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Abstract—Bug fixing, which is known as Automatic Program 

Repair (APR), is a significant area of research in the software 

engineering field. It aims to develop techniques and algorithms to 

automatically fix bugs and generate fixing patches in the source 

code. Researchers focus on developing many APR algorithms to 

enhance software reliability and increase the productivity of 

developers. In this paper, a novel model for automated bug fixing 

has been developed leveraging large language models. The 

proposed model accepts the bug type and the buggy method as 

inputs and outputs the repaired version of the method. The 

model can localize the buggy lines, debug the source code, 

generate the correct patches, and insert them in the correct 

locations.  To evaluate the proposed model, a new dataset which 

contains 53 Java source code files from four bug classes which 

are Program Anomaly, GUI, Test-Code and Performance has 

been presented. The proposed model successfully fixed 49 out of 

53 codes using gpt-3.5-turbo and all 53 using gpt-4-0125-preview. 

The results are notable, with the model achieving accuracies of 

92.45% and 100% with gpt-3.5-turbo and gpt-4-0125-preview, 

respectively. Additionally, the proposed model outperforms 

several state-of-the-art APR models as it fixes all 40 buggy 

programs in QuixBugs benchmark dataset. 
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language models; software debugging; software maintenance; 
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I. INTRODUCTION 

Automated Program Repair (APR) is considered one of the 
most ideal tasks in automated software engineering, with the 
potential to reduce the costs associated with software 
development and maintenance [32]. APR refers to the 
automated fixing of bugs or defects in the source code by a 
software tool [31]. It aims to minimize human intervention in 
the debugging process through the development and 
implementation of intelligent algorithms capable of 
automatically detecting and fixing errors in the source code. 

Historically, APR techniques have relied on a variety of 
approaches, ranging from genetic algorithms [12-14] to 
symbolic execution [37], each with its strengths and 
limitations. However, the advent of Large Language Models 
(LLMs) in artificial intelligence has opened new directions for 
research and application in software engineering tasks [18, 33, 
34], offering promising prospects for enhancing the accuracy, 
efficiency, and scope of automated bug fixes. 

This paper introduces a novel model for APR that 
leverages the capabilities of two state-of-the-art LLMs, gpt-
3.5-turbo and gpt-4-0125-preview, to automate the bug-fixing 
process across various bug types. The proposed model 
distinguishes itself by not only localizing bugs with high 
accuracy but also generating and inserting the correct patches 
into the source code. Accordingly, it significantly reduces the 
time and resources traditionally required for bug fixing, 
thereby accelerating the software development lifecycle, and 
enhancing developer productivity. 

To validate the effectiveness of the proposed model, a new 
dataset consisting of 53 Java source code files, categorized 
into four distinct bug classes: Program Anomaly, GUI, Test-
Code, and Performance was constructed. The performance of 
the proposed model was evaluated against this dataset to 
reveal its capability in bugs repair, with results indicating an 
impressive accuracy rate. These findings not only support the 
potential of integrating LLMs into the APR process but also 
open new directions for future research in the field. 

The proposed model distinguishes itself from other APR 
models due to its ability to successfully debug code, localize 
buggy lines, generate correct patches, and insert them in the 
appropriate locations. It achieves this by only requiring the 
buggy code and the bug type, without needing additional user 
input, information about test cases, or prior knowledge of 
patch attempts. This makes it a more efficient, practical, and 
novel model. 

The main contributions of this paper are as follows: 

 Presenting a novelty in the use of gpt-4-0125-preview 
for APR: To the best of our knowledge, we present the 
first-of-its-kind model that leverages gpt-4-0125-
preview for automated program repair, enabling the 
repair of multi-hunk and multi-fault bugs 
simultaneously. This significantly extends the 
capabilities of current APR models. 

 Presenting a self-contained repair mechanism: Our 
approach does not rely on external test cases, prior 
patch knowledge, or feedback loops. Instead, it operates 
only with the buggy method and bug type, making it 
more efficient and less resource-intensive than 
traditional APR techniques. 
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 Illustrating an advanced fault localization: The 
proposed model identifies and fix buggy lines of code 
without requiring identification of a statement-level bug 
localization, reducing the manual effort typically 
needed in bug fixing. 

 Building a new dataset: A new dataset comprising 53 
Java programs across four bug categories: Program 
Anomaly, GUI, Test-Code, and Performance has been 
generated in this research. 

 Presenting a comparison with state-of-the-art models: 
This paper has demonstrated that the proposed model 
not only achieves a higher bug fix rate than state-of-the-
art APR models, but also it achieved this with fewer 
dependencies on external tools and inputs, making it a 
more scalable and practical solution for real-world use. 

The rest of this paper is structured as follows: Section II 
outlines the motivation behind this research; Section III 
reviews existing literature on automated bug fixing 
algorithms; Section IV describes the proposed model; Section 
V details the experimental study; Section VI presents the 
experimental results; Section VII discusses the implications of 
these results; and Section VIII concludes the paper. 

II. MOTIVATION 

To fix a bug in a software program, the location of the bug 
must first be identified. This includes the buggy class, the 
buggy method, and the buggy statement. Our previously 
proposed bug localization model [22] employs an information-
retrieval-based approach to identify the buggy class and 
method within the class; however, it does not localize the 
buggy statement. On the other hand, spectrum-based fault 
localization (SBFL) can identify more precise locations, such 
as the buggy statement [19]. However, it requires a large 
number of passing and failing test cases with test oracles, 
which poses some limitations [19]. Furthermore, the 

performance of APR is influenced more by the quality of test 
cases than their quantity [19]. LLMs have shown significant 
improvements in software engineering, demonstrating 
exceptional performance in tasks such as code and document 
generation [6]. Consequently, this research proposes an 
automated bug fixing model that leverages a specific model of 
large language models, the gpt-4-0125-preview model. The 
main novelty in the proposed approach that it does not require 
test cases or oracles, nor does it require prior statement-level 
bug localization. It utilizes our previously proposed bug 
prediction model [23] to detect the bug type, identifies the 
buggy method via our localization model [22], and outputs the 
fixed version of the method, enhancing the accuracy of 
existing bug fixing models. The overall bug management 
system is presented in Fig. 1. 

