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Abstract—The exponential growth of Internet of Things (IoT) 

devices has introduced critical security challenges, particularly in 

scalability, privacy, and resource constraints. Traditional 

centralized intrusion detection systems (IDS) struggle to address 

these issues effectively. To overcome these limitations, this study 

proposes a novel Federated Transfer Learning (FTL)-based 

intrusion detection framework tailored for large-scale IoT 

networks. By integrating Federated Learning (FL) with Transfer 

Learning (TL), the framework enhances detection capabilities 

while ensuring data privacy and reducing communication 

overhead. The hybrid model incorporates convolutional neural 

networks (CNNs), bidirectional gated recurrent units (BiGRUs), 

attention mechanisms, and ensemble learning. To address the 

class imbalance, Synthetic Minority Over-sampling Technique 

(SMOTE) was employed, while optimization techniques such as 

hyperparameter tuning, regularization, and batch normalization 

further improved model performance. Experimental evaluations 

on five diverse IoT datasets, i.e. Bot-IoT, N-BaIoT, TON_IoT, 

CICIDS 2017, and NSL-KDD, demonstrate that the framework 

achieves high accuracy (92%-94%) while maintaining scalability, 

computational efficiency, and data privacy. This approach 

provides a robust solution to real-time intrusion detection in 

resource-constrained IoT environments. 
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I. INTRODUCTION 

The rapid growth of the Internet of Things (IoT) has 
introduced significant security challenges due to the diversity 
and resource constraints of IoT devices. These devices, 
ranging from smart home appliances to industrial sensors, 
usually have modern processing and storage capacities, 
making them vulnerable to many kinds of assaults. When used 
in IoT environments, traditional intrusion detection systems 
(IDS) that rely on centralized structures face several problems 
and critical challenges, including scalability, latency, 
communication overhead, and privacy risks. Continuous data 
transfer to a central server for processing is necessary for 
centralized intrusion detection systems (IDS), which raises 
latency and communication costs. Additionally, because 
sensitive data from IoT devices needs to be sent and kept 
centrally, centralized systems provide serious privacy risks. 

Despite their importance, current IDS implementations are 
ill-equipped to handle the unique requirements of IoT 
environments, particularly regarding real-time threat 
detection, adaptability to emerging threats, and resource 
efficiency. This highlights the need for innovative approaches 
that overcome these limitations. 

Identification and mitigation of these threats are made 
possible in large part by intrusion detection systems, or IDS. 
IDS monitors’ device behavior and network traffic to identify 
any indications of malicious activity. Artificial intelligence 
offers a framework for creating intrusion detection systems 
through machine learning and deep learning techniques [1]. 
The two primary categories of traditional IDS are anomaly-
based and signature-based [2, 3]. Using a database containing 
known attack signatures, signature-based intrusion detection 
systems identify known threats. While efficient in recognizing 
existing attacks, their capacity to identify novel and 
unidentified threats is restricted. Anomaly-based intrusion 
detection systems (IDS) track departures from the usual, 
which might enable them to identify unidentified threats. If 
these systems are not adequately trained, they frequently result 
in high false-positive rates—consequently, dispersed learning. 
Therefore, distributed learning is employed to build improved 
intrusion detection models for the anomaly-based IDS [4]. 

The accuracy and efficiency of intrusion detection models 
have been improved by several approaches [5]. Several 
techniques, including machine learning and deep learning, 
have been employed to develop more intelligent and adaptive 
systems [6, 7]. In addition, feature selection and 
dimensionality reduction techniques refine data inputs, 
reducing computational overhead while maintaining detection 
performance [8, 9]. Integrating methods such as ensemble 
learning and transfer learning has also been shown to improve 
detection accuracy and generalization across diverse types of 
cyber threats [10, 11]. 

To train machine learning models across several devices 
and maintain data privacy, Federated Learning (FL) presents a 
viable decentralized method [12]. Using their local data, IoT 
devices cooperatively train a shared global model in FL; 
model updates are only sent to a central server for 
aggregation. By ensuring that raw data remains on local 
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devices, this method addresses privacy concerns and 
minimizes the need for large-scale data transmission. The 
three key features of FL are scalability, communication 
efficiency, and privacy preservation. By storing data locally, 
you may preserve privacy by reducing the risks involved with 
data transmission and central storage. Only updated models, 
not raw data, are exchanged between devices and the central 
server, minimizing the amount of data that needs to be 
communicated. This ensures optimal communication 
efficiency. Furthermore, FL is very scalable, which makes it 
ideal for a wide range of IoT scenarios [13]. However, while 
FL addresses privacy and data transmission concerns, it alone 
may not fully address the need for rapid adaptation to new and 
evolving threats in IoT networks [14]. 

