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Abstract—Traffic speed prediction based on spatial-temporal 

data plays an important role in intelligent transportation. The 

time-varying dynamic spatial relationship and complex spatial-

temporal dependence are still important problems to be 

considered in traffic prediction. In response to existing problems, 

a Dynamic and Static Graph Convolutional Recurrent Network 

(DASGCRN) model for traffic speed prediction is proposed to 

capture the spatial-temporal correlation in the road network. 

DASGCRN consists of Spatial Correlation Extraction Module 

(SCEM), Dynamic Graph Construction Module (DGCM), 

Dynamic Graph Convolution Recurrent Module (DGCRM) and 

residual decomposition. Firstly, the improved traditional static 

adjacency matrix captures the relationship between each time step 

node. Secondly, the graph convolution captures the overall spatial 

information between the road networks, and the dynamic graph 

isomorphic network captures the hidden dynamic dependencies 

between adjacent time series. Thirdly, spatial-temporal 

correlation of traffic data is captured based on dynamic graph 

convolution and gated recurrent unit. Finally, the residual 

mechanism and the phased learning strategy are introduced to 

enhance the performance of DASGCRN. We conducted extensive 

experiments on two real-world traffic speed datasets, and the 

experimental results show that the performance of DASGCRN is 

significantly better than all baselines. 
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I. INTRODUCTION 

Traffic prediction is a crucial component of intelligent 
transportation systems, aiming to forecast future traffic 
conditions based on historical observational data. The systems 
optimize the use of traffic resource and enhance efficiency [1]. 
Traditional univariate time series prediction methods, including 
Historical Average (HA) [2], Vector Auto-Regression (VAR) 
[3], Support Vector Regression (SVR) [4] and Auto-Regressive 
Integrated Moving Average (ARIMA) [5], mainly focus on time 
dependence. There methods ignore the spatial-temporal 
correlation between nodes, resulting in poor prediction 
accuracy. Spatial-temporal feature fusion models involve data 
modeling across spatial and temporal dimensions, and have been 
widely used to solve traffic prediction challenges due to their 
significant versatility [6, 7]. 

In recent years, spatial-temporal graph neural networks have 
attracted the attention of researchers in the field of traffic 
prediction because of their excellent performance. Spatial-
temporal graph neural network is a typical application of Graph 

Convolution Network (GCN) in spatial-temporal domain. At 
present, most popular traffic prediction methods are based on 
GCN, which uses predefined graph structure to capture spatial 
features between nodes, and uses Convolutional Neural 
Networks (CNN) [8] or Recurrent Neural Networks (RNN) 
[9,10] to extract temporal features [11, 12]. However, these 
methods rely heavily on predefined static graph structures, 
which directly affect the predictive performance of the model. 
To address the limitations of static graph structures, researchers 
have proposed a data-driven approach to adaptively generate 
adjacency matrices [13]. These methods improve the 
performance of the model by learning the parameters of the 
adjacency matrix in the training process and then calculating the 
similarity between the embeddings of learnable nodes [14]. 

However, the traffic prediction data show strong dynamic 
spatial-temporal correlation. The adjacency matrix generated by 
static adaptation is difficult to capture the complex dynamic 
characteristics of the road network. Researchers are increasingly 
interested in modeling dynamic nonlinear spatial-temporal 
correlations inherent in traffic data. Recent literature on STG-
NCDE [15] combines adaptive graphs with neural controlled 
differential equations to further improve the performance of the 
model. STGODE [16] captures the dynamic spatial-temporal 
correlation of traffic flow through tensor-based ordinary 
differential equations, and combines semantic adjacency 
matrices and time-extended convolutional structures to capture 
long-distance spatial-temporal correlation. ST-GDN [17] uses 
multi-resolution traffic transformation information and local-
global regional dependencies for prediction. DSTAGNN [18] 
directly mines historical traffic flow data to extract spatial-
temporal correlations, and effectively capture the dynamic 
attributes of spatial associations between nodes. Traffic flow 
probability graphs [19] employ reinforcement learning to 
generate dynamic graph for extracting spatial-temporal features. 
DAGCRN [20] captures the spatial-temporal dependencies in 
traffic data through dynamic adjacency matrix and graph 
convolutional recurrent network, combined with spatial-
temporal relationship extraction, adjacency matrix update and 
global temporal attention module. MHSRN [21] captures the 
moving features between timestamps through a hybrid 
convolution module, and designs a spatially aware multi-
attention module to capture global and local spatial-temporal 
features. DSTGRNN [22] captures the spatial-temporal 
dependence in traffic data through the dynamic graph 
convolution module and generator, combines spatial-temporal 
relationship extraction, node embedding and dynamic feature 
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update, and integrates dynamic and static features to improve the 
accuracy of traffic flow prediction. 

