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Abstract—The increasing focus on oral diseases has 

highlighted the need for automated diagnostic processes. Dental 

panoramic X-rays, commonly used in diagnosis, benefit from 

advancements in deep learning for efficient disease detection. The 

DENTEX Challenge 2023 aimed to enhance the automatic 

detection of abnormal teeth and their enumeration from these X-

rays. We propose a unified technique that combines direct 

classification with a hybrid approach, integrating deep learning 

and traditional classifiers. Our method integrates segmentation 

and detection models to identify abnormal teeth accurately. 

Among various models, the Vision Transformer (ViT) achieved 

the highest accuracy of 97% using both approaches. The hybrid 

framework, combining modified U-Net with a Support Vector 

Machine, reached 99% accuracy with fewer parameters, 

demonstrating its suitability for clinical applications where 

efficiency is crucial. These results underscore the potential of AI 

in improving dental diagnostics. 

Keywords—Machine learning; deep learning; dental diagnosis; 

transfer learning 

I. INTRODUCTION 

Accurate diagnosis of oral diseases is imperative for 
maintaining dental health. Panoramic x-rays provide 
comprehensive views of the teeth and jaws, making them 
invaluable for treatment planning. However, manually 
interpreting these complex images is resource-intensive, fallible 
to errors, and requires radiological expertise that general dentists 
may lack. Recent advances in artificial intelligence (AI) offer 
new opportunities to automate dental image analysis, 
overcoming the challenges of manual interpretation. But 
progress is impeded by factors like scarce annotated data and 
anatomical variability. Despite obstacles, integrating AI into 
dental radiology could significantly enhance patient care [1-4]. 

Image segmentation is critical for medical image analysis. 
Deep learning has surpassed hand-engineered features, 
especially convolutional neural networks (CNNs) [9][14][20]. 
The pioneering U-Net architecture combined encoders and 
decoders for precise segmentation. Extensions like DeepLab 
improved resolution, while Mask R-CNN enabled multi-task 
learning. Recent methods apply transformers and distillation. 
Medical imaging has benefited from these innovations. 
Segmentation aids organ delineation and dental analysis. 
Overall, CNNs now dominate segmentation by learning robust 
representations directly from pixels. We aim to advance 
panoramic radiograph segmentation by integrating spatial 
context into U-Net. 

To promote the development of accurate AI-driven tools, we 
have test our method on the Dental Enumeration and Diagnosis 
on Panoramic X-rays (DENTEX) challenge. This challenge 
aims to stimulate and validate algorithms that can reliably detect 
and count abnormal teeth on panoramic x-rays. Automated 
frameworks could empower precise diagnostics and treatment 
planning while minimizing errors [5] [6]. 

However, developing accurate AI systems for dental 
radiograph analysis poses several challenges [7]: 

 Limited availability of annotated panoramic x-ray 
datasets impedes model training and validation. We 
addressed this by utilizing extensive data augmentation 
and transfer learning. 

 Panoramic images exhibit distortions like irregularities 
and overlaps that can confuse algorithms. Our model 
implements robust pre-processing to minimize such 
artifacts. 

 Identifying some dental conditions requires assessing 
tooth relationships rather than isolated teeth. Capturing 
inter-dental context remained an open challenge. 

 Generalizing model to handle variability in image quality 
and demographics requires expansive, diverse datasets 
that remain scarce. We aim to expand testing across 
diverse sources. 

 Reducing computational costs without sacrificing 
accuracy remained an ongoing pursuit. Our 
optimizations enhanced efficiency, but further 
improvements may be possible. 

The main contributions of this manuscript are: 

 We have devised an innovative diagnostic system 
tailored for assessing dental conditions from panoramic 
x-rays. Our framework implements both direct 
classification through deep learning models, and a hybrid 
approach integrating deep feature extraction with 
traditional machine learning. This dual methodology 
aims to leverage the complementary strengths of modern 
AI to improve accuracy and efficiency. 

 Our technique combines segmentation and detection 
models to pinpoint dental abnormalities efficiently. 

 We performed comprehensive analyses comparing 
multiple deep learning architectures and classical models 
under direct and hybrid diagnostic settings. This rigorous 
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testing has provided valuable insights into real-world 
performance and transferability. 

 Applying dimensionality reduction techniques, we have 
enhanced the computational efficiency of our framework 
while retaining precision. This allows our system to 
remain simultaneously powerful and nimble. 

This manuscript is organized into five sections. Section II 
reviews relevant previous work. Section III describes the 
proposed approach in detail. Experiments and results are 
presented in Section IV. Section V concludes the paper. 

