
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

444 | P a g e

www.ijacsa.thesai.org

Leveraging Large Language Models for Automated

Bug Fixing

Shatha Abed Alsaedi1, *, Amin Yousef Noaman2, Ahmed A. A. Gad-Elrab3, Fathy Elbouraey Eassa4, and Seif Haridi5

Department of Computer Science-Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589,

Saudi Arabia1, 2, 3, 4

Department of Computer Science-College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia1

School of Electrical Engineering and Computer Science, KTH, Sweden5

Abstract—Bug fixing, which is known as Automatic Program

Repair (APR), is a significant area of research in the software

engineering field. It aims to develop techniques and algorithms to

automatically fix bugs and generate fixing patches in the source

code. Researchers focus on developing many APR algorithms to

enhance software reliability and increase the productivity of

developers. In this paper, a novel model for automated bug fixing

has been developed leveraging large language models. The

proposed model accepts the bug type and the buggy method as

inputs and outputs the repaired version of the method. The

model can localize the buggy lines, debug the source code,

generate the correct patches, and insert them in the correct

locations. To evaluate the proposed model, a new dataset which

contains 53 Java source code files from four bug classes which

are Program Anomaly, GUI, Test-Code and Performance has

been presented. The proposed model successfully fixed 49 out of

53 codes using gpt-3.5-turbo and all 53 using gpt-4-0125-preview.

The results are notable, with the model achieving accuracies of

92.45% and 100% with gpt-3.5-turbo and gpt-4-0125-preview,

respectively. Additionally, the proposed model outperforms

several state-of-the-art APR models as it fixes all 40 buggy

programs in QuixBugs benchmark dataset.

Keywords—Bug fixing; automated program repair; large

language models; software debugging; software maintenance;

machine learning

I. INTRODUCTION

Automated Program Repair (APR) is considered one of the
most ideal tasks in automated software engineering, with the
potential to reduce the costs associated with software
development and maintenance [32]. APR refers to the
automated fixing of bugs or defects in the source code by a
software tool [31]. It aims to minimize human intervention in
the debugging process through the development and
implementation of intelligent algorithms capable of
automatically detecting and fixing errors in the source code.

Historically, APR techniques have relied on a variety of
approaches, ranging from genetic algorithms [12-14] to
symbolic execution [37], each with its strengths and
limitations. However, the advent of Large Language Models
(LLMs) in artificial intelligence has opened new directions for
research and application in software engineering tasks [18, 33,
34], offering promising prospects for enhancing the accuracy,
efficiency, and scope of automated bug fixes.

This paper introduces a novel model for APR that
leverages the capabilities of two state-of-the-art LLMs, gpt-
3.5-turbo and gpt-4-0125-preview, to automate the bug-fixing
process across various bug types. The proposed model
distinguishes itself by not only localizing bugs with high
accuracy but also generating and inserting the correct patches
into the source code. Accordingly, it significantly reduces the
time and resources traditionally required for bug fixing,
thereby accelerating the software development lifecycle, and
enhancing developer productivity.

To validate the effectiveness of the proposed model, a new
dataset consisting of 53 Java source code files, categorized
into four distinct bug classes: Program Anomaly, GUI, Test-
Code, and Performance was constructed. The performance of
the proposed model was evaluated against this dataset to
reveal its capability in bugs repair, with results indicating an
impressive accuracy rate. These findings not only support the
potential of integrating LLMs into the APR process but also
open new directions for future research in the field.

The proposed model distinguishes itself from other APR
models due to its ability to successfully debug code, localize
buggy lines, generate correct patches, and insert them in the
appropriate locations. It achieves this by only requiring the
buggy code and the bug type, without needing additional user
input, information about test cases, or prior knowledge of
patch attempts. This makes it a more efficient, practical, and
novel model.

The main contributions of this paper are as follows:

 Presenting a novelty in the use of gpt-4-0125-preview
for APR: To the best of our knowledge, we present the
first-of-its-kind model that leverages gpt-4-0125-
preview for automated program repair, enabling the
repair of multi-hunk and multi-fault bugs
simultaneously. This significantly extends the
capabilities of current APR models.

 Presenting a self-contained repair mechanism: Our
approach does not rely on external test cases, prior
patch knowledge, or feedback loops. Instead, it operates
only with the buggy method and bug type, making it
more efficient and less resource-intensive than
traditional APR techniques.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

445 | P a g e

www.ijacsa.thesai.org

 Illustrating an advanced fault localization: The
proposed model identifies and fix buggy lines of code
without requiring identification of a statement-level bug
localization, reducing the manual effort typically
needed in bug fixing.

 Building a new dataset: A new dataset comprising 53
Java programs across four bug categories: Program
Anomaly, GUI, Test-Code, and Performance has been
generated in this research.

 Presenting a comparison with state-of-the-art models:
This paper has demonstrated that the proposed model
not only achieves a higher bug fix rate than state-of-the-
art APR models, but also it achieved this with fewer
dependencies on external tools and inputs, making it a
more scalable and practical solution for real-world use.

The rest of this paper is structured as follows: Section II
outlines the motivation behind this research; Section III
reviews existing literature on automated bug fixing
algorithms; Section IV describes the proposed model; Section
V details the experimental study; Section VI presents the
experimental results; Section VII discusses the implications of
these results; and Section VIII concludes the paper.

II. MOTIVATION

To fix a bug in a software program, the location of the bug
must first be identified. This includes the buggy class, the
buggy method, and the buggy statement. Our previously
proposed bug localization model [22] employs an information-
retrieval-based approach to identify the buggy class and
method within the class; however, it does not localize the
buggy statement. On the other hand, spectrum-based fault
localization (SBFL) can identify more precise locations, such
as the buggy statement [19]. However, it requires a large
number of passing and failing test cases with test oracles,
which poses some limitations [19]. Furthermore, the

performance of APR is influenced more by the quality of test
cases than their quantity [19]. LLMs have shown significant
improvements in software engineering, demonstrating
exceptional performance in tasks such as code and document
generation [6]. Consequently, this research proposes an
automated bug fixing model that leverages a specific model of
large language models, the gpt-4-0125-preview model. The
main novelty in the proposed approach that it does not require
test cases or oracles, nor does it require prior statement-level
bug localization. It utilizes our previously proposed bug
prediction model [23] to detect the bug type, identifies the
buggy method via our localization model [22], and outputs the
fixed version of the method, enhancing the accuracy of
existing bug fixing models. The overall bug management
system is presented in Fig. 1.

III. RELATED WORK

Automated bug fixing, also known as automated program
repair (APR), is a prominent research topic that has attracted
significant interest from many researchers in the field. The
literature includes many existing studies that present
algorithms for automated bug repair. As illustrated in Fig. 2,
these studies can be classified into four main categories: bug
reports-based APR, constraint-based APR, search-based APR,
and learning-based APR. More details about each category
will be presented in the following paragraphs.