III. RELATED WORK 

Automated bug fixing, also known as automated program 
repair (APR), is a prominent research topic that has attracted 
significant interest from many researchers in the field. The 
literature includes many existing studies that present 
algorithms for automated bug repair. As illustrated in Fig. 2, 
these studies can be classified into four main categories: bug 
reports-based APR, constraint-based APR, search-based APR, 
and learning-based APR. More details about each category 
will be presented in the following paragraphs. 

A. Bug reports-Based APR 

Liu et al. [1] proposed R2Fix model for automatically 
generating bug-fixing patches using bug reports. Their model 
uses machine learning techniques, semantic patch generation 
techniques, and past fix patterns to automatic bug fixing. They 
evaluated their model for three bug types which are buffer 
overflows, null pointer bugs, and memory leaks. In the 
evaluation, they used three projects, the Linux kernel, Mozilla, 
and Apache. Their model generated 57 correct patches. 

 
Fig. 1. Overall architecture of the bug management system.
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Koyuncu et al. [2] proposed a novel model, namely iFixR, 
for bug localization and repair. In fact, their model is a bug 
repair system driven by bug reports. Their model uses bug 
reports as input. The main steps in their model are as follow: 
first, the bugs reports are fed to an information retrieval-based 
bug localizer; second, using fix pattern, patches are generated 
and validated by regression testing; third, patches are ordered 
by their priority for the developers.  Their model did not have 
any assumption on the availability of test cases. To evaluate 
their model, they use and re-organize De-fects4J benchmark 
dataset and found that their proposed model can generate and 
recommend priority correct (and more plausible) patches for a 
wide range of issues reported by users. 

 

Fig. 2. Categories of existing APR approaches. 

B. Constraint-Based APR 

Constraint-based APR techniques use formal 
specifications and constraint solvers to transform the program 
repair problem into a constraint satisfaction problem. By 
focusing on expression-level variations and quickly pruning 
infeasible parts of the search space, these techniques can 
efficiently generate patches that satisfy the desired program 
behavior as specified by test cases or formal constraint [15]. 

Xuan et al. [3] proposed Nopol, a model for repairing 
faulty conditional statements, their model uses test cases as 
implicit program specifications. It generates patches by 
identifying expression-level changes that satisfy the 
constraints derived from the test cases. 

Nguyen et al [4] introduced SemFix, a constraint-based 
method for APR, their method uses test cases to guide the 
patch synthesis process. The key features of SemFix include 
the use of symbolic execution and constraint solving to 
generate patches that ensure the program meets the desired 
behavior as specified by the test cases. 

C. Search-Based APR 

Goues et al. [14] presented GenProg, a generic and 
automated method for software repair, utilizing Genetic 
Programming to evolve and generate effective patches for a 
wide range of software defects. In the experiment, their 
method successfully fixed bugs in 16 programs written in C 
language which contain eight types of bugs. In their method, 
they presented three main novel ideas: Firstly, their method 
searches, in the program, at the statement level of the abstract 
syntax tree (AST). Secondly, to repair the bugs, their method 
does not introduce new code and uses only statements from 
the program. Lastly, genetic operators are localized to 
statements that are executed on the failing test case. However, 

their method does not support multi-hunk or multi-language 
program repair [15]. 

Yuan et al. [12] presented ARJA, a genetic programming-
based approach for automated program repair in Java. ARJA 
suggests a new way of approaching automated program repair 
by treating it as a multi-objective optimization problem. They 
used a multi-objective optimization approach to minimize the 
weighted failure rate and patch size simultaneously, 
employing a multi-objective genetic algorithm (NSGA-II) to 
search for simpler repairs. The key innovation lies in 
designing a more detailed representation of patches, where the 
search spaces for likely-faulty locations, operation types, and 
ingredient statements are separated. This separation is 
intended to enhance the effectiveness of the genetic 
programming algorithm in finding appropriate solutions for 
fixing bugs in Java programs. The authors conducted a large-
scale experimental study on both seeded and real-world bugs, 
demonstrating the effectiveness of ARJA in generating correct 
patches for a significant number of bugs compared to other 
repair approaches. 

Yang et al. [13] presented a novel approach that uses 
similar bug fix information to automatic bug repair based on 
Genetic programming (GP). In their model, the candidate 
patches are generated by applying GP utilizing similar bug 
repair information. Then, the candidate patches are verified, 
by using a fitness function based on given test cases, if they 
are adoptable or not. Finally, the model generates the patch to 
fix the buggy code. 

D. Learning-Based APR 

Learning-based APR can be categorized further into two 
subcategories which are traditional deep learning-based APR, 
and Large Language Models-based (LLMs-based) APR. 

1) Traditional deep learning-Based APR: Li et. al. [10] 

used deep learning algorithms in APR and proposed a two-

level model, DLFix, which is based on deep learning algorithm 

that applies code transformation learning which learns from 

prior bug repairs and the surrounding code contexts of the 

fixes. The first tier contains an RNN model that is used to learn 

the context of bug fixes and the second tire uses the result from 

the previous tire as an additional weighting input learn the code 

transformations of the bug-fixing. 

Lutellier et al. [16] presented a novel model, CoCoNuT, 
utilizes a new context-aware neural machine translation 
(NMT) architecture and an ensemble deep learning model 
which consists of combination of convolutional neural 
networks (CNNs) to automatically fix defects in multiple 
languages. The faulty source code and its surrounding context 
is separately represented using NMT.  Their model utilizes 
CNNs in the hierarchical features extraction. However, their 
model cannot be used for multi-hunk bug fixing. 

