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Abstract—In the wind power industry, the health state of wind 

turbine paddles is directly related to the power generation 

efficiency and the safe operation of the equipment. In order to 

solve the problems of low efficiency and insufficient accuracy of 

traditional detection methods, this paper proposes a wind turbine 

blade defect detection algorithm that integrates local channel 

attention and focus feature modulation. The algorithm first 

introduces the Mixed Local Channel Attention (MLCA) 

mechanism into the C2f module of the backbone network in 

YOLOv8 to enhance the extraction capability of the backbone 

network for key features. Then the Focal Feature Modulation 

(FFM) module is used to replace the original SPPF module in 

YOLOv8 to further aggregate global contextual features at 

different levels of granularity; finally, in the Neck part, the pro-

gressive feature pyramid AFPN structure is used to enhance the 

multi-scale feature fusion capability of the model, which in turn 

improves the accuracy of small object detection. The experi-

mental results show that the proposed algorithm has an accuracy 

of 82.5%, a mAP50 of 78.6%, and GFLOPS of 8.5. In the detection 

of wind turbine blade defects, which possesses higher detection 

performance and real-time performance compared with the 

traditional methods, and is able to effectively identify common 

defects such as cracks, corrosion, and abrasion, and exhibits 

strong robustness and application value. 

Keywords—Fan blades; YOLO; attention mechanism; defect 
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I. INTRODUCTION 

Wind energy, as a renewable energy source, is highly valued 
by countries around the world due to its cleanliness, 
environmental friendliness, and low carbon emissions. The 
utilization of wind energy is of great significance in supporting 
the dual-carbon development, thus holding an important 
position in the construction of China's clean energy system [1]. 
The wind turbine blade, as a crucial component in wind power 
generation, plays a key role in converting wind energy into 
electrical energy. However, due to the complex and diverse 
outdoor environment, wind turbine blades often suffer from 
erosion, cracks, delamination, and other damage defects, which 
affect the power generation efficiency of the units and even 
threaten the safety and service life of the wind turbines [2]. 

Traditional wind turbine blade defect detection primarily 
relies on manual inspection, which suffers from low efficiency, 
high costs, and strong subjectivity. Therefore, the real-time, 
efficient, and accurate detection of blade defects has become an 
urgent need in wind turbine blade defect identification. Existing 
wind turbine blade defect detection algorithms can be broadly 

categorized into those using physical sensing technology for 
detection and those employing computer vision technology for 
image recognition. Methods using physical sensing technology 
mainly focus on static detection with grating Energies [3] and 
electromagnetic ultrasonic testing [4]. 

In recent years, with the development of artificial 
intelligence technology and advancements in drone technology, 
drone aerial photography and object detection techniques have 
been widely applied to wind turbine blade defect detection [5, 
6]. Kang Shuang et al. achieved defect detection on high-altitude 
wind turbine blades by analyzing temperature thresholds to 
extract effective features [7]. Yu et al. [8] trained a DCNN 
network to extract semantic features of defect areas for wind 
turbine blade recognition. Additionally, some experts and 
scholars have explored the optimization of deep learning-based 
object detection models. In the improvement of two-stage object 
detection algorithms, Zhang Chao [9] improved the backbone 
network of Mask RCNN by combining it with a multi-scale 
feature fusion FPN structure, enhancing the detection effect of 
wind turbine blade defects. Qu Zhongkan et al. [10] utilized 
DCNv2 and GIoU to improve Faster R-CNN, significantly 
enhancing the detection accuracy of delamination defects. 

