
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

435 | P a g e

www.ijacsa.thesai.org

Enhanced Butterfly Optimization Algorithm for Task

Scheduling in Cloud Computing Environments

Yue ZHAO

College of Computer, Cangzhou Jiaotong College, Cangzhou 061199, China

Abstract—Cloud computing is transforming the provision of

elastic and adaptable capabilities on demand. A scalable

infrastructure and a wide range of offerings make cloud

computing essential to today's computing ecosystem. Cloud

resources enable users and various companies to utilize data

maintained in a distant location. Generally, cloud vendors provide

services within the limitations of Service Level Agreement (SLA)

terms. SLAs consist of various Quality of Service (QoS)

requirements the supplier promises. Task scheduling is critical to

maintaining higher QoS and lower SLAs. In simple terms, task

scheduling aims to schedule tasks to limit wasted time and

optimize performance. Considering the NP-hard character of

cloud task scheduling, metaheuristic algorithms are widely

applied to handle this optimization problem. This study presents a

novel approach using the Butterfly Optimization Algorithm

(BOA) for scheduling cloud-based tasks across diverse resources.

BOA performs well on non-constrained and non-biased

mathematical functions. However, its search capacity is limited to

shifted, rotated, and/or constrained optimization problems. This

deficiency is addressed by incorporating a virtual butterfly and

improved fuzzy decision processes into the conventional BOA. The

suggested methodology improves throughput and resource

utilization while reducing the makespan. Regardless of the

number of tasks, better results are consistently produced,

indicating greater scalability.

Keywords—Cloud computing; resource utilization; task

scheduling; Butterfly Optimization Algorithm; fuzzy decision

strategy

I. INTRODUCTION

The Internet of Things (IoT) has evolved from the
exponential proliferation of smart sensors in recent years and the
demand for inter/interconnections between devices [1, 2]. IoT
opens up broad medical, manufacturing, and logistics
opportunities, necessitating high reliability, durability,
flexibility, adaptability, and control levels [3]. Furthermore, IoT
devices are limited in resources and equipped with specialized
chips configured with various rules [4]. In this way,
conventional networks become more complex owing to the
specific requirements of IoT applications. Software-Defined IoT
(SD-IoT) aims to apply Software-Defined Networking (SDN) to
IoT to bring elasticity to managing resources and networks in
traditional networks. SDN is regarded as a critical paradigm for
next-generation networking [5].

A group of networked computers with several shared
computing resources is referred to as the cloud. Recently, cloud
computing has developed rapidly, enabling globally distributed
data centers to develop and scale up to provide high-quality and
reliable services [6]. Cloud computing has emerged as an

effective model for providing computational resources on a
"pay-per-use" basis. It brings uniformity and transformation to
IT enterprises [7]. Cloud computing has significant prospects
and poses several problems in conventional IT evolution due to
its expanding uses and promotion [8]. In recent years, cloud
computing has become an alternative online strategy to
empower users. It offers access to shareable and customizable
resources on demand, quickly allocated and released with little
management or collaboration from the cloud provider [9]. This
invention offers several advantages, including enhanced
economic benefits related to time, cost, inventory management,
and storage. This breakthrough enables all programs to operate
on a virtual platform, with resources allocated across Virtual
Machines (VMs) [10].

An effective and dynamic task scheduler is essential when
multiple users simultaneously request services from the cloud
environment, particularly from diverse and heterogeneous
resources [11]. An optimal and adaptable task scheduler is
critical in the cloud paradigm. Moreover, it must function under
the workload submitted to the cloud platform [12]. An
inefficient scheduling process in the cloud environment causes
diminished service quality from cloud service providers, eroding
confidence and adversely affecting corporate operations [13].
Hardware virtualization is the basis for distributing cloud
resources. Numerous VMs are hosted on an individual
computing server to support multiple users executing concurrent
processes. VMs running in cloud data centers are given
thousands of tasks. Consequently, employing an effective
scheduler inside the cloud framework is advantageous for cloud
providers and customers, allowing mutual benefits.

Task scheduling assigns cloud tasks to VMs to shorten
makespan and enhance resource usage. Due to the NP-hard
characteristics of this issue, conventional scheduling techniques
have challenges regarding scalability and efficiency, especially
in dynamic cloud settings [14]. Metaheuristic algorithms, such
as the Butterfly Optimization Algorithm (BOA), have
been shown to help tackle complicated optimization problems
[15]. These algorithms leverage techniques like random walks
and graph-based embeddings to improve search efficiency and
adaptability in diverse optimization contexts [16]. BOA is
suitable for such tasks due to its simplicity, excellent balance
between exploration and exploitation, and adaptability to
diverse optimization landscapes. Besides, its computational
efficiency and the ability to converge on high-quality solutions
make it a competitive choice for improving cloud task
scheduling. This study presents an improved BOA, including a
fuzzy decision method and an innovative virtual butterfly idea
to maximize the algorithm's search efficacy and flexibility in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

436 | P a g e

www.ijacsa.thesai.org

cloud job scheduling. As a summary, this study made the
following contributions:

 A novel variant of the BOA is introduced, incorporating
a fuzzy logic model and a virtual butterfly design to
improve the algorithm's search efficiency and
adaptability in cloud computing environments.