Local devices, often referred to as clients, within this 
decentralized framework seamlessly integrate with the 
overarching architecture of the DL model deployed on the 
cloud center server. As a result of this integration, models can 
be trained locally on each device, ensuring a synchronized 
approach to model development across the entire FL network 
[15]. While FL has shown promise in addressing privacy and 
scalability concerns, it struggles to adapt to rapidly evolving 
threats in IoT environments. This underscores the need for 
enhanced techniques that can combine the privacy-preserving 
features of FL with models that adapt quickly to diverse IoT 
environments. 

Using pre-trained models created for related tasks and 
optimizing them for applications is known as Transfer 
Learning (TL) [16]. Because the pre-trained models already 
include information pertinent to the target job, TL drastically 
cuts down on training time and processing needs. Building a 
strong framework that protects data privacy will improve the 
adaptability of the model and shorten the training period by 
integrating FL and TL. 

Despite significant progress in FL and TL applications, 
few studies have successfully combined these techniques to 
address the unique challenges of IoT networks 
comprehensively. Existing literature lacks a robust framework 
that leverages FL and TL for real-time, scalable, and resource-
efficient intrusion detection. 

Three main benefits of transfer learning (TL) include 
shorter training times, better results, and flexibility. The time 
needed to train a model from scratch is reduced by TL by 
beginning with pre-trained models. Additionally, it improves 
model accuracy, especially in situations where the datasets are 
small or have sparse labeling. Furthermore, TL provides 
adaptability, enabling models to swiftly adapt through fine-
tuning the pre-trained models to new tasks or situations [17]. 

This work introduces a Federated Transfer Learning (FTL) 
framework that combines the strengths of FL and TL to 
improve intrusion detection in IoT networks. The framework 
enhances detection accuracy through a hybrid model 
integrating convolutional neural networks (CNNs), 
bidirectional gated recurrent units (BiGRUs), attention 
mechanisms, and ensemble learning. Additionally, it addresses 
class imbalance using the Synthetic Minority Over-sampling 
Technique (SMOTE) and optimizes model performance 

through hyperparameter tuning, regularization, and batch 
normalization. 

The contributions of this research are as follows: 

Addressing Scalability and Privacy Concerns: The 
proposed FTL framework decentralizes model training to 
preserve privacy and reduce communication overhead, 
enabling effective intrusion detection in IoT networks. 

Enhancing Threat Detection Accuracy: By combining 
TL with FL, the framework achieves an accuracy of 92%-94% 
across multiple datasets, demonstrating superior performance 
in identifying sophisticated threats. 

Optimizing for IoT Resource Constraints: Techniques 
such as L1/L2 regularization and batch normalization ensure 
the model is lightweight and efficient, suitable for resource-
limited IoT devices. 

Handling Class Imbalance: SMOTE is employed to 
improve model generalization by addressing the 
underrepresentation of attack samples in IoT datasets. 

Adapting to Diverse IoT Environments: Domain 
adaptation techniques ensure the model is flexible and robust, 
enabling it to generalize across various IoT devices and 
datasets. 

This study fills a critical gap in the literature by presenting 
a scalable and privacy-preserving framework for real-time 
intrusion detection in IoT networks. The rest of this paper is 
organized as follows: Section II reviews related work; Section 
III outlines the methodology; Section IV presents the 
experimental results; Discussion is given in Section V and 
Section VI concludes the paper, highlighting limitations and 
future research directions. 

II. RELATED WORK 

The field of intrusion detection in IoT networks has seen 
significant advancements through various innovative 
methodologies [5]. This section reviews the related works, 
highlighting their methodologies, key features, strengths, and 
weaknesses, and compares how the proposed framework 
addresses some of these limitations. 

Karimy and Reddy [18] employed FL to enhance security 
and privacy in IoT environments. The methodology involves 
local model training on IoT devices and subsequent 
aggregation of the model updates on a central server. The 
authors achieved an accuracy of 99.9% when they used the N-
BaIoT and other custom datasets. This approach lies in its 
privacy-preserving nature, as data remains localized. 
However, the approach suffers from high computational 
overhead. Luan [19] employed a combination of CNN-BiGRU 
and attention mechanisms within a Federated Learning (FL) 
framework to detect network traffic anomalies. The method 
was evaluated using the BoT-IoT and NSL-KDD datasets. The 
authors achieved an accuracy of 96%, and the attention 
mechanism significantly improved detection accuracy. It also 
introduced high computational costs. 

Almesleh et al. [1] introduced a Federated Learning (FL) 
approach that incorporates a Kalman filter for weight 
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aggregation, enhancing the overall performance of the model. 
With an accuracy of 99.8%, the Kalman filter enhances the 
weight aggregation process across a variety of IoT datasets, 
contributing to robust performance. The approach has better 
weight aggregation, but scalability and high complexity 
problems limit it. Bhavsar et al. [20] targeted transportation 
IoT datasets in their study, concentrating on using edge 
devices for local model training inside a Federated Learning 
(FL) framework. This method works effectively in large-scale 
IoT contexts because it is scalable and provides effective local 
training. However, because there is no centralized control, 
model updates may not be consistent. 