A. Bug reports-Based APR

Liu et al. [1] proposed R2Fix model for automatically
generating bug-fixing patches using bug reports. Their model
uses machine learning techniques, semantic patch generation
techniques, and past fix patterns to automatic bug fixing. They
evaluated their model for three bug types which are buffer
overflows, null pointer bugs, and memory leaks. In the
evaluation, they used three projects, the Linux kernel, Mozilla,
and Apache. Their model generated 57 correct patches.

Fig. 1. Overall architecture of the bug management system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

446 | P a g e

www.ijacsa.thesai.org

Koyuncu et al. [2] proposed a novel model, namely iFixR,
for bug localization and repair. In fact, their model is a bug
repair system driven by bug reports. Their model uses bug
reports as input. The main steps in their model are as follow:
first, the bugs reports are fed to an information retrieval-based
bug localizer; second, using fix pattern, patches are generated
and validated by regression testing; third, patches are ordered
by their priority for the developers. Their model did not have
any assumption on the availability of test cases. To evaluate
their model, they use and re-organize De-fects4J benchmark
dataset and found that their proposed model can generate and
recommend priority correct (and more plausible) patches for a
wide range of issues reported by users.

Fig. 2. Categories of existing APR approaches.

B. Constraint-Based APR

Constraint-based APR techniques use formal
specifications and constraint solvers to transform the program
repair problem into a constraint satisfaction problem. By
focusing on expression-level variations and quickly pruning
infeasible parts of the search space, these techniques can
efficiently generate patches that satisfy the desired program
behavior as specified by test cases or formal constraint [15].

Xuan et al. [3] proposed Nopol, a model for repairing
faulty conditional statements, their model uses test cases as
implicit program specifications. It generates patches by
identifying expression-level changes that satisfy the
constraints derived from the test cases.

Nguyen et al [4] introduced SemFix, a constraint-based
method for APR, their method uses test cases to guide the
patch synthesis process. The key features of SemFix include
the use of symbolic execution and constraint solving to
generate patches that ensure the program meets the desired
behavior as specified by the test cases.

C. Search-Based APR

Goues et al. [14] presented GenProg, a generic and
automated method for software repair, utilizing Genetic
Programming to evolve and generate effective patches for a
wide range of software defects. In the experiment, their
method successfully fixed bugs in 16 programs written in C
language which contain eight types of bugs. In their method,
they presented three main novel ideas: Firstly, their method
searches, in the program, at the statement level of the abstract
syntax tree (AST). Secondly, to repair the bugs, their method
does not introduce new code and uses only statements from
the program. Lastly, genetic operators are localized to
statements that are executed on the failing test case. However,

their method does not support multi-hunk or multi-language
program repair [15].

Yuan et al. [12] presented ARJA, a genetic programming-
based approach for automated program repair in Java. ARJA
suggests a new way of approaching automated program repair
by treating it as a multi-objective optimization problem. They
used a multi-objective optimization approach to minimize the
weighted failure rate and patch size simultaneously,
employing a multi-objective genetic algorithm (NSGA-II) to
search for simpler repairs. The key innovation lies in
designing a more detailed representation of patches, where the
search spaces for likely-faulty locations, operation types, and
ingredient statements are separated. This separation is
intended to enhance the effectiveness of the genetic
programming algorithm in finding appropriate solutions for
fixing bugs in Java programs. The authors conducted a large-
scale experimental study on both seeded and real-world bugs,
demonstrating the effectiveness of ARJA in generating correct
patches for a significant number of bugs compared to other
repair approaches.

Yang et al. [13] presented a novel approach that uses
similar bug fix information to automatic bug repair based on
Genetic programming (GP). In their model, the candidate
patches are generated by applying GP utilizing similar bug
repair information. Then, the candidate patches are verified,
by using a fitness function based on given test cases, if they
are adoptable or not. Finally, the model generates the patch to
fix the buggy code.

D. Learning-Based APR

Learning-based APR can be categorized further into two
subcategories which are traditional deep learning-based APR,
and Large Language Models-based (LLMs-based) APR.

1) Traditional deep learning-Based APR: Li et. al. [10]

used deep learning algorithms in APR and proposed a two-

level model, DLFix, which is based on deep learning algorithm

that applies code transformation learning which learns from

prior bug repairs and the surrounding code contexts of the

fixes. The first tier contains an RNN model that is used to learn

the context of bug fixes and the second tire uses the result from

the previous tire as an additional weighting input learn the code

transformations of the bug-fixing.

Lutellier et al. [16] presented a novel model, CoCoNuT,
utilizes a new context-aware neural machine translation
(NMT) architecture and an ensemble deep learning model
which consists of combination of convolutional neural
networks (CNNs) to automatically fix defects in multiple
languages. The faulty source code and its surrounding context
is separately represented using NMT. Their model utilizes
CNNs in the hierarchical features extraction. However, their
model cannot be used for multi-hunk bug fixing.

Huq et al. [17] proposed a novel sequence-to sequence
model, Review4Repair, a deep learning-based approach that
uses a neural machine translation (NMT) in APR. Their model
uses the code review information to increase the performance
of the automated bug fixing process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

447 | P a g e

www.ijacsa.thesai.org

DLFix, CoCoNuT, and Review4Repair all utilize context-
aware strategies for patch generation and have the ability to
fix multi-type bugs. However, all of them do not concern with
the design of fault localization and work with the help of
existing fault localization tools, and all do not have the
capability of multi-hunk and multi-fault repair [15].

2) LLMs-Based APR: Recent advancements in large pre-

trained LLMs offer a new direction for developing novel

program repair models that do not rely on historical bug fixes

[9]. Recently, some researchers proposed APR models based

on LLMs. These models can be divided further into two sub-

categories Infilling LLM-based APR, and Generative LLM-

based APR.

Xia et al. [8] utilized CodeBERT [7], a pre-trained
bimodal model designed for both programming languages
(PL) and natural languages (NL), to propose a novel model for
automated program repair (APR) called AlphaRepair. This
model, which does not require retraining or fine-tuning on
historical bug fixes datasets, represents the first cloze-style
APR approach. Unlike traditional NMT tasks, AlphaRepair
handles repair tasks as cloze tasks [15], aiming to predict the
correct code based on its surrounding context [9]. Evaluation
results showed that AlphaRepair can outperform state-of-the-
art APR approaches. Mashhadi and H. Hemmati [20]
presented a novel APR model which used CodeBERT [7] and
fine-tuned it on ManySStuBs4J small and large datasets to
generate fix patches for the buggy code. Evaluation results
showed that their model can generate correct fixes in 19-72%
of the cases.

Prenner & Robbes [21] presented a study which
investigates the performance of Codex [11], a GPT language
model that fine-tuned on GitHub code, in bug localization and
fixing tasks. They used a dataset of 40 bugs in Java and
Python and found that although Codex is not specifically
trained for automated program repair task, it is effective for
this task. Their observations also found that it is more
effective at fixing Python bugs than Java bugs.

Xia and Zhang [5] presented ChatRepair, a conversational
approach to automatically fixing bugs using ChatGPT. Their
model takes as input relevant test failure information,
enhancing bug-fixing capabilities of ChatGPT by learning
from the failures and successes of previous patching attempts
on the same bug. The model successfully fixed 162 out of 337
bugs from the Defects4j dataset.

