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Abstract—Managing the massive annual gatherings of Hajj 

and Umrah presents significant challenges, particularly as the 

Saudi government aims to increase the number of pilgrims. 

Currently, around two million pilgrims attend Hajj and 26 million 

attend Umrah making crowd control especially in critical areas 

like the Grand Mosque during Tawaf, a major concern. Additional 

risks arise in managing dense crowds at key sites such as Arafat 

where the potential for stampedes, fires and pandemics poses 

serious threats to public safety. This research proposes a machine 

learning model to classify crowd density into three levels: 

moderate crowd, overcrowded and very dense crowd in video 

frames recorded during Hajj, with a flashing red light to alert 

organizers in real-time when a very dense crowd is detected. While 

current research efforts in processing Hajj surveillance videos 

focus solely on using CNN to detect abnormal behaviors, this 

research focuses more on high-risk crowds that can lead to 

disasters. Hazardous crowd conditions require a robust method, 

as incorrect classification could trigger unnecessary alerts and 

government intervention, while failure to classify could result in 

disaster. The proposed model integrates Local Binary Pattern 

(LBP) texture analysis, which enhances feature extraction for 

differentiating crowd density levels, along with edge density and 

area-based features. The model was tested on the KAU-Smart-

Crowd 'HAJJv2' dataset which contains 18 videos from various 

key locations during Hajj including 'Massaa', 'Jamarat', 'Arafat' 

and 'Tawaf'. The model achieved an accuracy rate of 87% with a 

2.14% error percentage (misclassification rate), demonstrating its 

ability to detect and classify various crowd conditions effectively. 

That contributes to enhanced crowd management and safety 

during large-scale events like Hajj. 

Keywords—Hajj; moderate crowd; overcrowded; very dense 

crowd; machine learning 

I. INTRODUCTION 

 Mass surveillance video data recorded during Hajj require 
advanced processing techniques [1] to classify and detect crowd 
density levels in real-time ensuring timely responses to high-risk 
situations [2]. Manual crowd-monitoring systems are not only 
time-consuming and resource-intensive but also insufficient for 
managing the complexity of massive events like Hajj [3]. 
Machine learning methods have been implemented as a reliable 
solution for automating crowd analysis enabling the 
classification of crowd density levels directly from video frames 
[4]. Managing crowd density during Hajj also presents general 
challenges [5], such as noisy video frames [6], environmental 
factors like poor visibility and unrecognized objects [7], such as 
moving fans or vehicles near the Kaaba. These challenges can 
cause false alerts or missed detections [8], potentially leading to 
delays or dangerous situations. Furthermore, normal crowd 

behaviors during Hajj, such as group movements [9] and sacred 
congregations may appear high-risk in other contexts. 

This study focuses on detecting and classifying crowd 
density into three levels: moderate crowd, overcrowded and very 
dense crowd. Unlike many current research efforts that 
predominantly rely on Convolutional Neural Networks (CNNs) 
for detecting abnormal behaviors [10], this research employs a 
Gradient Boosting Classifier (GBC) with a structured feature 
extraction model. Features such as Edge Density, Local Binary 
Pattern (LBP) texture and crowd area coverage provide a 
comprehensive representation of crowd characteristics, while a 
threshold-based method directly labels frames with Edge 
Density values above a critical level as very dense, ensuring the 
rapid identification of high-risk crowd regions. 

The proposed model implements data augmentation 
techniques to improve generalization throughout various 
scenarios, uses class balancing to address the distribution of 
crowd density levels in the dataset and enhances the GBC 
through hyperparameter tuning with GridSearchCV to ensure 
robust performance. In addition, the model triggers visual alerts 
for very dense crowd scenes by overlaying a red flash indicator 
on detected frames, assisting organizers in real-time decision-
making. 

The contributions of this study are as follows: development 
of a Machine Learning model for classifying crowd density 
levels in video frames recorded during Hajj; integration of key 
features such as Edge Density, LBP texture and crowd area 
coverage to enhance classification accuracy; and use of 
performance metrics such as accuracy, precision, recall and F1-
score to evaluate the model, with special emphasis on the 'very 
dense crowd' category. 