Huq et al. [17] proposed a novel sequence-to sequence 
model, Review4Repair, a deep learning-based approach that 
uses a neural machine translation (NMT) in APR. Their model 
uses the code review information to increase the performance 
of the automated bug fixing process. 
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DLFix, CoCoNuT, and Review4Repair all utilize context-
aware strategies for patch generation and have the ability to 
fix multi-type bugs. However, all of them do not concern with 
the design of fault localization and work with the help of 
existing fault localization tools, and all do not have the 
capability of multi-hunk and multi-fault repair [15]. 

2) LLMs-Based APR: Recent advancements in large pre-

trained LLMs offer a new direction for developing novel 

program repair models that do not rely on historical bug fixes 

[9]. Recently, some researchers proposed APR models based 

on LLMs. These models can be divided further into two sub-

categories Infilling LLM-based APR, and Generative LLM-

based APR. 

Xia et al. [8] utilized CodeBERT [7], a pre-trained 
bimodal model designed for both programming languages 
(PL) and natural languages (NL), to propose a novel model for 
automated program repair (APR) called AlphaRepair. This 
model, which does not require retraining or fine-tuning on 
historical bug fixes datasets, represents the first cloze-style 
APR approach. Unlike traditional NMT tasks, AlphaRepair 
handles repair tasks as cloze tasks [15], aiming to predict the 
correct code based on its surrounding context [9]. Evaluation 
results showed that AlphaRepair can outperform state-of-the-
art APR approaches. Mashhadi and H. Hemmati [20] 
presented a novel APR model which used CodeBERT [7] and 
fine-tuned it on ManySStuBs4J small and large datasets to 
generate fix patches for the buggy code. Evaluation results 
showed that their model can generate correct fixes in 19-72% 
of the cases. 

Prenner & Robbes [21] presented a study which 
investigates the performance of Codex [11], a GPT language 
model that fine-tuned on GitHub code, in bug localization and 
fixing tasks. They used a dataset of 40 bugs in Java and 
Python and found that although Codex is not specifically 
trained for automated program repair task, it is effective for 
this task. Their observations also found that it is more 
effective at fixing Python bugs than Java bugs. 

Xia and Zhang [5] presented ChatRepair, a conversational 
approach to automatically fixing bugs using ChatGPT. Their 
model takes as input relevant test failure information, 
enhancing bug-fixing capabilities of ChatGPT by learning 
from the failures and successes of previous patching attempts 
on the same bug. The model successfully fixed 162 out of 337 
bugs from the Defects4j dataset. 

Sobania et al. [18] presented an analysis of using ChatGPT 
for automated bug repair. In their study, they utilized 40 
programs written in the Python programming language from 
the publicly available QuixBugs dataset to explore capabilities 
of ChatGPT in the bug fixing process. They found that 
providing ChatGPT with additional information (i.e., hints) 
about the bugs significantly improved its performance, 
resulting in a success rate that reached fixing 31 out of 40 
bugs from the QuixBugs dataset. This performance 
outperforms several state-of-the-art APR models. 

Despite the extensive development of various APR 
approaches, the field still faces significant challenges in 

improving the precision and generalizability of bug fixes 
across various programming environments. Existing models 
often rely heavily on extensive test suites, historical bug fixes, 
or detailed bug reports, which may not always be available or 
sufficiently comprehensive. Furthermore, many of these 
models struggle with complex bug fixes that require 
understanding detailed programming contexts or generating 
comprehensive patches. This paper aims to overcome some of 
current limitations by implementing a novel APR model that 
utilizes the advanced capabilities of LLMs such as gpt-3.5-
trubo and gpt-4-0125-preview. Our approach reduces 
dependency on traditional inputs like test suites and historical 
fixes by directly interpreting the context of buggy code and 
generating appropriate fixes. By achieving this, the proposed 
model not only aims to enhance the accuracy and applicability 
of automated bug fixes but also to improve the repair process, 
making it more efficient and less reliant on extensive manual 
inputs. Thus, this paper aims to provide a foundation for future 
research in employing large language models to refine and 
expand automated repair algorithms. 

IV. METHODOLOGY 

This section illustrates the methodology that applied to 
develop the bug fixing model. 

A. The Architecture of the Proposed Model 

The architecture of the proposed model is illustrated in 
Fig. 3. This model takes the bug type and the buggy method as 
input and outputs the fixed version of the method. The bug 
types include Program Anomaly, GUI, Test-Code, and 
Performance. Program Anomaly bug refers to bugs in the 
source code files that occurs due to problems in the code [35] 
such as logical and syntax errors [28], GUI category refers to 
any bugs in the code that are related to the design of graphical 
user interface design or event handling [35], Test-Code bugs 
are occurs due to any problem which are related to the test 
code [35], while Performance bugs are related to the problem 
in the source code that are affect performance issues such as 
memory usage and memory leaks [35]. The two inputs are fed 
into the LLM using the prompt which is presented in the next 
subsection. In this research, two LLMs were tested to 
determine which one produces the highest accuracy in bug 
fixing for the generated dataset. These LLMs are gpt-3.5-turbo 
[24] and gpt-4-0125-preview [25]. As will be detailed in 
Section VI, gpt-4-0125-preview proved to be more accurate 
than gpt-3.5-turbo in terms of bug fixing and was therefore 
chosen for the proposed model. 