In the improvement of one-stage algorithms, the focus has 
mainly been on the YOLO series. Wu Yuping et al. [11] adopted 
a skip-connection feature fusion network structure in YOLOv3-
Tiny and introduced the Inception module, significantly 
improving the detection accuracy of blade defects. Gao Wenjun 
[1-15] replaced the original feature extraction network of 
YOLOv4 with a GhostNet feature extraction network, 
successfully achieving lightweight blade detection models while 
maintaining good detection accuracy. Su Jia et al. [13] designed 
a multi-scale feature fusion mechanism in the YOLOv5 model, 
thereby improving the detection effect on small objects. Zheng 
Qishan [14] proposed a wind turbine blade defect detection 
method based on YOLOv5s as the baseline model, by replacing 
the fast spatial pyramid pooling (SPPF) structure in the 
backbone network and introducing the convolutional attention 
mechanism (CBAM) module, further enhancing the model's 
detection accuracy. Wang Zhengshuai [15] addressed the issue 
of low detection accuracy in complex environments by adding a 
Scoring module attention mechanism to the YOLOv5 baseline 
model, scoring each channel's features to filter out low-scoring 
features and fuse high-scoring features, thereby improving 
feature fusion capabilities and detection accuracy. Li Bing et al. 
[16] proposed an HSCA-YOLOv7 wind turbine blade defect 
detection algorithm, effectively solving the problem of 
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inconsistent defect scales in wind turbine blade images. Fu Jinyi 
et al. [17] proposed an improved small object detection 
algorithm, CA-YOLOv8, by embedding an aggregation 
capability module (CAM) and improving the C2f module, 
enhancing the ability to capture multi-scale detailed features of 
detection objects. 

The methods for detecting defects in wind turbine blades in 
the past have gradually evolved from traditional manual 
methods to physical sensing technologies and computer vision 
technologies. In the latter, whether it is the early exploration 
based on temperature thresholds and DCNN networks, or the 
improvement of two-stage and one-stage target detection 
algorithms, the detection capabilities have been enhanced to a 
certain extent, but there are still shortcomings. For example, the 
complex background has a significant impact on the model's 
detection of defect areas. The defect areas in aerial images of 
wind turbine blades are mostly small targets, and different-scale 
targets have higher requirements for the model's feature 
processing ability. Therefore, the model in this paper aims to 
further optimize the defect detection algorithm of wind turbine 
blades for these problems and improve its detection accuracy 
and efficiency for small targets and multi-scale targets in 
complex environments. 

The complex background of aerial wind turbine blade 
images significantly affects the model's detection of defect 
areas; the defect areas in aerial wind turbine blade images are 
mostly small objects, requiring high feature processing 
capabilities for different scale objects. To address these issues, 
this paper proposes a fusion of local channel attention and focal 
feature modulation object detection algorithm. This paper 
mainly improves the YOLOv8 model, with innovations focused 
on enhancing the overall feature extraction capabilities of the 
model and improving the detection capabilities for small-scale 
objects. The main innovations include the following four 
aspects: 

1) Improving feature capture for small-scale objects: By 

integrating the MLCA module (Mixed Local Channel Attention) 

with the C2f module in YOLOv8's Backbone, the model's ability 

to capture details of small-scale objects is enhanced. 

2) Enhancing overall detection accuracy: Using the FFM 

module (Focal Feature Modulation) to replace the original SPPF 

(Spatial Pyramid Pooling - Fast) module, further improving the 

model's overall detection accuracy. 

3) Optimizing multi-scale feature fusion: Introducing AFPN 

(Asymptotic Feature Pyramid Network) to optimize multi-scale 

feature fusion in object detection. 

4) Improving model accuracy and generalization: Using 

Inner-IoU to optimize the original model's loss function, further 

enhancing model accuracy and generalization capabilities 

The subsequent part of this paper will conduct a detailed 
analysis of the algorithm structure, including the improvement 
principles of the C2f-MLCA and FFM modules in the Backbone 
part, the AFPN structure in the Neck part, and the role of the 
Inner-IoU loss function. Then, through the experimental results 
and analysis, the configuration such as the dataset will be 
introduced, and various experiments and evaluations will be 
carried out using multiple indicators to demonstrate the 
performance advantages of the algorithm. Finally, a conclusion 
will be drawn to summarize the performance improvement and 
application significance of this algorithm in the defect detection 
of wind turbine blades. 

II. IMPROVED YOLOV8 ALGORITHM STRUCTURE 

A. Improved Network Model 

This paper proposes a fusion of local channel attention and 
focal feature modulation object detection algorithm based on 
YOLOv8. In the Backbone of YOLOv8, the MLCA module is 
used to construct the C2f-MLCA module, improving the model's 
ability to capture details of small-scale objects; secondly, the 
FFM module is used to replace the SPPF module in the 
Backbone to aggregate contextual information at different 
granularity levels; finally, the AFPN structure is used in the 
Neck part to enhance the model's multi-scale feature fusion 
capabilities. The overall framework of the improved network is 
shown in Fig. 1. 