The following sections are organized as, Section II provides 
the related works and Section III presents the proposed model. 
Section IV shows the result analysis and Section V concludes 
the paper. 

II. RELATED WORK 

Felemban et al. [2] highlighted different levels of crowd 
density observed among pilgrims categorized as moderate 
crowd, overcrowded and very dense crowd. Such categories 
range from safe to potentially disastrous with very dense crowds 
posing significant risks such as stampedes. Although extensive 
efforts by Hajj authorities to manage crowds effectively, a 
method to classify hazardous crowd density conditions and 
provide timely notifications remains critical for enhancing 
crowd management. This paper builds on such insights by 
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proposing a data-driven machine-learning approach for accurate 
and timely crowd density classification. 

Aldayri and Albattah [11] introduced a computer vision 
framework that uses a convolutional LSTM autoencoder to 
detect abnormal human behaviors in video sequences by 
combining convolutional neural network (CNN) to extract 
spatial features from video frames and LSTMs to analyze 
temporal patterns across consecutive frames. Their research, 
along with other similar studies [12] focuses on identifying 
abnormal behaviors whereas my model emphasizes crowd 
density classification based on structural features like Edge 
Density and LBP texture, addressing the specific challenge of 
real-time detection of very dense crowd levels. 

In another research effort [13], a Crowd Anomaly Detection 
Framework (CADF) was developed which integrates multi-
scale feature fusion and soft non-maximum suppression (soft-
NMS) to detect anomalies in dense crowd scenarios. Bhuiyan 
[4] proposed the Crowd Anomaly Hajj Monitor to classify 
crowd anomalies by using optical flow and a fully convolutional 
neural network, which identifies specific behaviors but counts 
on predefined feature extraction techniques that may limit 
adaptability to varying crowd scenarios. On the other hand, my 
approach leverages Edge Density and other texture-based 
features for crowd density classification to ensure wider 
relevance in different crowd conditions. In addition, Alhothali et 
al. [14] introduced a deep CNN-based model to detect and 
localize anomalous events in dense crowd scenes classifying 
seven categories of abnormal events based on extracted spatial 
and temporal features. While that approach is effective for 
anomaly detection, such models often focus on individual 
behaviors rather than holistic crowd density levels. In a similar 
effort [15], other studies have utilized lightweight CNN and 
LSTM models to detect violent activities in surveillance footage, 
generating real-time alarms for law enforcement, which often 
enhance specific scenarios. Whereas, my study emphasizes a 
generalizable model for crowd density classification that focuses 
on critical safety categories like very dense crowds. 

Previous works have widely applied CNNs and FCNNs to 
analyze surveillance videos for detecting anomalies [16]. Also, 
FCNN have been used for estimating crowd density from distant 
surveillance footage, showing significant improvements in 
crowd density classification [17]. However, many depend on 
fixed feature extraction techniques, such as optical flow or 
motion analysis [18] which can limit their adaptability to the 
unique dynamics of Hajj. Also, methods dependent on inflexible 
frameworks [19] may face challenges in handling the 
complicated temporal and spatial variations in crowd 
movement, especially during rituals and gatherings. The 
proposed model in this paper addresses these limitations by 
extracting meaningful features such as Edge Density, LBP 
texture and crowd area coverage which better capture the visual 
and structural characteristics of different crowd density levels. 
 Furthermore, traditional approaches may classify normal crowd 
behaviors during Hajj, such as ritual-related movements or 
group activities as anomalies because of the unique nature of 
such event. This study avoids such pitfalls and provides a 
focused solution for monitoring critical crowd density levels in 

real-time by tailoring the model to classify crowd density rather 
than individual behaviors. 

This study adds to the existing body of knowledge by 
presenting a machine-learning model designed to systematically 
classify crowd density levels. The model achieves enhanced 
accuracy and adaptability by employing a structured feature 
extraction process and fine-tuning classification with GBC, 
offering a practical solution for improving crowd management 
and safety during Hajj. 