Considering the complex spatial-temporal correlation of 
traffic data, great progress has been made in traffic forecasting. 
However, there are still some challenges to be solved in the 
integration of dynamic spatial-temporal features. Firstly, the 
predefined adjacency matrix and adaptive adjacency matrix, 
which reflect the static structure of the traffic network, are static 
and cannot capture the dynamic characteristics of the actual 
traffic network over time. Therefore, this highlights the need for 
more sophisticated modeling of dynamic features in traffic 
prediction topologies. Secondly, the static distance graph and 
the dynamic attribute graph provide different perspectives on the 
topology of the traffic network. Their effective integration can 
provide more comprehensive and accurate topological 
information, to better capture spatial dependencies. Finally, 
most traffic forecasting methods generally do not distinguish 
between normal and abnormal traffic conditions, despite the 
prevalence of unexpected events such as accidents and traffic 
control measures. Therefore, a more in-depth exploration of 
anomalous traffic patterns is essential for enhancing the 
accuracy of traffic predictions. 

In response to the identified challenges, a traffic speed 
prediction model that integrates spatial-temporal dynamic-static 
graph convolutional recurrent networks (DASGCRN) is 
proposed. Firstly, the learning aid self-recurrent unit matrix and 
trainable parametric matrix are added to the traditional 
adjacency matrix by the Spatial Correlation Extraction Module 
(SCEM). The pre-defined adjacency matrix is reconstructed to 
enhance the expressiveness of the traffic graph. Secondly, based 
on SCEM, the Dynamic Graph Construction Module (DGCM) 
introduces a hypernetwork based on gate control mechanism and 
sparse connection layer to construct dynamic adjacency 
matrices. Through dynamic node feature propagation, DGCM 
improves the stability and effectiveness of graph structures in 
dynamic environments. In addition, a dynamic graph generation 
method is proposed to capture the correlation between nodes 
while considering the periodic and dynamic changes of the 
traffic network. Furthermore, a dynamic graph convolutional 
recurrent model (DGCRM) based on RNNs integrates static and 
dynamic graphs to capture the spatial-temporal dependencies in 
traffic networks. Finally, in order to further improve the 
prediction performance of DASGCRN, a residual mechanism 
and a phased learning strategy are introduced. 

The rest of this paper is organized as follows. The traffic 
prediction problem is formulated in Section II. Motivated by the 
challenges, we introduce the details of our solutions in Section 
III. After that, we evaluate our model by two real-world traffic 
datasets and derive the parameter studies and experimental 
results in Section IV. Studying the ablation experiments in 
Section V. Finally, we conclude our paper in Section VI. 

II. PROBLEM FORMULATION 

Based on the connectivity of the actual road network among 
sensors in the given datasets, a corresponding road network 
topology graph 𝐺 = (𝑉, 𝐸, 𝐴)  can be generated. 𝑉 =
{𝑣1, … , 𝑣𝑁} represents the set of all nodes in the network and 𝑁 
denotes the total number of nodes, with each node representing 
a traffic sensor deployed at the roadside responsible for 

recording traffic information at its location. 𝐸 denotes the set of 
edges that represents the spatial connectivity between nodes. 
The adjacency matrix 𝐴 ∈ 𝑅𝑁×𝑁  is employed to depict the 
spatial adjacency relationships between nodes, where 𝑎𝑖𝑗  is an 

element of matrix 𝐴  indicating the spatial connection status 

between nodes 𝑣𝑖 and 𝑣𝑗. If 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 is connected to (𝑣𝑖 , 𝑣𝑗) ∈
𝐸, then 𝑎𝑖𝑗 = 1; otherwise 𝑎𝑖𝑗 = 0. The relationship between 

road connectivity and the road network topology is illustrated in 
Fig. 1. 