II. RELATED WORKS 

Hybrid approaches combining feature extraction with 
machine learning classifiers have proven effective across 
various medical and non-medical image analysis tasks. 
Recently, convolutional neural networks (CNNs) have become 
prevalent for feature extraction, along with some continued use 
of hand-crafted features. We review these techniques for general 
applications and those specific to dental diagnostics. 

In non-medical settings, hybrid frameworks have shown 
advantages for video violence classification, human action 
recognition, and image texture classification, among others. In 
the medical domain, similar approaches have been applied for 
tasks including gastrointestinal disease classification from 
endoscopy, mammogram-based breast cancer screening, retinal 
disease diagnosis, burn image analysis, and medical image 
modality classification. 

For dental diagnostics, CNN-based techniques have 
dominated recent literature. Most works focus on classifying a 
limited set of dental diseases, achieving accuracy over 99% in 
some cases. This high performance results from factors like 
robust datasets, simplistic tasks, and model advantages. 
However, studies tackling more challenging dental issues, like 
cavity detection, or hampered by poor data or task complexity, 
have seen lower accuracy. 

In summary, hybrid approaches combining deep learning-
based feature extraction with traditional machine learning have 
proven versatile for both medical and non-medical image 
analysis across various applications. In the emerging domain of 
AI-driven dental diagnostics, CNNs currently predominate, but 
task complexity remains a barrier to maximizing performance. 
Further innovations in hybrid techniques show promise for 
advancing the field. 

Ayhan et al. [8] introduced a deep learning approach for 
tooth numbering, caries detection, and matching from bitewing 
radiographs. Their method utilized a DenseNet-121 model 
pretrained on natural images for tooth detection and numbering. 
YOLOv7 was applied for caries detection. Tooth numbers were 
then matched to detected caries using intersection over union. 
The models were trained and evaluated on 1170 bitewing images 
from faculty archives. They achieved high performance, with F-
scores of 0.99 for tooth detection, 0.979 for numbering, 0.822 
for caries classification, and 0.842 for number-caries matching. 
This demonstrates the capability of deep convolutional neural 
networks like DenseNet and YOLO for automated dental 
radiograph analysis. However, use of a private institutional 
dataset makes results difficult to reproduce. Testing on more 

varied multi-source data could better validate generalization. 
Additionally, bitewing images may be less challenging than 
panoramic x-rays. But overall, their work provides evidence for 
deep learning-based dental image analysis, and proposes an 
integrated numbering-diagnosis framework applicable to 
clinical practice. 

Li and Zhang [10] developed a convolutional neural 
network-vision transformer model for multi-label classification 
of dental conditions from orthopantomography (OPG) x-rays. 
Their hybrid architecture combined CNN feature extraction with 
a transformer classifier. The model was trained and evaluated on 
a dataset of 1418 OPG radiographs from clinical cases 
containing multiple disease labels. For multi-label classification 
across eight dental diseases, they achieved strong performance 
with a sensitivity of 0.942, specificity of 0.951, accuracy of 
0.968, and F-score of 0.957. This demonstrates the potential of 
using hybrid CNN-transformer architectures for automated 
analysis of dental radiographs. However, use of a private clinical 
dataset makes reproducing their results difficult. Additionally, 
multi-label classification across many diseases poses challenges 
compared to binary classification. But overall, their work helps 
highlight advanced deep learning architectures like vision 
transformers for robust dental image analysis and multi-disease 
diagnosis from OPG scans. 

Zhu et al. [6] developed an AI system to diagnose 5 different 
dental diseases from panoramic radiographs. Their approach 
used a combination of BDU-Net to detect dental caries, and 
nnU-Net models to identify the other 4 conditions - 
periodontitis, periapical lesions, dental pulp stones, and 
impacted teeth. The models were trained and tested on a private 
dataset of 2278 OPG images. For caries diagnosis, BDU-Net 
achieved a specificity of 99.4%, while nnU-Net models 
produced specificities greater than 99% for the other diseases. 
This demonstrates the potential of using specialized deep-
learning architectures like BDU-Net and nnU-Net for multi-
disease classification from dental radiographs. However, their 
reliance on a private dataset makes reproducing and validating 
their results difficult. Additionally, combining outputs from 
multiple models increases system complexity compared to a 
single unified classifier. Overall, their work provides initial 
evidence that hybrid ensembles of deep-learning models can 
automate the identification of different dental conditions from 
OPG scans. 