 A fuzzy logic model is implemented to continuously alter
the balance between BOA's exploration and exploitation
phases, allowing for better adaptation to varying
optimization conditions.

 A virtual butterfly agent is developed that aggregates
information from all butterflies, directing the swarm to
promising areas in the search area, thereby avoiding
premature convergence and improving the overall
solution quality.

 The enhanced algorithm is evaluated using CloudSim
with GoCJ and HCSP datasets, demonstrating its
superior performance in minimizing makespan,
improving resource utilization, and enhancing
throughput compared to other metaheuristic methods
like PSO and standard BOA.

The remaining portion of the paper is laid out in the
following arrangement. Section II summarizes related research
on cloud-based task scheduling. Section III defines the task
scheduling problem and presents the challenges in optimizing
makespan and resource utilization. Section IV introduces the
proposed enhanced BOA, detailing its fuzzy decision strategy
and virtual butterfly concept. Section V reports the findings and
analyzes the efficiency of the developed algorithm. Section VI
discusses key findings and outlines the limitations of current
work. Lastly, Section VII offers a conclusion and recommends
areas for further research.

II. LITERATURE REVIEW

Metaheuristic algorithms have been extensively adopted for
scheduling tasks in cloud computing. Recent research efforts
have focused on improving these algorithms to address local
optima and poor convergence challenges. Some research studies
emphasize the importance of parallel calculations in maximizing
task scheduling efficiency. The need to balance exploration with
exploitation has resulted in hybrid and adaptable methodologies.
Nevertheless, several current methodologies encounter
constraints when used in extensive, diverse cloud settings.

Dubey and Sharma [17] proposed the Chemical Reaction
Partial Swarm Optimization (CR-PSO) method for
distributing several independent jobs among VMs in a cloud
computing context. This hybrid methodology integrates the
merits of Chemical Reaction Optimization (CRO) and Particle
Swarm Optimization (PSO), producing an optimum task
scheduling sequence that accounts for both job requirements and
deadlines. Hybridization optimizes makespan, decreases costs,
and diminishes energy use. Comprehensive simulations were
performed with the CloudSim tools, illustrating the algorithm's
efficacy. The comparative examination of several scenarios,
varying quantities of VMs and tasks, demonstrates a decrease in
execution time between 1–6% and, at times, exceeding 10%.

Furthermore, the CR-PSO algorithm boosted makespan by 5–
12%, decreased costs by 2–10%, and improved energy
efficiency by 1–9%. These findings validate the algorithm's
capacity for enhanced resource management and scheduling in
cloud systems.

Mangalampalli, et al. [18] developed a task scheduling
system using Firefly Optimization, prioritizing jobs and VMs to
guarantee precise scheduling. This methodology utilizes
synthetic datasets with diverse distributions and workloads from
NASA and HPC2N for assessment. This methodology,
implemented in the CloudSim simulation environment, is
contrasted with baseline methods like genetic, Ant Colony
Optimization (ACO), and PSO algorithms. The simulation
outcomes indicate that the firefly-based method substantially
surpasses these benchmarks in minimizing makespan,
augmenting resource availability, increasing the success rate,
and decreasing turnaround time, thus producing a more
dependable and effective scheduling solution for cloud
environments.

Bezdan, et al. [19] suggested an enhanced bat algorithm to
tackle multi-objective job scheduling in cloud settings. The
strategy seeks to optimize efficiency while minimizing search
duration. The methodology was assessed with the CloudSim
toolbox on both regular and synthetic parallel workloads. The
findings revealed that the hybridized bat algorithm surpasses
conventional metaheuristic methods, highlighting its significant
potential for enhancing job scheduling effectiveness.

Wu and Xiong [20] created an innovative job scheduling
approach for cloud computing with PSO algorithm. Initially, the
resource scheduling issue in a cloud computing ecosystem is
simulated, and a task execution duration function is established.
The updated PSO approach is then implemented to coordinate
application activities and improve load distribution. It relies on
the Copula algorithm to explore the correlation between
variables and probability while defining the attractor component
to prevent the objective function from being ensnared in local
optimums. The analysis indicates that the proposed resource
allocation and scheduling methodology may enhance cloud
computing resource usage and decrease job completion time.

