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Abstract—Cloud computing is transforming the provision of 

elastic and adaptable capabilities on demand. A scalable 

infrastructure and a wide range of offerings make cloud 

computing essential to today's computing ecosystem. Cloud 

resources enable users and various companies to utilize data 

maintained in a distant location. Generally, cloud vendors provide 

services within the limitations of Service Level Agreement (SLA) 

terms. SLAs consist of various Quality of Service (QoS) 

requirements the supplier promises. Task scheduling is critical to 

maintaining higher QoS and lower SLAs. In simple terms, task 

scheduling aims to schedule tasks to limit wasted time and 

optimize performance. Considering the NP-hard character of 

cloud task scheduling, metaheuristic algorithms are widely 

applied to handle this optimization problem. This study presents a 

novel approach using the Butterfly Optimization Algorithm 

(BOA) for scheduling cloud-based tasks across diverse resources. 

BOA performs well on non-constrained and non-biased 

mathematical functions. However, its search capacity is limited to 

shifted, rotated, and/or constrained optimization problems. This 

deficiency is addressed by incorporating a virtual butterfly and 

improved fuzzy decision processes into the conventional BOA. The 

suggested methodology improves throughput and resource 

utilization while reducing the makespan. Regardless of the 

number of tasks, better results are consistently produced, 

indicating greater scalability. 

Keywords—Cloud computing; resource utilization; task 

scheduling; Butterfly Optimization Algorithm; fuzzy decision 
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I. INTRODUCTION 

The Internet of Things (IoT) has evolved from the 
exponential proliferation of smart sensors in recent years and the 
demand for inter/interconnections between devices [1, 2]. IoT 
opens up broad medical, manufacturing, and logistics 
opportunities, necessitating high reliability, durability, 
flexibility, adaptability, and control levels [3]. Furthermore, IoT 
devices are limited in resources and equipped with specialized 
chips configured with various rules [4]. In this way, 
conventional networks become more complex owing to the 
specific requirements of IoT applications. Software-Defined IoT 
(SD-IoT) aims to apply Software-Defined Networking (SDN) to 
IoT to bring elasticity to managing resources and networks in 
traditional networks. SDN is regarded as a critical paradigm for 
next-generation networking [5]. 

A group of networked computers with several shared 
computing resources is referred to as the cloud. Recently, cloud 
computing has developed rapidly, enabling globally distributed 
data centers to develop and scale up to provide high-quality and 
reliable services [6]. Cloud computing has emerged as an 

effective model for providing computational resources on a 
"pay-per-use" basis. It brings uniformity and transformation to 
IT enterprises [7]. Cloud computing has significant prospects 
and poses several problems in conventional IT evolution due to 
its expanding uses and promotion [8]. In recent years, cloud 
computing has become an alternative online strategy to 
empower users. It offers access to shareable and customizable 
resources on demand, quickly allocated and released with little 
management or collaboration from the cloud provider [9]. This 
invention offers several advantages, including enhanced 
economic benefits related to time, cost, inventory management, 
and storage. This breakthrough enables all programs to operate 
on a virtual platform, with resources allocated across Virtual 
Machines (VMs) [10]. 

An effective and dynamic task scheduler is essential when 
multiple users simultaneously request services from the cloud 
environment, particularly from diverse and heterogeneous 
resources [11]. An optimal and adaptable task scheduler is 
critical in the cloud paradigm. Moreover, it must function under 
the workload submitted to the cloud platform [12]. An 
inefficient scheduling process in the cloud environment causes 
diminished service quality from cloud service providers, eroding 
confidence and adversely affecting corporate operations [13]. 
Hardware virtualization is the basis for distributing cloud 
resources. Numerous VMs are hosted on an individual 
computing server to support multiple users executing concurrent 
processes. VMs running in cloud data centers are given 
thousands of tasks. Consequently, employing an effective 
scheduler inside the cloud framework is advantageous for cloud 
providers and customers, allowing mutual benefits. 

