, while also carrying the risk of 
failure. Artificial intelligence offers a powerful tool to support 
these experimental approaches, helping to narrow down the 
search for potential interactions between TFs and target genes 
and optimizing them for subsequent experimental validation. As 
a result, research time and costs can be significantly reduced, 
facilitating the research and development process. Research 
related to our approach can be divided into the following three 
subsections. 

1) Methods based on predicting transcription factor 

binding sites (TFBS): These methods primarily focus on 

identifying interactions between TFs and target genes by 

detecting their binding sites. The process involves determining 

the binding positions of TFBS, which are often integrated with 

deep learning models such as Convolutional Neural Networks 

(CNNs), as demonstrated in the research by S. Salekin et al. 

[21] and Ž. Avsec et al. [29], or Recurrent Neural Networks 

(RNNs), as referenced in the studies by J. Lanchantin et al. [10] 

and Z. Shen et al. [32]. However, these methods have a 

significant limitation, leading to a high false positive rate 

because TFBS are often located within long non-coding 

sequences. Furthermore, they do not directly predict TF-target 

gene interactions but rather infer them based on the locations of 

TFBS. 

2) Direct prediction methods for TF-target gene 

interactions based on gene expression data: These methods do 

not rely on TFBS but instead use gene expression data, such as 

gene expression images from in situ hybridization (ISH) or 

single-cell RNA sequencing (scRNA-seq) data, to directly 

predict the relationship between TFs and target genes. For 

example, using gene expression image analysis, Y. Yang et al. 

[28] developed GripDL, an effective tool for studying 

transcriptional regulatory networks in Drosophila. GripDL 

utilizes ISH images as input, combined with a deep residual 

model to leverage known TF-target gene interactions. Results 

showed that GripDL outperformed traditional methods in 

accuracy and the ability to detect novel gene interactions, 

offering valuable insights into eye development in Drosophila 

and paving the way for new research on gene regulatory 

networks. Beyond gene expression images, single-cell RNA 

sequencing (scRNA-seq) data provides an additional 

perspective for understanding complex mechanisms by which 

TFs regulate target genes. Su et al. [15] developed NetAct, a 

computational platform for constructing transcription factor 

regulatory networks using transcriptomic data and gene 

databases. This tool has been effectively applied to model 

regulatory networks in epithelial-mesenchymal transition and 

macrophage polarization, highlighting its significant potential 

in analyzing complex gene networks. Y. Fan et al. [26] 

introduced the 3D Co-Expression Matrix Analysis (3DCEMA) 

method, employing 3D convolutional neural networks to 

predict regulatory relationships between genes. This approach 

helps minimize the effects of noise and data loss, significantly 

enhancing the accuracy of gene regulatory network inference 

compared to existing algorithms. 
However, the main drawback of these methods is the high 

cost of data collection, particularly for complex gene expression 
data like scRNA-seq, which limits their widespread practical 
application. 

3) Heterogeneous network-based methods: With the rapid 

development of databases, a wealth of data on TF-target gene 

interactions has been collected from experiments and integrated 

into resources like the TRRUST database [7], providing 

extensive insights into human gene regulatory networks. 

Heterogeneous network-based methods offer a novel approach 

to directly predict TF-target gene interactions more effectively 

than TFBS or gene expression-based methods. These methods 

go beyond simply predicting binding sites by leveraging 

contextual biological factors and disease mechanisms that 

influence binding. 
For instance, Y. A. Huang et al. [24] introduced a new deep 

learning model named HGETGI to predict TF-target gene 
interactions. HGETGI not only learns known interaction 
patterns between TFs and target genes but also integrates 
information on their roles in human pathological mechanisms. 
Using random walk sampling with meta-paths and skip-gram 
node embedding techniques, HGETGI achieved high prediction 
accuracy, with an average AUC of 0.8519 ± 0.0731 through 
five-fold cross-validation. Similarly, Z. H. Du et al. [30] 
proposed the GraphTGI model, which employs a graph-
structured neural network to predict TF-target gene interactions, 
achieving an average AUC of 88.64% through five-fold cross-
validation, proving its effectiveness in TF-target gene 
interaction prediction. GraphTGI is the first end-to-end model to 
incorporate the topological structure of the TF-target gene 
interaction network, alongside the chemical properties of genes 
in node features, creating automated embeddings that clarify 
relationships between TF-target gene pairs and support related 
tasks. 