 
Fig. 3. High-level architecture of the proposed bug fixing model. 
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B. Large Language Models 

LLMs are advanced deep learning algorithms capable of 
understanding, summarizing, translating, predicting, and 
generating content by leveraging large datasets [36]. In this 
research two LLMs from GPT family are used:  the gpt-3.5-
trubo model from GPT-3.5 and gpt-4-0125-preview model 
from GPT-4. 

gpt-3.5-turbo [24]: is a variant of the GPT-3.5 language 
model. It is designed for enhanced performance and 
efficiency. This model is a group of models that improves 
upon GPT-3.5, enhances the ability to understand and generate 
both natural language and code. 

gpt-4-0125-preview [25]: is a variant of the GPT-4 model. 
It is designed to give users a preview of the capabilities of the 
GPT-4 architecture. gpt-4-0125-preview performs tasks such 
as code generation more thoroughly than previous preview 
models. Additionally, this model is intended to reduce 
instances of "laziness" where the model does not fully 
complete a task [30]. 

C. Prompt Engineering 

Models based on GPT utilize the paradigm of learning 
through prompts [26]. A prompt can be defined as a set of 
instructions that are given to the LLM, such as gpt-4-0125-
preview, that program it by customizing it and/or improving or 
refining its capabilities [26]. Additionally, it is used to instruct 
the LLM to automate process or enforce rules [27]. Prompt 
engineering involves crafting clear, specific, and bias-
mitigated prompts to guide the behaviour and output of AI 
models like GPT. It requires defining tasks, providing 
examples, and iterating on prompt design based on feedback 
to optimize results. Domain-specific knowledge may be 
necessary, and evaluation metrics help evaluate the 
effectiveness of the designed prompt. 

The main contribution of this work lies in the application 
of LLMs for APR, and prompt engineering is an essential part 
of this process. The design of the prompt significantly 
influences the performance of the utilized LLM [6]. In the 
proposed model, the prompt is structured to instruct the LLM 
to accurately fix a buggy method. This prompt explicitly 
informs the LLM of the buggy method and categorizes the bug 
type. In the proposed model for automated bug fixing, a 
specific prompt template is utilized to guide LLMs, like gpt-
3.5-turbo and gpt-4-0125-preview, to generate fixed versions 
of buggy Java methods. The template consists of several 
components: an objective statement, a placeholder for the 
incorrect Java function ({buggy_function}), and a detailed 
reason description placeholder ({reason_description}) that 
provides context about the type of bug, including categories 
such as GUI, Program Anomaly, Test-Code, and Performance. 
This context helps the model to better understand the issue and 
generate an appropriate fix. The template is structured as 
follows: 

 Objective Statement: "Your goal is to correct the 
given Java function. The function will have a Javadoc 
that describes the function's purpose, parameters, and 
return value." 

 Function Placeholder: {buggy_function}, which 
includes the buggy method which may has a Javadoc. 
The proposed model works effectively regardless of 
whether the method includes a Javadoc description. 

 Reason Description Placeholder: 
{reason_description}, which explains the specific bug 
type, such as GUI issues related to layout problems or 
program anomaly involving logical errors. 

The final prompt ends with "The correct Java function is:" 
prompting the model to generate the fixed function based on 
the provided details. This structured approach helps in 
automating the repair of code by leveraging the advanced 
capabilities of LLMs, thus enhancing the accuracy and 
efficiency of APR without requiring additional user input or 
test cases. This template plays a critical rule in achieving high 
accuracy rates in bug fixing, as demonstrated in the 
experiments conducted in this study. 

V. EXPERIMENTAL DETAILS 

This section outlines the experimental setup and describes 
the implementation of the proposed bug fixing model. The 
experiments were conducted on a computer equipped with an 
x64 Intel® Core™ i7-10510U CPU @ 1.80GHz and 16.0 GB 
of RAM, running a 64-bit Windows Operating System. The 
model was developed using the Python programming 
language on Google Colab. 

A. Dataset 

To demonstrate the effectiveness of the proposed model, it 
is evaluated through two experiments. The first experiment 
involves evaluating of the proposed model using a new 
dataset. While in the second experiment, the proposed model 
is evaluated using a publicly available dataset to compare its 
performance against several state-of-the-art APR models. 

1) Data collection and labeling: There are many reasons 

behind generating a new dataset in our research. First, there is 

no available dataset that contains source code files labeled in 

the same bug categories that are predicted by our bug 

prediction model. Secondly, we want to accurately evaluate 

our proposed model in a way that avoids information leakage 

from an existing dataset that might have already been seen by 

the LLM. 

The presented dataset contains 53 Java source code files. 
These source code files were classified into four categories: 
Program Anomaly, GUI, Test-Code, and Performance. The 
Program Anomaly category contains bugs in the source code 
that occur due to logical and syntax errors. The GUI category 
refers to any bugs related to the design of graphical user 
interfaces or event handling. Test-Code bugs occur due to 
problems related to the test code. Performance bugs are related 
to issues in the source code that affect performance, such as 
memory usage, memory leaks, and missed performance 
improvements.  The source code snippets used in this study 
were generated or collected from various sources available 
online. This involved identifying, collecting, and inspecting 
code snippets that contained bugs. The primary focus was on 
extracting examples that clearly demonstrated typical software 
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defects across different categories. These sources included 
open-source projects, coding forums, and educational 
resources.  To ensure the quality and relevance of the dataset, 
each code snippet was carefully reviewed and categorized into 
one of the four main bug types mentioned above. This labeling 
process involved a detailed examination of each code snippet 
to identify the specific type of bug it represented. For instance, 
snippets involving inefficient coding practices or resource 
management issues were labeled as Performance Bugs, while 
those affecting the visual or functional aspects of the user 
interface were categorized as GUI Bugs. Similarly, errors 
within the test cases themselves were classified as Test-Code 
Bugs, and various coding errors leading to abnormal behavior 
or crashes were labeled as Program Anomaly Bugs. 

This collaborative effort in data collection and labeling 
ensured a comprehensive and well-organized dataset, 
providing a solid foundation for analyzing common patterns 
and implications of different bug types in software 
engineering. Table I shows the number of Java source code 
files in each category. The Program Anomaly category 
contains 22 Java source code files, the GUI category contains 
10 Java source code files, the Test-Code category includes 10 
Java source code files, and the Performance category includes 
11 Java source code files. 