Task scheduling assigns cloud tasks to VMs to shorten 
makespan and enhance resource usage. Due to the NP-hard 
characteristics of this issue, conventional scheduling techniques 
have challenges regarding scalability and efficiency, especially 
in dynamic cloud settings [14]. Metaheuristic algorithms, such 
as the Butterfly Optimization Algorithm (BOA), have 
been shown to help tackle complicated optimization problems 
[15]. These algorithms leverage techniques like random walks 
and graph-based embeddings to improve search efficiency and 
adaptability in diverse optimization contexts [16]. BOA is 
suitable for such tasks due to its simplicity, excellent balance 
between exploration and exploitation, and adaptability to 
diverse optimization landscapes. Besides, its computational 
efficiency and the ability to converge on high-quality solutions 
make it a competitive choice for improving cloud task 
scheduling. This study presents an improved BOA, including a 
fuzzy decision method and an innovative virtual butterfly idea 
to maximize the algorithm's search efficacy and flexibility in 
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cloud job scheduling. As a summary, this study made the 
following contributions: 

 A novel variant of the BOA is introduced, incorporating 
a fuzzy logic model and a virtual butterfly design to 
improve the algorithm's search efficiency and 
adaptability in cloud computing environments. 

 A fuzzy logic model is implemented to continuously alter 
the balance between BOA's exploration and exploitation 
phases, allowing for better adaptation to varying 
optimization conditions. 

 A virtual butterfly agent is developed that aggregates 
information from all butterflies, directing the swarm to 
promising areas in the search area, thereby avoiding 
premature convergence and improving the overall 
solution quality. 

 The enhanced algorithm is evaluated using CloudSim 
with GoCJ and HCSP datasets, demonstrating its 
superior performance in minimizing makespan, 
improving resource utilization, and enhancing 
throughput compared to other metaheuristic methods 
like PSO and standard BOA. 

The remaining portion of the paper is laid out in the 
following arrangement. Section II summarizes related research 
on cloud-based task scheduling. Section III defines the task 
scheduling problem and presents the challenges in optimizing 
makespan and resource utilization. Section IV introduces the 
proposed enhanced BOA, detailing its fuzzy decision strategy 
and virtual butterfly concept. Section V reports the findings and 
analyzes the efficiency of the developed algorithm. Section VI 
discusses key findings and outlines the limitations of current 
work. Lastly, Section VII offers a conclusion and recommends 
areas for further research. 

II. LITERATURE REVIEW 

Metaheuristic algorithms have been extensively adopted for 
scheduling tasks in cloud computing. Recent research efforts 
have focused on improving these algorithms to address local 
optima and poor convergence challenges. Some research studies 
emphasize the importance of parallel calculations in maximizing 
task scheduling efficiency. The need to balance exploration with 
exploitation has resulted in hybrid and adaptable methodologies. 
Nevertheless, several current methodologies encounter 
constraints when used in extensive, diverse cloud settings. 

Dubey and Sharma [17] proposed the Chemical Reaction 
Partial Swarm Optimization (CR-PSO) method for 
distributing several independent jobs among VMs in a cloud 
computing context. This hybrid methodology integrates the 
merits of Chemical Reaction Optimization (CRO) and Particle 
Swarm Optimization (PSO), producing an optimum task 
scheduling sequence that accounts for both job requirements and 
deadlines. Hybridization optimizes makespan, decreases costs, 
and diminishes energy use. Comprehensive simulations were 
performed with the CloudSim tools, illustrating the algorithm's 
efficacy. The comparative examination of several scenarios, 
varying quantities of VMs and tasks, demonstrates a decrease in 
execution time between 1–6% and, at times, exceeding 10%. 

Furthermore, the CR-PSO algorithm boosted makespan by 5–
12%, decreased costs by 2–10%, and improved energy 
efficiency by 1–9%. These findings validate the algorithm's 
capacity for enhanced resource management and scheduling in 
cloud systems. 