While these methods have made significant strides, 
challenges remain. Current approaches mainly focus on 
predicting TF-target gene interactions without optimizing for 
data balance, which hampers accurate predictions with uneven 
datasets. 
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This paper introduces a novel approach to address data 
imbalance in order to optimize the prediction of TF-target gene 
interactions. Numerous studies have proposed solutions for 
handling imbalanced data classification through various 
approaches, including data-level and algorithm-level strategies. 
In this study, we adopt a data-level approach, focusing on 
preprocessing to reduce imbalance before feeding data into the 
TF-target gene interaction prediction model to achieve better 
results. Several methods exist for adjusting data, such as 
oversampling or under-sampling. Moreover, combining these 
methods can further optimize classification and improve 
prediction performance [9]. 

Under-sampling is an effective method for handling 
imbalanced data by reducing the number of samples in the 
majority class to balance it with the minority class, thereby 
improving the predictive capability of the model. Among the 
under-sampling methods, Random Under-sampling (RUS) is a 
simple technique applied to balance datasets by randomly 
removing a number of samples from the majority class. 
However, such random data removal may lead to the loss of 
valuable samples and diminish the amount of useful information 
from the majority class, potentially negatively impacting 
performance in classification tasks. Therefore, C. M. Huang et 
al. [1] proposed an approach using K-means to select 
representative samples from the majority class, improving 
precision (PPV) by 20.2% while maintaining recall above 90% 
on Kawasaki Disease (KD) data. Q. Zhou et al. [19] suggested 
an adaptive K-means-based under-sampling method, where they 
calculate the distance between data points within each cluster 
and the cluster centroid using Manhattan distance and Cosine 
similarity. This algorithm employs these two metrics to select 
representative samples from the majority class, resulting in a 
more balanced dataset. The results indicate that this method 
determines an appropriate dynamic value of k for different 
datasets and generates a balanced dataset, thereby enhancing the 
classification performance of machine learning algorithms. T. 
Doan et al. [22] proposed GBDTLRL2D, a method for 
predicting lncRNA-disease relationships that combines 
Gradient Boosting Decision Trees (GBDT) and Logistic 
Regression, utilizing MetaGraph2Vec and K-means to preserve 
semantic features, achieving an average AUC of 0.98 in 10-fold 
cross-validation. 

In contrast to under-sampling methods, over-sampling 
methods focus on increasing the number of samples in the 
minority class. The simplest over-sampling method is Random 
Oversampling, which involves randomly duplicating samples 
from the minority class to increase the number of samples in this 
class, thereby creating a balance with the majority class. 
However, this approach can easily lead to overfitting, reducing 
the generalization ability of the model. To mitigate this risk, N. 
V. Chawla et al. [17] proposed SMOTE, which generates 
synthetic samples through interpolation from the minority class 
data. However, SMOTE may not accurately reflect the complex 
characteristics of the minority class, especially in intricate 
models. D. X. Tho et al. [6] improved this approach with KNN-
SMOTE, achieving superior performance in F-score, G-mean, 
and AUC on imbalanced datasets from UCI. H. Li et al. [9] 
proposed KM-GAN, which combines K-means and GAN to 

generate new samples from imbalanced industrial fault data. 
KM-GAN clusters the minority class samples and then utilizes 
GAN to create additional data, enhancing diagnostic efficacy 
through a combined DNN and DBN model, thus addressing the 
bias of traditional methods towards the majority class. 

Current methods have effectively contributed to identifying 
interactions between TFs and target genes; however, they still 
face several challenges, such as a high false positive rate and 
significant data collection costs. Additionally, heterogeneous 
network-based methods have not been optimized for imbalanced 
data. Although many methods for handling imbalance, as 
introduced above, have achieved good predictive performance, 
further improvements are still necessary. To address these 
limitations and enhance the quality of the majority class, we 
have developed a new method called FKMU to improve the 
performance of predictive models. We anticipate that this 
method will enhance accuracy and applicability in empirical 
research. 

III. METHODOLOGY 

In this section, we will outline the main tasks of our method 
aimed at predicting the relationships between TFs and target 
genes. As part of this narrative, we describe a heterogeneous 
network formed from biological databases related to TFs, target 
genes, and diseases, as shown in Step 1 of Fig. 1. We will 
perform data balancing by combining the K-means clustering 
algorithm with negative sampling, as detailed in Step 2 of Fig. 
1. We will create new meta-paths, as illustrated in Step 3 of Fig. 
1. Random walks will be conducted on the graph according to 
the meta-paths to generate training data for the embedding 
model, followed by the application of a deep learning model to 
learn the features of the nodes in the heterogeneous network, as 
shown in Steps 4 and 5 of Fig. 1. Finally, we will proceed to 
predict the interactions between TFs and target genes, as 
illustrated in Step 6 of Fig. 1. 