Babbar and Rani integrate federated Learning (FL) and 
recommender systems [21] to enhance intrusion detection in 
software-defined networking (SDN) environments by using 
consumer device datasets. Though it has higher computational 
needs, the hybrid technique improves detection accuracy and 
adaptability. Across a variety of IoT datasets, Raj et al. [22] 
enhanced security protocols using FL. Key advantages include 

improved security procedures and privacy-preserving 
techniques. The method has scalability problems and 
significant overhead, though. 

Ohtani et al. [2] used the N-BaIoT dataset to combine 
Federated Learning (FL) with one-class SVM for the purpose 
of detecting zero-day attacks in IoT networks. The 
methodology has a high detection rate and efficiently 
identifies anomalies and zero-day threats. However, it has a 
high false positive rate. 

Using customized datasets, Al-Hawawreh and Hossain's 
study [23] investigated the integration of Federated Learning 
(FL) with mesh networks to improve the safety of autonomous 
vehicles. One of its main advantages is the scalable and sturdy 
network structure. However, the approach is complex and 
resource intensive. After testing unique IoT attack datasets, 
Umair et al. [6] suggested using dynamic aggregation in FL to 
improve intrusion detection performance. Although the 
dynamic aggregation method has higher processing needs, it 
exhibits better performance and adaptability.  

TABLE I. RELATED WORK COMPREHENSIVE OVERVIEW 

Paper Title Methodology Dataset(s) Acc Strengths Weaknesses Time 

[1] FL, Kalman Filter 
Various IoT 

Datasets 
99.8 

Improved weight aggregation, 

Robust performance 

High complexity, Limited 

scalability 
High 

[4] FL, One-Class SVM N-BaIoT - 
Effective zero-day detection, 

Autonomous 
High false positive rate - 

[15] FL, Dynamic Aggregation 
Custom IoT Attack 

Dataset 
87.98 

Improved performance, 

Adaptability 

High computational 

requirements 
High 

[18] FL 
N-BaIoT, Custom 

Dataset 
99.9 

High accuracy, Privacy-

preserving 

High computational 

overhead 
High 

[19] FL, CNN-BiGRU, Attention 
BoT-IoT, NSL-
KDD 

96 
High accuracy, Attention 
mechanism 

High computational cost High 

[20] FL, Edge Devices 
Transportation IoT 
Dataset 

From 

94 to 

99 

Efficient local training, 
Scalability 

Lack of centralized 
control 

- 

[21] FL, Recommender Systems 
Consumer Device 
Dataset 

From 

78 to 

99 

Enhanced detection accuracy, 
Adaptability 

High computational 
requirements 

High 

[22] FL 
Various IoT 
Datasets 

- 
Enhanced security protocols, 
Privacy-preserving 

High overhead, 
Scalability issues 

High 

[23] FL, Mesh Networks 

Custom 

Autonomous 
Vehicle Dataset 

From 

95 to 
99 

Robust network, Scalable 
High complexity, 

Resource-intensive 
High 

To guarantee the integrity and immutability of model 
updates and solve security concerns in decentralized systems, 
the proposed framework integrates FL and TL. Pre-trained 
models save training time and increase detection accuracy 
because they are customized for IoT scenarios. 

By combining FL and TL, the suggested methodology 
seeks to improve real-time intrusion detection in IoT networks 
while addressing the limitations of the other methods 
mentioned in the related work section. It uses a hybrid model 
that incorporates advanced machine learning methods 
including CNNs, BiGRUs, and attention processes. Strategies 

for data augmentation and optimization help to further 
improve performance. The methodology ensures data privacy 
while supporting decentralized training using the Flower 
framework. Comparing experimental findings to conventional 
FL approaches, significant gains in performance measures are 
observed, along with reduced overhead, increased security, 
and transparency. Table I provides a summary and comparison 
of existing works in the field with the proposed research, 
highlighting their methodologies, strengths, weaknesses, and 
performance metrics. This comparison underscores the 
advancements introduced by this study, particularly in 
addressing limitations such as scalability, privacy, and 
adaptability in IoT intrusion detection. 
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Fig. 1. Steps of the proposed methodology.

III. METHODOLOGY 

To assess the effectiveness of the improved model on 
various IoT datasets, a systematic approach leveraging 
Federated Learning (FL) and Transfer Learning (TL) has been 
adopted. These techniques were selected to address critical 
challenges in IoT environments, including privacy 
preservation, scalability, and adaptability to diverse datasets. 
The methodology integrates advanced deep learning [26] 
models with optimization strategies to ensure accuracy, 
efficiency, and generalizability. 