B. Improvements in the Backbone 

a) C2f-MLCA: There are numerous small-scale objects in 

wind turbine blade defects [18]. To enhance the detection effect 

on these small-scale objects, the module used needs to possess 

better global and local detail feature extraction capabilities. In 

YOLOv8, multiple Conv modules and C2f modules constitute 

the backbone network, which is used to extract deep features 

from images. However, the Bottleneck module in the C2f 

module causes the network to superimpose a large amount of 

information at high-frequency positions, while neglecting 

information at low-frequency positions, thereby reducing the 

model's feature extraction capability for small objects, as shown 

in Fig. 2. 

MLCA is a lightweight attention module that can 
simultaneously consider channel information and spatial 
information, and combine local and global information to 
enhance the expressive effect of the network [19]. Therefore, the 
MLCA module is introduced into the Bottleneck of the C2f 
module, as shown in Fig. 3. 
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Fig. 1. Overall framework of the model. 

 

Fig. 2. C2f module. 

 

Fig. 3. MLCA module. 

The MLCA module primarily utilizes local average pooling 
and global average pooling to capture global and local feature 
information of the entire input feature map, and on this basis, 
performs channel attention and spatial attention to improve 
feature extraction accuracy. A feature map of size  C H W is 

first processed by local average pooling (LAP) and global 
average pooling (GAP) to obtain statistical information of the 
entire feature map. Subsequently, the features after local and 
global pooling are transformed by a one-dimensional 
convolution (Conv1d) to compress the feature channels while 
maintaining the spatial dimensions, and then rearranged to adapt 
to subsequent operations. For the features after local pooling, 
after one-dimensional convolution and rearrangement, they are 
combined with the original input features through multiplication 
operations for feature selection to enhance attention to useful 
features; for the features after global pooling, after one-
dimensional convolution and rearrangement, they are combined 
with the local pooling features through addition operations to 
fuse global context information. Finally, the feature map 
processed by local and global attention is restored to the original 
spatial dimension through anti-average pooling (UNAP) 
operations to achieve the purpose of mixed attention. 

 

Fig. 4. FFM module. 

b) FFM module: During the detection process of wind 

turbine blade defect objects, the model is easily affected by the 

complex background interference associated with the samples, 

making it difficult to fully extract the deep features of the 

samples. YOLOv8 uses the SPPF module in the Backbone part 
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to aggregate multiple scale features, but it lacks sufficient 

modeling of long-range visual context information. In feature 

information processing, it only concatenates feature map 

information of different scales to achieve feature aggregation, 

ignoring the interaction and aggregation of multi-granularity 

information under complex background interference. To address 

this issue, this paper introduces a more efficient focal feature 

aggregation module, FFM [20]. By extracting context 

information from local to global at different granularity levels 

and performing gated aggregation, it improves the interference 

of complex background information on the feature extraction 

process of the model's backbone network. The structure of the 

FFM module is shown in Fig. 4. 

First, the input feature   H W CX is fed into the 
aggregation module to aggregate contextual features, obtaining 
aggregated features. This process mainly includes two steps: 
The first step involves sending the input feature into a linear 

layer to extract the initial level feature 0Z . Then, the initial level 
feature is processed through a Depthwise Convolution 
(DWConv) and a GeLU function to obtain the next level feature 
until the L -th level feature. In this way, a total of ( L+1 ) level 
features are obtained. These features are considered as 
contextual information at different granularity levels, as shown 
in Eq. (1) and Eq. (2): 

0 ( )Z linearlayer X
                         (1) 

1( ( ))l lZ GeLU DWConv Z
                    (2) 

Among them, {1, , }l L  represents different levels. 

The second step is gated aggregation. By gated aggregation, 
contextual feature information at different granularity levels is 
condensed into a single feature vector as the aggregated feature 

OutZ , with the calculation formula as follows: 

1

1






L

Out l l

l

Z G Z

                    (3) 

 
(a)                                    (b) 

Fig. 5. The schematic of the network before and after the improvement of 

the Neck part. (a) YOLOv8; (b) YOLOV8+AFPN. 

where 
lG  is the gate weight obtained by the l-th level feature 

through a linear layer. 

Then, the obtained aggregated feature OutZ is processed 
through a linear layer and element-wise multiplied with the 
feature query value to obtain the final output focal modulation 
feature Y , with the calculation formula as follows: 

( ) ( ) OutY q X linerlayer Z
                     (4) 

where ( )q  is the query projection function for obtaining the 

feature query value; represents element-wise multiplication. 