 

Fig. 1. General workflow containing six main steps. 
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A. Heterogeneous Network Construction 

Definition 1. A heterogeneous network [23] is defined as 
graph G = (V, E, T), where each node v and each edge e are 
associated with mapping functions 𝜙(𝑣): 𝑉 →  𝑇𝑉  and 
𝜑(𝑒): 𝐸 →  𝑇𝐸 , respectivelt. 𝑇𝑉  and 𝑇𝐸  represent the set of 
object types and relationship types, and satisfy the condition 
|𝑇𝑉| + |𝑇𝐸| > 2. 

In this study, we construct a model to predict the associations 
between TFs and target genes. This heterogeneous network is 
defined as a graph G = (V, E, T), where each node represents 
TFs, target genes, or diseases, and each edge represents the 
relationships between these entities. TFs and target genes have 
been shown to have close associations with various diseases, and 
integrating information about these entities allows us to explore 
potential unknown associations between TFs and target genes. 

B. Meta-Path in a Heterogeneous Network 

A meta-path, also known as a “hyperlink” is a model used to 
represent relationships between nodes in a heterogeneous 
network. It can be understood as a sequence of connections 
between nodes and their links, designed to express the 
relationship between two nodes under consideration within the 
network. 

Definition 2. Meta-path [5]. A meta-path 𝒫 is a path defined 
on the network schema 𝑇𝐺 = (𝒜, ℛ) and is represented as 𝑉1
𝑅1
→ 𝑉2

𝑅2
→ … 

𝑅𝑙
→ 𝑉𝑙+1, defining a composite relationship 𝑅 = 𝑅1 ∘

𝑅2 ∘ … ∘ 𝑅𝑙 between the types 𝑉1and 𝑉𝑙+1, where ∘ denotes the 
composition operator over relationships. 

For example, the meta-path “CTCF (TF) - BRCA1 (Target 
Gene) - Breast Cancer (Disease) - TP53 (Target Gene) - MYC 
(TF) - Ovarian Cancer (Disease) - EGFR (Target Gene) - SP1 
(TF)”, as illustrated in Fig. 2, demonstrates how the transcription 
factors CTCF, MYC, and SP1 are linked to breast and ovarian 
cancers through intermediate target genes BRCA1, TP53, and 
EGFR. 

 

Fig. 2. Illustration of a meta-path in a heterogeneous TF-target gene-disease 

network. 

1) Meta-path random walks: is a graph mining technique 

that generates paths based on the semantic and structural 

relationships between different types of nodes. This method 

helps transform the complex structure of the network into 

vectors, enabling effective extraction of information from the 

relationships. 
For a heterogeneous network G = (V, E, T) and a meta-path 

schema 𝒫, we can calculate the transition probability at step k as 
follow: 

𝑃(𝑣𝑘+1|𝑣𝑡
𝑘 , 𝒫) = {

1

|𝑁𝑡+1(𝑣𝑡
𝑘)|

(𝑣𝑘+1, 𝑣𝑡
𝑘) ∈ 𝐸, ∅(𝑉𝑘+1) = 𝑡 + 1

0   (𝑣𝑘+1, 𝑣𝑡
𝑘) ∈ 𝐸, ∅(𝑉𝑘+1) ≠ 𝑡 + 1

0    (𝑣𝑘+1, 𝑣𝑡
𝑘) ∈ 𝐸

 (1) 

where 𝑣𝑡
𝑘 ∈ 𝑉𝑡  and 𝑁𝑡+1(𝑣𝑡

𝑘)  denotes the type 𝑉𝑡+1  of the 

neighborhood of node 𝑣𝑡
𝑘 . 

C. Dataset 

In this study, we use a dataset consisting of three types of 
nodes: TFs, target genes, and diseases, along with three types of 
relationships between these nodes [24]. Specifically, the three 
types of relationships include: the association between TFs and 
target genes, the association between TFs and diseases, and the 
association between target genes and diseases (Fig. 3). 

 

Fig. 3. Statistics of the heterogeneous TF-target gene-disease network 

information. 

Data on interactions between human TFs and target genes 
were collected from the TRRUST database. This is a 
transcriptional regulatory network database that utilizes text 
mining techniques to gather and manually verify detailed 
information on interactions between TFs and human target 
genes, ensuring data accuracy. During processing, duplicate 
pairs were removed, resulting in a final dataset of 6,542 
interactions between 696 TFs and 2,064 target genes. 
Additionally, these transcription factors and target genes were 
linked to diseases through the DisGeNET database, a resource 
focused on the genetic basis of human diseases. As a result, 
8,199 links between TFs and diseases, along with 31,895 links 
between target genes and diseases, covering 6,121 different 
disease types, were collected. 