Mangalampalli, et al. [21] offered a multiple-objective task
scheduling method based on the Grey Wolf Optimization
(MOTSGWO) algorithm by optimizing scheduling options
dynamically depending on resource availability and anticipated
demand requirements. This approach allocates resources to meet
customer budgets and work priorities. The MOTSGWO
methodology is executed through the Cloudsim toolkit, with
workloads generated via the development of datasets with varied
task distributions and sequences sourced from NASA and
HPC2N distributed repositories. The comprehensive evaluation
findings reveal that MOTSGWO is superior to previous
benchmark strategies and improves critical metrics.

Saif, et al. [22] presented a multi-goal GWO algorithm
aimed at minimizing the QoS targets of latency and energy
usage implemented inside the fog broker, which is crucial to job
distribution. The experimental observations confirm the efficacy
of the MGWO algorithm relative to contemporary algorithms in
minimizing delay and energy consumption.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

437 | P a g e

www.ijacsa.thesai.org

III. PROBLEM DEFINITION

As shown in Fig. 1, a cloud data center comprises numerous
Physical Machines (PMs), each capable of providing distinct
end-user services. PMs can generate thousands of VMs
dynamically. Alternatively, multiple host machines can
collaborate to support a single VM. Cloud service providers
offer VMs with different performance and pricing options,
meeting a wide range of user requirements. This study explores
the problem of allocating VMs to incoming, independent tasks.
Each task is assumed to run exclusively on one VM and cannot
be partitioned into smaller segments. Managing task scheduling
in such an environment featuring varying capabilities is a
complex challenge, represented by the sets of tasks and VMs in
Eq. (1) and Eq. (2).

𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} (1)

𝑉𝑀 = {𝑣𝑚1, 𝑣𝑚2, 𝑣𝑚3, … , 𝑣𝑚𝑚} (2)

The set 𝑇 represents tasks, each defined by a specific number
of instructions. At the same time, 𝑉𝑀 denotes a set of VMs, each
with defined computational power determined by Millions of
Instructions Per Second (MIPS). In most cases, the workload
volume surpasses the available VMs. These arrays act as inputs
to the scheduling algorithm, which seeks to derive an optimal
mapping of tasks to VMs. This mapping outlines the assignment
of tasks to VMs, as expressed in Eq. (3).

𝑀𝑎𝑝
= {(𝑡2, 𝑣𝑚1), (𝑡1, 𝑣𝑚3), (𝑡3, 𝑣𝑚2), … , (𝑡𝑛, 𝑣𝑚𝑚)}

(3)

In the mapping solution, each task (represented as the first
element of a tuple) is assigned uniquely to a VM, while a VM
can be associated with multiple tasks. This implies that each task
is allocated to a particular VM, while a VM may handle several

assignments. The execution time (ET) for a specific task ti on a
VM vmj is calculated using Eq. (4).

𝐸𝑇𝑡𝑎𝑠𝑘𝑖𝑣𝑚𝑗
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑖

/𝑣𝑚𝑗 𝑀𝐼𝑃𝑆
(4)

It is assumed that each VM processes multiple tasks
sequentially without interruption. Eq. (5) defines the overall
completion time (CT) for all tasks allocated to a particular VM.
Notably, faster VMs will complete their assigned tasks faster
than slower ones.

𝐶𝑇𝑣𝑚𝑗
= ∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑖

𝑛

𝑖=1

/𝑣𝑚𝑗 𝑀𝐼𝑃𝑆
(5)

In metaheuristic algorithms, the arrangement of tasks on
VMs is continuously adjusted to optimize their fitness values.
As such, the task assignments on each VM may change during
the algorithm's execution. If task tx is replaced with task ty on a
VM, the completion time for multiple tasks executed in the VM
is computed using Eq. (6).

𝐶𝑇𝑣𝑚𝑗
= 𝐶𝑇𝑣𝑚𝑗

− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑥

/𝑣𝑚𝑗 𝑀𝐼𝑃𝑆)

+ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑦

/𝑣𝑚𝑗 𝑀𝐼𝑃𝑆)

(6)

A critical metric in task scheduling is the makespan, which
refers to the total time required to complete all tasks across the
available VMs. The makespan is determined using Eq. (7),
representing the maximum completion time among all VMs
involved in the scheduling process.

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max (𝐶𝑇𝑣𝑚𝑗
) ∀𝑗𝜖1,2, … , 𝑘 (7)

Fig. 1. Task scheduling process in cloud computing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

438 | P a g e

www.ijacsa.thesai.org

Throughout this study, makespan, completion time, and
execution time are measured in seconds. Maximizing resource
utilization during task scheduling is advantageous, ensuring a
resource is fully utilized before allocating another instance on
the cloud. Eq. (8) calculates the Average Resource Utilization
(ARU) for PMs. This involves summing up the completion
times of all VMs and dividing by the total number of VMs (m),
followed by dividing the result by the makespan.