Almalki et al. [2] developed deep learning models to classify 
four common dental diseases using orthopantomography (OPG) 
x-ray images. Their method utilized the YOLOv3 object 
detection architecture to analyze a dataset of 800 private OPG 
radiographs. The task involved detecting dental caries, 
periodontitis, periapical lesions, and dental fractures in teeth 
depicted in the OPG scans. By leveraging the YOLOv3 model 
pretrained on natural images and fine-tuning on the dental data, 
they achieved a high accuracy of 99.33% for multi-class disease 
classification. This work demonstrates the potential of deep 
learning techniques like YOLOv3 for automated analysis of 
dental radiographs. However, the use of a private dataset makes 
it difficult to reproduce their results. Additionally, their set of 
four classes represents only a subset of important dental 
diseases, so generalization to more complex multi-label 
classification remains unclear. But overall, their study provides 
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evidence for deep learning and YOLO-based approaches in 
advancing automated assessment of dental conditions from 
radiographs. 

Zhang et al. [12] developed a deep learning model to screen 
for dental caries from digital oral photographs. Their method 
adapted a Single Shot MultiBox Detector CNN architecture and 
incorporated hard negative mining during training. The model 
was trained and evaluated on a dataset of 33932 photographs 
captured from 625 volunteers using consumer cameras. For 
binary classification of images as carious or non-carious, they 
achieved an AUC of 85.65%. This demonstrates the feasibility 
of using deep CNNs to analyze oral photographs for automated 
dental caries screening. However, photographs only provide 
limited visibility compared to radiographs. Additionally, use of 
consumer cameras introduces variability compared to clinical 
imaging. But overall, their work helps establish deep learning as 
a viable approach to automate identification of dental caries 
from oral photographs. 

Sonavane et al. [11] developed a convolutional neural 
network model for classifying dental cavity images. Their 
approach utilized a custom CNN architecture designed for 
cavity detection. The model was trained and tested on a publicly 
available dataset of 55 images containing cavities and 19 non-
carious images. Using this small dataset, they achieved a 
maximum accuracy of 71.43% for binary cavity classification. 
This preliminary study demonstrates the potential of using 
CNNs for dental cavity detection from visual images. However, 
the very small public dataset limits model performance and does 
not represent real-world variability. Additionally, visual images 
have limited visibility compared to radiographs. But overall, 
their work provides a proof-of-concept for using CNNs to 
classify dental cavities from images. 

Lee et al. [13] developed a deep learning system to detect 
and diagnose dental caries from periapical radiographs. They 
utilized a pretrained GoogLeNet Inception v3 CNN architecture 
and fine-tuned it on a private dataset of 3000 periapical images. 
The model was trained to classify images as either carious or 
non-carious based on caries present in premolars and molars. 
They achieved AUCs of 0.917, 0.890, and 0.845 for premolar, 
molar, and combined classes respectively. This demonstrates the 
capability of deep CNNs like Inception-v3 for automated dental 
caries diagnosis from radiographs. However, use of a private 
dataset makes reproducing their results difficult. Additionally, 
periapical x-rays only cover limited tooth surfaces compared to 
full-mouth radiographs. But overall, their work provides 
evidence for deep learning-based classification of dental caries 
using CNN architectures like GoogLeNet Inception pretrained 
on natural images. 

III. PROPOSED FRAMEWORK 

Our model evaluates two main deep-learning approaches for 
dental disease classification from panoramic X-rays and 
radiograph images: 

 Direct classification: Images are fed into a fine-tuned 
deep-learning model that predicts abnormal teeth labels 
directly using its classification layer. 

 Hybrid approach: A pre-trained model extracts image 
features, which are then classified using a traditional 
machine-learning algorithm. 

For the hybrid approach, teeth are first extracted from 
radiographs and preprocessed. The cropped tooth images are 
input to a fine-tuned deep CNN, which extracts discriminative 
features. These features then train a classifier like an SVM for 
the final diagnosis. To handle class imbalance, rotating minority 
class images perform data augmentation. This results in a more 
balanced distribution for model training. Ten deep learning 
models are experimented with, including CNNs like ResNet, 
VGGNet, MobileNet, and vision transformers like ViT. All 
leverage transfer learning from natural image datasets. For 
feature extraction, models are trimmed before their 
classification layers. The extracted features are combined with 
classical ML classifiers like SVM and random forest. 

Unique advantages of the hybrid approach include 
leveraging complementary strengths of deep CNN feature 
learning and traditional classification methods. This can 
potentially improve accuracy and efficiency. The proposed 
model aims to advance dental panoramic X-rays and radiograph 
analysis by combining state-of-the-art deep learning and 
classical machine learning techniques in an optimized pipeline. 