Mangalampalli, et al. [18] developed a task scheduling 
system using Firefly Optimization, prioritizing jobs and VMs to 
guarantee precise scheduling. This methodology utilizes 
synthetic datasets with diverse distributions and workloads from 
NASA and HPC2N for assessment. This methodology, 
implemented in the CloudSim simulation environment, is 
contrasted with baseline methods like genetic, Ant Colony 
Optimization (ACO), and PSO algorithms. The simulation 
outcomes indicate that the firefly-based method substantially 
surpasses these benchmarks in minimizing makespan, 
augmenting resource availability, increasing the success rate, 
and decreasing turnaround time, thus producing a more 
dependable and effective scheduling solution for cloud 
environments. 

Bezdan, et al. [19] suggested an enhanced bat algorithm to 
tackle multi-objective job scheduling in cloud settings. The 
strategy seeks to optimize efficiency while minimizing search 
duration. The methodology was assessed with the CloudSim 
toolbox on both regular and synthetic parallel workloads. The 
findings revealed that the hybridized bat algorithm surpasses 
conventional metaheuristic methods, highlighting its significant 
potential for enhancing job scheduling effectiveness. 

Wu and Xiong [20] created an innovative job scheduling 
approach for cloud computing with PSO algorithm. Initially, the 
resource scheduling issue in a cloud computing ecosystem is 
simulated, and a task execution duration function is established. 
The updated PSO approach is then implemented to coordinate 
application activities and improve load distribution. It relies on 
the Copula algorithm to explore the correlation between 
variables and probability while defining the attractor component 
to prevent the objective function from being ensnared in local 
optimums. The analysis indicates that the proposed resource 
allocation and scheduling methodology may enhance cloud 
computing resource usage and decrease job completion time. 

Mangalampalli, et al. [21] offered a multiple-objective task 
scheduling method based on the Grey Wolf Optimization 
(MOTSGWO) algorithm by optimizing scheduling options 
dynamically depending on resource availability and anticipated 
demand requirements. This approach allocates resources to meet 
customer budgets and work priorities. The MOTSGWO 
methodology is executed through the Cloudsim toolkit, with 
workloads generated via the development of datasets with varied 
task distributions and sequences sourced from NASA and 
HPC2N distributed repositories. The comprehensive evaluation 
findings reveal that MOTSGWO is superior to previous 
benchmark strategies and improves critical metrics. 

Saif, et al. [22] presented a multi-goal GWO algorithm 
aimed at minimizing the QoS targets of latency and energy 
usage implemented inside the fog broker, which is crucial to job 
distribution. The experimental observations confirm the efficacy 
of the MGWO algorithm relative to contemporary algorithms in 
minimizing delay and energy consumption. 
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III. PROBLEM DEFINITION 

As shown in Fig. 1, a cloud data center comprises numerous 
Physical Machines (PMs), each capable of providing distinct 
end-user services. PMs can generate thousands of VMs 
dynamically. Alternatively, multiple host machines can 
collaborate to support a single VM. Cloud service providers 
offer VMs with different performance and pricing options, 
meeting a wide range of user requirements. This study explores 
the problem of allocating VMs to incoming, independent tasks. 
Each task is assumed to run exclusively on one VM and cannot 
be partitioned into smaller segments. Managing task scheduling 
in such an environment featuring varying capabilities is a 
complex challenge, represented by the sets of tasks and VMs in 
Eq. (1) and Eq. (2). 

𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} (1) 

𝑉𝑀 = {𝑣𝑚1, 𝑣𝑚2, 𝑣𝑚3, … , 𝑣𝑚𝑚} (2) 

The set 𝑇 represents tasks, each defined by a specific number 
of instructions. At the same time, 𝑉𝑀 denotes a set of VMs, each 
with defined computational power determined by Millions of 
Instructions Per Second (MIPS). In most cases, the workload 
volume surpasses the available VMs. These arrays act as inputs 
to the scheduling algorithm, which seeks to derive an optimal 
mapping of tasks to VMs. This mapping outlines the assignment 
of tasks to VMs, as expressed in Eq. (3). 