Sobania et al. [18] presented an analysis of using ChatGPT
for automated bug repair. In their study, they utilized 40
programs written in the Python programming language from
the publicly available QuixBugs dataset to explore capabilities
of ChatGPT in the bug fixing process. They found that
providing ChatGPT with additional information (i.e., hints)
about the bugs significantly improved its performance,
resulting in a success rate that reached fixing 31 out of 40
bugs from the QuixBugs dataset. This performance
outperforms several state-of-the-art APR models.

Despite the extensive development of various APR
approaches, the field still faces significant challenges in

improving the precision and generalizability of bug fixes
across various programming environments. Existing models
often rely heavily on extensive test suites, historical bug fixes,
or detailed bug reports, which may not always be available or
sufficiently comprehensive. Furthermore, many of these
models struggle with complex bug fixes that require
understanding detailed programming contexts or generating
comprehensive patches. This paper aims to overcome some of
current limitations by implementing a novel APR model that
utilizes the advanced capabilities of LLMs such as gpt-3.5-
trubo and gpt-4-0125-preview. Our approach reduces
dependency on traditional inputs like test suites and historical
fixes by directly interpreting the context of buggy code and
generating appropriate fixes. By achieving this, the proposed
model not only aims to enhance the accuracy and applicability
of automated bug fixes but also to improve the repair process,
making it more efficient and less reliant on extensive manual
inputs. Thus, this paper aims to provide a foundation for future
research in employing large language models to refine and
expand automated repair algorithms.

IV. METHODOLOGY

This section illustrates the methodology that applied to
develop the bug fixing model.

A. The Architecture of the Proposed Model

The architecture of the proposed model is illustrated in
Fig. 3. This model takes the bug type and the buggy method as
input and outputs the fixed version of the method. The bug
types include Program Anomaly, GUI, Test-Code, and
Performance. Program Anomaly bug refers to bugs in the
source code files that occurs due to problems in the code [35]
such as logical and syntax errors [28], GUI category refers to
any bugs in the code that are related to the design of graphical
user interface design or event handling [35], Test-Code bugs
are occurs due to any problem which are related to the test
code [35], while Performance bugs are related to the problem
in the source code that are affect performance issues such as
memory usage and memory leaks [35]. The two inputs are fed
into the LLM using the prompt which is presented in the next
subsection. In this research, two LLMs were tested to
determine which one produces the highest accuracy in bug
fixing for the generated dataset. These LLMs are gpt-3.5-turbo
[24] and gpt-4-0125-preview [25]. As will be detailed in
Section VI, gpt-4-0125-preview proved to be more accurate
than gpt-3.5-turbo in terms of bug fixing and was therefore
chosen for the proposed model.

Fig. 3. High-level architecture of the proposed bug fixing model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

448 | P a g e

www.ijacsa.thesai.org

B. Large Language Models

LLMs are advanced deep learning algorithms capable of
understanding, summarizing, translating, predicting, and
generating content by leveraging large datasets [36]. In this
research two LLMs from GPT family are used: the gpt-3.5-
trubo model from GPT-3.5 and gpt-4-0125-preview model
from GPT-4.

gpt-3.5-turbo [24]: is a variant of the GPT-3.5 language
model. It is designed for enhanced performance and
efficiency. This model is a group of models that improves
upon GPT-3.5, enhances the ability to understand and generate
both natural language and code.

gpt-4-0125-preview [25]: is a variant of the GPT-4 model.
It is designed to give users a preview of the capabilities of the
GPT-4 architecture. gpt-4-0125-preview performs tasks such
as code generation more thoroughly than previous preview
models. Additionally, this model is intended to reduce
instances of "laziness" where the model does not fully
complete a task [30].

C. Prompt Engineering

Models based on GPT utilize the paradigm of learning
through prompts [26]. A prompt can be defined as a set of
instructions that are given to the LLM, such as gpt-4-0125-
preview, that program it by customizing it and/or improving or
refining its capabilities [26]. Additionally, it is used to instruct
the LLM to automate process or enforce rules [27]. Prompt
engineering involves crafting clear, specific, and bias-
mitigated prompts to guide the behaviour and output of AI
models like GPT. It requires defining tasks, providing
examples, and iterating on prompt design based on feedback
to optimize results. Domain-specific knowledge may be
necessary, and evaluation metrics help evaluate the
effectiveness of the designed prompt.

The main contribution of this work lies in the application
of LLMs for APR, and prompt engineering is an essential part
of this process. The design of the prompt significantly
influences the performance of the utilized LLM [6]. In the
proposed model, the prompt is structured to instruct the LLM
to accurately fix a buggy method. This prompt explicitly
informs the LLM of the buggy method and categorizes the bug
type. In the proposed model for automated bug fixing, a
specific prompt template is utilized to guide LLMs, like gpt-
3.5-turbo and gpt-4-0125-preview, to generate fixed versions
of buggy Java methods. The template consists of several
components: an objective statement, a placeholder for the
incorrect Java function ({buggy_function}), and a detailed
reason description placeholder ({reason_description}) that
provides context about the type of bug, including categories
such as GUI, Program Anomaly, Test-Code, and Performance.
This context helps the model to better understand the issue and
generate an appropriate fix. The template is structured as
follows:

 Objective Statement: "Your goal is to correct the
given Java function. The function will have a Javadoc
that describes the function's purpose, parameters, and
return value."

 Function Placeholder: {buggy_function}, which
includes the buggy method which may has a Javadoc.
The proposed model works effectively regardless of
whether the method includes a Javadoc description.

 Reason Description Placeholder:
{reason_description}, which explains the specific bug
type, such as GUI issues related to layout problems or
program anomaly involving logical errors.

The final prompt ends with "The correct Java function is:"
prompting the model to generate the fixed function based on
the provided details. This structured approach helps in
automating the repair of code by leveraging the advanced
capabilities of LLMs, thus enhancing the accuracy and
efficiency of APR without requiring additional user input or
test cases. This template plays a critical rule in achieving high
accuracy rates in bug fixing, as demonstrated in the
experiments conducted in this study.

V. EXPERIMENTAL DETAILS

This section outlines the experimental setup and describes
the implementation of the proposed bug fixing model. The
experiments were conducted on a computer equipped with an
x64 Intel® Core™ i7-10510U CPU @ 1.80GHz and 16.0 GB
of RAM, running a 64-bit Windows Operating System. The
model was developed using the Python programming
language on Google Colab.

A. Dataset

To demonstrate the effectiveness of the proposed model, it
is evaluated through two experiments. The first experiment
involves evaluating of the proposed model using a new
dataset. While in the second experiment, the proposed model
is evaluated using a publicly available dataset to compare its
performance against several state-of-the-art APR models.