Rationale: Federated Learning (FL) is utilized to ensure 
decentralized model training across IoT devices, preserving 
data privacy and reducing communication overhead. However, 
FL alone lacks rapid adaptability to new threats. To overcome 
this, Transfer Learning (TL) is incorporated, enabling the use 
of pre-trained models that significantly reduce training time 
while maintaining high detection accuracy. Additionally, 
techniques like Synthetic Minority Over-sampling Technique 
(SMOTE) [25] and hyperparameter optimization are employed 
to enhance model performance. 

The methodology comprises the following steps (Fig. 1): 

Step 1: Environment Setup: The experimental environment 
was configured using Python and included different libraries 
such as TensorFlow, Flower, NumPy, Pandas, and Scikit-
learn. 

Step 2: Preparing the Data Several widely used IoT 
datasets were employed, including BoT-IoT, TON_IoT, 
CICIDS2017, NSL-KDD, and N-BaIoT. Preprocessing was 
done on each dataset to make sure it was standardized and 

ready for model training. To enable model evaluation and 
performance assessment, this involved importing the data, 
using MinMaxScaler to normalize the feature values, and 
dividing the data into training and testing sets. 

Step 3 - Model Definition and Enhancement: The hybrid 
model incorporates: 

 Convolutional Neural Networks (CNNs) for feature 
extraction and spatial pattern detection. 

 Bidirectional Gated Recurrent Units (BiGRUs) capture 
temporal dependencies in sequential data. 

 Attention Mechanisms to focus on critical data features, 
enhancing detection accuracy. 

 Ensemble Learning to combine predictions from 
multiple models for improved generalization and 
robustness. 

Step 4 - Data Augmentation: The SMOTE technique was 
employed to generate additional training instances. This 
addressed class imbalances and led to a significant 
improvement in performance on data that had not been 
observed before. 

Step 5 - Optimization and Regularization: To prevent 
overfitting, optimization, and regularization techniques were 
used. Extensive hyperparameter tuning was conducted using 
grid search and random search methods to identify the best 
hyperparameters for the models. This research implemented 
L1/L2 regularization to mitigate overfitting and added batch 
normalization to stabilize and accelerate the training process, 
resulting in more efficient and reliable model convergence. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

39 | P a g e  

www.ijacsa.thesai.org 

Step 6(a) - TL and Domain Adaptation: TL and domain 
adaptation techniques further aligned the pre-trained models 
with the target IoT data, enhancing their applicability and 
accuracy. By fine-tuning pre-trained models on tasks such as 
specific IoT datasets, knowledge was effectively transferred, 
reducing the amount of data and computational resources 
required for training. 

Step 6(b) - FL Setup: To implement FL, the Flower 
framework was used. Each IoT device (client) trained the 
model locally using its data and then sent the updated model 
parameters to a central server for aggregation. The server 
aggregated these updates using the Federated Averaging 
(FedAvg) strategy and sent the updated global model back to 
the clients. This process was repeated for multiple rounds. 
custom IoT Client class was defined to manage local training, 
evaluation, and communication with the central server. To 
better align the global model with local client data, customized 
FL and adaptive FL techniques were used, resulting in a more 
accurate and personalized model. 

Step 7 - Training, Evaluation, and Results Compilation: 
Performance metrics such as accuracy, precision, recall, F1 
score, loss, and computational time were used to assess each 
client's performance. Feedback on the model's performance 
from the first experimental results was extremely helpful in 
identifying areas for development, including computational 
time and resource utilization, and emphasizing strengths of the 
model, like high accuracy and precision. Through the 
examination of these metrics on different datasets, areas of the 
model that needed to be optimized were able to be identified. 

IV. EXPERIMENTAL RESULTS 

To evaluate the performance, different IoT datasets are 
used to assess the framework’s accuracy, scalability, and 
efficiency under different conditions. In the subsequent 
sections, provide details of the datasets used, how the 
experiments were set up, and the results achieved. 

A. Dataset 

To evaluate the performance and generalizability of the 
proposed federated TL framework for real-time intrusion 
detection in IoT networks, this reserch employed several well-
known datasets such as BoT-IoT, N-BaIoT, TON_IoT, 
CICIDS 2017, and NSL-KDD, as in Table II which shows the 
five datasets used in details. The BoT-IoT dataset provides a 
comprehensive collection of simulated IoT network traffic 
including various attack types such as DDoS, OS attacks, 
service scanning, keylogging, and data exfiltration. Similarly, 
tagged data from nine IoT devices infected with the Gafgyt 
and Mirai botnets, capturing both normal and attack traffic, is 
provided by the N-BaIoT dataset. The TON_IoT dataset 
provides information on various cyber risks and their effects 
on IoT environments. It includes network traffic data, 
telemetry data from IoT devices, and logs of cyberattacks. 