𝑀𝑎𝑝
= {(𝑡2, 𝑣𝑚1), (𝑡1, 𝑣𝑚3), (𝑡3, 𝑣𝑚2), … , (𝑡𝑛, 𝑣𝑚𝑚)} 

(3) 

In the mapping solution, each task (represented as the first 
element of a tuple) is assigned uniquely to a VM, while a VM 
can be associated with multiple tasks. This implies that each task 
is allocated to a particular VM, while a VM may handle several 

assignments. The execution time (ET) for a specific task ti on a 
VM vmj  is calculated using Eq. (4). 

𝐸𝑇𝑡𝑎𝑠𝑘𝑖𝑣𝑚𝑗
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑖

/𝑣𝑚𝑗  𝑀𝐼𝑃𝑆 
(4) 

It is assumed that each VM processes multiple tasks 
sequentially without interruption. Eq. (5) defines the overall 
completion time (CT) for all tasks allocated to a particular VM. 
Notably, faster VMs will complete their assigned tasks faster 
than slower ones. 

𝐶𝑇𝑣𝑚𝑗
= ∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑖

𝑛

𝑖=1

/𝑣𝑚𝑗  𝑀𝐼𝑃𝑆  
(5) 

In metaheuristic algorithms, the arrangement of tasks on 
VMs is continuously adjusted to optimize their fitness values. 
As such, the task assignments on each VM may change during 
the algorithm's execution. If task tx is replaced  with task ty on a 
VM, the completion time for multiple tasks executed in the VM 
is computed using Eq. (6). 

𝐶𝑇𝑣𝑚𝑗
= 𝐶𝑇𝑣𝑚𝑗

− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑥

/𝑣𝑚𝑗  𝑀𝐼𝑃𝑆)

+ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑦

/𝑣𝑚𝑗  𝑀𝐼𝑃𝑆) 

(6) 

A critical metric in task scheduling is the makespan, which 
refers to the total time required to complete all tasks across the 
available VMs. The makespan is determined using Eq. (7), 
representing the maximum completion time among all VMs 
involved in the scheduling process. 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max (𝐶𝑇𝑣𝑚𝑗
)  ∀𝑗𝜖1,2, … , 𝑘 (7) 

 

Fig. 1. Task scheduling process in cloud computing. 
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Throughout this study, makespan, completion time, and 
execution time are measured in seconds. Maximizing resource 
utilization during task scheduling is advantageous, ensuring a 
resource is fully utilized before allocating another instance on 
the cloud. Eq. (8) calculates the Average Resource Utilization 
(ARU) for PMs. This involves summing up the completion 
times of all VMs and dividing by the total number of VMs (m), 
followed by dividing the result by the makespan. 

𝐴𝑅𝑈 = (∑ 𝐶𝑇𝑣𝑚𝑗
/𝑚

𝑚

𝑖=1
) /𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (8) 

System efficiency is further assessed through throughput, 
defined as the number of tasks processed per unit of time, 
calculated using Eq. (9). It is determined by dividing the total 
number of tasks by the makespan, resulting in a throughput 
value measured in terms of tasks accomplished per second. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑜𝑢𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠
/𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 

(9) 

Additionally, Response Time (RT) is a key metric 
representing the duration between the scheduling decision and 
the initiation of task execution on a VM. Multiple VMs may 
operate on the identical PM, and a single VM may perform 
several tasks. Eq. (10) describes the mean response time for all 
tasks across multiple VMs. This calculation involves dividing 
the total initiation intervals for multiple tasks into the overall 
task count to determine the mean response time for each VM. 
The overall average response time is then obtained by averaging 
the response times across all VMs. 