1) Data collection and labeling: There are many reasons

behind generating a new dataset in our research. First, there is

no available dataset that contains source code files labeled in

the same bug categories that are predicted by our bug

prediction model. Secondly, we want to accurately evaluate

our proposed model in a way that avoids information leakage

from an existing dataset that might have already been seen by

the LLM.

The presented dataset contains 53 Java source code files.
These source code files were classified into four categories:
Program Anomaly, GUI, Test-Code, and Performance. The
Program Anomaly category contains bugs in the source code
that occur due to logical and syntax errors. The GUI category
refers to any bugs related to the design of graphical user
interfaces or event handling. Test-Code bugs occur due to
problems related to the test code. Performance bugs are related
to issues in the source code that affect performance, such as
memory usage, memory leaks, and missed performance
improvements. The source code snippets used in this study
were generated or collected from various sources available
online. This involved identifying, collecting, and inspecting
code snippets that contained bugs. The primary focus was on
extracting examples that clearly demonstrated typical software

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

449 | P a g e

www.ijacsa.thesai.org

defects across different categories. These sources included
open-source projects, coding forums, and educational
resources. To ensure the quality and relevance of the dataset,
each code snippet was carefully reviewed and categorized into
one of the four main bug types mentioned above. This labeling
process involved a detailed examination of each code snippet
to identify the specific type of bug it represented. For instance,
snippets involving inefficient coding practices or resource
management issues were labeled as Performance Bugs, while
those affecting the visual or functional aspects of the user
interface were categorized as GUI Bugs. Similarly, errors
within the test cases themselves were classified as Test-Code
Bugs, and various coding errors leading to abnormal behavior
or crashes were labeled as Program Anomaly Bugs.

This collaborative effort in data collection and labeling
ensured a comprehensive and well-organized dataset,
providing a solid foundation for analyzing common patterns
and implications of different bug types in software
engineering. Table I shows the number of Java source code
files in each category. The Program Anomaly category
contains 22 Java source code files, the GUI category contains
10 Java source code files, the Test-Code category includes 10
Java source code files, and the Performance category includes
11 Java source code files.

2) Analysis of the generated the dataset: The generated

dataset consists of faulty source code files categorized into

four main bug types: Performance, GUI, Test-Code, and

Program Anomaly. Each category has distinct characteristics

and common issues that are significant in understanding

software bugs. A detailed analysis is presented for each bug

type, their common patterns, and their effects in the following

subsections.

a) Performance bugs: Performance bugs are mostly

related to inefficient coding practices that reduce the runtime

performance of applications. In the generated dataset,

common issues include:

 Inefficient String Operations: Examples include
using += in loops for string concatenation and creating
new String objects unnecessarily.

 Resource Management Issues: Such as memory leaks
from not clearing lists and inefficient use of wrapper
classes leading to unnecessary boxing.

 Control Flow Issues: Infinite loops and concurrent
modification exceptions which can cause applications
to hang or crash.

 Recursion Problems: Recursive methods without
proper termination can lead to stack overflow errors.

 Other Issues: Incorrect access patterns that can
severely impact performance.

Effects: Performance bugs can cause significant
degradation in application efficiency, leading to higher
resource consumption and potential application failure.

Identifying and optimizing these areas is crucial for enhancing
software performance.

b) GUI Bugs: GUI bugs affect the usability and visual

consistency of the application interface. Common GUI issues

in the generated dataset include:

 Visibility and Layout Problems: Issues such as

frames not being visible when they should be,

incorrect component placements, and duplicate

buttons in layouts.

 Event Handling and Updates: Bugs like missing

initialization of components leading to null pointer

exceptions, and incomplete status bar updates.

 Drawing and Redrawing Inefficiencies: Inefficient

methods for redrawing components and missing

drawing code.

Effects: GUI bugs can lead to poor user experience by making

the interface confusing or non-functional. Proper testing and

validation of the user interface components are essential to

ensure smooth user interaction.

c) Test-Code Bugs

Test-Code bugs are errors within the test cases themselves

which reduce the reliability of testing. Common issues in the

generated dataset include:

 Duplicate and Incorrect Test Methods: Duplicate
methods and logical errors in the methods being tested.

 Uninitialized Variables: Leading to compilation
errors or incorrect test execution.

 Incorrect Assertions: Logical errors in assertions
which lead to incorrect test outcomes.

Effects: Bugs in test code can lead to false positives or
negatives, giving a misleading picture of the software quality.
Ensuring the correctness of test code is as important as the
application code itself.

d) Program anomaly bugs: Program Anomaly bugs

involve a wide range of coding errors that result in abnormal

behaviour or crashes. Common issues include:

 Programming Errors: Syntax errors and logical
errors.

 Control Flow Issues: Infinite loops and incorrect loop
conditions leading to unexpected behaviour.

 Null Pointer and Type Safety Issues: Potential null
pointer exceptions and type mismatches.

 Algorithmic and Recursive Errors: Issues in
algorithm implementation causing incorrect results or
infinite recursion.

Effects: Program Anomaly bugs are critical as they often
lead to crashes or incorrect program behaviour, significantly
affecting the reliability and correctness of the software code.
Comprehensive code review and rigorous testing are
necessary to detect and fix these issues.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

450 | P a g e

www.ijacsa.thesai.org

TABLE I. STATISTICS OF THE GENERATED DATASET

Bug Type Category Total Number of Java Source

Code Files in the category

GUI 10

Program Anomaly 22

Test-Code 10

Performance 11

3) QuixBugs benchmark dataset: The second experiment

evaluates the proposed model using a publicly available

benchmark dataset, QuixBugs[40], a collection of programs,

each containing a specific bug, designed to test and evaluate

the effectiveness of APR tools. The dataset includes 40

distinct algorithmic problems, such as sorting, graph traversal,

and dynamic programming, implemented in both Java and

Python. By providing a standardized set of challenges,

QuixBugs allows researchers to consistently compare the

performance of different APR methods. This dataset is widely

used in academic research to advance the field of automated

bug fixing. In the experiment, we use source code files written

in Java only.

B. Evaluation Metrics

To evaluate the performance of the proposed model, the
following evaluation metrics have been used.

 Number of Repaired Defects: It counts the defects
which were successfully fixed by the repair algorithm.
This metric is useful for demonstrating the capability
of the algorithm. The diversity of defect classes in
benchmark programs are crucial for the accuracy of
this metric [29].

 Repaired Defect Class: Identifies specific classes of
defects that the repair algorithm can successfully
address. This helps in understanding the scope and
specialization of the repair algorithm [29].

 Success Rate (%): The Success Rate of an automated
program repair algorithm is quantitatively defined as
the percentage of buggy programs that were
successfully repaired by the algorithm out of the total
number of buggy programs subjected to repair attempts.
It is calculated using the Formula (1).

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 (%) =

(
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝐹𝑖𝑥𝑒𝑑 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑢𝑔𝑔𝑦 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠
) × 100

VI. RESULTS

This section shows the results of the two experiments of
the proposed bug fixing model on the generated dataset and on
the benchmark, QuixBugs, dataset.