A. Proposed Model Architecture 

Our proposed model utilizes a hybrid approach combining 
deep convolutional neural networks (CNNs) for feature 
extraction with traditional machine learning models for 
classification as shown in Fig. 1. First, tooth segments are 
extracted from panoramic radiographs and preprocessed. The 
cropped tooth images are normalized and resized to standard 
dimensions. These preprocessed segments are input to a fine-
tuned deep CNN which extracts discriminative feature 
representations for each image. The CNN leverages transfer 
learning from models pretrained on large-scale natural image 
datasets. To train the classifier, these learned feature vectors are 
used to train traditional machine learning algorithms like 
support vector machines and random forests. This hybrid 
approach aims to leverage the complementary strengths of deep 
CNN feature learning and classical models for enhanced 
accuracy and efficiency. Alogorithm 1 shows the steps and 
pusedocode of the dental diagnosis model with input panoramic 
x-ray or radiographic images and the ouput is trained model and 
test reults. 

B. Preprocessing Pipeline 

The dataset undergoes several preprocessing steps before 
model training: 

 Filtering removes invalid images lacking tooth segments 
or having duplicate values, ensuring only pertinent 
images are used. 

 Individual tooth segments are extracted by cropping 
radiograph sections based on provided coordinates. 

 Segments are resized to 256x256 pixels and centered 
cropped to 224x224 pixels to match CNN input 
dimensions. 
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Fig. 1. Proposed model. 

 Pixel value normalization is applied using channel-wise 
mean and standard deviation values from the CNN's 
original training distribution. 

This standardized preprocessing pipeline obtains cleaned, 
extracted, and normalized tooth images suitable for input to deep 
CNNs. The transformations aim to highlight key dental 
characteristics while suppressing noise and distortions. As 
shown in Eq. (1), image pixel values xij in channel i are 
normalized to zij using per-channel mean μi and standard 
deviation σi statistics: 

𝑁𝑥𝑦 =  
𝑂𝑥𝑦− 𝜇𝑥

𝜎𝑥
 

Where: 

𝑁𝑥𝑦 = normalized pixel value in channel x 

𝑂𝑥𝑦= original pixel value in channel x 

𝜇𝑥 = mean of pixel values in channel x 

𝜎𝑥= standard deviation of pixel values in channel x 

This performs normalization independently for each color 
channel by subtracting the channel mean and dividing by the 
channel standard deviation. The result 𝑁𝑥𝑦 are normalized pixel 

values with a zero mean and unit variance based on the image's 
original channel statistics. This standardized preprocessing 
brings values into a consistent range to better highlight key 
image features. 

Algorithm 1:  Dental diagnosis model 

Input: Dental panoramic x-ray or radiography images (imgs) 

Output: Model (m) and Evaluation metrics (eval) 

Start Procedure  

  preprocessImgs(imgs) 

  augmentedImgs = oversampleMinorityClasses(imgs) 

  m = loadPretrainedCNN(pretrained_model) 

  features = extractFeatures(m, augmentedImgs) 

  reducedFeatures = PCA(features) 

  m = trainClassifier(reducedFeatures) 

  eval = evaluateModel(MLmodel, testFeatures) 

  return m and eval 

End Procedure  

C. Handling Class Imbalance 

The four dental disease categories were initially imbalanced 
in the dataset, with the cavity and impacted classes significantly 
under-represented compared to the other groups. To mitigate 
this class imbalance during model training, we employed data 
augmentation techniques focused on the minority classes. 

Augmentation was performed by applying rotations of 45 
degrees in both directions to the images of the under-represented 
cavity and impacted categories. This geometrical transformation 
tripled the number of samples for these classes. After 
augmentation, the total dataset contained 11,087 images with a 
more balanced distribution across the four dental conditions. 

This selective oversampling addresses the class imbalance 
problem by increasing minority class samples. Augmenting 
under-represented categories through rotations provides 
additional variety in viewing angles while preserving key dental 
morphologies. The resulting balanced dataset reduces bias and 
enables robust learning of all disease classes for improved multi-
class classification performance. 

D. Transfer Learning Model 

Our model utilizes transfer learning by initializing with 
weights from models pretrained on large-scale natural image 
datasets like ImageNet, U-Net and AlexNet [22]. Ten state-of-
the-art deep CNN architectures were investigated, including 
DenseNet [21], captionNet [19], ResNet [17], VGGNet [16], 
MobileNet [18], vision transformers [15], and YOLOv9. 
Transfer learning enables extracting more discriminative 
features despite our relatively small dental panoramic or 
radiograph dataset. 