𝐴𝑅𝑈 = (∑ 𝐶𝑇𝑣𝑚𝑗
/𝑚

𝑚

𝑖=1
) /𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (8)

System efficiency is further assessed through throughput,
defined as the number of tasks processed per unit of time,
calculated using Eq. (9). It is determined by dividing the total
number of tasks by the makespan, resulting in a throughput
value measured in terms of tasks accomplished per second.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑜𝑢𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠
/𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

(9)

Additionally, Response Time (RT) is a key metric
representing the duration between the scheduling decision and
the initiation of task execution on a VM. Multiple VMs may
operate on the identical PM, and a single VM may perform
several tasks. Eq. (10) describes the mean response time for all
tasks across multiple VMs. This calculation involves dividing
the total initiation intervals for multiple tasks into the overall
task count to determine the mean response time for each VM.
The overall average response time is then obtained by averaging
the response times across all VMs.

𝑅𝑇 = (∑ ∑ 𝑅𝑇𝑖

𝑛

𝑖=1

𝑚

𝑗=1

) /𝑚 (10)

IV. PROPOSED METHOD

BOA mimics the foraging behavior of butterflies, driven by
their sense of smell (olfaction). It aims to resemble how
butterflies locate food sources (flowers) by navigating their
environment using global and local search capabilities. In cloud
computing and task scheduling, BOA facilitates allocating tasks
to VMs by finding near-optimal solutions through iterative
improvements. BOA is characterized by three central concepts:
olfactory modality, global and local search, and scent intensity.

In BOA, butterflies are represented as solutions, and their
sense of smell is modeled to guide their movement. Each
butterfly (solution) is attracted to the most promising areas (best
solutions), allowing for effective exploitation and exploration of
the search area. The algorithm alternates between global search
(exploration) and local search (exploitation). Global search
occurs when butterflies move towards a global highest-quality
solution. The solution space can thus be explored in new ways.
Local search is triggered when butterflies move toward other
butterflies nearby, allowing solutions to be fine-tuned.

The effectiveness of butterflies' movement depends on the
intensity of the scent, which changes based on their position in
the search space. The scent is calculated using fitness functions,
which assess how effective a given solution is concerning the

objective by cutting down makespan or optimizing resource
utilization. The scent intensity Si of each butterfly i is calculated
using Eq. (11):

𝑆𝑖 = 𝑐. 𝑓𝑖
𝑎 (11)

where c represents a sensory modality that affects scent
strength, 𝑓𝑖

𝑎 stands for the fitness value of butterfly i, and a
controls the nonlinearity of scent. The movement of a butterfly
i towards a global best solution (global search) is given by:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟. 𝑆𝑔. (𝑔𝑡 − 𝑥𝑖
𝑡) (12)

Where 𝑥𝑖
𝑡 is the position of the butterfly 𝑖 at iteration 𝑡, 𝑟

stands for random number in the range [0, 1], 𝑆𝑔 refers to the

scent intensity of the best solution found so far (global best), and
𝑔𝑡 specifies the global best position at iteration t. The movement
of a butterfly towards another butterfly (local search) is
represented as:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟. 𝑆𝑗 . (𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) (13)

where 𝑆𝑗 is the scent intensity of butterfly j, and 𝑥𝑗
𝑡 is its

position at iteration t. The balance between global and local
search is controlled using a probability parameter p. A random
number r∈[0,1] is compared to p to determine whether a
butterfly moves towards the global best or another butterfly as
follows:

 If r<p, the butterfly follows the global search
strategy.

 If r≥p, it engages in local search.

The task scheduling problem is treated as an optimization
challenge in cloud computing. The objective is to reduce
makespan, minimize energy consumption, and improve resource
utilization by finding the best allocation of tasks to VMs. Each
butterfly represents a potential solution, where:

 A solution is a specific mapping of tasks to VMs.

 The fitness of a solution is rated in terms of
makespan, energy consumption, and other QoS
metrics.

During each iteration, BOA adjusts butterflies' positions
according to their scent intensities and the best solutions
determined so far. Continuous iterations allow the algorithm to
converge towards an optimal or near-optimal task allocation
strategy.

The conventional BOA faces three primary challenges: (1) a
fixed exploration-to-exploitation ratio controlled by the
parameter p, leading to rigidity in the search process; (2) the
possibility of being stuck in local optima due to a fixed global
best attraction; and (3) pairwise interaction between butterflies,
which limits search efficiency in complex optimization
problems. The Fuzzy Butterfly Optimization Algorithm FBOA)
overcomes these drawbacks by introducing (a virtual butterfly
and fuzzy decision-making strategy. Fig. 2 compares
conventional BOA and FBOA in terms of their exploration and
exploitation strategies. FBOA integrates fuzzy logic to adjust the
transition between these strategies.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

439 | P a g e

www.ijacsa.thesai.org

Fig. 2. Structure of BOA and FBOA.