III. THE PROPOSED MODEL 

A. Data Preparation 

I used the HAJJv2 dataset [20] which contains training and 
testing videos each set including nine videos capturing different 
holy sites during Hajj such as Massaa, Jamarat, Arafat and 
Tawaf. This dataset was originally created to focus on abnormal 
crowd behaviors during Hajj. Each video is divided into 
different frames and each frame’s number is repeated multiple 
times in the label file with each instance assigned to a different 
type of abnormal behavior, thereby allowing for the capture of 
various behaviors occurring simultaneously or consecutively 
within the same frame. 

For this study, I used the same segmented frames provided 
in the dataset with each video divided into a varying number of 
frames ranging between 466 and 501. However, I modified the 
label files to categorize the frames into three classifications; 
moderate crowd, overcrowded and very dense crowd 
eliminating the need to repeat the same frame’s number to define 
multiple abnormal behaviors in a single frame. This was 
essential to reduce complexity and focus on overall density 
rather than specific behaviors. 

Since the goal of this study is to categorize the overall crowd 
density in each frame rather than track specific abnormal 
behaviors or objects, I eliminated the need to repeat the same 
frame number to detect various abnormal behaviors in different 
areas within each frame. Instead, I simplified this by selecting 
one entry per frame to represent its density level. Each video's 
frames in the training and testing set are processed individually 
and assigned a single density label; moderate, crowded or very 
dense crowd based on the dominant or average density level 
observed in each frame. 

To ensure accurate density classification, the dataset was 
preprocessed further. During this process, the total number of 
rows loaded from the dataset was 43,721 and frames with high 
EdgeDensity values were automatically updated with 
corresponding labels for very dense crowd conditions. The 
augmented dataset resulted in 131,163 entries which included 
features such as Edge Density, Area, Average Intensity and 
Local Binary Pattern (LBP) texture, significantly expanding the 
variety of training samples. In addition, an edge density 
threshold of 64.5 was set during the training process to facilitate 
the reliable identification of very dense crowds. That simplifies 
the dataset structure, making it more efficient for training a 
model aimed at detecting general crowd density levels without 
requiring additional details, such as bounding boxes or multiple 
labels per frame. By doing so, the training process is more 
streamlined, with improvements in efficiency and performance. 
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B. Model Design 

The major goal of the proposed model is to detect and 
classify crowd density levels in video frames recorded during 
Hajj across various holy sites aiming to identify very dense 
crowd regions that may require immediate attention. In order to 
achieve this, the model uses a structured approach that starts 
with careful dataset preparation and well-defined labeling 
criteria as shown in Fig 1. The dataset comprises video frames 
categorized by crowd density levels: moderate crowd, 
overcrowded and very dense crowd. The model employs a 
threshold-based method to automatically label samples where 
frames with an EdgeDensity value above 64.5 are directly 
classified as very dense. This was selected through exploratory 
analysis of sample distributions and is intended to provide 
immediate labeling for the most critical category, ensuring 
timely detection of high-density scenes. 

 

Fig. 1. Proposed model. 

The model extracts Edge Density by calculating the density 
of edges detected in a designated area of each frame as this 
feature reflects changes in density. The Local Binary Pattern 
(LBP) texture feature was calculated by analyzing the local pixel 
patterns in grayscale crowd regions within the video frames, by 
which the LBP algorithm computes a binary code for each pixel 
by comparing it with its surrounding neighbors and generates a 
histogram capturing the frequency of specific binary patterns. 
That histogram reflects the texture characteristics of the crowd 
which is particularly useful in identifying varying density levels 
based on textural patterns that are prevalent in dense crowds. In 
this study, the histogram values were normalized and averaged 
to provide a single numerical representation of texture per 
region, which was included as the LBP Texture feature. The 
decision to use LBP stems from its ability to highlight subtle 
texture variations across crowd density levels aiding the model 
in making more accurate classifications and features like the 
area covered by the crowd region and average intensity 
contribute further contextual details. Also, data augmentation is 
used to enhance the training set's diversity including frame 
rotation and brightness adjustment. The reason for using 
augmentation is to provide the model with a wider array of 
samples thereby improving its generalization across new frames 
by allowing it to learn from a broader variety of crowd 
presentations. 