𝑅𝑇 = (∑ ∑ 𝑅𝑇𝑖

𝑛

𝑖=1

𝑚

𝑗=1

) /𝑚 (10) 

IV. PROPOSED METHOD 

BOA mimics the foraging behavior of butterflies, driven by 
their sense of smell (olfaction). It aims to resemble how 
butterflies locate food sources (flowers) by navigating their 
environment using global and local search capabilities. In cloud 
computing and task scheduling, BOA facilitates allocating tasks 
to VMs by finding near-optimal solutions through iterative 
improvements. BOA is characterized by three central concepts: 
olfactory modality, global and local search, and scent intensity. 

In BOA, butterflies are represented as solutions, and their 
sense of smell is modeled to guide their movement. Each 
butterfly (solution) is attracted to the most promising areas (best 
solutions), allowing for effective exploitation and exploration of 
the search area. The algorithm alternates between global search 
(exploration) and local search (exploitation). Global search 
occurs when butterflies move towards a global highest-quality 
solution. The solution space can thus be explored in new ways. 
Local search is triggered when butterflies move toward other 
butterflies nearby, allowing solutions to be fine-tuned. 

The effectiveness of butterflies' movement depends on the 
intensity of the scent, which changes based on their position in 
the search space. The scent is calculated using fitness functions, 
which assess how effective a given solution is concerning the 

objective by cutting down makespan or optimizing resource 
utilization. The scent intensity Si of each butterfly i is calculated 
using Eq. (11): 

𝑆𝑖 = 𝑐. 𝑓𝑖
𝑎 (11) 

where c represents a sensory modality that affects scent 
strength, 𝑓𝑖

𝑎  stands for the fitness value of butterfly i, and a 
controls the nonlinearity of scent. The movement of a butterfly 
i towards a global best solution (global search) is given by: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟. 𝑆𝑔. (𝑔𝑡 − 𝑥𝑖
𝑡) (12) 

Where 𝑥𝑖
𝑡  is the position of the butterfly 𝑖 at iteration 𝑡, 𝑟 

stands for random number in the range [0, 1], 𝑆𝑔 refers to the 

scent intensity of the best solution found so far (global best), and 
𝑔𝑡 specifies the global best position at iteration t. The movement 
of a butterfly towards another butterfly (local search) is 
represented as: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟. 𝑆𝑗 . (𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) (13) 

where 𝑆𝑗  is the scent intensity of butterfly j, and 𝑥𝑗
𝑡 is its 

position at iteration t. The balance between global and local 
search is controlled using a probability parameter p. A random 
number r∈[0,1] is compared to p to determine whether a 
butterfly moves towards the global best or another butterfly as 
follows: 

 If r<p, the butterfly follows the global search 
strategy. 

 If r≥p, it engages in local search. 

The task scheduling problem is treated as an optimization 
challenge in cloud computing. The objective is to reduce 
makespan, minimize energy consumption, and improve resource 
utilization by finding the best allocation of tasks to VMs. Each 
butterfly represents a potential solution, where: 

 A solution is a specific mapping of tasks to VMs. 

 The fitness of a solution is rated in terms of 
makespan, energy consumption, and other QoS 
metrics. 

During each iteration, BOA adjusts butterflies' positions 
according to their scent intensities and the best solutions 
determined so far. Continuous iterations allow the algorithm to 
converge towards an optimal or near-optimal task allocation 
strategy. 

The conventional BOA faces three primary challenges: (1) a 
fixed exploration-to-exploitation ratio controlled by the 
parameter p, leading to rigidity in the search process; (2) the 
possibility of being stuck in local optima due to a fixed global 
best attraction; and (3) pairwise interaction between butterflies, 
which limits search efficiency in complex optimization 
problems. The Fuzzy Butterfly Optimization Algorithm FBOA) 
overcomes these drawbacks by introducing (a virtual butterfly 
and fuzzy decision-making strategy. Fig. 2 compares 
conventional BOA and FBOA in terms of their exploration and 
exploitation strategies. FBOA integrates fuzzy logic to adjust the 
transition between these strategies. 
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Fig. 2. Structure of BOA and FBOA. 