Furthermore, the CICIDS 2017 dataset offers a wealth of 
real-world network traffic data including a variety of 
cyberattacks, such as DDoS, brute force, and infiltration, 
which are intended for use in intrusion detection research. An 
enhanced version of the original KDD'99 dataset, the NSL-
KDD dataset addresses problems like duplicate records and 
offers a better testbed for detection models, making it a 
standard for assessing intrusion detection systems. When 
combined, these datasets offer a broad basis for evaluating the 
framework's effectiveness in various IoT contexts and attack 
situations. 

TABLE II. THE FIVE DATASETS USED IN THIS RESEARCH 

Dataset 
Number of 

Records 

Number of 

Features 
Number of Attacks & Types Size 

Publish 

Year 
Environment Link 

BoT-IoT 72,000,000+ Various 

DDoS, DoS, OS and Service 

Scan, Keylogging, Data 

exfiltration 

69.3 GB 

(pcap), 16.7 

GB (csv) 

2020 

Cyber Range Lab, UNSW 

Canberra (Impact Cyber Trust) 

(Papers with Code) 

[27] 

N-BaIoT 706,260 (total) 115 
Botnet attacks on various IoT 

devices 
Varies 2019 Real IoT devices and network [28] 

TON_IoT Various 47 
DoS, DDoS, Ransomware, 

various others 
Various 2020 IoT Lab, UNSW Canberra [29] 

CICIDS 2017 3,119,345 80 
DoS, DDoS, Brute Force, Web 

Attack, Infiltration, Botnet, etc. 
20 GB 2017 

Simulated corporate 

environment 
[30] 

NSL-KDD 
125,973 

(train+test) 
41 DoS, R2L, U2R, Probe ~66 MB 2009 

Simulated network 

environment 
[31] 

TABLE III. ENHANCED MODEL RESULTS FOR THE FIVE DATASETS 

Dataset Acc 

Mean 

Acc 

Std 

Precision 

Mean 

Precision 

Std 

Recall 

Mean 

Recall 

Std 

F1 

Score 

Mean 

F1 

Score 

Std 

Loss 

Mean 

Loss 

Std 

Time 

Taken 

Mean (s) 

Time 

Taken 

Std (s) 

BoT-IoT 0.92 0.01 0.91 0.02 0.93 0.01 0.92 0.01 0.25 0.01 5.3 0.5 

N-BaIoT 0.93 0.01 0.92 0.01 0.94 0.01 0.93 0.01 0.22 0.01 4.8 0.4 

TON_IoT 0.94 0.01 0.93 0.02 0.95 0.01 0.94 0.01 0.20 0.01 4.6 0.3 

CICIDS2017 0.93 0.01 0.92 0.01 0.94 0.01 0.93 0.01 0.23 0.01 5.0 0.4 

NSL-KDD 0.92 0.01 0.91 0.02 0.93 0.01 0.92 0.01 0.24 0.01 5.2 0.5 

https://www.impactcybertrust.org/dataset_view?idDataset=1296
https://paperswithcode.com/dataset/ton-iot
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B. Results 

This section shows the results of enhancing the proposed 
FTL method using five different IoT datasets: Bot-IoT, N-
BaIoT, TON_IoT, CICIDS 2017, and NSL-KDD. 
Performance metrics include accuracy, precision, recall, F1 
score, loss, and computational time. The evaluation is divided 
into two phases: initial model results and enhanced model 
results. 

1) Initial model results: The first phase builds a strong 

model that learns from distributed IoT datasets while taking 

privacy into account, which combined Federated Learning 

(FL) and Transfer Learning (TL) without advanced 

optimization. The TON_IoT dataset achieved the best 

accuracy (89%), while the BoT-IoT dataset showed the lowest 

performance (85%). 

Key Observations: 

 Accuracy was consistent across datasets but below 90% 
for most. 

 Loss values varied from 0.31 to 0.35, indicating 
opportunities for improvement. 

 Prediction errors were more frequent in datasets with 
higher class imbalance, such as BoT-IoT and NSL-
KDD. 

2) Enhanced model results: The enhanced model 

incorporated advanced techniques such as SMOTE for data 

augmentation [24], hyperparameter tuning, and ensemble 

learning with CNNs, BiGRUs, and attention mechanisms. 

Table III illustrates significant improvements in accuracy 

(92%-94%) and loss reduction (0.20-0.25). 

Key Highlights: 

 Accuracy increased across all datasets, with TON_IoT 
reaching 94%. 

 Low standard deviations in accuracy and loss values 
indicate stable performance. 

 SMOTE effectively addressed class imbalance, 
improving precision and recall. 