Class balancing was essential due to some crowd levels 
having significantly fewer samples than others. The model 
addresses this by oversampling the minority classes, particularly 
the moderate crowd and very dense crowd categories. This 
ensures that each crowd level is equally represented during 
training thereby reducing the likelihood of bias and enhancing 
the classifier’s performance across all classes. 

The Gradient Boosting Classifier (GBC) was implemented 
as the primary classification algorithm because of its 
effectiveness in modeling complex non-linear relationships. 
That classifier works by sequentially building a series of 
decision trees where each tree attempts to correct the errors of 
its predecessor. That iterative boosting process allows the model 
to focus more on the misclassified samples from previous 
iterations, thereby improving its overall accuracy. For this study, 
GBC was integrated into a model that included feature scaling 
using StandardScaler to normalize the values of all features e.g., 
EdgeDensity, LBPTexture, Area, and AvgIntensity. The scaled 
features were then passed to the classifier. The model achieved 
optimal performance by incorporating GBC in a model and 
tuning its hyperparameters using GridSearchCV, as reflected in 
a cross-validation score of 0.97. That iterative approach also 
ensures the model's robustness in classifying different crowd 
densities despite the diversity in frame characteristics. 

Hyperparameter tuning through GridSearchCV allows for 
the optimization of the GBC. A selection of key parameters such 
as the number of estimators, learning rate and maximum depth 
is tuned using cross-validation to ensure the model performs 
well without overfitting. Systematically, GridSearchCV tests 
various parameter options to find the set that yields the highest 
accuracy score during cross-validation. 

Performance metrics such as accuracy, precision, recall and 
F1-score are used to evaluate the proposed model in this study 
as they provide an in-depth assessment of its ability to predict 
each crowd density level correctly with particular attention 
given to its precision and recall on the 'very dense crowd' 
classification due to the high importance of this category. In 
addition, a confusion matrix is employed to analyze further 
misclassifications offering insights into which crowd density 
levels may be confused by the model. 

The final model, saved as a serialized file, is tested on new 
video frames to assess its practical performance in detecting 
very dense crowds, and importantly, it activates a red flash 
indicator as a visual alert for such frames. The design process is 
finalized with a feature importance analysis as each feature is 
examined to provide findings on which factors of crowd data 
affect the model’s predictions validating the choice of features 
and pointing out the model’s reliance on important crowd-
related characteristics. 

C. Training Process 

The training dataset was balanced using oversampling 
techniques to address the class imbalance especially for the 
moderate crowd and very dense crowd categories. That ensured 
equal representation of all three crowd density levels. Features 
of each frame were extracted that included Edge Density 
calculated as the density of detected edges, Local Binary Pattern 
(LBP) texture, area covered by the crowd and average intensity. 
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During the training process, the LBP texture features played a 
significant role in distinguishing between moderately crowded 
and very dense crowd frames, since the histogram values 
captured by LBP provided insights into the structural patterns 
within the crowd, such as uniform regions indicating low density 
versus textured regions in high-density areas. That feature 
combined with EdgeDensity, area, and average intensity, 
allowed the model to detect high-density areas effectively. In 
addition, to enhance the diversity of the training set, data 
augmentation techniques such as rotation and brightness 
adjustments were employed. 

D. Hyperparameter Optimization and Feature Importance 

Hyperparameter tuning was performed using 
GridSearchCV, optimizing key parameters of GBC, such as the 
number of estimators 50, 100 and 200, learning rate 0.01, 0.05, 
0.1, 0.3 and 0.5 and maximum depth 3, 4, 5, 6 and 7. The best 
parameters were a 0.5 learning rate, a maximum depth of 7, and 
200 estimators, achieving a cross-validation score of 0.97 which 
provided the best cross-validation accuracy while balancing 
model complexity and performance. 

An analysis of feature importance revealed that Edge 
Density was the most significant predictor for crowd density 
classification followed by LBP Texture and Average Intensity. 
The feature importance were: Area (0.69), Edge Density (0.24), 
Average Intensity (0.06) and LBP Texture (0.00). That confirms 
the relevance of these features in distinguishing between 
different crowd densities and supports their inclusion in the 
model. 