In this context, 𝑋𝑡 = [𝑥𝑡
1, … , 𝑥𝑡

𝑁]𝑇 ∈ 𝑅𝑁×𝐿×𝐶  denote the 
traffic speed at the 𝑁  nodes of topology graph 𝐺  at time 𝑡, 𝐿 
represent the total length of each time series, and 𝐶 indicate the 
total number of node feature types. The traffic speed prediction 
problem is defined as shown in Eq. (1): Given the speed 
sequence 𝑋1:𝑃 = [𝑋1, … , 𝑋𝑃]

𝑇 ∈ 𝑅𝑃×𝑁×𝐿 and topology graph 𝐺, 
the objective is to learn a mapping function 𝐹  to predict the 

future sequence �̃�(𝑃+1)(𝑃+𝑄) = [�̃�(𝑃+1), … , �̃�(𝑃+𝑄)]
𝑇
∈ 𝑅𝑄×𝑁×𝐿. 

Here, 𝑃  represents the length of the historical speed data 
sequence, and 𝑄 denotes the length of the speed sequence to be 
predicted. 

 [𝑋1:𝑃 , 𝐺]
𝐹
→�̃�(𝑃+1)(𝑃+𝑄) (1) 

III. THE PROPOSED DASGCRN MODEL 

A. Model Architecture 

The architecture and various modules of the proposed 
DASGCRN model are illustrated in Fig. 2. The model consists 
of four main modules: Spatial Correlation Extraction Module 
(SCEM), Dynamic Graph Construction Module (DGCM), 
Dynamic Graph Construction Recurrent Module (DGCRM), 
Residual Decomposition and Model Training Strategy. SCEM 
models the spatial relationship between nodes based on static 
adjacency matrix. DGCM module is responsible for modeling 
the dynamic spatial-temporal relationship between nodes and 
edges, effectively capturing the potential dynamic correlation in 
the traffic network, and generating the dynamic adjacency 
matrix. The DGCRM module integrates dynamic and static 
adjacency matrices to model long-term dependencies between 
historical and future time steps by focusing on connections 
between different nodes in the transportation network, capturing 
time dependencies from a global perspective. In addition, 
residual traffic improves the training process of the model by 
adding skip connections between different layers of the network. 
Finally, piecewise learning training strategy is used to promote 
model convergence. 

B. Spatial Correlation Extraction Module (SCEM) 

1) In traffic road networks, traditional static adjacency 

matrices are typically used to represent the static connectivity 

relationships between nodes, as shown in Eq. (2). Where Avi,vj
 

denotes the edge weight between sensors vi  and vj , dvi,vj  
represents the road network distance from node vi  to vj . 

Additionally, σ indicates the standard deviation of the distance, 

and κ denotes the sparsity threshold. 

 𝐴𝑣𝑖,𝑣𝑗 = {𝑒𝑥𝑝 (−
𝑑𝑣𝑖,𝑣𝑗

𝜎2
) , 𝑣𝑖 ≠ 𝑣𝑗, 𝑑𝑣𝑖,𝑣𝑗 ≤ 𝜅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 
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2) The static adjacency matrix reflects the static connection 

state of the road. While the central road node is restricted to 

processing only the information from neighboring nodes, thus 

ignoring the data from distant nodes with similar traffic flow 

patterns [23]. The static adjacency matrix only considers the 

spatial distance factor, ignoring the influence of time factor on 

the relationship between nodes. In the real traffic road network, 

the spatial relationship between nodes is affected by time 

change [24], which limits the representation of dynamic spatial 

relationship in the traditional static adjacency matrix. Inspired 

by DAGCRN [20], the improved static adjacency matrix 

incorporates an identity matrix and a parametric matrix, as 

shown in Eq. (3). 