D. Data Balancing Solution with K-Means Clustering and 

Negative Sample Selection 

In this study, the dataset includes 696 TFs and 2,064 target 
genes, with a total of 1,436,544 TF-target gene pairs. As shown 
in Fig. 4, only 0.46% of the TF-target gene pairs have been 
identified as interactions, while the vast majority, accounting for 
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99.54%, are unknown interactions. This substantial imbalance 
highlights a severe data imbalance, posing a significant 
challenge for the prediction model, which can lead to bias and 
reduced accuracy. Therefore, we have applied data sampling 
methods to balance the dataset, thereby enhancing the prediction 
model's accuracy. 

 

Fig. 4. Distribution of interactions between TF and target genes in the 

dataset. 

In this study, we introduce the FKMU method, a K-means 
clustering-based Under-sampling technique for selecting 
negative samples. This method selects samples with the lowest 
occurrence frequency of TFs in each cluster, based on the 
inverse information principle as described in Fig. 5. The FKMU 
procedure is as follows: 

 

Fig. 5. The process of balancing the dataset using FKMU. A) initial known 

associations and unknown associations; B) Clustering for the set of unknown 

associations based on the feature matrix; C) Select points in a cluster based on 
the lowst occurrence frequency of TF; D) Data balancing based on sampling 

ratio r. 

1) Identify the known and unknown association sets from 

the TF-target gene adjacency matrix A: The known association 

set K consists of TF and target gene pairs with a value of 1 in 

matrix A, representing the associations that have been 

confirmed. The unknown association set U consists of TF and 

target gene pairs with a value of 0 in matrix A, representing the 

associations that have yet to be evaluated. 

2) One-hot encoding for the unknown association set: Each 

pair (i, j) from the set U will be encoded into a feature vector 

using one-hot encoding for the following factors: 

a) TF encoding: A value of 1 at position i corresponds to 

the TF. 

b) Target gene encoding: A value of 1 at position j 

corresponds to the target gene. 

c) Create feature matrix X: The matrix X is defined with 

dimensions |U| × (m + n), where each row is the one-hot vector 

of a pair (i, j) in U. 

This process is illustrated in Fig. 6, which demonstrates the 
one-hot encoding structure for unknown associations. 

 

Fig. 6. One – hot encording for unknown associations. 

3) Perform K-means clustering on the unknown 

association set: Apply K-means clustering to divide the 

unknown associations in U into k clusters. The feature matrix 

from step 2 is used to identify the cluster structure in the data, 

resulting in groups of unknown associations that share similar 

characteristics. The feature matrix is a sparse matrix. Therefore, 

before proceeding with the clustering, this matrix is represented 

in CSR (Compressed Sparse Row) format. CSR is one of the 

popular formats for storing sparse matrices. It stores the matrix 

by retaining non-zero values, which helps save memory for 

large matrices that contain many zero values. 

4) Calculate the number of associations to select from each 

cluster: Based on the total number of known associations |K| 

and the sampling ratio r, determine the number of unknown 

associations np to be selected from each cluster. This helps 

ensure a balance between known and unknown associations, 

according to the specified ratio. 

5) Select the least frequent samples in each cluster: Within 

each cluster, calculate the frequency of occurrence of each TF 

and sort the associations in the cluster by the ascending 

frequency of the TF. Next, select np associations with the lowest 

frequency of TF occurrence in each cluster to minimize the bias 

caused by the high frequency of certain dominant TFs. This 

approach helps create a set of associations that follows the 

principle of inverse frequency, prioritizing less common 
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associations to ensure that the sample dataset contains diverse 

types of associations. The goal of this principle is to enrich the 

information in the sample set, enabling the model to learn from 

both rare samples and those that are less biased, thereby 

enhancing the model's generalization ability for rare cases in 

real-world data. 

6) Return the balanced association set: The set of least 

frequent associations selected from all clusters forms set B, 

which is the unknown association set balanced according to the 

ratio r. Set B is then used as a more balanced dataset for the 

subsequent steps of the predictive model. 

Algorithm 1: Frequency-Based K-Means Under-sampling 
Algorithm 

Input:   

   Association matrix 𝐴 ∈ ℝ𝑚×𝑛, where m is the number 

of TFs and n is the number of target genes. 

  𝑘: The number of clusters for performing K-means 

clustering. 

  𝑟: The sampling ratio from unknown associations. 

Output:  

   Balanced set of unknown associations B, sampled 

according to ratio r. 