To improve the adaptability of the BOA, FBOA employs a 
nine-rule fuzzy decision-making strategy. This strategy 
dynamically adjusts the tendency factor τi  for each butterfly, 
which dictates its balance between exploitation and exploration 
based on the current optimization context. A novel concept 
called the virtual butterfly Xv is introduced, which serves as a 
guiding agent in navigation. Unlike the standard BOA's random 
pairwise interactions, the virtual butterfly uses the information 
from the best solutions and adjusts its direction based on the 
current problem's objective function. The Normalized Objective 
Function (NOF) is calculated to estimate the relative 
effectiveness of each butterfly's position: 

𝑁𝑂𝐹𝑖 =
𝑓(𝑋𝑖) − 𝑓(𝑔∗)

𝑓(𝑋𝑤𝑜𝑟𝑠𝑡) − 𝑓(𝑔∗) + 𝜇
,   𝑖 = 1,2, … , 𝑀 (14) 

Where f(Xi) is the objective function value of the ith butterfly, 
f(g*) is the fitness value of the current global best butterfly, 
f(Xworst) is the fitness value of the worst butterfly, μ is a small 
positive scalar to avoid division by zero, and M is the population 
size. The fuzzy decision system updates the tendency factor τi 
using the NOF and predefined fuzzy rules.  

𝜏𝑖 = 𝜔𝜏 + ∆𝜏𝑖 (15) 

where ωτ indicates the origin of the tendency factor, Δτi is the 
adjustment value derived through the fuzzy inference process. 
Membership functions (as shown in Fig. 3) are used to 
categorize NOF into linguistic variables such as Small (S), 
Medium (M), and Large (L). The output values are adjusted 
based on the rules provided in Table I.  

 

Fig. 3. Membership functions. 

TABLE I.  FUZZY RULES 

Rules 
Inputs 

Output 
τi NOFi 

1 L L LNV 

2 M L ZV 

3 S L LPV 

4 L M SNV 

5 M M ZV 

6 S M SPV 

7 L S ZV 

8 M S SPV 

9 S S SNV 
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The updated movement rule in FBOA is formulated to 
incorporate the virtual butterfly and the fuzzy-adjusted tendency 
factor:  

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑞. (𝜏𝑖
2. 𝑔∗ − 𝑋𝑖

𝑡) + 𝑎. 𝑟. (𝜏𝑖
2. 𝑋𝜈 − 𝑋𝑖

𝑡) (16) 

where g∗ is the global best position, Xv is the position of the 
virtual butterfly, q is a random number in the range [0, 1],  and 
α is the coefficient determining the impact of the virtual 
butterfly. The value of 𝛼 is determined by the fitness comparison 
between Xv and Xi: 

a=1   if f(𝑋𝜈) < 𝑓(𝑋𝑖),   𝑎 = −1  𝑖𝑓 𝑓(𝑋𝜈) ≥ 𝑓(𝑋𝑖) (17) 

The virtual butterfly Xv aggregates information from the 
entire population using the weighted average of butterfly 
positions: 

𝑋𝜈 = ∑ 𝑋𝑖
𝜈𝑐𝑖

𝜈
𝑀

𝑖=1
 (18) 

where 𝑐𝑖
𝑣 is a normalized weight defined as: 

𝑐𝑖
𝜈 =

𝑒𝑥𝑝(𝜉𝑖
𝜈)

∑ 𝑒𝑥𝑝(𝜉𝑗
𝜈)𝑀

𝑗=1

 (19) 

𝜉𝑖
𝑣 is the normalized fitness difference for butterfly i: 

𝜉𝑗
𝜈 =

𝑓(𝑋𝑖
𝜈) − 𝑓(𝑋𝑤𝑜𝑟𝑠𝑡)

𝑓(𝑋𝑤𝑜𝑟𝑠𝑡) − 𝑓(𝑔∗) + 𝜇
 (20) 

FBOA addresses the task scheduling challenge in cloud 
computing environments by dynamically balancing exploration 
and exploitation through a fuzzy decision-making system. By 
adjusting the tendency factor for each butterfly using fuzzy 
logic, FBOA adapts its search behavior to optimize the 
allocation of tasks to VMs. This adaptability ensures that FBOA 
can efficiently handle the complex solution area of task 
scheduling, improving resource utilization, shortening 
makespan, and reducing energy usage. The integration of a 
virtual butterfly concept further enhances the algorithm’s 
potential to overcome local optima, leading to more effective 
and balanced scheduling solutions. Through iterative 
adjustments, FBOA ensures that cloud resources are optimally 
allocated, providing better service quality and meeting the 
diverse demands of cloud users. 