V. DISCUSSION 

The results in the previous section demonstrate the 
effectiveness of integrating FL with TL for intrusion detection 
in IoT networks. The enhanced model achieved significant 
improvements in accuracy and loss, especially in datasets with 
diverse attack types, such as TON_IoT. 

 Scalability and Privacy: FL enabled decentralized 
training, maintaining data privacy while achieving 
consistent performance across IoT environments. 

 Adaptability: TL enhanced the framework’s ability to 
generalize across datasets, reducing training time and 
computational cost. 

 Class Imbalance: The application of SMOTE balanced 
the datasets, preventing biases toward majority classes 
and improving detection accuracy. 

 
Fig. 2. Comparison of accuracy between the Initial Baseline and the 

enhanced models. 

Fig. 2 compares the accuracy between the Initial Model 
and the Enhanced Model across all datasets. The Enhanced 
Model (shown by the green line) consistently outperforms the 
Initial Model (red line), achieving accuracy above 0.92 across 
all datasets, while the Initial Model remains below 0.89. The 
small error bars indicate minimal variability in accuracy 
across datasets, emphasizing the Enhanced Model's reliability 
in different IoT environments. 

The Enhanced Model significantly improves accuracy on 
some datasets (such TON_IoT), while N-BaIoT and NSL-
KDD exhibit a narrower performance gap. This implies that 
although the Enhanced Model performs better overall, the 
improvement varies according to the dataset. However, the 
Enhanced Model yields greater accuracy with less variation in 
every situation. 

Fig. 3 provides a comparison of loss values between the 
Initial and Enhanced Models. Compared to the Initial Model's 
larger range of 0.31 to 0.35, the Enhanced Model has reduced 
loss values, ranging from 0.20 to 0.25. The small vertical error 
bars further indicate that both models deliver consistent results 
with little fluctuation in loss. The difference in loss is most 
evident in the TON_IoT dataset, where the Enhanced Model 
shows the greatest reduction. In datasets like BoT-IoT and 
CICIDS2017, the improvement in loss is less dramatic, but the 
Enhanced Model still outperforms the Initial Model. The 
overall comparisons between the Initial and the Enhanced 
Models can be shown in Fig. 4. 

 
Fig. 3. The comparison of loss between the Initial Baseline and the 

enhanced models. 
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As shown in Fig. 4, the success of the Enhanced Model is 
particularly notable in the areas of accuracy and efficiency. FL 
and TL offer additional benefits beyond the performance 
metrics. FL ensures data privacy by keeping sensitive data on 
local devices in compliance with data protection regulations 
such as GDPR. TL reduces the need for extensive local data 
collection by using pre-trained models, further minimizing the 
exposure of sensitive information. 

While the Enhanced Model consistently outperforms the 
Initial Model in terms of accuracy, the extent of this 
performance gap varies across datasets, where TON_IoT 
dataset showed the most significant improvements in both 
accuracy and loss. This variability suggests that, while the 
Enhanced Model is more effective, its performance is 
influenced by the specific characteristics of each data set. 

Power consumption is a major issue in IoT environments. 
The application of TL in this study has significantly reduced 
training time and computational expenses. TL reduces the use 
of resources by using pre-trained models and fine-tuning them 
for certain tasks, hence avoiding the need to train models. To 
further reduce the computational load on any device, FL 
further divides the training process among several devices. 
With this method, training complex models on IoT devices 
with limited resources is possible while preserving efficiency 
and reducing power usage. 

Furthermore, training time and computational expense 
were decreased by the application of regularization and 
optimization approaches. Effective model convergence was 
made possible by fine-tuning a pre-trained model instead of 
training from scratch. FL provided further support for this by 
distributing the training process across several devices. This 
reduced the computational burden on any device and 
improved the approach's efficiency in environments with 
limited resources. 

Additionally, the suggested strategy showed outstanding 
adaptability and scalability. FL made it possible to train on 
numerous IoT devices at once, which increased the system's 
scalability. TL made it easier to quickly adjust to new settings 
and devices, ensuring effective scaling to a range of IoT 
scenarios. Using pre-trained models and combining data from 
many sources, this flexibility proved essential for preserving 
robustness and managing data imbalance. The Enhanced 
Model assisted real-time learning and adaptation. IoT devices 
might periodically update the global model with new 
observations, allowing TL to fine-tune the model with 

minimum input and enabling faster adaptability to new types 
of attacks or anomalies. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

The combination of FL and TL for real-time intrusion 
detection in IoT networks provides an effective solution for 
urgent security issues. By combining the benefits of both 
learning approaches, this strategy decreased computing costs, 
increased detection accuracy, and ensured data privacy. The 
experimental results show that the proposed framework can 
minimize training time and improve detection performance by 
adapting pre-trained models to specific IoT contexts. 
Accuracies ranging from 92% to 94% were achieved across 
many datasets. 