1: # Calculate known and unknown set from A: 

2: K = {(𝑖, 𝑗) | 𝐴𝑖𝑗 = 1} (known association) 

3: U = {(𝑖, 𝑗) | 𝐴𝑖𝑗 = 0} (unknown associations) 

4: # One-hot encoding for TF and Target gene: 

5: Create a feature matrix 𝑋 ∈ ℝ|𝑈|×(𝑚+𝑛)  # where each row 
corresponds to an unknown association pair (i, j) 

6: for each pair (𝑖, 𝑗) ∈ 𝑈 do 

7: 

𝑋𝑢 = [0, … , 1𝑖 , … , 0, 0, … , 1𝑗 , … , 0]  # Here, the 1 at 

position i represents the TF and the 1 at position j 
represents the Target gene, while the remaining 
positions are 0. 

8: end for 

9: Initialize k random cluster centers  {u1, u2, …, uk} from U 

10: # Assign each data point x ∈ U to the nearest cluster center: 

11: for 𝑥 𝜖 𝑈 do 

12: 𝑐𝑖 = arg min
𝑗

‖𝑥 − 𝑢𝑗‖
2
 

13: end for 

14: # Update the center of each cluster with 𝐶𝑗 being the set of data 

points belonging to cluster j: 

15: for i = 1 to k do 

16: 𝑢𝑗 =  
1

|𝐶𝑗|
 ∑ 𝑥

𝑥∈𝐶𝑗

 

17: end for 

18: # Calculate the number of points to select from each cluster: 

19 : 𝑛𝑘𝑛𝑜𝑤𝑛 =  |𝐾| 

20: 𝑛𝑝 =  ⌈
𝑛𝑘𝑛𝑜𝑤𝑛×𝑟

𝑘
⌉ 

21: Initialize B = [] 

22: # Select points from each cluster: 

23: for i = 1 to k do 

24: # Calculate the frequency of each TF in the cluster: 

25: 𝑓𝑟𝑒𝑞(𝑖) = ∑ 1

(𝑖,𝑗)∈𝐶𝑗

 

26: 
# Sort points in cluster 𝐶𝑗 by the increasing frequency 

of their TFs: 

27: 
𝐶𝑗

′ = 𝑠𝑜𝑟𝑡𝑒𝑑(𝐶𝑗 , 𝑘𝑒𝑦 =  𝜆𝑥: 𝑓𝑟𝑒𝑞(𝑥0)) # where 𝑥0  is 

the TF index in the pair (TF, Target gene) 

28: 
# Select 𝑛𝑝 points with the lowest TF frequency from 

each cluster: 

29: 𝐵 = 𝐵 ∪  𝐶𝑗
′ [1: 𝑛𝑝] 

30: end for 

31: # Balance the set of unknown associations: 

32: 𝐵 = 𝐵 [1: [𝑛𝑘𝑛𝑜𝑤𝑛 × 𝑟]] 

33: Return B 

E. Embedding Heterogeneous Network Nodes using Skip-

Gram 

Specifically, in a heterogeneous network G = (V, E, T) with 
the number of node types |𝑇𝑉| > 1, he objective is to maximize 
the co-occurrence probability p of the nodes within the same 
context window k, as follows [31]: 

argmax
𝜃

∑ ∑ ∑ 𝑙𝑜𝑔𝑝(𝑐𝑡|𝑣; 𝜃)𝑐𝑡𝜖𝑁𝑡(𝑣)𝑡𝜖𝑇𝑉𝑣𝜖𝑉  (2) 

where 𝑁𝑡(𝑣) is the set of neighboring nodes with node v in 

the heterogeneous context with different node types, and 
𝑝(𝑐𝑡|𝑣; 𝜃) is defined as a softmax function [27] as follows: 

𝑝(𝑐𝑡|𝑣; 𝜃) =
exp (𝑋𝑐𝑡𝑋𝑣)

∑ exp (𝑋𝑢𝑋𝑣)𝑢𝜖𝑉
  (3) 

where 𝑣  and 𝑐𝑡  are the center node and the nodes in the 
scanning window, respectively, and, 𝑋𝑣 is the embedding vector 
of node 𝑣. 

The number of nodes is often very large, so negative 
sampling techniques are commonly applied to approximate the 
estimation of probabilities. This method maximizes the 
probability such that the target node does not appear 
simultaneously with a randomly selected negative node. The 
ultimate maximization goal is expressed as follows: 

𝑂(𝑋) = 𝑙𝑜𝑔𝜎(𝐹(𝑋𝑐𝑡
||𝑋𝑣) + 𝑙𝑜𝑔𝜎(−𝐹(𝑋𝑢||𝑋𝑣)) (4) 

where F represents the fully connected layer, || denotes the 
concatenation of the embedding vectors of the nodes, and σ(x) 
is calculated as follows: 

𝜎(𝑥) =
1

1+𝑒−𝑥   (5) 