The FFM module achieves this not only by expanding the 
receptive field and effectively mitigating the interference from 
the complex background in wind turbine blade defect samples 
but also by more efficiently obtaining contextual information 
from granularity levels, thereby enhancing the feature extraction 
capability of the Backbone. 

C. Improvements in the Neck Part 

In the Neck part, the AFPN structure [21] is adopted instead 
of the original FPN+PAN structure in YOLOv8. This is because, 
during the feature extraction process, the downsampling process 
is dominated by large objects, causing the feature representation 
of small objects in the object area to be confused or blurred, 
thereby affecting the detection effect of small objects. The 
AFPN structure used in this paper can optimize the multi-scale 
feature fusion process. By gradually fusing low-level and high-
level features, it avoids the loss and degradation of information, 
as shown in Fig. 5. 

The AFPN structure can adaptively fuse features of different 
levels in the Neck. Firstly, it fuses two adjacent low-level 
features, and then progressively incorporates higher-level 
features. This approach alleviates the conflict of multi-object 
information that arises from each spatial location during the 
feature fusion process. Specifically, during the multi-level 
feature fusion process in the Neck part, an adaptive spatial 
fusion module (ASFF) is used to assign different spatial weights 
to features of different levels. Then, the features of different 
levels are fused together using a weighted sum method, with the 
specific calculation formula as follows: 

1

 



 n n

ij ij ij

n

y x                            (5) 

 

Fig. 6. Parameter definition. 

Where ijy represents the features after adaptive spatial 

fusion, 
n

ij represents the spatial weight of the features at the

level in the hierarchy, and
1

1


 n

ij

n

; 
n

ijx represents the feature 

vector from the n-th level to  at position (i,j). 
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D. Improvement of Loss Function 

a) CIoU loss: The original YOLOv8 model employs the 

CIoU Loss as the bounding box regression loss function. Let the 

ground truth box be denoted as [ , , , ]gt gt gt gt gtB x y w h and the 

predicted box as B [x,y,w,h] , where x and y represent the 

center coordinates of the bounding box, and w and h represent 

the dimensions of the box. The original CIoU Loss is defined by 

Eq. (6)-Eq. (9) as follows: 

2 2

2

( ) ( )

( )


  
  



gt gt
CIoU IoU

g g

x x y y
L L v

W H
 (6) 

1  
 

i i
IoU

gt gt i i

W H
L 1-IoU

wh w h W H  (7) 

 
IoU

v

L v                 (8) 

1 1 2

2

4
(tan tan )



  
gt

gt

w w
v

h h                      (9) 

In the equation, IoUL is used to measure the overlap between 

the predicted box and the ground truth box,  is a balancing 

parameter, and v is used to measure the consistency of the aspect 

ratio. The remaining parameters are defined as shown in Fig. 6. 

b) Inner-IoU: The existing IoU-based bounding box 

regression still focuses on accelerating convergence by adding 

new loss terms, while neglecting the limitations of the IoU loss 

term itself. In practical applications of wind turbine blade defect 

detection, the original bounding box regression process cannot 

self-adjust according to different detectors and detection tasks, 

resulting in low detection efficiency and accuracy for dense 

small objects or complex environments with multiple scales. To 

address this issue, Inner-IoU loss [22] is chosen, which 

calculates the IoU loss through an auxiliary bounding box. For 

different datasets and detectors, the scale of the auxiliary 

bounding box used to calculate the loss can be controlled by a 

scale factor. The definition of Inner-IoU is shown in Eq. (10)-

(16). 

* *
,

2 2
   

gt gt
gt gt gt gt

l c r c

w ratio w ratio
b x b x

    

* *
,

2 2
   

gt gt
gt gt gt gt

t c b c

h ratio h ratio
b y b y

    

* *
,

2 2
   l c r c

w ratio w ratio
b x b x

 

* *
,

2 2
   t c b c

h ratio h ratio
b y b y

 

(min( , ) max( , ))*(min( , ) max( , ))  gt gt gt gt

r r l l b b t tinter b b b b b b b b 

2 2( * )*( ) ( * )*( )  gt gtunion w h ratio w h ratio inter  

inner inter
IoU

union                       (16) 