To detect and mitigate cyber risks in a scalable, effective, 
and privacy-preserving manner, this research highlights how 
federated transfer learning might transform cybersecurity 
measures in IoT networks. Future research may investigate 
more framework uses and optimizations in different fields, 
thereby expanding its advantages to a wider range of security-
critical settings. 

Despite its promising results, this study has certain 
limitations that require acknowledgment. Federated Learning 
(FL) offers the advantage of reducing data transmission but 
still faces resource constraints, as its computational 
requirements on edge devices could benefit from further 
optimization. Additionally, addressing dynamic threats 
remains a challenge, highlighting the need for future research 
to explore adaptive learning techniques capable of responding 
to evolving IoT security risks. Furthermore, improving the 
interpretability of the hybrid model is essential, as it could 
provide valuable insights into the decision-making processes 
involved. 

To address these limitations, future research should 
explore integrating edge computing with FL to optimize 
resource utilization and reduce latency in real-time 
applications. Adaptive learning techniques could also be 
incorporated to enable dynamic model updates, enhancing the 
framework's ability to address evolving threats effectively. 
Moreover, improving the model's interpretability will be 
crucial to fostering trust and transparency in practical 
implementations. Finally, extending the framework to broader 
domains, such as industrial IoT and smart cities, will help 
validate its scalability and robustness in handling large-scale 
and complex environments. 

 
Fig. 4. Overall comparisons between the Initial and the Enhanced Models across all datasets.



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

42 | P a g e  

www.ijacsa.thesai.org 

REFERENCES 

[1] Z. Almesleh, A. Gouissem and R. Hamila, "Federated Learning with 
Kalman Filter for Intrusion Detection in IoT Environment," 2024 IEEE 
8th Energy Conference (ENERGYCON), Doha, Qatar, 2024, pp. 1-6, 
doi: 10.1109/ENERGYCON58629.2024.10488796.  

[2] Salunkhe UR, Mali SN. Security enrichment in intrusion detection 
system using classifier ensemble. Journal of Electrical and Computer 
Engineering. 2017;2017(1):1794849. 

[3] Vengatesan K, Kumar A, Naik R, Verma DK. Anomaly based novel 
intrusion detection system for network traffic reduction. In2018 2nd 
International Conference on I-SMAC (IoT in Social, Mobile, Analytics 
and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and 
Cloud)(I-SMAC), 2018 2nd International Conference on 2018 Aug 30 
(pp. 688-690). IEEE. 

[4] T. Ohtani, R. Yamamoto and S. Ohzahata, "Detecting Zero-Day Attack 
with Federated Learning Using Autonomously Extracted Anomalies in 
IoT," 2024 IEEE 21st Consumer Communications & Networking 
Conference (CCNC), Las Vegas, NV, USA, 2024, pp. 356-359, doi: 
10.1109/CCNC51664.2024.10454669.  

[5] Khraisat A, Gondal I, Vamplew P, Kamruzzaman J. Survey of intrusion 
detection systems: techniques, datasets and challenges. Cybersecurity. 
2019 Dec;2(1):1-22. 

[6] Mohammad RM, Alsmadi MK, Almarashdeh I, Alzaqebah M. An 
improved rule induction based denial of service attacks classification 
model. Computers & Security. 2020 Dec 1;99:102008. 

[7] Muneer S, Farooq U, Athar A, Ahsan Raza M, Ghazal TM, Sakib S. A 
Critical Review of Artificial Intelligence Based Approaches in Intrusion 
Detection: A Comprehensive Analysis. Journal of Engineering. 
2024;2024(1):3909173. 

[8] Saied M, Guirguis S, Madbouly M. Review of artificial intelligence for 
enhancing intrusion detection in the internet of things. Engineering 
Applications of Artificial Intelligence. 2024 Jan 1;127:107231. 

[9] Alsmadi MK, Mohammad RM, Alzaqebah M, Jawarneh S, AlShaikh M, 
Al Smadi A, Alghamdi FA, Alqurni JS, Alfagham H. Intrusion 
Detection Using an Improved Cuckoo Search Optimization Algorithm. 

[10] Latif S, Boulila W, Koubaa A, Zou Z, Ahmad J. Dtl-ids: An optimized 
intrusion detection framework using deep transfer learning and genetic 
algorithm. Journal of Network and Computer Applications. 2024 Jan 
1;221:103784. 

[11] Zhu J, Liu X. An integrated intrusion detection framework based on 
subspace clustering and ensemble learning. Computers and Electrical 
Engineering. 2024 Apr 1;115:109113. 

[12] Zhang C, Xie Y, Bai H, Yu B, Li W, Gao Y. A survey on federated 
learning. Knowledge-Based Systems. 2021 Mar 15;216:106775. 