To improve the adaptability of the BOA, FBOA employs a
nine-rule fuzzy decision-making strategy. This strategy
dynamically adjusts the tendency factor τi for each butterfly,
which dictates its balance between exploitation and exploration
based on the current optimization context. A novel concept
called the virtual butterfly Xv is introduced, which serves as a
guiding agent in navigation. Unlike the standard BOA's random
pairwise interactions, the virtual butterfly uses the information
from the best solutions and adjusts its direction based on the
current problem's objective function. The Normalized Objective
Function (NOF) is calculated to estimate the relative
effectiveness of each butterfly's position:

𝑁𝑂𝐹𝑖 =
𝑓(𝑋𝑖) − 𝑓(𝑔∗)

𝑓(𝑋𝑤𝑜𝑟𝑠𝑡) − 𝑓(𝑔∗) + 𝜇
, 𝑖 = 1,2, … , 𝑀 (14)

Where f(Xi) is the objective function value of the ith butterfly,
f(g*) is the fitness value of the current global best butterfly,
f(Xworst) is the fitness value of the worst butterfly, μ is a small
positive scalar to avoid division by zero, and M is the population
size. The fuzzy decision system updates the tendency factor τi
using the NOF and predefined fuzzy rules.

𝜏𝑖 = 𝜔𝜏 + ∆𝜏𝑖 (15)

where ωτ indicates the origin of the tendency factor, Δτi is the
adjustment value derived through the fuzzy inference process.
Membership functions (as shown in Fig. 3) are used to
categorize NOF into linguistic variables such as Small (S),
Medium (M), and Large (L). The output values are adjusted
based on the rules provided in Table I.

Fig. 3. Membership functions.

TABLE I. FUZZY RULES

Rules
Inputs

Output
τi NOFi

1 L L LNV

2 M L ZV

3 S L LPV

4 L M SNV

5 M M ZV

6 S M SPV

7 L S ZV

8 M S SPV

9 S S SNV

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

440 | P a g e

www.ijacsa.thesai.org

The updated movement rule in FBOA is formulated to
incorporate the virtual butterfly and the fuzzy-adjusted tendency
factor:

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑞. (𝜏𝑖
2. 𝑔∗ − 𝑋𝑖

𝑡) + 𝑎. 𝑟. (𝜏𝑖
2. 𝑋𝜈 − 𝑋𝑖

𝑡) (16)

where g∗ is the global best position, Xv is the position of the
virtual butterfly, q is a random number in the range [0, 1], and
α is the coefficient determining the impact of the virtual
butterfly. The value of 𝛼 is determined by the fitness comparison
between Xv and Xi:

a=1 if f(𝑋𝜈) < 𝑓(𝑋𝑖), 𝑎 = −1 𝑖𝑓 𝑓(𝑋𝜈) ≥ 𝑓(𝑋𝑖) (17)

The virtual butterfly Xv aggregates information from the
entire population using the weighted average of butterfly
positions:

𝑋𝜈 = ∑ 𝑋𝑖
𝜈𝑐𝑖

𝜈
𝑀

𝑖=1
 (18)

where 𝑐𝑖
𝑣 is a normalized weight defined as:

𝑐𝑖
𝜈 =

𝑒𝑥𝑝(𝜉𝑖
𝜈)

∑ 𝑒𝑥𝑝(𝜉𝑗
𝜈)𝑀

𝑗=1

 (19)

𝜉𝑖
𝑣 is the normalized fitness difference for butterfly i:

𝜉𝑗
𝜈 =

𝑓(𝑋𝑖
𝜈) − 𝑓(𝑋𝑤𝑜𝑟𝑠𝑡)

𝑓(𝑋𝑤𝑜𝑟𝑠𝑡) − 𝑓(𝑔∗) + 𝜇
 (20)

FBOA addresses the task scheduling challenge in cloud
computing environments by dynamically balancing exploration
and exploitation through a fuzzy decision-making system. By
adjusting the tendency factor for each butterfly using fuzzy
logic, FBOA adapts its search behavior to optimize the
allocation of tasks to VMs. This adaptability ensures that FBOA
can efficiently handle the complex solution area of task
scheduling, improving resource utilization, shortening
makespan, and reducing energy usage. The integration of a
virtual butterfly concept further enhances the algorithm’s
potential to overcome local optima, leading to more effective
and balanced scheduling solutions. Through iterative
adjustments, FBOA ensures that cloud resources are optimally
allocated, providing better service quality and meeting the
diverse demands of cloud users.