In the Inner-IoU Loss, the variable ratio corresponds to the 
scale factor, which typically ranges from [0.5, 1.5]. The 
traditional IoU calculation method considers the overlap area 
between the predicted bounding box and the overall bounding 
box, while Inner-IoU focuses more on the core part of the 
bounding box to make a more precise judgment of the overlap 
area. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Dataset 

The data used in this paper are sourced from images taken 
by inspection personnel at a wind farm during the inspection of 
wind turbine blades. The division of the aerial wind turbine 
blade defect dataset is shown in Table I, totaling 784 images 
with a resolution of 1200*900. The dataset is randomly divided 
into training, validation, and test sets in a ratio of 7:2:1.In the 
defect detection of wind turbine blades, 70% of the data is used 
for training to enable the model to learn multiple features and 
enhance performance. The 20% validation set assists in training 
and optimizing the model. The 10% test set independently 
evaluates to ensure objectivity and accuracy. The 7:2:1 data 
division ratio balances multiple key factors and enhances the 
reliability of the experiment. 

B. Experimental Environment and Parameter Configuration 

The operating system used in this experiment is Ubuntu 
18.04, with GPU being NVIDIA Geforce RTX 3090 and CPU 
being Intel(R) Xeon(R) Gold 6148. The deep learning frame-
work is Pytorch-2.1.2. During the training of the object detection 
model, the number of training epochs is set to 200, the 
momentum size is set to 0.937, the batch size is set to 16, and 
the initial learning rate is set to 0.0001. 

C. Experimental Evaluation Metrics 

To verify the effectiveness of the improvements in the 
proposed algorithm, the model is evaluated using four metrics: 
Precision ( P ), Recall ( R ), Average Precision ( AP ), and mean 
Average Precision ( mAP ). The definitions of these metrics are 
given in Eq. (17)-(20), where n is the total number of predicted 
bounding box categories. 




TP
P

TP FP                    (17) 




TP
R

TP FN                    (18) 

1

0
( ) AP P R dR

                    (19) 

1

1
( )



 
n

i

mAP AP i
n                  (20) 

D. Results Comparison and Analysis 

a) Comparative analysis of different object detection 

model: To verify the advanced nature of the proposed method 
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for wind turbine blade defect detection, the proposed improved 

algorithm is compared with other mainstream object detection 

model algorithms on the wind turbine blade defect dataset. The 

experimental results are shown in Table II. From Table II, it can 

be seen that the proposed improved algorithm significantly 

outperforms the two-stage models Faster R-CNN [23] and 

Cascade R-CNN[24] in terms of mAP and detection speed. 

Compared to the single-stage object detection algorithms 

YOLOv3[25],YOLOv4[26],YOLOv5s,YOLOv5l,YOLOv8s,Y

OLOv9[27],YOLOv10[28] and YOLOv8n, the proposed 

algorithm achieves a substantial improvement in mAP while 

maintaining a high level of accuracy and a fast detection speed, 

indicating that the proposed method has certain advantages. 

To provide a more intuitive comparison of the detection 
effects before and after the improvement of the proposed 
algorithm with other mainstream YOLO series algorithms, the 
detection results of different scenarios are compared and 
displayed in Fig. 7(a)-(f). The first row represents complex 
background scenarios, the second row represents scenarios with 
multiple types of defects, the third row represents scenarios with 
densely distributed small objects, and the fourth row represents 
scenarios with multiple types of defects and small objects. It can 
be seen from the comparison that the proposed algorithm has a 
lower rate of missed detections and false detections and higher 
recognition accuracy compared to other algorithms. 