A. Results of the Proposed Model on the Generated Dataset

In the first experiment, the investigation of the achieved
results by the proposed model explored the effectiveness of
leveraging advanced language models, gpt-3.5- turbo and gpt-
4-0125-preview, in automatically identifying and fixing bugs
in software code. The analysis was structured around four

main categories of bugs: GUI, Program Anomaly, Test-Code,
and Performance. Table II shows the effectiveness of the
proposed model in accurately repairing code from the used
dataset.

The performance of the proposed model was evaluated
based on its ability to correctly identify and fix these bugs.
The proposed model can effectively localize the buggy lines,
generate the correct patches, and insert them in the correct
locations. The total accuracy of the proposed models (Success
Rate) was calculated as follows: For the gpt-3.5-turbo model,
the accuracy was 92.45%, while the gpt-4-0125-preview
model achieved an accuracy of 100%. Fig. 4 shows an
overview of the bug fixing results achieved by the proposed
model.

TABLE II. RESULTS OF THE PROPOSED BUG FIXING MODEL

Bug Type Correct Fixes by the

Proposed Model

(leveraging gpt-3.5-

turbo)

Correct Fixes by the

Proposed Model

(leveraging gpt-4-0125-

preview)

GUI 10 out of 10 (100%) 10 out of 10 (100%)

Program

Anomaly
21 out of 22 (95.45%) 22 out of 22 (100%)

Test-Code 10 out of 10 (100%) 10 out of 10 (100%)

Performance 8 out of 11 (72.73%) 11 out of 11 (100%)

Total Fixes

(Success Rate)
49 out of 53 (92.45%) 53 Out of 53 (100%)

B. Results of the Proposed Model on the QuixBugs Dataset

The proposed model that leverages gpt-4-0125-preview
model has been evaluated using QuixBugs dataset. In more
detail, the model achieved significant success, effectively
repairing all 40 programs. This assessment covered a range of
algorithmic problems, such as sorting, graph traversal, and
dynamic programming. Utilizing advanced language model,
gpt-4-0125-preview, our proposed APR model accurately
detected and fixed bugs, demonstrating its robustness and
efficiency.

Fig. 4. An overview of the bug-fixing results achieved by the proposed

model on the generated dataset.

0%

20%

40%

60%

80%

100%

 correct fixes by the proposed model (leveraging
gpt-3.5-turbo)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

451 | P a g e

www.ijacsa.thesai.org

VII. ANALYSIS AND DISCUSSION

This section presents a comprehensive analysis and
discussion of the results achieved by the proposed bug-fixing
model in both experiments. Additionally, in this section, we
answer the following research questions that address the
improvements made by the proposed model in APR field.

 Research Question 1: What is the effect of different
LLMs on the proposed bug fixing model on fixing
different categories of programming bugs?

 Research Question 2: How does the proposed bug
fixing model compare to several state-of-the-art APR
models?

 Research Question 3: What are the practical
improvements of integrating LLMs into the software
development lifecycle for bug fixing?

A. Discussion of the First Experiment

To answer the first research question, we analyze the
results of the first experiment.

Research Question 1: What is the effect of different
LLMs on the proposed bug fixing model on fixing different
categories of programming bugs?

Observations: Overall, the proposed model which
leverages gpt-4-0125-preview demonstrates a 100% success
rate, correctly fixing all 53 buggy source code files in the
dataset. In contrast, the proposed model which leverages gpt-
3.5-turbo achieves a 92.45% accuracy, successfully repairing
49 out of 53 buggy source code files. In the Program
Anomaly category, the proposed model that leverages gpt-3.5-
turbo fixed 21 out of 22 buggy source code files, while the
proposed model that leverages gpt-4-0125-preview fixed all
22. The slight improvement with the latter model might be
attributed to enhanced understanding or processing
capabilities of gpt-4-0125-preview, possibly due to larger
training data or improved algorithms. The most notable
difference is observed in the performance category, where the
proposed model that leverages gpt-3.5-turbo fixed 8 out of 11
bugs, whereas the proposed model that leverages gpt-4-0125-
preview fixed all 11. This improvement may reflect
advancements in the ability of gpt-4-0125-preview model to
understand and optimize code for performance, a complex
task that often requires deep under-standing and nuanced
changes. Both models perform equally well in fixing GUI
and Test-Code bugs, achieving a 100% success rate. This
indicates robust capabilities in addressing issues within these
specific categories, suggesting that the models have
effectively learned patterns or solutions relevant to these types
of bugs. Fig. 5 shows a buggy method in the dataset which is
from GUI category. Fig. 6 and Fig. 7 show the fixed versions
of this method using the proposed model (leveraging gpt-3.5-
turbo model and gpt-4-0125-Preview model, respectively).

From this example, it is clear that both proposed models
aim to address the issues found in the original code of the
buggy method, but they do so with different ways. The buggy
method has a bug in the loop that results in displaying
incorrect keypad layout (i.e. it displays numbers from 1 to 12
instead of numbers from 1 to 9).

Fig. 5. Buggy method from GUI category.

Fig. 6. Fixed method from GUI using the proposed model (leveraging gpt-

3.5-turbo model).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

452 | P a g e

www.ijacsa.thesai.org

Fig. 7. Fixed method from GUI using the proposed model (leveraging gpt-4-

0125-preview model).

Additionally, it incorrectly adds three "0" buttons instead
of the conventional "*", "0", and "#" buttons found on a
telephone keypad. Fig. 6 shows that the proposed model that
leverages gpt-3.5-turbo model modifies the name of method to
create TelephoneGUI, aligning with Java naming conventions
by clearly describing the action performed by the method.
This change emphasizes the importance of readability and
maintainability in code. Additionally, it fixes the keypad
layout to include "1" through "9", followed by "0", "*", and
"#". Although the bug in the telephone keypad GUI has been
successfully resolved, the arrangement of the buttons on the
bottom row remains incorrect. The expected order of the
buttons is * 0 #; however, the current implementation places
them in the order 0 * #. Additionally, this model lacks the
inclusion of import statements necessary for a standalone
application, assuming prior context or placement within a
larger source code. This approach addresses the discovered
bugs and improves the naming of the method for better clarity.
However, it fails to make the code independently usable by
omitting necessary import statements. Fig. 7 shows the fixing
code of the same buggy method using the proposed model that
leverages gpt-4-0125-preview model which offers a
comprehensive repairing by not only fixing the keypad layout
but also adding essential import statements and a javadoc
comment at the beginning of the method. This fixing assumes
no prior context, aiming to make the code snippet
independently compliable and understandable. The fixed
version of the code follows best practices by including a
detailed method description and fixing the keypad issue,
which matches the standard layout of a telephone keypad. This
model provides a more thorough fixing by ensuring that the
code is both correct and self-sufficient. It addresses not only
the initial logical issues but also enhances the readability and
reusability of the code by adding documentation and necessary
technical details for compilation.