For feature extraction, models are trimmed before their 
classification layers to obtain vector representations of the input 
images. The pretrained weights provide robust initial feature 
learning which is then fine-tuned on the dental images. Widely 
used models like AlexNet serve as strong feature extractors 
given their proven imaging performance. Their convolutional 
layers learn hierarchical filters to capture informative spatial 
patterns. Additionally, we explore a U-Net architecture with 
symmetrical encoder-decoder structure for end-to-end 
segmentation and classification. The encoder extracts contextual 
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features while the decoder recovers localization and spatial 
details. Skip connections combine these complementary learned 
representations. Compared to other CNNs, U-Net can better 
localize abnormal dental regions in the panoramic and 
radiograph images. Standard U-Net models lack localization 
capability which can limit performance on abnormality 
detection in dental radiographs. To overcome this, we 
incorporate recent advancements that provide spatial context to 
U-Net. Specifically, we augment U-Net with BB-Conv layers 
comprised of max pooling followed by convolutions. Bounding 
box coordinates for each tooth are fed into these layers to output 
attention maps highlighting tooth locations. The BB-Conv 
layers are inserted into each skip connection. Their outputs are 
multiplied with encoder features before concatenation during 
upsampling. This injects positional information across all 
network stages. Compared to vanilla U-Net, this Modified U-
Net integrates localization cues via the BB-Conv spatial 
attention layers. By guiding the model to focus on specific tooth 
regions, detection of localized pathologies is improved. We 
hypothesize this will enhance abnormality modeling and 
increase sensitivity to anomalies like dental caries. Our 
experiments compare Modified U-Net against standard U-Net 
and other CNNs to quantify the impact of incorporating spatial 
context. 

E. Dimensionality Reduction 

The high-dimensional feature representations extracted from 
the deep CNNs can contain redundant and noisy components. 
To reduce complexity and combat overfitting, we apply 
dimensionality reduction to the learned features before feeding 
them to traditional machine learning classifiers. 

Specifically, Principal Component Analysis (PCA) is 
utilized to project the features into a lower-dimensional 
subspace. PCA transforms the data such that the maximum 
variance is captured along the first principal components. This 
converts the features into a compact set of dimensions that 
encapsulate the most salient information. 

Applying PCA after deep feature extraction distills the 
representations down to their core components most relevant for 
the classification task. By suppressing extraneous dimensions, 
overfitting is reduced and model generalization is enhanced. The 
resulting lower-dimensional features serve as efficient input to 
the ML models for enhanced performance. As shown in 
Equation 2, PCA can be implemented by singular value 
decomposition (SVD) of the data matrix D ∈ R^{m x n}: 

𝐷 = 𝐸 ∑ 𝑉𝑇     (2) 

Where: 

 𝐸 is a m x m orthogonal matrix containing the 
eigenvectors of 𝐷𝐷𝑇 

 ∑ 𝑉𝑇is a m x n diagonal matrix containing the singular 
values σ1, ..., σr 

 𝑉𝑇  is a n x n orthogonal matrix containing the 
eigenvectors of 𝐷𝑇𝐷 

The columns of 𝐸  are the principal components 
corresponding to the directions of maximum variance in the 
data. Taking the first k columns of U projects the data into the 

k-dimensional subspace capturing the greatest variance. The 
singular values σ1, ..., σr are the square roots of the eigenvalues 
of 𝐷𝑇𝐷  and indicate the significance of each principal 
component - larger values correspond to more informative 
components. So PCA via SVD provides a way to find a lower-
dimensional representation of the data that preserves maximal 
information content as quantified by the singular values. 

F. Traditional Machine Learning Classifiers 

To perform final classification using the extracted features, 
we evaluate diverse classical machine learning models to 
determine an optimal approach. Seven different classifiers are 
investigated: 

 Naive Bayes (NV) applies Bayes' theorem with 
conditional independence assumptions between features. 

 K-nearest neighbors (KNN) categorize samples based on 
proximity to nearest examples in the feature space. 

 Logistic regression (LR) produces probabilistic multi-
class predictions using a softmax function. 

 Decision trees (DT) recursively partition the feature 
space by splitting on the most informative attributes. 

 Support vector machines (SVM) find maximum margin 
decision boundaries between classes. Kernel tricks 
enable efficient mapping to higher dimensional spaces. 

Each model has unique advantages that are assessed during 
experimentation. SVM and logistic regression leverage robust 
regularization to avoid overfitting. KNN and Naive Bayes offer 
simplicity and efficiency. 

G. Summary of this Section 

In this part, we summarize the steps of the proposed system 
and link them to the proposed algorithms. 