IV. RESULTS AND DISCUSSION 

During the training stage of the model, I visualized the 
distribution of key features, such as area, position coordinates, 
edge density and average intensity across different crowd 
density levels including moderate, overcrowded and very dense 
crowd. These highlight how these features contribute to 
distinguishing between the crowd density categories which is 
essential for the model's accuracy. Fig. 2 shows that Area is a 
significant feature in distinguishing very dense crowd situations 
from moderate crowd or overcrowded as very dense crowds tend 
to cluster within a smaller area. In the HAJJv2 dataset, very 
dense crowds mostly appear in videos recorded during Tawaf 
around the Kaaba which is typically a quite small area. The 
yellow and green bars representing overcrowded and moderate 
crowds respectively, are distributed more widely across larger 
areas such as Sa'i, Mina, and Arafat compared to the very dense 
category. Such finding suggests that as crowd density decreases, 
the area covered by the crowd tends to increase due to people 
being more spread out. 

Fig. 3 and Fig. 4 show the distribution of X and Y 
coordinates respectively, by crowd density category: moderate 
crowd, overcrowded and very dense crowd. Very dense crowd 
regions represented by the red bars are concentrated within 
specific ranges on both the X and Y axes. The clustering 
suggests that very dense crowds are likely to occur in particular 
locations within the frame reflecting areas where crowding 
frequently happens. Meanwhile, overcrowded and moderate 
crowds represented by the yellow bars and green bars 
respectively, are more widely distributed across the X and Y 

coordinates. In particular moderate crowds are spread across a 
larger range, indicating a more even distribution across the 
frame. Therefore, the specific positioning patterns of each crowd 
density level imply that spatial coordinates X and Y are useful 
features for distinguishing crowd densities. Thus, the model can 
use this information to recognize crowd density levels based on 
where they commonly appear within the frame. 

 

Fig. 2. Distribution of the "Area" feature by crowd density category 

(moderate crowd, overcrowded, and very dense crowd). 

 

Fig. 3. The distribution of the " X " coordinate by crowd density category. 

 

 

Fig. 4. The distribution of the "Y" coordinate by crowd density category. 

For the distribution of the 'Edge Density' feature across the 
three crowd density categories, Fig. 5 shows that the very dense 
crowd represented by the red color, has the highest concentration 
of samples at larger edge density values, with a peak around 80–
100. 
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Fig. 5. Distribution of the "Edge Density" feature across crowd density 
categories. 

Additionally, the figure shows that the overcrowded and 
moderate crowd categories, represented by yellow and green 
respectively, have a peak in the middle range of edge density 
values (around 40–60) and are concentrated in the lower range 
of edge density values below 20, respectively. This highlights 
the significance of edge density as a feature for classifying 
crowd density levels, as the distributions show clear separations, 
especially between the moderate and very dense crowd 
categories, with minimal overlap. Thus, the 'Edge Density' 
feature is a major factor contributing to the model's accuracy in 
distinguishing between these categories. 

During the counting of the 'Average Intensity' feature, the 
visualized values show that, while there are slight shifts in the 
distributions as shown in Fig. 6, the very dense crowd peaks at 
slightly higher average intensity values around 125–150, the 
overcrowded category peaks in the mid-range of 100–125, and 
the moderate crowd is concentrated at lower intensity values 
below 100. All three crowd density levels overlap significantly 
in the range of 75 to 125 average intensity values. In addition, 
Fig. 5 demonstrates that average intensity captures variations in 
brightness across the frame that correlate with crowd density. 
While the overlap limits its standalone utility, it can enhance the 
model's accuracy when combined with other features like edge 
density and area. 

 

Fig. 6. Distribution of the "Average Intensity" (AvgIntensity) feature across 

crowd density categories. 

 

Fig. 7. Training and validation scores. 

Finally, Fig. 7 shows the training and validation accuracy 
trends as the number of estimators increases, along with shaded 
regions representing the standard deviation for each. Both 
training and validation accuracy improve as the number of 
estimators increases and the model demonstrates stable 
performance without significant overfitting, as indicated by the 
relatively small gap between training and validation scores. 