TABLE I.  TABLE OF DATASET DIVISION FOR AERIAL WIND TURBINE 

BLADE DEFECTS 

Fan blade defect name Quantity of categories 

gelcoat_off 156 

cracks 374 

surface_erosion 254 

TABLE II.  COMPARISON EXPERIMENT OF DIFFERENT OBJECT DETECTION 

MODELS 

Model P/% R/% mAP50/% 
mAP50-

95/% 
GFLOPs 

Faster R-

CNN 
75.4 66.0 73.5 43.1 7.1 

Cascade R-

CNN 
72.5 67.8 72.7 44.2 7.1 

YOLOv3 73.5 67.9 71.9 43.3 6.9 

YOLOv4 76.6 65.9 74.9 45.4 6.7 

YOLOv5s 78.4 65.3 75.2 44.4 23.8 

YOLOv9s 78.6 66.4 74.6 50.2 26.7 

YOLOv10n 72.4 58.9 71.8 40.6 8.2 

YOLOv8s 78.2 67.7 75.8 48.6 28.4 

YOLOv8n 77.1 68.7 74.6 46.4 8.1 

Ours 82.5 71.6 78.6 51.7 8.5 

b) Module ablation experiment results: To verify the 

contribution of each improvement to the proposed algorithm, 

ablation experiments were conducted. Under the same 

experimental conditions, YOLOv8n was used as the baseline 

model, and a series of ablation experiments were performed by 

sequentially adding each improvement measure. The results are 

shown in Table III. From the comparison of experimental results 

in Table III, it can be seen that the original YOLOv8n model 

performs relatively basic across various metrics, with mAP50 at 

88.4%, P at 65.2%, R at 73.2%, and so on. As different 

improvement methods were introduced, the performance of each 

model improved. For example, YOLOv8n+MCLA showed 

progress in some metrics compared to the original model; 

YOLOv8n+FFM, YOLOv8n+Neck improvement, 

YOLOv8n+Inner-IoU, and other single or combined 

improvement methods also enhanced the model's performance 

to varying degrees. However, the proposed model outperformed 

in all metrics. It achieved an mAP50 of 91.4%, higher than all 

other improved models; P was 67.8%, R was 76.5%, showing 

good performance in accuracy and recall. Additionally, the 

mAP50-95% metric was 71.6%, higher than other models, 

indicating that the proposed model maintains high detection 

accuracy across different confidence levels. Although the 

GFLOPs slightly increased, it remained within a reasonable 

range. 

 

Fig. 7. Comparison of detection effect of different methods before and after improvement. 
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TABLE III.  RESULTS OF ABLATION EXPERIMENT 

Model 

mAP50/% 

P/% R/% mAP50/% 
mAP50-

95/% 
GFLOPs surface_ 

erosion 
cracks 

gelcoat 

_off 

YOLOv8n 88.4 65.2 73.2 77.1 68.7 74.6 46.4 8.1 

YOLOv8n+MCLA 89.6 66.2 73.6 78.6 68.8 74.9 48.7 7.6 

YOLOv8n+FFM 88.9 66.3 75.6 77.8 68.6 76.9 46.8 7.8 

YOLOv8n+Neck 90.4 65.4 76.3 78.2 69.0 77.4 48.2 8.5 

YOLOv8n+Inner-IoU 90.6 67.0 76.4 80.2 70.8 78.0 48.7 8.1 

YOLOv8n+ MCLA +FFM 88.7 67.1 75.8 80.6 71.2 77.2 47.5 7.8 

YOLOv8n+ MCLA +FFM+ 

Neck 
91.2 67.6 76.0 81.2 70.3 78.3 47.9 8.5 

YOLOv8n+ MCLA 

+FFM +Inner-IoU 
90.6 67.2 76.5 82.1 71.4 78.1 48.2 7.8 

YOLOv8n+Neck+Inner-

IoU 
89.6 67.4 75.2 81.7 71.3 77.4 50.6 8.5 

Ours 91.4 67.8 76.5 82.5 71.6 78.6 51.7 8.5 

TABLE IV.  PERFORMANCE OF MODELS WITH DIFFERENT C2F-MCLA 

NUMBERS 

Model mAP50/% GFLOPs 

YOLOv8n 74.6 8.1 

C2f-MCLA*1 74.9 7.6 

C2f- MCLA *2 74.7 7.6 

C2f- MCLA *3 75.1 7.7 

In summary, the proposed model, by integrating multiple 
improvement methods, demonstrated outstanding performance 
in defect detection tasks, providing a more effective solution for 
detecting issues such as surface erosion cracks and gel coating 
detachment. 

c) Impact of C2f-MLCA module on the proposed model: 

In YOLOv8's Backbone, there are three instances where the C2f 

module is used. The stacking of different numbers of C2f-

MCLA modules has varying impacts on network performance 

and lightweighting. To determine the optimal number of 

improvement modules for peak performance, YOLOv8n was 

used as the baseline algorithm, and the first, the first two, and all 

C2f modules were improved. The network performance with 

different numbers of C2f-MCLA modules was compared, with 

the module improvement sequence following the network 

structure hierarchy. The experimental results are shown in Table 

IV. 