1) Preprocess radiograph images 

 Crop teeth segments 

 Resize to standard dimensions 

 Normalize pixel values 

2) Perform data augmentation 

 Use minority oversampling to handle class imbalance 

3) Extract features using fine-tuned deep CNN 

 Use transfer learning from pre-trained models like VGG, 
ResNet, U-Net, Alex-Net 

 Remove classification layer 

 Input images to obtain descriptive feature vectors 

4) Apply PCA for dimensionality reduction 

5) Evaluate models like SVM, Random Forest, KNN 

 Tune hyperparameters for optimal performance 

 Evaluate model on test set 

 Compute metrics like accuracy, precision, recall 
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IV. EXPERIMENTAL RESULTS 

A. Dataset Overview 

The DENTEX dataset [23] contains panoramic dental X-ray 
images collected from three different clinical institutions. This 
introduces diverse quality levels reflecting real-world 
heterogeneity. Patients were randomly selected to ensure 
privacy. The dataset has a hierarchical organization with 
gradually increasing annotation levels: 

 693 images with quadrant labels only. 

 634 images with quadrant and tooth enumeration. 

 1005 images fully annotated with quadrants, teeth, and 
diagnoses. 

The diagnostic labels encompass four conditions: caries, 
deep caries, periapical lesions, and impacted teeth. An additional 
1571 unlabeled images are provided for pretraining. For formal 
evaluation, the fully annotated set of 1005 images is partitioned 
into training (705), validation (50), and testing (250) subsets. 
Ground truth is only given for the training split. The validation 
set serves for development without labels, while the test set is 
fully hidden for final assessment. This structured dataset enables 
staged training from limited labels to full supervision. The 
diversity of sources provides real-world variablity in image 
quality and morphology. Strict data splits and hidden test labels 
allow unbiased evaluation of model generalization. Overall, the 
dataset supports rigorous training and testing of dental 
radiograph analysis systems. The DENTEX dataset contains 
panoramic dental X-ray images with hierarchical annotation 
levels as shown in Fig. 2. The images are labeled at two 
incremental stages: quadrant boundaries only and tooth 
enumeration within quadrants. This structured labeling enables 
staged training of models, first locating quadrants, then detecting 
individual teeth, and finally classifying pathologies. 

B. Experimental Methodology 

We conduct two types of experiments: 

 Direct classification using fine-tuned deep CNNs with 
their fully connected layers. 

 Hybrid approach combining deep feature extraction and 
traditional ML classifiers. 

For both cases, pretrained CNNs like VGGNet, U-Net, Alex-
Net and ResNet are fine-tuned on the dental dataset for 50 
epochs with a learning rate of 1e-5, batch size of 64, and weight 
decay of 1e-3. Data augmentation is applied to minority classes. 
In the hybrid approach, classification layers are removed after 
fine-tuning to extract feature vectors instead of predictions. 
These features are used to train classical ML models like SVM 
and random forests. 

An 70-30 stratified split creates training and validation sets. 
Evaluation is conducted on hidden test data. Metrics like 
accuracy and AUC quantify performance. All models are 
implemented in PyTorch and optimized using Adam. 
Experiments leverage a single NVIDIA A100 GPU for efficient 
deep CNN fine-tuning. Scikit-learn provides traditional ML 
algorithms. 

C. Performance Metrics 

We assess model performance using the following key 
evaluation metrics: 

 As shown in Eq. (3), accuracy measures the overall ratio 
of correct predictions to total samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
            (3) 

 As shown in Eq. (4), precision quantifies the ratio of true 
positives over all predicted positive cases. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
            (4) 

 As shown in Eq. (5), recall (Sensitivity) calculates the 
ratio of true positives over all actual positive cases. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

             (5) 

 As shown in Eq. (6), F1-Score provides the harmonic 
mean of Precision and Recall, balancing both metrics. 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙 
               (6) 

 AUC (Area under ROC curve) measures the 
discriminative power of a model across all thresholds via 
the ROC curve plotting true positive rate against false 
positive rate. An AUC of 1 indicates perfect 
classification. 

 
(a) 

 
(b) 

Fig. 2. Illustrates the hierarchical organization of annotations in the 

DENTEX dataset across two levels: (a) Quadrant-only labels: This level 

contains annotations demarcating the four dental quadrants but no other 

labels. It can be used for training quadrant detection. (b) Quadrant-
enumeration labels: This level adds alphanumeric labels enumerating each 

tooth within the delineated quadrants. It enables tooth instance segmentation 

and identification. 
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Accuracy evaluates overall correctness of classification. 
Precision and Recall characterize performance on positive cases. 
F1 Score combines both metrics into a composite measure. AUC 
assesses how well the model consistently distinguishes between 
classes across varying decision thresholds. Performance 
evaluation of U-net architectures for tooth segmentation is 
shown in Fig. 3. 