Another example of bug fixing ability of the proposed
model can be illustrated by Fig. 8-10. Fig. 8 presents a buggy
code from the Test-Code category. The original buggy code

presents a simple divide method intended to perform division
operations while handling a potential division-by-zero error
through an exception. However, the accompanying test cases
contain several issues: incorrect assertions that do not match
the expected outcomes of the division operation, duplication
of test method names (which is not allowed in Java), and lack
of a test case to explicitly check for the division by zero
scenario.

Fig. 9 and Fig. 10 present the fixed versions of the buggy
code by the proposed model in the two experiments, the first
one when proposed fixing model leveraging gpt-3.5-turbo
model and the second one when the proposed fixing model
leveraging gpt-4-0125-preview model. Both models address
the core issues in the original code, but they do so with
varying levels of detail and adherence to best practices in
software testing and documentation. Fig. 9 shows that
leveraging gpt-3.5-turbo model in the proposed model fixes
the logical bugs in the test cases and suggests a structured
approach to handle different test scenarios, including dividing
by zero. It provides clear, separate test methods with
descriptive names that reflect their purpose: one for a
successful division operation and another for testing division
by zero. Improves readability and maintenance of the test suite
by clearly separating test cases. Additionally, it correctly
identifies the need for and implements a test case for division
by zero, enhancing the robustness of the tests. However, in
comparison with Fig. 10, the fixing is somewhat basic and
does not explicitly address best practices in exception
handling within test methods (e.g., using the expected
annotation attribute).

Fig. 8. Buggy code from Test-Code category.

Fig. 10 shows that leveraging gpt-4-0125-preview model
in the proposed model offers a comprehensive fixing by not
only repairing the test cases but also refining the testing
approach to align with best practices. It fixes the bugs,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

453 | P a g e

www.ijacsa.thesai.org

addresses method name duplication, and includes a detailed
approach to testing exceptions using the expected attribute of
the @Test annotation. This enhances the readability and
maintainability of the test suite by demonstrating advanced
testing techniques. However, the fixing assumes familiarity
with the expected attribute for testing exceptions, which may
require additional context for less experienced Java
developers.

Fig. 9. Fixed code from Test-Code category using the proposed model

(leveraging gpt-3.5-turbo model).

Fig. 10. Fixed code from Test-Code category using the proposed model

(leveraging gpt-4-0125-preview model).

The overall evaluation results provide a high-level view of
the effectiveness of each model in the experiment in
automated program repair. The best score achieved by the
proposed model that leverages gpt-4-0125-preview is
particularly significant, suggesting a notable advancement in
the capability of the proposed model in understanding and
fixing a wide range of software bugs.

The difference in accuracy between the two models
(92.45% for the model leveraging gpt-3.5-turbo vs. 100% for
the model leveraging gpt-4-0125-preview) could be attributed
to several factors inherent to the evolution of generative pre-
trained transformer models, such as increased model size,
more diverse and extensive training data, or refined training
techniques that improve understanding and generation
capabilities.

B. Discussion of the Second Experiment

To answer the second research question, we analyze the
results of the second experiment.

Research Question 2: How does the proposed bug fixing
model compare to several state-of-the-art APR models?

Observations: To indicate the effectiveness of the
proposed model, a comparison with the performance of
several state-of-the-art APR models using the same dataset is
crucial. Therefore, the achieved results of the proposed model
on the QuixBugs dataset are compared to four studies which
are:

 The results of the study presented by authors in the
paper [39], involve an empirical study on automated
bug repair using QuixBugs benchmark dataset.

 AlphaRepair [8] represents the first cloze-style APR
approach, and it handles repair tasks as cloze tasks to
predict the correct code based on its surrounding
context.

 CoCoNut [16] which utilizes a new context-aware
neural machine translation architecture and an
ensemble deep learning model to fix buggy code.

 CURE [38] which is a novel APR tool that focuses on
resolving software bugs through a sophisticated,
context-aware neural machine translation (NMT)
approach. Its main goal is to enhance the accuracy and
effectiveness of bug fixes by utilizing detailed
contextual information and robust neural network
models. This allows CURE to generate more accurate
patches by understanding not only the buggy code but
also the surrounding context, significantly improving
the quality and reliability of the fixes.

Table III illustrates the total number of QuixBugs
programs out of 40 that are correctly fixed by the mentioned
state of the art APR models and our proposed bug fixing
model which leverages gpt-4-0125-preview model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

454 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARISON BETWEEN SEVERAL APR ON QUIXBUGS

DATASET

Reference Total Number of Correctly

Fixed Programs

Success Rate

Ye et al. [39] 16 out of 40 40%

AlphaRepair [8] 28 out of 40 70%

CoCoNut [16] 13 out of 40 32.5%

CURE [38] 26 out of 40 65%

The Proposed Model 40 out of 40 100%

As observed from this table, our proposed model achieves
the best results, successfully fixing all buggy programs in the
dataset. Additionally, our proposed model does not need
additional information about test cases, previous knowledge of
patch attempts, nor additional follow up conversations which
make it more efficient, practical and has its own novelty
among other APR models as it only needs the buggy code and
the bug type to debug the code, localized the buggy lines,
generate the correct patches, and insert them in the right
locations. Therefore, our proposed model outperforms all
these state-of-the art APR models.

Furthermore, it was observed from this experiment that the
proposed model not only fixed the identified bug, but also
effectively enhanced the code by addressing the edge cases,
aligning with Java naming conventions, and following better
programming practices. In more details, Fig. 11 and Fig. 12
show the buggy version of TO_BASE.java program of
QuixBugs dataset and its fixed version by the proposed model.
Fig. 11 shows the buggy version of this program. The purpose
of this Java program is to convert a given integer (num) into a
string representation of that number in a specified base (b).
The base can range from 2 to 36, allowing for conversion to
binary, octal, decimal, hexadecimal, and other bases up to
base 36, which includes digits 0-9 and letters A-Z. The main
bug in this program is related to how the result string is
constructed. In more detail, the code appends each new digit
to the end of the result string, which results in the digits being
in reverse order. Furthermore, there is no handling for the
edge case where the input number is zero. From Fig. 12, the
improvements made by the proposed model can be observed,
which are:

 It fixes the bug; the fixed method reverses the resulting
string ensuring the digits are in the correct order.

 It adds base validation; the fixed method includes a
validation check to ensure the base is between 2 and 36.
If the base is invalid, it returns an empty string.

 It adds zero handling; the fixed method correctly
handles the case when num is zero, returning "0".

 It uses StringBuilder for efficiency; the fixed method
uses StringBuilder for string concatenation, which is
more efficient than repeatedly creating new string
objects.

 It increases the clarity of the code; the fixed method is
well-documented, explaining the purpose, parameters,

and return value, making it easier to understand and
maintain.

Therefore, the proposed model has significantly improved
the original buggy method by adding necessary validations,
handling edge cases, and improving performance through
efficient string manipulation. These changes enhance the
robustness of the method, efficiency, and readability, ensuring
it works correctly across a wide range of inputs.

Furthermore, it was observed that the proposed model has
the ability of multi-hunk and multi-fault repair. In more detail,
the proposed model shows an ability for multi-hunk and multi-
fault repair in software code. It can navigate and rectify issues
spread across different parts of the source code (multi-hunk)
and address several distinct types of faults within a single
execution (multi-fault).