2) Analysis of the generated the dataset: The generated 

dataset consists of faulty source code files categorized into 

four main bug types: Performance, GUI, Test-Code, and 

Program Anomaly. Each category has distinct characteristics 

and common issues that are significant in understanding 

software bugs. A detailed analysis is presented for each bug 

type, their common patterns, and their effects in the following 

subsections. 

a) Performance bugs: Performance bugs are mostly 

related to inefficient coding practices that reduce the runtime 

performance of applications. In the generated dataset, 

common issues include: 

 Inefficient String Operations: Examples include 
using += in loops for string concatenation and creating 
new String objects unnecessarily. 

 Resource Management Issues: Such as memory leaks 
from not clearing lists and inefficient use of wrapper 
classes leading to unnecessary boxing. 

 Control Flow Issues: Infinite loops and concurrent 
modification exceptions which can cause applications 
to hang or crash. 

 Recursion Problems: Recursive methods without 
proper termination can lead to stack overflow errors. 

 Other Issues: Incorrect access patterns that can 
severely impact performance. 

Effects: Performance bugs can cause significant 
degradation in application efficiency, leading to higher 
resource consumption and potential application failure. 

Identifying and optimizing these areas is crucial for enhancing 
software performance. 

b) GUI Bugs: GUI bugs affect the usability and visual 

consistency of the application interface. Common GUI issues 

in the generated dataset include: 

 Visibility and Layout Problems: Issues such as 

frames not being visible when they should be, 

incorrect component placements, and duplicate 

buttons in layouts.  

 Event Handling and Updates: Bugs like missing 

initialization of components leading to null pointer 

exceptions, and incomplete status bar updates.  

 Drawing and Redrawing Inefficiencies: Inefficient 

methods for redrawing components and missing 

drawing code. 

Effects: GUI bugs can lead to poor user experience by making 

the interface confusing or non-functional. Proper testing and 

validation of the user interface components are essential to 

ensure smooth user interaction. 

c) Test-Code Bugs 

Test-Code bugs are errors within the test cases themselves 

which reduce the reliability of testing. Common issues in the 

generated dataset include: 

 Duplicate and Incorrect Test Methods: Duplicate 
methods and logical errors in the methods being tested. 

 Uninitialized Variables: Leading to compilation 
errors or incorrect test execution. 

 Incorrect Assertions: Logical errors in assertions 
which lead to incorrect test outcomes. 

Effects: Bugs in test code can lead to false positives or 
negatives, giving a misleading picture of the software quality. 
Ensuring the correctness of test code is as important as the 
application code itself. 

d) Program anomaly bugs: Program Anomaly bugs 

involve a wide range of coding errors that result in abnormal 

behaviour or crashes. Common issues include: 

 Programming Errors: Syntax errors and logical 
errors. 

 Control Flow Issues: Infinite loops and incorrect loop 
conditions leading to unexpected behaviour. 

 Null Pointer and Type Safety Issues: Potential null 
pointer exceptions and type mismatches. 

 Algorithmic and Recursive Errors: Issues in 
algorithm implementation causing incorrect results or 
infinite recursion. 

Effects: Program Anomaly bugs are critical as they often 
lead to crashes or incorrect program behaviour, significantly 
affecting the reliability and correctness of the software code. 
Comprehensive code review and rigorous testing are 
necessary to detect and fix these issues. 
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TABLE I. STATISTICS OF THE GENERATED DATASET 

Bug Type Category Total Number of Java Source 

Code Files in the category 

GUI 10 

Program Anomaly 22 

Test-Code 10 

Performance 11 

3) QuixBugs benchmark dataset: The second experiment 

evaluates the proposed model using a publicly available 

benchmark dataset, QuixBugs[40], a collection of programs, 

each containing a specific bug, designed to test and evaluate 

the effectiveness of APR tools. The dataset includes 40 

distinct algorithmic problems, such as sorting, graph traversal, 

and dynamic programming, implemented in both Java and 

Python. By providing a standardized set of challenges, 

QuixBugs allows researchers to consistently compare the 

performance of different APR methods. This dataset is widely 

used in academic research to advance the field of automated 

bug fixing. In the experiment, we use source code files written 

in Java only. 

B. Evaluation Metrics 

To evaluate the performance of the proposed model, the 
following evaluation metrics have been used. 

 Number of Repaired Defects: It counts the defects 
which were successfully fixed by the repair algorithm. 
This metric is useful for demonstrating the capability 
of the algorithm. The diversity of defect classes in 
benchmark programs are crucial for the accuracy of 
this metric [29]. 

 Repaired Defect Class: Identifies specific classes of 
defects that the repair algorithm can successfully 
address. This helps in understanding the scope and 
specialization of the repair algorithm [29]. 

 Success Rate (%): The Success Rate of an automated 
program repair algorithm is quantitatively defined as 
the percentage of buggy programs that were 
successfully repaired by the algorithm out of the total 
number of buggy programs subjected to repair attempts. 
It is calculated using the Formula (1). 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 (%) =

(
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝐹𝑖𝑥𝑒𝑑 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑢𝑔𝑔𝑦 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠
)    × 100 

VI. RESULTS 

This section shows the results of the two experiments of 
the proposed bug fixing model on the generated dataset and on 
the benchmark, QuixBugs, dataset. 

A. Results of the Proposed Model on the Generated Dataset 

In the first experiment, the investigation of the achieved 
results by the proposed model explored the effectiveness of 
leveraging advanced language models, gpt-3.5- turbo and gpt-
4-0125-preview, in automatically identifying and fixing bugs 
in software code.  The analysis was structured around four 

main categories of bugs: GUI, Program Anomaly, Test-Code, 
and Performance. Table II shows the effectiveness of the 
proposed model in accurately repairing code from the used 
dataset. 