V. PERFORMANCE EVALUATION 

The tests were performed on an Intel Core i5-12400 
system featuring a 2.50 GHz processor and 16 GB of RAM. The 
effectiveness of the suggested FBOA was examined using the 
CloudSim 3.0.3 simulation toolkit and datasets from the 
Heterogeneous Computing Scheduling Problem (HCSP) and 
Google Cloud Jobs (GoCJ). The data center comprises a single 
entity equipped with 12000 MIPS processing capacity. It hosts 
three types of machines, each with varying cores, quad-core, 
hexa-core, and octa-core, and supports a memory range of 512 
MB to 14436 MB. For the GoCJ dataset, the configuration 
includes ten VMs with MIPS capacities ranging from 400 to 
12000 MIPS. For the HCSP instances, 32 VMs are distributed. 
This setup allows for a comprehensive analysis of task 
scheduling performance across diverse resource capacities and 
task complexities. 

In cloud computing, makespan is a critical metric as it 
measures the total time required to complete all tasks on a set of 
VMs. A lower makespan indicates more efficient scheduling, 
allowing servers to process workloads quickly. As shown in Fig. 
4, FBOA effectively minimizes makespan, particularly as the 
number of tasks increases, through its optimized task-to-VM 
mapping strategy. Compared with other methods such as Whale 
Optimization Algorithm (WOA) [23], Random Matrix Particle 
Swarm Optimization (RMPSO) [24], Security- and Energy-
Aware (SAEA) [25], and Genetic Algorithm with MapReduce 
(GAMR) [26], FBOA demonstrates the smallest average 
increase in makespan (4.3%), illustrating its superior scalability 
in handling the rising number of tasks across 19 GoCJ instances. 
This makes FBOA highly suitable for dynamic cloud 
environments where workload demands fluctuate. For HCSP 
tasks, a similar trend was observed, with FBOA consistently 
achieving a reduced makespan across varying instances, as 
depicted in Fig. 5. This indicates that the algorithm adapts well 
to heterogeneous task categories, achieving efficient resource 
allocation. 

 

Fig. 4. Makespan for GoCJ dataset. 

 
Fig. 5. Makespan for HCSP dataset. 

Effective resource utilization ensures that the cloud 
infrastructure makes the most efficient use of available 
resources. FBOA achieved the best resource utilization over 
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other algorithms benchmarked, such as WOA, MRMPSO, and 
GAMR, as illustrated in Fig. 6 and Fig. 7. By dynamically 
adjusting its search mechanisms, FBOA efficiently managed 
VMs, reducing idle time and enhancing overall resource 
allocation. This is crucial in cloud environments where 
minimizing waste and optimizing VM usage can save significant 
costs. Among all methods, FBOA stood out for its ability to 
balance the workload, resulting in consistent resource usage, 
even with complex task distributions. 

 
Fig. 6. Resource utilization for GoCJ dataset. 

 
Fig. 7. Resource utilization for HCSP dataset. 

Throughput, representing the number of tasks accomplished 
in a given period of time, serves as a measure of system 
efficiency. The results showed that FBOA achieved the highest 
throughput, which can be attributed to its parallel processing 
capabilities and refined task scheduling mechanism. Fig. 8 and 
Fig. 9 show a marked improvement in throughput for FBOA, 
especially when handling tasks with varying complexities. The 
enhanced throughput rates indicate that FBOA can efficiently 
manage large-scale task scheduling, making it well-suited for 
cloud infrastructures with fluctuating demands. 