IV. RESULTS 

A. Evaluation Criteria 

To evaluate the performance of the proposed method, we 
applied k-fold cross-validation (k = 5). Specifically, the data was 
randomly divided into k approximately equal parts. In each 
iteration, one part was used as the test set, while the model was 
trained on the remaining k-1 parts. This process was repeated k 
times, ensuring that each part of the data was used as the test set 
once. 
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To demonstrate the effectiveness of the proposed method 
during k-fold cross-validation, we used the Area Under the ROC 
Curve (AUC) [24], which is calculated as follows: 

TABLE I.  COMPARISON OF PERFORMANCE BASED ON AUC DURING 5-FOLD CV WITH DIFFERENT PARAMETER SETS 

Number of walkers 100 250 350 450 550 

Path length 50 80 130 130 150 

Dimension of embedding  128 200 300 450 550 

Average AUC 0.9199 ± 0.0064 0.9388 ± 0.0045 0.9345 ± 0.0064 0.9100 ± 0.0038 0.8828 ± 0.0140 

𝐴𝑈𝐶 =  
∑ 𝑅𝑎𝑛𝑘𝑒−

|𝑒+|×(|𝑒++1|)

2𝑒𝜖𝑒+

|𝑒+|×|𝑒−|
  (6) 

where 𝑒+  and 𝑒−  represent the positive and negative 
samples, respectively, in the test set, and 𝑅𝑎𝑛𝑘𝑒  denotes the 
rank of edge 𝑒 based on the predicted score. 

We conducted experiments with different values for three 
parameters: number of walkers, path length, and dimension of 
embedding, while comparing the corresponding prediction 
results when varying each parameter. The average AUC value 
for each experiment is presented in Table I. The best prediction 
results were achieved when the number of walkers was 250, the 
path length was 80, and the dimension of embedding was 200. 
The corresponding ROC curve is illustrated in Fig. 7, showing 
that our proposed method achieved an average AUC value of 
0.9388 ± 0.0045 through 5-fold cross-validation. 

 

Fig. 7. ROC curve through 5-fold cross-validation. 

B. Determine the Optimal Number of Clusters 

Determining the optimal number of clusters k is a crucial 
factor in the effectiveness of the K-means algorithm. Choosing 
k too small can lead to data points being grouped together, 
overlooking significant differences between clusters. 
Conversely, if k is too large, the data may be unnecessarily 
divided into clusters, reducing generalization. For our 
experiment, we applied the Elbow method with values ranging 
from 10 to 200. Specifically, for each k value, the K-means 
algorithm was executed, and the WCSS (Within-Cluster Sum of 
Squares) was calculated. 

 

Fig. 8. The elbow method for selecting the optimal number of clusters k. 

The results in Fig. 8 show that as k increases from 10 to 
around 140, the WCSS decreases significantly, indicating that 
increasing the number of clusters improved data clustering. 
However, after k = 140, the WCSS begins to decrease more 
slowly, suggesting that adding more clusters no longer provides 
substantial benefits for data separation. Therefore, we chose k = 
140 as the optimal number of clusters, as it achieves a balance 
between reducing WCSS and maintaining model generalization. 

C. Negative Sampling Rate 

Choosing a balance ratio r between Unknown Associations 
and Known Associations is aimed at optimizing the model’s 
performance in distinguishing between these two groups. A 
reasonable balance ratio enables the model to learn the 
characteristics of both groups without bias, thereby achieving 
the highest AUC value and ensuring accuracy when applied to 
new data. 

TABLE II.  THE BALANCE RATIO BETWEEN UNKNOWN ASSOCIATION AND 

KNOWN ASSOCIATION 

Balance Ratio r 

(Unknown : Known Association) 
Average AUC Value 

1:1 0.9388 ± 0.0045 

2:1 0.9264 ± 0.0028 

3:1 0.9229 ± 0.0047 

4:1 0.9275 ± 0.0055 

5:1 0.9273 ± 0.0041 

6:1 0.9212 ± 0.0025 

7:1 0.9231 ± 0.0030 

8:1 0.9229 ± 0.0041 

9:1 0.9210 ± 0.0050 

10:1 0.9175 ± 0.0017 
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When conducting experiments with different values of the 
balance ratio r, we obtained the results shown in Table II. The 
results indicate that when the balance ratio is 1:1, the AUC value 
reaches its highest point at 0.9388 ± 0.0045, suggesting that this 
is the optimal balance ratio for effectively distinguishing 
between Unknown Associations and Known Associations. As 
the balance ratio increases from 2:1 to 10:1, the AUC value 
gradually decreases, particularly at a ratio of 10:1, where the 
AUC value significantly drops to 0.9175 ± 0.0017. This 
indicates that the model's effectiveness diminishes when 
Unknown Associations constitute too large a proportion 
compared to Known Associations. 