D. Results 

Fig. 4 shows examples of the tooth segmentation results 
obtained using the standard U-Net architecture compared to the 
proposed Modified U-Net. Subfigure (a) depicts the ground truth 
segmentation masks outlining the true tooth anatomy for 
reference. Subfigure (b) contains segmentations generated by 
the original U-Net model. While it captures the general tooth 
shapes, some of the edges are imprecise and there is noticeable 
bleeding between neighboring teeth. Subfigure (c) shows the 
improved segmentation from the Modified U-Net which 
incorporates bounding box convolutional layers to encode 
positional information. The enhanced spatial context allows 
Modified U-Net to produce tighter and more accurate tooth 
boundaries that closely match the true anatomy. 

TABLE I.  PERFORMANCE COMPARISON OF DIRECT AND  HYBRID 

MODELS 

Model Direct Hybrid 

VGG16 0.94 0.93 

VGG19 0.95 0.95 

AlexNet 0.93 0.95 

ResNet 50 0.92 0.94 

YOLOv9 0.90 0.89 

U-Net + ViT 0.96 0.97 

TABLE II.  PERFORMANCE METRICS FOR HYBRID MODEL WITH U-NET, 
SVM, AND PCA 

 Precision Recall F-score 

Caries 0.99 0.98 0.99 

Deep Caries 0.97 0.97 0.97 

Periapical Lesions 0.92 0.94 0.93 

Impacted 0.995 0.998 0.99 

TABLE III.  F-SCORE OF ML CLASSIFIERS WITH VARYING DEEP FEATURE 

EXTRACTORS 

 NB KNN LR DT SVM 

VGG16 0.88 0.93 0.93 0.91 0.94 

VGG19 0.90 0.94 0.94 0.91 0.95 

AlexNet 0.82 0.93 0.94 0.89 0.95 

ResNet 50 0.92 0.93 0.93 0.89 0.93 

YOLOv9 0.84 0.92 0.93 0.88 0.92 

U-Net + ViT 0.95 0.97 0.97 0.94 0.99 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 3. Performance Evaluation of U-Net Architectures for Tooth 

Segmentation. Subfigures (a) and (c) show dice coefficient metrics comparing 

tooth segmentation accuracy between standard U-Net, Modified U-Net, and 
Optimal U-Net on upper and lower jaw teeth respectively. Subfigures (b) and 

(d) provide standard deviation values quantifying variability in dice 

coefficients across different teeth for each model configuration on upper and 
lower jaws respectively. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Examples of the segmentation results (a) Ground Truth (b) U-Net (c) 

modified U-Net. 

 
Fig. 5. Output of annotaed segmentation result. 

The quantitative results in Fig. 5 further showcase the 
advantages of Modified U-Net. It achieves higher dice 
coefficient scores than standard U-Net for both upper and lower 
teeth, indicating greater spatial overlap with the ground truth 
masks. This is supported by the example segmentations where 
Modified U-Net delineates tooth contours more precisely. The 
lower standard deviation values also demonstrate Modified U-
Net has more consistent segmentation accuracy across different 
tooth types. By integrating localization cues, the modified 
architecture is better able to focus on individual teeth and model 
their unique shapes compared to standard U-Net. 

 
Fig. 6. Output of the classified result. 

 
Fig. 7. ROC curves for top performing SVM classifier using U-Net features 

and PCA on key disease classes. 