A. Model Performance and Confusion Matrix Analysis 

Metrics including accuracy, precision, recall and F1-score 
were used to evaluate the proposed model. Fig. 8 shows the 
results of these metrics as 87% accuracy, 93% precision, 87% 
recall, and 84% F1-score, which therefore indicate the model's 
high reliability, especially in identifying frames with very dense 
crowd conditions, which is crucial for real-time monitoring 
systems. 

 

Fig. 8. Performance metrics. 

In addition, a confusion matrix was constructed to analyze 
misclassifications. The matrix revealed that majority of 
misclassifications occurred between moderate crowd and 
overcrowded. While, frames classified as very dense crowd 
showed minimal false negatives thereby ensuring effective 
detection in critical situations. Fig. 9 presents the confusion 
matrix and provides a detailed breakdown of predictions versus 
true labels. 

Moreover, an error percentage or misclassification rate 
based on the values of confusion matrix using the following 
equation: 

𝐸𝑟𝑟𝑜𝑟 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑛𝑔𝑒

=  
𝑇𝑜𝑡𝑎𝑙 𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 × 100 
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𝐸𝑟𝑟𝑜𝑟 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑛𝑔𝑒 =  
94

 4382
 × 100 ≈ 2.14% 

 
Fig. 9. Confusion matrix. 

The 2.14% error percentage is ideal for high precision in a 
critical application such as classifying the surveillance videos of 
the holy sites during Hajj, especially in determining very dense 
crowd conditions, as false alerts or false estimations of the 
crowd situation could lead to either unnecessary triggering of 
emergency efforts or disasters. Furthermore, the model triggered 
visual alerts represented as red overlays for frames classified as 
‘very dense crowd’. This visual feedback could enhance the 
practical usability of the system in high-risk environments like 
Hajj. 

The results demonstrate the success of the proposed 
approach in addressing crowd density classification challenges 
with high accuracy and low error percentage. The use of 
GridSearchCV for hyperparameter optimization and data 
augmentation for feature enhancement contributed significantly 
to the model’s success. However, some limitations have been 

noted such as misclassification between moderate and 
overcrowded conditions, which could indicate the need for 
further enhancement to the methods used for extracting the 
features of the video frames. Also, real-time processing 
performance could benefit from hardware acceleration or further 
enhancement of the model. 

Future work may look into contextual data integration such 
as temporal crowd flow patterns. In addition, extending the 
system to support multi-camera feeds could improve scalability 
for large-scale events like Hajj. 

B. Comparsion with Previous Studies 

The proposed model has been compared with other models 
in previous studies reviewed in Section II based on specific key 
evaluation criteria as shown in Table I. These criteria were 
collected from the previously reviewed studies. It was found that 
the proposed model in this study outperforms other models in its 
tailored feature extraction, real-time usability, focus on crowd 
density, and specific application to Hajj which make it uniquely 
suited for improving crowd management during Hajj. Although 
the proposed model achieves an accuracy of 87% which is 
slightly lower than the reported accuracy in some studies, that 
outperforms others in its targeted application of crowd density 
classification during Hajj. Unlike models that focus on detecting 
individual anomalies or specific behaviors, the proposed model 
is specifically designed to classify crowd density into actionable 
categories (moderate, overcrowded, very dense) and provide 
real-time visual alerts for very dense conditions. That is essential 
during Hajj to avoid crises such as the Mina stampede, which 
tragically led to the deaths of 1,000 pilgrims [21], and the 
collapse of a crawler crane at the Holy Mosque, resulting in 107 
deaths and over 230 injuries [22] due to the dense crowds. That 
makes it more practical and reliable for real-world crowd 
management during Hajj. 

Furthermore, with a low error rate of 2.14% and a balanced 
performance across metrics (precision: 93%, recall: 87%, F1-
score: 84%), the proposed model ensures robust and consistent 
results tailored to Hajj-specific challenges. 