D. The Impact of Selecting Meta-Paths 

The random walk strategy based on meta-paths ensures that 
the model accurately integrates the semantic relationships 
between different types of nodes. Utilizing different meta-path 
schemas to generate sequences of nodes can capture the diverse 
semantic and structural relationships among these node types. 

In this experiment, we designed a new meta-path schema 
“TF-Target gene-Disease/CS-Target gene-TF-Disease/CS-
Target gene-TF” while also using the original meta-path “TF-
Target gene-Disease/CS-Target gene-TF” [24] to conduct the 
random walk process and evaluate the prediction effectiveness 
of each schema. The results in Table III show that the new 
schema achieves a slightly higher average AUC value (0.9388 ± 
0.0045) compared to the original schema (0.9366 ± 0.0044), 
suggesting that the new schema can improve predictive 
performance by capturing additional potential links within the 
heterogeneous network. Here, CS (Cold Start node) is a node 
added to the paths to address the cold start problem in the model. 
This issue arises when certain nodes (especially TFs or target 
genes) have no links to any target genes in the training data, 
making it difficult to learn embedding vectors for these nodes. 
By adding the CS node and setting its embedding to a vector 
where all elements have a value of 1, the model can learn 
information from paths containing the CS node, helping to 
mitigate the lack of link data for these nodes and enhance the 
overall performance of the model across the heterogeneous 
network. 

TABLE III.  COMPARING AUC PERFORMANCE ACROSS DIFFERENT META-
PATHS 

Meta-paths Average AUC Value 

TF-target gene-disease/CS-target gene-TF 0.9366 ± 0.0044 

TF-target gene-disease/CS-target gene-TF-

disease/CS-target gene-TF 
0.9388 ± 0.0045 

E. Predicted Scores for TF-Target Gene Pairs 

After training the model, we obtain low-dimensional 
embedding vectors for TFs and target genes. From this, we 
create an embedding matrix M for TFs and an embedding matrix 
G for target genes. The predicted scores for the interactions 
between TFs and target genes are determined as follows: 

𝑃 = 𝑀. 𝐺𝑇    (7) 

where the value in the i-th row and j-th column represents 
the interaction score between the i-th TF and the j-th target gene. 

F. Analysis and Comparison with Recent Studies 

To evaluate the superior performance of the proposed model, 
we compared its predictive capabilities with recent studies, 
including Metapath2vec [25], HGETGI [24], and GraphTGI 
[30]. The comparison results shown in Table IV indicate that our 
method achieves the highest average AUC value of 0.9388, 
outperforming the other three methods. This confirms that our 
model is highly effective in predicting unobserved target genes 
for specific TFs. 

Although models such as Metapath2vec, HGETGI, and 
GraphTGI effectively utilize heterogeneous graphs, particularly 
for predicting TF-target gene interactions, GraphTGI 
demonstrates impressive performance with an AUC of 88.64% 
in five-fold cross-validation, while HGETGI excels in 
leveraging semantic information through graph embeddings. 
However, all three methods lack robust mechanisms for 
handling imbalanced data and selecting negative samples, which 
can limit their ability to optimize performance on complex and 
highly imbalanced datasets. FKMU addresses these challenges 
through a K-means-based under-sampling strategy, ensuring a 
balanced dataset and enhancing the robustness of the model. 
Furthermore, the introduction of a novel meta-path allows 
FKMU to capture semantic relationships within the graph more 
effectively and optimize the detection of potential interactions. 
These advancements establish FKMU as an effective and 
superior method for predicting TF-target gene interactions while 
offering broad applicability to more complex and diverse 
problems, especially for large-scale and heterogeneous datasets 
in the future. 

TABLE IV.  COMPARING THE PERFORMANCE OF RESEARCH METHODS 

Methods Average AUC Value 

Metapath2vec [25] 0.8239 ± 0.0057 

HGETGI [24] 0.8519 ± 0.0731 

GraphTGI [30] 0.8864 ± 0.0057 

FKMU 0.9388 ± 0.0045 

G. Case Study 

To evaluate the predictive performance of the model in 
identifying potential target genes associated with TFs, we 
conducted experiments on the transcription factors CTCF and 
TP53. Specifically, we removed the links between the specific 
TFs used in the experiments and their target genes. We then 
reconstructed the heterogeneous network. Finally, we trained the 
model and tested it for each specific TF case to assess the 
model's performance. 