Fig. 11. Buggy TO_BASE.java from QuixBugs.

Fig. 12. Fixed TO_BASE.java by the proposed model.

The proposed model that leverages gpt-4-0125-preview
model, in particular, demonstrates a higher level of
sophistication in applying best practices, suggesting an
advanced understanding and capability in handling complex
repair scenarios efficiently. This analysis supports the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

455 | P a g e

www.ijacsa.thesai.org

utilization of LLMs in automating comprehensive code repair
tasks, highlighting their role in supporting and enhancing
software development and maintenance processes.

Research Question 3: What are the practical
improvements of integrating LLMs into the software
development lifecycle for bug-fixing?

Observations: Integrating LLMs into the software
development lifecycle for bug fixing has several practical
improvements include:

 Increased Productivity: Developers can focus on
higher-level tasks, as LLMs handle routine bug fixing,
leading to increased productivity and efficiency.

 Improved Code Quality: Automated bug fixing can
lead to more consistent and reliable code quality, as
LLMs can systematically apply best practices and
coding standards.

 Reduced Time-to-Market: Faster bug detection and
fixing reduce the overall development cycle time,
enabling faster releases and updates.

 Enhanced Collaboration: LLMs can help in bridging
the gap between different team members (e.g.,
developers and testers) by providing clear and
actionable bug debugging and fixes.

VIII. CONCLUSION

This paper introduced a novel approach to APR, utilizing
LLMs to automate the bug-fixing process. Through the
leveraging of gpt-3.5-turbo and gpt-4-0125-preview models, a
significant leap forward in the field of software engineering
has been demonstrated, particularly in enhancing software
reliability and developer productivity. The proposed model
presents an ability to accurately localize bugs across various
code segments, debug the source code, generate correct
patches, and integrate these fixes into the appropriate locations
within the source code. The evaluation of the proposed
model, conducted on a diverse dataset comprising 53 Java
source code files categorized into four distinct bug categories,
confirms the efficiency of the proposed model. The results
show that the gpt-3.5-turbo model achieved an impressive
success rate, successfully repairing 49 out of 53 source code
files, equivalent to an accuracy of 92.45%. In contrast, the gpt-
4-0125-preview model exhibited an exceptional performance,
achieving 100% success rate in bug fixing. Additionally, the
proposed model was evaluated using the QuixBugs
benchmark dataset, and it can correctly fix all its Java buggy
programs. The proposed model was compared to several state-
of-the-art APR models and outperformed them. Such
outcomes not only highlight the robustness of the proposed
model in handling many types of bugs but also, reflect the
advancements in large language-based program repair
techniques. Furthermore, the comparative analysis offers
valuable insights into the evolution of AI capabilities,
particularly in the context of software debugging and
maintenance. The superior performance of the gpt-4-0125-
preview model, characterized by its ability to execute multi-

hunk and multi-fault repairs with a higher degree of accuracy,
points towards a promising future where the boundaries of
automated software engineering can be expanded
significantly. As the field continues to evolve, future research
can uncover more advanced models and methodologies,
further enhancing the scope and accuracy of automated bug
fixing.

ACKNOWLEDGMENT

Deanship of Scientific Research (DSR) at King Abdulaziz
University (KAU), Jeddah, Saudi Arabia, funded this project
under grant no. (KEP-PhD-102-611-1443). The authors,
therefore, acknowledge DSR for the financial support.

REFERENCES

[1] C. Liu, J. Yang, L. Tan, and M. Hafiz, "R2Fix: Automatically
Generating Bug Fixes from Bug Reports," in Proc. 2013 IEEE Sixth Int.
Conf. Softw. Testing, Verification and Validation, 2013, doi:
10.1109/ICST.2013.24.

[2] A. Koyuncu et al., "IFIXR: Bug Report Driven Program Repair," in
Proc. 2019 27th ACM Joint Meeting on European Softw. Eng. Conf. and
Symp. on the Foundations of Softw. Eng., Aug. 2019, doi:
10.1145/3338906.3338935.

[3] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote, T.
Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair of
conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, 2016.

[4] D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE), pp. 772–781, IEEE, 2013.

[5] H. S. Xia and L. Zhang, "Keep the Conversation Going: Fixing 162 out
of 337 Bugs for $0.42 Each Using ChatGPT," arXiv preprint
arXiv:2304.00385, 2023. [Online]. Available:
https://arxiv.org/pdf/2304.00385.pdf [Accessed: Feb. 8, 2024].

[6] W. Ma et al., "LLMs: Understanding Code Syntax and Semantics for
Code Analysis," 2024, arXiv:2305.12138. [Online]. Available:
https://arxiv.org/pdf/2305.12138.pdf [Accessed: Mar. 25, 2024].

[7] Z. Feng et al., "Codebert: A Pre-Trained Model for Programming and
Natural Languages," 2020, arXiv:2002.08155. [Online]. Available:
https://arxiv.org/abs/2002.08155 [Accessed: Jan. 29, 2024].

[8] C. S. Xia and L. Zhang, "Less Training, More Repairing Please:
Revisiting Automated Program Repair Via Zero-Shot Learning," in
Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
, pp. 959–971, 2022.

[9] C. S. Xia, Y. Wei, and L. Zhang, "Automated Program Repair in the Era
of Large Pre-Trained Language Models," in Proceedings of the 45th
International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery, May 2023, doi:
10.1109/ICSE48619.2023.00129.

[10] Y. Li, S. Wang, and T. N. Nguyen, "DLFix: Context-Based Code
Transformation Learning for Automated Program Repair," in
Proceedings of the 42nd ACM/IEEE International Conference on
Software Engineering (ICSE’20). 602 614., pp. 602–614, 2020.

[11] M. Chen et al., "Evaluating Large Language Models Trained on Code,"
2021. [Online]. Available: http://arxiv.org/abs/2107.03374 [Accessed:
Mar. 20, 2024].

[12] Y. Yuan and W. Banzhaf, "ARJA: Automated Repair of Java Programs
via Multi-Objective Genetic Programming," IEEE Trans. Softw. Eng.,
vol. 46, pp. 1040–1067, 2020, doi: 10.1109/TSE.2018.2874648.

[13] G. Yang, Y. Jeong, K. Min, J. Lee, and B. Lee, "Applying Genetic
Programming with Similar Bug Fix Information to Automatic Fault
Repair," Symmetry, vol. 10, p. 92, 2018, doi: 10.3390/sym10040092.

[14] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, "GenProg: A
Generic Method for Automatic Software Repair," IEEE Trans. Softw.
Eng., vol. 38, pp. 54–72, 2012.

https://arxiv.org/pdf/2304.00385.pdf
https://arxiv.org/pdf/2305.12138.pdf
https://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2107.03374

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

456 | P a g e

www.ijacsa.thesai.org

[15] K. Huang et al., "A Survey on Automated Program Repair Techniques,"
2023, arXiv:2303.1. [Online]. Available: https://arxiv.org/abs/2303.1
[Accessed: Mar. 17, 2024].