The performance of the proposed model was evaluated 
based on its ability to correctly identify and fix these bugs. 
The proposed model can effectively localize the buggy lines, 
generate the correct patches, and insert them in the correct 
locations. The total accuracy of the proposed models (Success 
Rate) was calculated as follows: For the gpt-3.5-turbo model, 
the accuracy was 92.45%, while the gpt-4-0125-preview 
model achieved an accuracy of 100%.  Fig. 4 shows an 
overview of the bug fixing results achieved by the proposed 
model. 

TABLE II. RESULTS OF THE PROPOSED BUG FIXING MODEL 

Bug Type Correct Fixes by the  

Proposed Model 

(leveraging gpt-3.5-

turbo) 

Correct Fixes by the  

Proposed Model 

(leveraging gpt-4-0125-

preview) 

GUI 10 out of 10 (100%) 10 out of 10 (100%) 

Program 

Anomaly 
21 out of 22 (95.45%) 22 out of 22 (100%) 

Test-Code 10 out of 10 (100%) 10 out of 10 (100%) 

Performance 8 out of 11 (72.73%) 11 out of 11 (100%) 

Total Fixes  

(Success Rate) 
49 out of 53 (92.45%) 53 Out of 53 (100%) 

B. Results of the Proposed Model on the QuixBugs Dataset 

The proposed model that leverages gpt-4-0125-preview 
model has been evaluated using QuixBugs dataset. In more 
detail, the model achieved significant success, effectively 
repairing all 40 programs. This assessment covered a range of 
algorithmic problems, such as sorting, graph traversal, and 
dynamic programming. Utilizing advanced language model, 
gpt-4-0125-preview, our proposed APR model accurately 
detected and fixed bugs, demonstrating its robustness and 
efficiency. 

 

Fig. 4. An overview of the bug-fixing results achieved by the proposed 

model on the generated dataset. 
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VII. ANALYSIS AND DISCUSSION 

This section presents a comprehensive analysis and 
discussion of the results achieved by the proposed bug-fixing 
model in both experiments. Additionally, in this section, we 
answer the following research questions that address the 
improvements made by the proposed model in APR field. 

 Research Question 1: What is the effect of different 
LLMs on the proposed bug fixing model on fixing 
different categories of programming bugs? 

 Research Question 2: How does the proposed bug 
fixing model compare to several state-of-the-art APR 
models? 

 Research Question 3: What are the practical 
improvements of integrating LLMs into the software 
development lifecycle for bug fixing? 

A. Discussion of the First Experiment 

To answer the first research question, we analyze the 
results of the first experiment. 

Research Question 1: What is the effect of different 
LLMs on the proposed bug fixing model on fixing different 
categories of programming bugs? 

Observations: Overall, the proposed model which 
leverages gpt-4-0125-preview demonstrates a 100% success 
rate, correctly fixing all 53 buggy source code files in the 
dataset. In contrast, the proposed model which leverages gpt-
3.5-turbo achieves a 92.45% accuracy, successfully repairing 
49 out of 53 buggy source code files.  In the Program 
Anomaly category, the proposed model that leverages gpt-3.5-
turbo fixed 21 out of 22 buggy source code files, while the 
proposed model that leverages gpt-4-0125-preview fixed all 
22. The slight improvement with the latter model might be 
attributed to enhanced understanding or processing 
capabilities of gpt-4-0125-preview, possibly due to larger 
training data or improved algorithms.  The most notable 
difference is observed in the performance category, where the 
proposed model that leverages gpt-3.5-turbo fixed 8 out of 11 
bugs, whereas the proposed model that leverages gpt-4-0125-
preview fixed all 11. This improvement may reflect 
advancements in the ability of gpt-4-0125-preview model to 
understand and optimize code for performance, a complex 
task that often requires deep under-standing and nuanced 
changes.    Both models perform equally well in fixing GUI 
and Test-Code bugs, achieving a 100% success rate. This 
indicates robust capabilities in addressing issues within these 
specific categories, suggesting that the models have 
effectively learned patterns or solutions relevant to these types 
of bugs. Fig. 5 shows a buggy method in the dataset which is 
from GUI category. Fig. 6 and Fig. 7 show the fixed versions 
of this method using the proposed model (leveraging gpt-3.5-
turbo model and gpt-4-0125-Preview model, respectively). 

From this example, it is clear that both proposed models 
aim to address the issues found in the original code of the 
buggy method, but they do so with different ways. The buggy 
method has a bug in the loop that results in displaying 
incorrect keypad layout (i.e. it displays numbers from 1 to 12 
instead of numbers from 1 to 9). 

 
Fig. 5. Buggy method from GUI category. 

 
Fig. 6. Fixed method from GUI using the proposed model (leveraging gpt-

3.5-turbo model). 
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Fig. 7. Fixed method from GUI using the proposed model (leveraging gpt-4-

0125-preview model). 

Additionally, it incorrectly adds three "0" buttons instead 
of the conventional "*", "0", and "#" buttons found on a 
telephone keypad.  Fig. 6 shows that the proposed model that 
leverages gpt-3.5-turbo model modifies the name of method to 
create TelephoneGUI, aligning with Java naming conventions 
by clearly describing the action performed by the method. 
This change emphasizes the importance of readability and 
maintainability in code. Additionally, it fixes the keypad 
layout to include "1" through "9", followed by "0", "*", and 
"#". Although the bug in the telephone keypad GUI has been 
successfully resolved, the arrangement of the buttons on the 
bottom row remains incorrect. The expected order of the 
buttons is * 0 #; however, the current implementation places 
them in the order 0 * #. Additionally, this model lacks the 
inclusion of import statements necessary for a standalone 
application, assuming prior context or placement within a 
larger source code. This approach addresses the discovered 
bugs and improves the naming of the method for better clarity. 
However, it fails to make the code independently usable by 
omitting necessary import statements. Fig. 7 shows the fixing 
code of the same buggy method using the proposed model that 
leverages gpt-4-0125-preview model which offers a 
comprehensive repairing by not only fixing the keypad layout 
but also adding essential import statements and a javadoc 
comment at the beginning of the method. This fixing assumes 
no prior context, aiming to make the code snippet 
independently compliable and understandable. The fixed 
version of the code follows best practices by including a 
detailed method description and fixing the keypad issue, 
which matches the standard layout of a telephone keypad. This 
model provides a more thorough fixing by ensuring that the 
code is both correct and self-sufficient. It addresses not only 
the initial logical issues but also enhances the readability and 
reusability of the code by adding documentation and necessary 
technical details for compilation. 