TABLE I.  COMPARISON OF PROPOSED MODEL WITH RELATED WORKS ON KEY EVALUATION CRITERIA (LEGEND √ MEANS INCLUDED/STRONGLY 

ADDRESSED, × MEANS NOT ADDRESSED AND ≈ MEANS PARTIALLY INCLUDED) 

Criteria 
Tailored Feature 

Extraction 

Real-Time Visual 

Alerts 

Low Misclassification 

Rate 

Focus on Crowd 

Density 
Application to Hajj-Specific 

Scenarios 

Bhuiyan [4] × × × ≈ √ 

Aldayri and Albattah [11] × × × × × 

Bhuiyan et al.[12] × × × × ≈ 

Nasir et al.[13] × × × × ≈ 

Alhothali et al.[14] ≈ × × × ≈ 

Habib et al.[15] × √ × × × 

Alafif et al. [16] × × × × ≈ 

Miao et al.[19] √ × × × √ 

Alafif et al.[20] √ × × × √ 

Proposed model √ √ √ √ √ 
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C. Discussion 

Even though this study uses the HAJJv2 dataset, which 
represents different crowd scenarios from various holy sites, 
such as Tawaf, Sa'i, Mina and Arafat, thereby covering different 
crowd density levels, biases may exist due to the under 
representation of certain density levels or specific scenarios, 
such as moderately crowded conditions during less busy times. 
To address this, data augmentation techniques were applied to 
balance the dataset and reduce classification bias. The model’s 
performance on unseen data indicates its generalizability, 
though further validation with external datasets could provide 
additional insights into fairness. 

The observed misclassifications between moderate and 
overcrowded categories highlight areas for improvement. 
Introducing additional contextual features, such as temporal 
crowd patterns or environmental conditions may enhance 
fairness and reduce boundary-level classification errors. 

The proposed model in this study demonstrates 
trustworthiness by providing interpretable outputs based on 
clear and relevant features like area, edge density and spatial 
coordinates. These features align with real-world crowd 
dynamics, as evidenced by the strong correlations observed in 
very dense crowd situations, and the real-time visual alerts 
represented as red overlays for very dense crowd frames, further 
enhancing trust by offering actionable and transparent feedback 
to decision-makers. 

The proposed model's low error rate of 2.14% combined 
with high precision 93% and recall 87% metrics ensures its 
reliability in critical scenarios, especially in avoiding false 
negatives for very dense crowd conditions. That makes the 
system suitable for real-time applications during high-stakes 
events like Hajj. 

Studies like Bhuiyan et al. [12] and Alhothali et al. [14] 
focused on detecting individual anomalies, which differ from the 
comprehensive crowd density classification targeted by this 
study which uniquely combines tailored feature extraction with 
advanced machine learning techniques. Also, the proposed 
model balances computational efficiency with an accuracy of 
87% offering a practical solution for detecting hazardous crowds 
during Hajj. While hybrid approaches as shown by Miao et al. 
[19] and Alafif et al. [20] which integrate deep learning 
techniques (e.g., CNNs, ResNet-50, YOLOv2) with traditional 
methods (e.g., Random Forests, Kalman filters) have 
demonstrated high accuracy in abnormal behavior detection, 
their reliance on computationally intensive models, advanced 
infrastructure (e.g., UAVs, edge-cloud models) and heavily 
annotated datasets often limits their scalability and real-time 
applicability during Hajj. 

Finally, to further improve fairness and trustworthiness, 
future work may incorporate temporal crowd flow data, 
environmental factors and multi-camera feeds to enhance model 
robustness and scalability. Validation with external datasets can 
help address potential biases and improve generalizability, 
ensuring broader applicability to diverse crowd management 
scenarios. 

V. CONCLUSION 

This study proposed a model to classify crowd density in 
video surveillance recorded at the holy sites during Hajj into 
three classifications: moderate crowd, overcrowded and very 
dense crowd. The videos were segmented into frames, and 
features such as Edge Density, LBP texture, and area were 
extracted, which were identified as critical predictors for crowd 
density classification. Data augmentation and class balancing 
were employed to enhance the training dataset. A GBC was 
chosen for its robustness in handling imbalanced datasets and its 
ability to capture complex relationships between features. 
GridSearchCV was utilized to optimize the classification 
process, tuning key parameters such as the number of estimators, 
learning rate and maximum depth through cross-validation to 
achieve optimal performance. 

The findings illustrate the capability of the proposed model 
to accurately classify crowd density levels. This proves its 
usefulness for real-time monitoring and managing crowds in 
critical locations. 
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