 �̃� = 𝐴 + 𝐴𝑝𝑎𝑟 + 𝐼𝑁 (3) 

3) where �̃�  represents the improved static adjacency 

matrix, 𝐴 denotes the traditional static adjacency matrix, and 𝐼𝑁 

is the identity matrix with diagonal elements equal to 1, 

indicates that each node is connected to itself (self-recurrent). 

This mechanism. 

 

Fig. 1. The corresponding relationship between road connection and road network topology diagram. 

 

Fig. 2. The architecture and modules of DASGCRN. 
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4) It allows nodes to retain their own information while 

considering the impact of their state on neighboring nodes at 

each update step. The goal is to enhance the model's ability to 

capture long-term dependencies related to changes in traffic 

speed variations. 𝐴𝑝𝑎𝑟  is the parametric matrix, initialized 

randomly and optimized through continuous iterations. As 

shown in Fig. 3, 𝐴𝑝𝑎𝑟  enables the dynamic learning of the 

weight relationships between the central node (pink pentagon) 

and surrounding nodes (brown and beige circles). Allows 

adaptive adjustment of the connection based on these weights. 

This flexibility helps to explore the dynamic dependence of 

traffic speed over time in static network space. After 𝐴𝑝𝑎𝑟  is 

optimized across all training samples, its combination with 𝐴 

and 𝐼𝑁  forms �̃�, enabling �̃� to more accurately represent the 

dynamic spatial relationships in the traffic network. 

 
Fig. 3. Parametric matrix diagram. 

C. Dynamic Graph Construction Module (DGCM) 

The Dynamic Graph Construction Module (DGCM) has 
been carefully designed to efficiently capture spatial 
dependencies in traffic speed sequences, as well as temporal 
variations in these sequences. Specifically, the algorithm first 
builds a Spatial-Temporal Embedding generator (STE 
generator), which consists of two basic components: a spatial 
embedding generator and a temporal embedding generator. 
These components work together to extract and represent the 
spatial and temporal features present in the traffic speed 
sequence, thereby improving the overall understanding of its 
dynamics. 

The core function of the spatial embedding generator is to 

learn the graph structure from input �̃�, after which the learned 
node information is processed through two fully connected 
layers to produce the spatial embedding 𝐸. The primary task of 
the temporal embedding generator is to determine the daily 
encoding embedding 𝐸𝑇𝑃

𝐷 that corresponds to the current traffic 

speed sequence 𝑋𝑃 . Subsequently, 𝐸𝑇𝑃
𝐷  and 𝐸  are combined 

using an element-wise multiplication operation to obtain the 
new spatial-temporal embedding 𝐸𝑡

𝑠𝑡 . The implementation 
process of the spatial-temporal embedding is shown in Eq. (4). 

 𝐸𝑡
𝑠𝑡 = 𝐸𝑇𝑃

𝐷⨀𝐸 (4) 

where 𝐸
𝑇𝑃
𝐷 ∈ 𝑅𝑃×𝑁×𝐷 is the daily embedding composed of 

consecutive time steps 𝑃 = [𝑡 − 𝑝 + 1,… , 𝑡], and the 𝑝 denotes 
the input sequence length. Additionally, ⨀  signifies the 
element-wise multiplication operation. The input at the current 
time step 𝑥𝑡 is processed through a multi-layer perceptron MLP  
to extract dynamic features, as shown in Eq. (5). 

 𝐷𝐹𝑡 = 𝑀𝐿𝑃(𝑥𝑡) (5) 

where, 𝐷𝐹𝑡 ∈ 𝑅𝑁×𝐷  represents the dynamic features of the 

current time step 𝑥𝑡  after transformation. An element-wise 

multiplication operation is performed between 𝐷𝐹𝑡 and 𝐸𝑡
𝑠𝑡

, and 

the resulting product is normalized to generate the dynamic 

graph embedding 𝐷𝐸𝑡
𝑑, as shown in Eq. (6). 

 𝐷𝐸𝑡
𝑑 = 𝑡𝑎𝑛ℎ(𝐷𝐹𝑡⨀𝐸𝑡

𝑠𝑡) (6) 

The dynamic adjacency matrix 𝐷𝐴𝑡  at time 𝑡 is calculated 
using the similarity between nodes, as shown in Eq. (7). This 
dynamic adjacency matrix expresses the evolving connectivity 
and changing trends among the network nodes. Furthermore, 𝛼 
is a hyperparameter used to control the saturation rate of the 
activation function. 