V. PERFORMANCE EVALUATION

The tests were performed on an Intel Core i5-12400
system featuring a 2.50 GHz processor and 16 GB of RAM. The
effectiveness of the suggested FBOA was examined using the
CloudSim 3.0.3 simulation toolkit and datasets from the
Heterogeneous Computing Scheduling Problem (HCSP) and
Google Cloud Jobs (GoCJ). The data center comprises a single
entity equipped with 12000 MIPS processing capacity. It hosts
three types of machines, each with varying cores, quad-core,
hexa-core, and octa-core, and supports a memory range of 512
MB to 14436 MB. For the GoCJ dataset, the configuration
includes ten VMs with MIPS capacities ranging from 400 to
12000 MIPS. For the HCSP instances, 32 VMs are distributed.
This setup allows for a comprehensive analysis of task
scheduling performance across diverse resource capacities and
task complexities.

In cloud computing, makespan is a critical metric as it
measures the total time required to complete all tasks on a set of
VMs. A lower makespan indicates more efficient scheduling,
allowing servers to process workloads quickly. As shown in Fig.
4, FBOA effectively minimizes makespan, particularly as the
number of tasks increases, through its optimized task-to-VM
mapping strategy. Compared with other methods such as Whale
Optimization Algorithm (WOA) [23], Random Matrix Particle
Swarm Optimization (RMPSO) [24], Security- and Energy-
Aware (SAEA) [25], and Genetic Algorithm with MapReduce
(GAMR) [26], FBOA demonstrates the smallest average
increase in makespan (4.3%), illustrating its superior scalability
in handling the rising number of tasks across 19 GoCJ instances.
This makes FBOA highly suitable for dynamic cloud
environments where workload demands fluctuate. For HCSP
tasks, a similar trend was observed, with FBOA consistently
achieving a reduced makespan across varying instances, as
depicted in Fig. 5. This indicates that the algorithm adapts well
to heterogeneous task categories, achieving efficient resource
allocation.

Fig. 4. Makespan for GoCJ dataset.

Fig. 5. Makespan for HCSP dataset.

Effective resource utilization ensures that the cloud
infrastructure makes the most efficient use of available
resources. FBOA achieved the best resource utilization over

Number of tasks

200 400 600 800 1000

M
a
k

e
sp

a
n

 (
s)

0

10000

20000

30000

40000

SAEA
GAMR
RMPSO
WOAmM
FBOA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

441 | P a g e

www.ijacsa.thesai.org

other algorithms benchmarked, such as WOA, MRMPSO, and
GAMR, as illustrated in Fig. 6 and Fig. 7. By dynamically
adjusting its search mechanisms, FBOA efficiently managed
VMs, reducing idle time and enhancing overall resource
allocation. This is crucial in cloud environments where
minimizing waste and optimizing VM usage can save significant
costs. Among all methods, FBOA stood out for its ability to
balance the workload, resulting in consistent resource usage,
even with complex task distributions.

Fig. 6. Resource utilization for GoCJ dataset.

Fig. 7. Resource utilization for HCSP dataset.

Throughput, representing the number of tasks accomplished
in a given period of time, serves as a measure of system
efficiency. The results showed that FBOA achieved the highest
throughput, which can be attributed to its parallel processing
capabilities and refined task scheduling mechanism. Fig. 8 and
Fig. 9 show a marked improvement in throughput for FBOA,
especially when handling tasks with varying complexities. The
enhanced throughput rates indicate that FBOA can efficiently
manage large-scale task scheduling, making it well-suited for
cloud infrastructures with fluctuating demands.

Fig. 8. Throughput utilization for GoCJ dataset.

Fig. 9. Throughput utilization for HCSP dataset.

VI. DISCUSSION

Compared to existing alternatives, the suggested FBOA
significantly improves task scheduling problems. This success
in the FBOA highlights the novelties achieved in coupling
enhancements, a fuzzy decision strategy, and the idea of a virtual
butterfly when overcoming deficiencies in BOA.

The fuzzy decision-making mechanism dynamically
balances the phases of exploration and exploitation. Such
adaptability allows the algorithm to cope with complex search
spaces and prevent it from converging too early, guaranteeing
robust optimization even for more complicated tasks. A proper
example is that FBOA improves the makespan results on both
GoCJ and HCSP datasets, proving that it can efficiently map
tasks into VMs with good scalability.