The transcription factor CTCF (CCCTC-binding factor) is 
an important protein involved in regulating the structure and 
function of the genome. CTCF binds to DNA sequences to 
create insulator regions and chromatin loops, helping to regulate 
gene activity. CTCF can activate or repress genes depending on 
its binding location. Mutations in the CTCF gene are associated 
with various diseases such as cancers (breast, colorectal, 
prostate), neurodevelopmental disorders (Bardet-Biedl 
syndrome, autism spectrum disorders), and rare genetic 
diseases, primarily due to disruptions in chromatin structure and 
gene regulation. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

205 | P a g e  

www.ijacsa.thesai.org 

The transcription factor TP53 (tumor protein p53) is an 
important gene, often referred to as the “guardian of the 
genome” due to its key role in maintaining genetic stability and 
preventing tumor formation. This gene encodes the p53 protein, 
a tumor suppressor that plays a crucial role in controlling cell 
division, repairing damaged DNA, and activating apoptosis 
when cells sustain irreparable damage. TP53 mutations are a 
common cause in many types of cancer, including lung cancer, 
breast cancer, colorectal cancer, and skin cancer. Research on 
TP53 not only elucidates the mechanisms of cancer but also 
opens new avenues for treatments aimed at restoring p53 
function to prevent the development of cancer cells. 

TABLE V.  TOP 20 TARGET GENES FOR CTCF 

Target gene CTCF-Related Target 

CDKN1A Confirmed 

MTHFR Unconfirmed 

VEGFA Confirmed 

TNF Confirmed 

SOD2 Confirmed 

IL6 Confirmed 

PTGS2 Confirmed 

BCL2 Confirmed 

CCND1 Confirmed 

CDKN2A Unconfirmed 

MMP9 Confirmed 

KRAS PMID:32374727 

CDH1 Confirmed 

IFNG Unconfirmed 

TGFB1 Confirmed 

TERT Confirmed 

PTEN Confirmed 

NOS2 Confirmed 

ERBB2 Confirmed 

IL1B Unconfirmed 

TABLE VI.  TOP 20 TARGET GENES FOR TP53 

Target gene TP53-Related Target 

CDKN1A Confirmed 

VEGFA Confirmed 

MTHFR Confirmed 

IL6 Confirmed 

TNF Confirmed 

SOD2 Confirmed 

CCND1 Confirmed 

PTGS2 Unconfirmed 

BCL2 Confirmed 

IFNG Unconfirmed 

TGFB1 Confirmed 

IL1B PMID:34986125 

CDH1 Confirmed 

MMP9 Unconfirmed 

KRAS Confirmed 

CDKN2A Confirmed 

ABCB1 Confirmed 

TERT PMID:23284306 

ERBB2 Confirmed 

EGFR Confirmed 

We ranked the predicted scores based on the weighted 
matrix to identify potential target genes. Then, we assessed the 
accuracy of these target genes by comparing them with the 
hTFtarget database [18]. Specifically, we focused on testing and 
validating the top 20 predicted target genes to ensure the 
reliability and accuracy of the predictive model. This process 
helps us confirm the model's capability in identifying potential 
target genes associated with the TFs. 

The experimental results are presented in Table V for CTCF 
and in Table VI for TP53, respectively. According to these 
tables, 75% (15/20) of the predicted target genes have been 
validated against the hTFtarget dataset. Additionally, we 
conducted supplementary research and discovered genes such as 
KRAS, which, although not listed as interacting with CTCF in 
hTFtarget, have been reported to interact with CTCF in other 
studies, as indicated by the PMID [11] codes in Table V. 
Similarly, genes such as IL1B and TERT were also found to 
interact with TP53, as shown by the PMID [14, 16] codes in 
Table VI. These results demonstrate the effectiveness of the 
proposed method. 

V. CONCLUSION 

Predicting interactions between transcription factors and 
target genes remains a significant challenge, particularly in the 
context of the complex relationships within the gene regulatory 
network that have not been fully explored. To address this issue, 
we propose the FKMU method, a novel approach aimed at 
handling data imbalance when predicting interactions between 
TFs and target genes. FKMU combines K-means clustering and 
inverse information principles to select underrepresented 
samples in the dataset, thereby balancing sample ratios and 
improving the accuracy of the model. This method applies the 
K-means algorithm to partition unknown samples into clusters, 
subsequently prioritizing TFs with low occurrence frequency in 
each cluster to enhance diversity and representation within the 
data. Experimental results on real datasets demonstrate that 
FKMU achieves superior performance in accurately predicting 
interactions between TFs and target genes compared to current 
methods, with a significantly higher average AUC value. We 
expect that the FKMU method will pave the way for new 
avenues in scientific research, improving the handling of 
imbalanced data and enhancing the accuracy of predictive 
models in the biomedical field. 
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