 𝐷𝐴𝑡 = 𝑅𝑒𝐿𝑈 (𝑡𝑎𝑛ℎ (𝛼 (𝐷𝐸𝑑𝐷𝐸𝑑𝑇)))  (7) 

D. Dynamic Graph Convolutional Recurrent Module 

(DGCRM) 

The Dynamic Graph Convolutional Recurrent Module 
(DGCRM) primarily integrates the improved static adjacency 

matrix �̃�  with the generated dynamic adjacency matrix 𝐷𝐴𝑡 . 
This integration aggregates the information between the nodes 
of the traffic network and their neighbors, and effectively 
captures the dynamic spatial-temporal dependencies in the 

traffic network. Both �̃� and 𝐷𝐴𝑡 reflect the correlations among 
nodes from different perspectives. The DGCRM module 
effectively combines these matrices to provide a comprehensive 
view of the traffic road network for predictive modeling, 
accommodating the dynamic characteristics of the graph 
structure over time, as detailed in Eq. (8) to Eq. (12). 

DGCRM utilizes 𝑋𝑃 , �̃� , and 𝐷𝐴𝑡  as inputs for the graph 
convolutional layer, and computes a weighted average to the 
outputs of the graph convolution. 
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 �̃�𝑡
(𝑘)

= 𝛼𝐻𝑡
𝑖𝑛 + 𝛽𝐻𝑡

(𝑘−1)
𝐷𝐴𝑡 + 𝛾𝐻𝑡

(𝑘−1)
�̃� (8) 

 𝐻𝑡
(𝑘)

= 𝑅𝑒𝐿𝑈 ((𝜇𝐻𝑡
𝑖𝑛 + (1 − 𝜇)�̃�𝑡

(𝑘)
)𝑊𝑃

(𝑘)
) (9) 

 𝐻𝑡
𝑜𝑢𝑡 = ∑ 𝐻𝑡

(𝑘)
𝑊(𝑘)𝐾

𝑖=0  (10) 

 𝐻𝑡
(0)

= 𝐻𝑡
𝑖𝑛 (11) 

 𝐻𝑡
𝑜𝑢𝑡 = Θ∗𝐺(𝐻𝑡

𝑖𝑛, 𝐷𝐴𝑡, �̃�) (12) 

where 𝛼 , 𝛽  and 𝛾  are hyperparameters that adjust the 

weights of different components. 𝑊𝑃
(𝑘)

 denotes the 𝑘-th order 
parameter matrix. Hyperparameter 𝜇  is used to control the 
retention rate of the original node information in the process of 
information transmission, and deeper neighborhood exploration 

is carried out while preserving the local structure. 𝐻𝑡
𝑖𝑛

 and 𝐻𝑡
𝑜𝑢𝑡

 
represent the input and output node states of the dynamic graph 

convolution at time step 𝑡 , respectively. 𝑊(𝑘)
∈ 𝑅𝑘×𝑑𝑖𝑛×𝑑𝑜𝑢𝑡  is 

the learnable feature transformation matrix, and 𝑘 denotes the 

model propagation depth. 𝐻𝑡
𝑜𝑢𝑡 = Θ∗𝐺(𝐻𝑡

𝑖𝑛, 𝐷𝐴𝑡, �̃�) serves as a 

simplified representation of the dynamic graph convolution 
process, where Θ indicates dynamic graph generation, and ∗ 𝐺 
represents dynamic graph convolution. In the context of the 
DGCRU module diagram, 𝐺 is used to denote dynamic graph 
convolution. 

DGCRM is composed of Dynamic Graph Convolutional 

Gated Recurrent Unit (DGCRU), with the hidden state 𝐻𝑡
𝑙
 of the 

final DGCRU serving as the output of the DGCRM. DGCRU is 
formulated by substituting the matrix multiplication operations 
in the GRU with dynamic graph convolution modules, as 
detailed in Eq. (13) to Eq. (16). 