Another example of bug fixing ability of the proposed 
model can be illustrated by Fig. 8-10. Fig. 8 presents a buggy 
code from the Test-Code category.  The original buggy code 

presents a simple divide method intended to perform division 
operations while handling a potential division-by-zero error 
through an exception. However, the accompanying test cases 
contain several issues: incorrect assertions that do not match 
the expected outcomes of the division operation, duplication 
of test method names (which is not allowed in Java), and lack 
of a test case to explicitly check for the division by zero 
scenario. 

Fig. 9 and Fig. 10 present the fixed versions of the buggy 
code by the proposed model in the two experiments, the first 
one when proposed fixing model leveraging gpt-3.5-turbo 
model and the second one when the proposed fixing model 
leveraging gpt-4-0125-preview model. Both models address 
the core issues in the original code, but they do so with 
varying levels of detail and adherence to best practices in 
software testing and documentation. Fig. 9 shows that 
leveraging gpt-3.5-turbo model in the proposed model fixes 
the logical bugs in the test cases and suggests a structured 
approach to handle different test scenarios, including dividing 
by zero. It provides clear, separate test methods with 
descriptive names that reflect their purpose: one for a 
successful division operation and another for testing division 
by zero. Improves readability and maintenance of the test suite 
by clearly separating test cases. Additionally, it correctly 
identifies the need for and implements a test case for division 
by zero, enhancing the robustness of the tests. However, in 
comparison with Fig. 10, the fixing is somewhat basic and 
does not explicitly address best practices in exception 
handling within test methods (e.g., using the expected 
annotation attribute). 

 
Fig. 8. Buggy code from Test-Code category. 

Fig. 10 shows that leveraging gpt-4-0125-preview model 
in the proposed model offers a comprehensive fixing by not 
only repairing the test cases but also refining the testing 
approach to align with best practices. It fixes the bugs, 
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addresses method name duplication, and includes a detailed 
approach to testing exceptions using the expected attribute of 
the @Test annotation. This enhances the readability and 
maintainability of the test suite by demonstrating advanced 
testing techniques. However, the fixing assumes familiarity 
with the expected attribute for testing exceptions, which may 
require additional context for less experienced Java 
developers. 

 
Fig. 9. Fixed code from Test-Code category using the proposed model 

(leveraging gpt-3.5-turbo model). 

 
Fig. 10. Fixed code from Test-Code category using the proposed model 

(leveraging gpt-4-0125-preview model). 

The overall evaluation results provide a high-level view of 
the effectiveness of each model in the experiment in 
automated program repair. The best score achieved by the 
proposed model that leverages gpt-4-0125-preview is 
particularly significant, suggesting a notable advancement in 
the capability of the proposed model in understanding and 
fixing a wide range of software bugs. 

The difference in accuracy between the two models 
(92.45% for the model leveraging gpt-3.5-turbo vs. 100% for 
the model leveraging gpt-4-0125-preview) could be attributed 
to several factors inherent to the evolution of generative pre-
trained transformer models, such as increased model size, 
more diverse and extensive training data, or refined training 
techniques that improve understanding and generation 
capabilities. 

B. Discussion of the Second Experiment 

To answer the second research question, we analyze the 
results of the second experiment. 

Research Question 2: How does the proposed bug fixing 
model compare to several state-of-the-art APR models? 

Observations: To indicate the effectiveness of the 
proposed model, a comparison with the performance of 
several state-of-the-art APR models using the same dataset is 
crucial. Therefore, the achieved results of the proposed model 
on the QuixBugs dataset are compared to four studies which 
are: 

 The results of the study presented by authors in the 
paper [39], involve an empirical study on automated 
bug repair using QuixBugs benchmark dataset.  

 AlphaRepair [8] represents the first cloze-style APR 
approach, and it handles repair tasks as cloze tasks to 
predict the correct code based on its surrounding 
context. 

 CoCoNut [16] which utilizes a new context-aware 
neural machine translation architecture and an 
ensemble deep learning model to fix buggy code.  

 CURE [38] which is a novel APR tool that focuses on 
resolving software bugs through a sophisticated, 
context-aware neural machine translation (NMT) 
approach. Its main goal is to enhance the accuracy and 
effectiveness of bug fixes by utilizing detailed 
contextual information and robust neural network 
models. This allows CURE to generate more accurate 
patches by understanding not only the buggy code but 
also the surrounding context, significantly improving 
the quality and reliability of the fixes. 

Table III illustrates the total number of QuixBugs 
programs out of 40 that are correctly fixed by the mentioned 
state of the art APR models and our proposed bug fixing 
model which leverages gpt-4-0125-preview model. 
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TABLE III. COMPARISON BETWEEN SEVERAL APR ON QUIXBUGS 

DATASET 

Reference Total Number of Correctly 

Fixed Programs 

Success Rate 

Ye et al. [39] 16 out of 40  40% 

AlphaRepair [8] 28 out of 40 70% 

CoCoNut [16] 13 out of 40 32.5% 

CURE [38] 26 out of 40 65% 

The Proposed Model 40 out of 40 100% 

As observed from this table, our proposed model achieves 
the best results, successfully fixing all buggy programs in the 
dataset. Additionally, our proposed model does not need 
additional information about test cases, previous knowledge of 
patch attempts, nor additional follow up conversations which 
make it more efficient, practical and has its own novelty 
among other APR models as it only needs the buggy code and 
the bug type to debug the code, localized the buggy lines, 
generate the correct patches, and insert them in the right 
locations. Therefore, our proposed model outperforms all 
these state-of-the art APR models. 