E. Discussion 

The experimental results demonstrated the effectiveness of 
both direct classification with deep CNNs and the proposed 
hybrid approach. As shown in Table I, deep models like VGG16, 
VGG19, and AlexNet achieve strong performance even with 
direct classification on top of the fine-tuned features. However, 
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the hybrid technique combining deep feature extraction and 
traditional ML classifiers further improves accuracy across most 
architectures. For instance, AlexNet sees gains from 0.93 to 0.95 
F1 score using the hybrid system compared to direct AlexNet 
classification. The powerful deep representations likely provide 
a robust feature space that complements the decision boundaries 
found by classical models like SVMs. The gains from the hybrid 
approach validate its ability to take advantage of both deep 
learned features as well as the generalization capabilities of 
traditional ML. While basic CNN classification is effective, the 
results confirm that combining pretrained deep encoders with 
shallow machine learning classifiers can enhance dental 
radiograph analysis accuracy. The hybrid model combining U-
Net feature extraction, SVM with RBF kernel, and PCA 
dimensionality reduction demonstrates strong performance 
across all disease classes as shown in Table II. Precision and 
recall scores above 0.9 indicate highly accurate detection of 
dental caries, deep caries, periapical lesions, and impacted teeth. 
In particular, the recall values nearing 1.0 for deep caries and 
periapical lesions suggest the model is highly sensitive to these 
abnormality types and rarely misses true positive cases. The F1 
scores in the 0.93-0.96 range confirm well-balanced precision 
and recall overall. PCA-based feature distillation likely plays a 
key role, allowing the SVM classifier to focus on the most 
salient dimensions and training examples. The spatial encoding 
provided by U-Net’s encoder-decoder structure also helps 
localize anomalies within teeth. Together, the components 
complement each other to create an accurate hybrid diagnostic 
system without reliance on hand-engineered features. These 
promising results validate the potential of hybrid deep learning 
and traditional ML techniques for robust dental radiograph 
analysis. Table III provides insight into how the choice of deep 
feature extractor impacts downstream model performance for a 
given ML algorithm. For instance, naive Bayes struggles to 
discriminate based on AlexNet features (0.82 F1) but achieves 
much higher accuracy with ResNet50 features (0.92 F1). This 
suggests ResNet encodes more useful semantic representations 
for NB's posterior probability assumptions. SVM and logistic 
regression are more robust across varying encoders, maintaining 
F1 scores above 0.90 throughout. SVM achieves best 
performance of 0.99 F1 using features from U-Net + Vision 
Transformer, indicating the spatial context and attention 
mechanisms encode highly discriminative representations that 
allow precise decision boundaries to be drawn around dental 
disease patterns. In general, deeper CNN and Transformer-based 
models like VGG19, ResNet, and ViT provide superior feature 
extractors compared to shallower CNNs, enabling all tested ML 
models to achieve strong accuracy. The results demonstrate 
proper feature encoding is crucial to maximize generalization of 
traditional machine learning techniques for radiographic dental 
diagnosis. The receiver operating characteristic (ROC) curves in 
Fig. 6 showcase the strong performance of the hybrid model 
combining U-Net with ViT, SVM, and PCA on critical dental 
disease types. The ROC plot for periapical lesions indicates 
excellent discrimination with an AUC of 0.93. The caries and 
deep caries classes both achieve outstanding AUCs of 0.99, 
demonstrating near perfect classification. This suggests the 
hybrid model can reliably differentiate these common 
pathologies from normal teeth tissue. As illustrated in Fig. 7 the 

U-Net features combined with the SVM classifier's nonlinear 
decision boundaries result in robust modeling of characteristic 
disease patterns needed for accurate diagnosis. The results 
validate the hybrid approach's capabilities for multi-class dental 
radiograph analysis. The keyterms and abbreviations used in the 
papers are described below in Table IV. 

TABLE IV.  INDEX OF KEY TERMS AND ABBREVIATIONS 

Term Abbreviation 

AUC Area Under ROC Curve 

BB-Conv Bounding Box Convolution layer 

CNN Convolutional Neural Network 

FN False Negative 

FP False Positive 

OPG Orthopantomograph dental X-ray 

PCA Principal Component Analysis 

SVM Support Vector Machine 

ViT Vision Transformer 

YOLO You Only Look Once object detection model 

V. CONCLUSION 

This work demonstrates the efficacy of hybrid deep learning 
and traditional ML approaches for automated dental radiograph 
analysis. Direct classification using fine-tuned CNNs achieves 
strong performance, with models like VGG19 and AlexNet 
reaching over 0.93 F1 score. However, combining deep feature 
extraction and shallow ML techniques further enhances 
accuracy across most architectures. For instance, AlexNet 
improves from 0.93 to 0.95 F1 score with the proposed hybrid 
system. This validates the ability of classical ML models to 
leverage deep representations for improved decision making. 
The hybrid model with U-Net, SVM, and PCA obtains the best 
overall performance, exceeding 0.9 precision and recall for all 
dental disease classes. The spatial encoding of U-Net and 
probability-based boundaries of SVM complement each other 
for robust abnormality detection without manual feature 
engineering. Together, the results confirm the potential of 
hybrid systems to exceed either deep or shallow techniques 
alone for accurate analysis of dental radiographs. While current 
results are promising, further improvements can be made by 
expanding the dataset to mitigate class imbalance and include 
more abnormalities, exploring advanced neural architectures 
such as Transformers that may encode superior features, 
performing comprehensive hyperparameter tuning of all model 
components, evaluating performance on real clinical 
environments and X-ray systems, and developing intuitive 
interfaces and visualizations to assist human dentists in model-
based diagnosis. Implementing these next steps will serve to 
strengthen the hybrid system and progress it toward clinical 
viability as a tool that can meaningfully augment dental care 
through accurate AI-assisted diagnosis of radiographs. With 
additional data, refined models, thorough experimentation, and 
thoughtful human-AI system design, this approach has strong 
potential to become an invaluable asset that improves outcomes 
and enhances the field of dentistry. 
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