The introduction of the concept of the virtual butterfly
enables the central agent to gather and disseminate information
in the swarm regarding the ongoing search process, orienting the
same toward the most promising regions. This feature enhances

Number of tasks

200 400 600 800 1000

R
es

o
u

rc
e

u
ti

zi
za

ti
o

n
 (

%
)

30

40

50

60

70

80

90

100

SAEA
GAMR
RMPSO
WOAmM
FBOA

Number of tasks

200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
(t

as
k

s/
s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

SAEA
GAMR
RMPSO
WOAmM
FBOA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

442 | P a g e

www.ijacsa.thesai.org

the solution quality and convergence rates, which is evident in
the superior performance of FBOA in terms of the minimization
of resource wastage and higher throughput value. FBOA
maximizes the efficiency of a cloud environment since it ensures
equal workload distribution and optimal utilization of resources.

These results hold important implications for cloud
computing. With reduced makespan, improved resource
utilization, and higher throughput, FBOA can contribute to
creating efficient and scalable task scheduling solutions. For
instance, such enhancements in makespan, resource utilization,
and throughput shall enable service providers to reduce costs
and improve user reliability, rendering cloud computing
infrastructures more viable and competitive.

Furthermore, the adaptiveness of FBOA towards dynamic
workloads and heterogeneous resources makes it likely to enable
dynamic and real-time applications such as IoT ecosystems and
high-performance computing. Therefore, contributions in this
paper open new paths for further research in advanced cloud
management intelligence and thus set a roadmap for
optimizations in this rapidly changing field.

These benefits of FBOA are partially outweighed by several
shortcomings. First, the virtual butterfly mechanism may lead to
a significant increase in computation overhead in scenarios with
extremely high heterogeneity among tasks or VMs. Further, this
algorithm has only been experimented with in simulations with
certain datasets. The real implementation could bring in
unforeseen challenges, as scalability and adaptability may arise
in infrastructures that are more dynamic or involve multi-clouds.

VII. CONCLUSION

In this study, we proposed FBOA to cope with the
complexity of task allocation in cloud computing setups. By
integrating fuzzy logic into the standard BOA, FBOA
dynamically balanced exploration and exploitation, adapting to
varying workload demands and resource availability. This
adaptability ensured tasks were scheduled efficiently across
VMs, minimizing makespan, reducing resource wastage, and
improving overall system performance. The effectiveness of the
proposed FBOA was validated through comprehensive
simulations using the CloudSim toolkit, employing diverse
datasets. The results demonstrated that FBOA consistently
outperformed other metaheuristic algorithms such as WOA,
RMPSO, MRMPSO, SAEA, and GAMR across critical metrics,
including execution time, response time, throughput, resource
utilization, and makespan. Notably, FBOA achieved lower
increases in makespan, better resource allocation, and higher
throughput, making it a robust and scalable solution for cloud
environments. The superior performance of FBOA results from
its ability to adjust the search behavior using a fuzzy decision-
making mechanism and the introduction of the virtual butterfly
concept, which helps avoid premature convergence and
improves solution diversity. These features allow FBOA to
effectively respond to the varying demands of cloud computing
workloads, ensuring efficient resource use while meeting SLAs.
Future research could explore further enhancements to FBOA,
such as hybridizing it with other optimization techniques or
applying it to emerging cloud paradigms like edge and fog
computing to extend its applicability and effectiveness further.

REFERENCES

[1] B. Pourghebleh and N. J. Navimipour, "Data aggregation mechanisms in
the Internet of things: A systematic review of the literature and
recommendations for future research," Journal of Network and Computer
Applications, vol. 97, pp. 23-34, 2017.

[2] M. Shoeibi, A. E. Oskouei, and M. Kaveh, "A Novel Six-Dimensional
Chimp Optimization Algorithm—Deep Reinforcement Learning-Based
Optimization Scheme for Reconfigurable Intelligent Surface-Assisted
Energy Harvesting in Batteryless IoT Networks," Future Internet, vol. 16,
no. 12, p. 460, 2024, doi: https://doi.org/10.3390/fi16120460.

[3] B. Pourghebleh, N. Hekmati, Z. Davoudnia, and M. Sadeghi, "A roadmap
towards energy‐efficient data fusion methods in the Internet of Things,"
Concurrency and Computation: Practice and Experience, vol. 34, no. 15,
p. e6959, 2022.

[4] F. Kamalov, B. Pourghebleh, M. Gheisari, Y. Liu, and S. Moussa,
"Internet of medical things privacy and security: Challenges, solutions,
and future trends from a new perspective," Sustainability, vol. 15, no. 4,
p. 3317, 2023.

[5] A. Rahman et al., "Impacts of blockchain in software‐defined Internet
of Things ecosystem with Network Function Virtualization for smart
applications: Present perspectives and future directions," International
Journal of Communication Systems, p. e5429, 2023.

[6] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐ objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[7] I. Behera and S. Sobhanayak, "Task scheduling optimization in
heterogeneous cloud computing environments: A hybrid GA-GWO
approach," Journal of Parallel and Distributed Computing, vol. 183, p.
104766, 2024.