[13] Li L, Fan Y, Tse M, Lin KY. A review of applications in federated 
learning. Computers & Industrial Engineering. 2020 Nov 1;149:106854. 

[14] Khan LU, Saad W, Han Z, Hossain E, Hong CS. Federated learning for 
internet of things: Recent advances, taxonomy, and open challenges. 
IEEE Communications Surveys & Tutorials. 2021 Jun 18;23(3):1759-
99.  

[15] M. Umair, W. -H. Tan and Y. -L. Foo, "Dynamic Federated Learning 
Aggregation for Enhanced Intrusion Detection in IoT Attacks," 2024 
International Conference on Artificial Intelligence in Information and 
Communication (ICAIIC), Osaka, Japan, 2024, pp. 524-529, doi: 
10.1109/ICAIIC60209.2024.10463247.  

[16] Iman M, Arabnia HR, Rasheed K. A review of deep transfer learning 
and recent advancements. Technologies. 2023 Mar 14;11(2):40. 

[17] Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. 
Journal of Big data. 2016 Dec;3:1-40. 

[18] A. U. Karimy and P. C. Reddy, "Analyzing Federated Learning as a 
novel approach for enhancing security and privacy in the Internet of 
Things (IoT)," 2024 Fourth International Conference on Advances in 
Electrical, Computing, Communication and Sustainable Technologies 
(ICAECT), Bhilai, India, 2024, pp. 1-7, doi: 
10.1109/ICAECT60202.2024.10468686.  

[19] Y. Luan, "Network Traffic Anomaly Detection Based on Federated 
Learning," 2024 4th International Conference on Neural Networks, 
Information and Communication Engineering (NNICE), Guangzhou, 
China, 2024, pp. 224-228, doi: 10.1109/NNICE61279.2024.10498908. 

[20] M. H. Bhavsar, Y. B. Bekele, K. Roy, J. C. Kelly and D. Limbrick, "FL-
IDS: Federated Learning-Based Intrusion Detection System Using Edge 
Devices for Transportation IoT," in IEEE Access, vol. 12, pp. 52215-
52226, 2024, doi: 10.1109/ACCESS.2024.3386631. 

[21] H. Babbar and S. Rani, "FRHIDS: Federated Learning Recommender 
Hybrid Intrusion Detection System Model in Software-Defined 
Networking for Consumer Devices," in IEEE Transactions on Consumer 
Electronics, vol. 70, no. 1, pp. 2492-2499, Feb. 2024, doi: 
10.1109/TCE.2023.3329151. 

[22] A. Raj, V. Sharma, S. Rani, A. K. Shanu and N. Kumar, "Strengthening 
the Security of IoT Devices Through Federated Learning: A 
Comprehensive Study," 2024 11th International Conference on 
Reliability, Infocom Technologies and Optimization (Trends and Future 
Directions) (ICRITO), Noida, India, 2024, pp. 1-5, doi: 
10.1109/ICRITO61523.2024.10522388.  

[23] M. Al-Hawawreh and M. S. Hossain, "Federated Learning-Assisted 
Distributed Intrusion Detection Using Mesh Satellite Nets for 
Autonomous Vehicle Protection," in IEEE Transactions on Consumer 
Electronics, vol. 70, no. 1, pp. 854-862, Feb. 2024, doi: 
10.1109/TCE.2023.3318727. 

[24] Andresini G, Appice A, De Rose L, Malerba D. GAN augmentation to 
deal with imbalance in imaging-based intrusion detection. Future 
Generation Computer Systems. 2021 Oct 1;123:108-27. 

[25] Elreedy, D.; Atiya, A.F. A comprehensive analysis of synthetic minority 
oversampling technique (SMOTE) for handling class imbalance. Inf. 
Sci. 2019, 505, 32–64.  

[26] Mohammad R, Saeed F, Almazroi AA, Alsubaei FS, Almazroi AA. 
Enhancing Intrusion Detection Systems Using a Deep Learning and Data 
Augmentation Approach. Systems. 2024 Mar 1;12(3):79. 

[27] BoT-IoT Dataset. (2018). Retrieved from 
https://research.unsw.edu.au/projects/bot-iot-dataset  

[28] Kashif, M. (2019). N-BaIoT Dataset. Kaggle. Retrieved from 
https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset/code  

[29] TON_IoT Dataset. (2020). Retrieved from 
https://research.unsw.edu.au/projects/ton-iot-datasets  

[30] Huhn, C. (2017). CICIDS 2017. Kaggle. Retrieved from 
https://www.kaggle.com/datasets/chethuhn/network-intrusion-dataset  

[31] Hassan, M. (2019). NSL-KDD Dataset. Kaggle. Retrieved from 
https://www.kaggle.com/datasets/hassan06/nslkdd 