[16] T. Lutellier et al., "Coconut: Combining Context-Aware Neural
Translation Models Using Ensemble for Program Repair," in
Proceedings of the 29th ACMSIGSOFT International Symposium on
Software Testing and Analysis, pp. 101–114, Jul. 2020, doi:
10.1145/3395363.3397369.

[17] F. Huq, M. Hasan, M. M. A. Haque, S. Mahbub, A. Iqbal, and T.
Ahmed, "Review4Repair: Code Review Aided Automatic Program
Repairing," Inf. Softw. Technol., vol. 143, p. 106765, 2022.

[18] D. Sobania, M. Briesch, C. Hanna, and J. Petke, "An Analysis of the
Automatic Bug Fixing Performance of ChatGPT," in Proc. 2023
IEEE/ACM Int. Workshop on Automated Program Repair (APR),
Melbourne, Australia, 2023, pp. 23-30, doi:
10.1109/APR59189.2023.00012.

[19] J. Zhang et al., "Revisiting Test Cases to Boost Generate-and-Validate
Program Repair," in Proc. 2021 IEEE Int. Conf. Softw. Maintenance and
Evolution (ICSME), Sep. 2021, doi: 10.1109/ICSME52107.2021.00010.

[20] E. Mashhadi and H. Hemmati, "Applying Codebert for Automated
Program Repair of Java Simple Bugs," in Proc. 2021 IEEE/ACM 18th
Int. Conf. Mining Softw. Repositories (MSR), Mar. 2021, doi:
10.1109/MSR52588.2021.00063.

[21] J. A. Prenner and R. Robbes, "Automatic Program Repair with OpenAI's
Codex: Evaluating QuixBugs," 2021, arXiv preprint arXiv:2111.03922.
[Online]. Available: https://arxiv.org/abs/2111.03922 [Accessed: Jan.
31, 2024].

[22] S. Alsaedi, A. A. Gad-Elrab, A. Noaman, and F. Eassa, "Two-Level
Information-Retrieval-Based Model for Bug Localization Based on Bug
Reports," Electronics, vol. 13, p. 321, 2024.

[23] S. A. Alsaedi, A. Y. Noaman, A. A. Gad-Elrab, and F. E. Eassa,
"Nature-based prediction model of bug reports based on Ensemble
Machine Learning Model," IEEE Access, vol. 11, pp. 63916–63931,
2023.

[24] OpenAI, "GPT-3.5 Turbo Model Documentation," OpenAI Platform,
2024. [Online]. Available: https://platform.openai.com/docs/models/gpt-
3-5-turbo [Accessed: Apr. 15, 2024].

[25] OpenAI, "GPT-4 Turbo and GPT-4 Model Documentation," OpenAI
Platform, 2024. [Online]. Available:
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
[Accessed: Apr. 15, 2024].

[26] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, "Pretrain,
Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing," ACM Comput. Surv., vol. 55, pp. 1–35,
2023.

[27] J. White et al., "A Prompt Pattern Catalog to Enhance Prompt
Engineering with ChatGPT," 2023, arXiv preprint arXiv:2302.11382.
[Online]. Available: https://arxiv.org/abs/2302.11382 [Accessed: Mar.
21, 2024].

[28] R. M. Karampatsis and C. Sutton, "How Often Do Single-Statement
Bugs Occur? The ManySStuBs4J Dataset," in Proc. 17th Int. Conf.
Mining Softw. Repositories, Jun. 2020, pp. 573–577, doi:
10.1145/3379597.3387491.

[29] Y. Qi, W. Liu, W. Zhang, and D. Yang, "How to Measure the
Performance of Automated Program Repair," in Proc. 2018 5th Int.
Conf. Information Sci. and Control Eng. (ICISCE), Jul. 2018, doi:
10.1109/ICISCE.2018.00059.

[30] OpenAI, "New Embedding Models and API Updates," OpenAI Blog,
2024. [Online]. Available: https://openai.com/blog/new-embedding-
models-and-api-updates [Accessed: Apr. 15, 2024].

[31] A. Zirak and H. Hemmati, "Improving Automated Program Repair with
Domain Adaptation," ACM Trans. Softw. Eng. Methodol., vol. 33, pp. 1–
43, 2024, doi: 10.1145/3631972.

[32] L. Gazzola, D. Micucci, and L. Mariani, "Automatic Software Repair: A
Survey," IEEE Trans. Softw. Eng., vol. 45, pp. 34–67, 2017.

[33] J. Wang et al., "Software Testing with Large Language Models: Survey,
Landscape, and Vision," IEEE Trans. Softw. Eng., doi:
10.1109/TSE.2024.3368208.

[34] X. Du et al., "Evaluating Large Language Models in Class-Level Code
Generation," in Proc. IEEE/ACM 46th Int. Conf. Softw. Eng., Apr. 2024,
doi: 10.1145/3597503.3639219.

[35] H. A. Ahmed, N. Z. Bawany, and J. A. Shamsi, "CaPBug-A Framework
for Automatic Bug Categorization and Prioritization Using NLP and
Machine Learning Algorithms," IEEE Access, vol. 9, pp. 50496–50512,
2021, doi: 10.1109/ACCESS.2021.3069248.

[36] NVIDIA, "What Are Large Language Models?" NVIDIA Glossary.
[Online]. Available: https://www.nvidia.com/en-us/glossary/large-
language-models/ [Accessed: Apr. 20, 2024].

[37] T. Nazir and M. Pinzger, "SymDefFix—Sound Automatic Repair Using
Symbolic Execution," 2022, arXiv preprint arXiv:2209.03815. [Online].
Available: https://arxiv.org/abs/2209.03815 [Accessed: Apr. 17, 2024].

[38] T. Jiang, T. Lutellier, and L. Tan, "Cure: Code-aware neural machine
translation for automatic program repair," in Proc. 2021 IEEE/ACM
43rd Int. Conf. Softw. Eng. (ICSE), Madrid, Spain, 22–30 May 2021,
IEEE: New York, NY, USA, 2021, pp. 1161–1173.

[39] H. Ye, M. Martinez, T. Durieux, and M. Monperrus, "A comprehensive
study of automatic program repair on the QuixBugs benchmark," J. Syst.
Softw., vol. 171, p. 110825, 2021.

[40] J. Koppel, "QuixBugs," [Online]. Available:
https://github.com/jkoppel/QuixBugs/tree/master/ [Accessed: Jun. 2,
2024].

https://arxiv.org/abs/2303.1
https://arxiv.org/abs/2111.03922
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://arxiv.org/abs/2302.11382
https://openai.com/blog/new-embedding-models-and-api-updates
https://openai.com/blog/new-embedding-models-and-api-updates
https://www.nvidia.com/en-us/glossary/large-language-models/
https://www.nvidia.com/en-us/glossary/large-language-models/
https://arxiv.org/abs/2209.03815
https://github.com/jkoppel/QuixBugs/tree/master/