[8] B. Godavarthi, N. Narisetty, K. Gudikandhula, R. Muthukumaran, D.
Kapila, and J. Ramesh, "Cloud computing enabled business model
innovation," The Journal of High Technology Management Research, vol.
34, no. 2, p. 100469, 2023.

[9] A. Katal, S. Dahiya, and T. Choudhury, "Energy efficiency in cloud
computing data centers: a survey on software technologies," Cluster
Computing, vol. 26, no. 3, pp. 1845-1875, 2023.

[10] J. Zhou et al., "Comparative analysis of metaheuristic load balancing
algorithms for efficient load balancing in cloud computing," Journal of
cloud computing, vol. 12, no. 1, p. 85, 2023.

[11] V. Hayyolalam, B. Pourghebleh, A. A. Pourhaji Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
pp. 471-498, 2019.

[12] S. Gupta and S. Tripathi, "A comprehensive survey on cloud computing
scheduling techniques," Multimedia Tools and Applications, vol. 83, no.
18, pp. 53581-53634, 2024.

[13] M. Yadav and A. Mishra, "An enhanced ordinal optimization with lower
scheduling overhead based novel approach for task scheduling in cloud
computing environment," Journal of Cloud Computing, vol. 12, no. 1, p.
8, 2023.

[14] B. Pourghebleh, A. Aghaei Anvigh, A. R. Ramtin, and B. Mohammadi,
"The importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, vol. 24, no. 3, pp. 2673-2696, 2021.

[15] S. Arora and S. Singh, "Butterfly optimization algorithm: a novel
approach for global optimization," Soft computing, vol. 23, pp. 715-734,
2019.

[16] E. Bozorgi, S. Soleimani, S. K. Alqaiidi, H. R. Arabnia, and K. Kochut,
"Subgraph2vec: A random walk-based algorithm for embedding
knowledge graphs," arXiv preprint arXiv:2405.02240, 2024, doi:
https://doi.org/10.48550/arXiv.2405.02240.

[17] K. Dubey and S. C. Sharma, "A novel multi-objective CR-PSO task
scheduling algorithm with deadline constraint in cloud computing,"
Sustainable Computing: Informatics and Systems, vol. 32, p. 100605,
2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

443 | P a g e

www.ijacsa.thesai.org

[18] S. Mangalampalli, G. R. Karri, and A. A. Elngar, "An efficient trust-aware
task scheduling algorithm in cloud computing using firefly optimization,"
Sensors, vol. 23, no. 3, p. 1384, 2023.

[19] T. Bezdan, M. Zivkovic, N. Bacanin, I. Strumberger, E. Tuba, and M.
Tuba, "Multi-objective task scheduling in cloud computing environment
by hybridized bat algorithm," Journal of Intelligent & Fuzzy Systems, vol.
42, no. 1, pp. 411-423, 2022.

[20] Z. Wu and J. Xiong, "A novel task-scheduling algorithm of cloud
computing based on particle swarm optimization," International Journal
of Gaming and Computer-Mediated Simulations (IJGCMS), vol. 13, no.
2, pp. 1-15, 2021.

[21] S. Mangalampalli, G. R. Karri, and M. Kumar, "Multi objective task
scheduling algorithm in cloud computing using grey wolf optimization,"
Cluster Computing, vol. 26, no. 6, pp. 3803-3822, 2023.

[22] F. A. Saif, R. Latip, Z. M. Hanapi, and K. Shafinah, "Multi-objective grey
wolf optimizer algorithm for task scheduling in cloud-fog computing,"
IEEE Access, vol. 11, pp. 20635-20646, 2023.

[23] G. Narendrababu Reddy and S. P. Kumar, "Multi objective task
scheduling algorithm for cloud computing using whale optimization
technique," in Smart and Innovative Trends in Next Generation
Computing Technologies: Third International Conference, NGCT 2017,
Dehradun, India, October 30-31, 2017, Revised Selected Papers, Part I 3,
2018: Springer, pp. 286-297.

[24] X. Tang, C. Shi, T. Deng, Z. Wu, and L. Yang, "Parallel random matrix
particle swarm optimization scheduling algorithms with budget
constraints on cloud computing systems," Applied Soft Computing, vol.
113, p. 107914, 2021.

[25] B. M. H. Zade, N. Mansouri, and M. M. Javidi, "SAEA: A security-aware
and energy-aware task scheduling strategy by Parallel Squirrel Search
Algorithm in cloud environment," Expert Systems with Applications, vol.
176, p. 114915, 2021.

[26] Z. Peng, P. Pirozmand, M. Motevalli, and A. Esmaeili, "Genetic
Algorithm ‐ Based Task Scheduling in Cloud Computing Using
MapReduce Framework," Mathematical Problems in Engineering, vol.
2022, no. 1, p. 4290382, 2022.