Furthermore, it was observed from this experiment that the 
proposed model not only fixed the identified bug, but also 
effectively enhanced the code by addressing the edge cases, 
aligning with Java naming conventions, and following better 
programming practices. In more details, Fig. 11 and Fig. 12 
show the buggy version of TO_BASE.java program of 
QuixBugs dataset and its fixed version by the proposed model. 
Fig. 11 shows the buggy version of this program. The purpose 
of this Java program is to convert a given integer (num) into a 
string representation of that number in a specified base (b). 
The base can range from 2 to 36, allowing for conversion to 
binary, octal, decimal, hexadecimal, and other bases up to 
base 36, which includes digits 0-9 and letters A-Z. The main 
bug in this program is related to how the result string is 
constructed. In more detail, the code appends each new digit 
to the end of the result string, which results in the digits being 
in reverse order. Furthermore, there is no handling for the 
edge case where the input number is zero. From Fig. 12, the 
improvements made by the proposed model can be observed, 
which are: 

 It fixes the bug; the fixed method reverses the resulting 
string ensuring the digits are in the correct order. 

 It adds base validation; the fixed method includes a 
validation check to ensure the base is between 2 and 36. 
If the base is invalid, it returns an empty string.  

 It adds zero handling; the fixed method correctly 
handles the case when num is zero, returning "0".  

 It uses StringBuilder for efficiency; the fixed method 
uses StringBuilder for string concatenation, which is 
more efficient than repeatedly creating new string 
objects. 

 It increases the clarity of the code; the fixed method is 
well-documented, explaining the purpose, parameters, 

and return value, making it easier to understand and 
maintain. 

Therefore, the proposed model has significantly improved 
the original buggy method by adding necessary validations, 
handling edge cases, and improving performance through 
efficient string manipulation. These changes enhance the 
robustness of the method, efficiency, and readability, ensuring 
it works correctly across a wide range of inputs. 

Furthermore, it was observed that the proposed model has 
the ability of multi-hunk and multi-fault repair. In more detail, 
the proposed model shows an ability for multi-hunk and multi-
fault repair in software code. It can navigate and rectify issues 
spread across different parts of the source code (multi-hunk) 
and address several distinct types of faults within a single 
execution (multi-fault). 

 
Fig. 11. Buggy TO_BASE.java from QuixBugs. 

 
Fig. 12. Fixed TO_BASE.java by the proposed model. 

The proposed model that leverages gpt-4-0125-preview 
model, in particular, demonstrates a higher level of 
sophistication in applying best practices, suggesting an 
advanced understanding and capability in handling complex 
repair scenarios efficiently. This analysis supports the 
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utilization of LLMs in automating comprehensive code repair 
tasks, highlighting their role in supporting and enhancing 
software development and maintenance processes. 

Research Question 3: What are the practical 
improvements of integrating LLMs into the software 
development lifecycle for bug-fixing? 

Observations: Integrating LLMs into the software 
development lifecycle for bug fixing has several practical 
improvements include: 

 Increased Productivity: Developers can focus on 
higher-level tasks, as LLMs handle routine bug fixing, 
leading to increased productivity and efficiency. 

 Improved Code Quality: Automated bug fixing can 
lead to more consistent and reliable code quality, as 
LLMs can systematically apply best practices and 
coding standards. 

 Reduced Time-to-Market: Faster bug detection and 
fixing reduce the overall development cycle time, 
enabling faster releases and updates. 

 Enhanced Collaboration: LLMs can help in bridging 
the gap between different team members (e.g., 
developers and testers) by providing clear and 
actionable bug debugging and fixes. 

VIII. CONCLUSION 

This paper introduced a novel approach to APR, utilizing 
LLMs to automate the bug-fixing process. Through the 
leveraging of gpt-3.5-turbo and gpt-4-0125-preview models, a 
significant leap forward in the field of software engineering 
has been demonstrated, particularly in enhancing software 
reliability and developer productivity. The proposed model 
presents an ability to accurately localize bugs across various 
code segments, debug the source code, generate correct 
patches, and integrate these fixes into the appropriate locations 
within the source code.  The evaluation of the proposed 
model, conducted on a diverse dataset comprising 53 Java 
source code files categorized into four distinct bug categories, 
confirms the efficiency of the proposed model. The results 
show that the gpt-3.5-turbo model achieved an impressive 
success rate, successfully repairing 49 out of 53 source code 
files, equivalent to an accuracy of 92.45%. In contrast, the gpt-
4-0125-preview model exhibited an exceptional performance, 
achieving 100% success rate in bug fixing. Additionally, the 
proposed model was evaluated using the QuixBugs 
benchmark dataset, and it can correctly fix all its Java buggy 
programs. The proposed model was compared to several state-
of-the-art APR models and outperformed them. Such 
outcomes not only highlight the robustness of the proposed 
model in handling many types of bugs but also, reflect the 
advancements in large language-based program repair 
techniques.  Furthermore, the comparative analysis offers 
valuable insights into the evolution of AI capabilities, 
particularly in the context of software debugging and 
maintenance. The superior performance of the gpt-4-0125-
preview model, characterized by its ability to execute multi-

hunk and multi-fault repairs with a higher degree of accuracy, 
points towards a promising future where the boundaries of 
automated software engineering can be expanded 
significantly. As the field continues to evolve, future research 
can uncover more advanced models and methodologies, 
further enhancing the scope and accuracy of automated bug 
fixing. 
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