 
Fig. 8. Throughput utilization for GoCJ dataset. 

 

Fig. 9. Throughput utilization for HCSP dataset. 

VI. DISCUSSION 

Compared to existing alternatives, the suggested FBOA 
significantly improves task scheduling problems. This success 
in the FBOA highlights the novelties achieved in coupling 
enhancements, a fuzzy decision strategy, and the idea of a virtual 
butterfly when overcoming deficiencies in BOA. 

The fuzzy decision-making mechanism dynamically 
balances the phases of exploration and exploitation. Such 
adaptability allows the algorithm to cope with complex search 
spaces and prevent it from converging too early, guaranteeing 
robust optimization even for more complicated tasks. A proper 
example is that FBOA improves the makespan results on both 
GoCJ and HCSP datasets, proving that it can efficiently map 
tasks into VMs with good scalability. 

The introduction of the concept of the virtual butterfly 
enables the central agent to gather and disseminate information 
in the swarm regarding the ongoing search process, orienting the 
same toward the most promising regions. This feature enhances 
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the solution quality and convergence rates, which is evident in 
the superior performance of FBOA in terms of the minimization 
of resource wastage and higher throughput value. FBOA 
maximizes the efficiency of a cloud environment since it ensures 
equal workload distribution and optimal utilization of resources. 

These results hold important implications for cloud 
computing. With reduced makespan, improved resource 
utilization, and higher throughput, FBOA can contribute to 
creating efficient and scalable task scheduling solutions. For 
instance, such enhancements in makespan, resource utilization, 
and throughput shall enable service providers to reduce costs 
and improve user reliability, rendering cloud computing 
infrastructures more viable and competitive. 

Furthermore, the adaptiveness of FBOA towards dynamic 
workloads and heterogeneous resources makes it likely to enable 
dynamic and real-time applications such as IoT ecosystems and 
high-performance computing. Therefore, contributions in this 
paper open new paths for further research in advanced cloud 
management intelligence and thus set a roadmap for 
optimizations in this rapidly changing field. 

These benefits of FBOA are partially outweighed by several 
shortcomings. First, the virtual butterfly mechanism may lead to 
a significant increase in computation overhead in scenarios with 
extremely high heterogeneity among tasks or VMs. Further, this 
algorithm has only been experimented with in simulations with 
certain datasets. The real implementation could bring in 
unforeseen challenges, as scalability and adaptability may arise 
in infrastructures that are more dynamic or involve multi-clouds. 

VII. CONCLUSION 

In this study, we proposed FBOA to cope with the 
complexity of task allocation in cloud computing setups. By 
integrating fuzzy logic into the standard BOA, FBOA 
dynamically balanced exploration and exploitation, adapting to 
varying workload demands and resource availability. This 
adaptability ensured tasks were scheduled efficiently across 
VMs, minimizing makespan, reducing resource wastage, and 
improving overall system performance. The effectiveness of the 
proposed FBOA was validated through comprehensive 
simulations using the CloudSim toolkit, employing diverse 
datasets. The results demonstrated that FBOA consistently 
outperformed other metaheuristic algorithms such as WOA, 
RMPSO, MRMPSO, SAEA, and GAMR across critical metrics, 
including execution time, response time, throughput, resource 
utilization, and  makespan. Notably, FBOA achieved lower 
increases in makespan, better resource allocation, and higher 
throughput, making it a robust and scalable solution for cloud 
environments. The superior performance of FBOA results from 
its ability to adjust the search behavior using a fuzzy decision-
making mechanism and the introduction of the virtual butterfly 
concept, which helps avoid premature convergence and 
improves solution diversity. These features allow FBOA to 
effectively respond to the varying demands of cloud computing 
workloads, ensuring efficient resource use while meeting SLAs. 
Future research could explore further enhancements to FBOA, 
such as hybridizing it with other optimization techniques or 
applying it to emerging cloud paradigms like edge and fog 
computing to extend its applicability and effectiveness further. 
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