The mAP50 of YOLOv8n is 74.6%, and GFLOPs is 8.1. The 
C2f-MCLA series achieves mAP50 values close to or slightly 
higher than YOLOv8n under different configurations, with C2f-
MCLA*3 reaching 75.1%; and the series has GFLOPs around 
7.6 or 7.7, indicating relatively lower computational complexity. 
Overall, the C2f-MCLA series strikes a good balance between 
object detection accuracy and computational efficiency, 
potentially offering more advantages in scenarios with limited 
computational resources or high real-time requirements, 
providing a reference for selecting object detection algorithms. 

d) Evaluation of model generalization and robustness: In 

the field of object detection, a model's generalization capability 

is primarily reflected in its ability to adapt well to changes 

brought by different datasets. The robustness of a model focuses 

more on its ability to better adapt to the effects brought by 

changes in sample backgrounds and multiple angles. To evaluate 

the generalization and robustness of the proposed method, 40 

wind turbine defect samples under multiple backgrounds and 

angles were selected for experimental detection, with results 

shown in Table V. 

TABLE V.  EVALUATION RESULT 

Model 
Number of correct 

identifications 
Accuracy 

YOLOv8n 32 80% 

YOLOv8n+MCLA 37 92.5% 

YOLOv8n+FFM 37 92.5% 

YOLOv8n+AFPN 32 80% 

YOLOv8n+Inner-IoU 37 92.5% 

YOLOv8n+ MCLA +FFM 36 90% 

YOLOv8n+ MCLA  
+FFM+ AFPN 

37 92.5% 

YOLOv8n+ MCLA 

+FFM +Inner-IoU 
37 92.5% 

YOLOv8n+AFPN+Inner-IoU 33 82.5% 

Ours 37 92.5% 

In the original YOLOv8n model, the number of correctly 
identified objects is 32, with an accuracy rate of 80%. By 
separately introducing improvements such as MCLA, FFM, 
AFPN, and Inner-IoU, the model's performance has been 
enhanced to varying degrees. Notably, YOLOv8n + MCLA, 
YOLOv8n + FFM, YOLOv8n + Inner-IoU, YOLOv8n + 
MCLA + FFM + AFPN,YOLOv8n+MCLA+FFM+Inner-IoU, 
and the model pro-posed in this study all achieved 37 correctly 
identified objects and a high accuracy rate of 92.5%. Although 
the accuracy rate is the same as that of the above-mentioned 
models, the improvement measures such as MLCA, FFM, 
AFPN, and Inner-IoU integrated in this model collaborate with 
each other. The AFPN structure helps maintain a high accuracy 
rate; the MLCA module enhances the data processing ability, 
giving it an advantage in feature learning. The current similar 
accuracy rate might be a phased performance, and the scalability 
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of its architecture indicates that it has greater potential to surpass 
other models in the field of wind turbine blade defect detection 
in the future. This clearly indicates that these improvement 
methods have a significant effect on enhancing the accuracy of 
object recognition. However, despite some improvements in 
YOLOv8n+AFPN and YOLOv8n+AFPN+Inner-IoU, the 
extent of improvement is relatively small. Overall, the model 
proposed in this study performs excellently in the task of de-
tecting defects in wind turbine blades, providing valuable 
references for further optimization of the YOLOv8n model. 

IV. CONCLUSION 

The detection of defects in wind turbine blades is of great 
significance for intelligent inspection in wind farms [29-30]. To 
address the practical issues of existing algorithms for detecting 
defects in wind turbine blades, such as insensitivity to small 
object areas, difficulty in feature extraction, and challenges in 
dealing with the effects of complex environments, this paper 
proposes a defect detection algorithm for wind turbine blades 
that integrates local channel attention and focal feature 
modulation. Through experiments on a specific dataset of wind 
turbine blade defects, the proposed method improves the 
accuracy by 5.4%, the recall by 2.9%, and mAP50 by 4.2% 
compared to the baseline method, with enhanced generalization 
and robustness. The proposed method also demonstrates certain 
advantages over other advanced object detection methods, 
providing a solution to assist in the intelligent inspection of wind 
farms. In the future, we will continue to focus on model 
compression and acceleration in terms of algorithm 
optimization, improve the attention mechanism to enhance the 
detection speed and accuracy, and increase the application value 
of the algorithm. 
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