 𝑧𝑡 = 𝜎(Θ∗𝐺
𝑧 [𝑋𝑡||𝐻𝑡−1, 𝐸𝑡

𝑠𝑡]) (13) 

 𝑟𝑡 = 𝜎(Θ∗𝐺
𝑟 [𝑋𝑡||𝐻𝑡−1, 𝐸𝑡

𝑠𝑡]) (14) 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(Θ∗𝐺
ℎ [𝑋𝑡||𝑟𝑡⨀𝐻𝑡−1, 𝐸𝑡

𝑠𝑡]) (15) 

 𝐻𝑡 = (1 − 𝑧𝑡)⨀𝐻𝑡−1 + 𝑧𝑡⨀�̃�𝑡 (16) 

where 𝑋𝑡 and 𝐻𝑡 represent the input and output at time step 
𝑡, respectively. The symbol ⨀ denotes the Hadamard product, 
while || indicates concatenation operations. The function 𝜎(∙) 
refers to the sigmoid activation function. 𝑧𝑡 and 𝑟𝑡 are the update 
gate and reset gate at time 𝑡 . Respectively, �̃�𝑡  represents the 
candidate state of the GRU unit. The symbol ∗ 𝐺  signifies 

dynamic graph convolution, and Θ𝑧, Θℎ, and Θ𝑟  correspond to 
the learnable parameters associated with the respective graph 
convolutions. 

E. Residual Decomposition 

To achieve multi-step predictions and sequence 
decomposition of traffic flow. An output sublayer consisting of 
linear layers is constructed after DGCRM. The mathematical 
expressions for the output sublayer are shown in Eq. (17) and 
Eq. (18). 

 �̃�𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟1:𝑡(𝐻𝑡
𝑙) (17) 

 �̃�𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟1:𝑡(𝐻𝑡
𝑙) (18) 

where the predicted output �̃�𝑡
𝑙 ∈ 𝑅𝑄×𝑁×𝐶  denotes the 

prediction of 𝑦𝑡  by the 𝑙 -th block based on 𝑥𝑝
𝑙 , while the 

backward predicted output �̃�𝑡
𝑙 ∈ 𝑅𝑃×𝑁×𝐶  represents the reverse 

prediction of 𝑥𝑝
𝑙  by the 𝑙 -th block. The final output of the 

prediction model is given in Eq. (19) and Eq. (20). 

 𝑦𝑄 = ∑ �̃�𝑡
𝑙𝑙

1  (19) 

 𝑥𝑝
𝑙+1 = 𝑥𝑝

𝑙 − �̃�𝑡
𝑙 (20) 

Backward prediction can be understood as the 
decomposition process of traffic speed sequence. The aim is to 
eliminate the part of the information that the model has learned, 
while retaining the unlearned part for further processing by 

reconstructing the velocity sequence. Specifically, �̃�𝑡
𝑙
 can be 

viewed as the reconstruction of the input speed sequence 𝑥𝑝
𝑙 , 

which incorporates the information that l

tH  has learned from 

𝑥𝑝
𝑙 . By utilizing a residual decomposition mechanism, the 

learned information from 𝑥𝑝
𝑙  is removed, and the unlearned 

components of 𝑥𝑝
𝑙+1  are preserved for modeling in the 

subsequent block. The outputs from each block are then summed 
to produce the final prediction result. 

F. Model Training 

In order to improve the training efficiency of the model, a 
phased learning strategy is designed. In the initial phase of 
training, instead of training all blocks at the same time, only the 
first few blocks are trained. As the number of training layers 
increases, additional blocks are gradually incorporated into the 
training process. This approach significantly reduces the time 
and memory overhead required in the early stages of training. 
The training process is illustrated in Algorithm 1. 

Algorithm 1: Training Algorithm of the DASGCRN Model. 

Input: The static graph 𝐺 = (𝑉, 𝐸, 𝐴)， traffic speed sequence 𝑋𝑝 ∈

𝑅𝑃×𝑁×𝐷， current time step 𝑋𝑡 ∈ 𝑅𝑇×𝑁×𝐷， time embedding 𝑇𝐷， 

spatial embedding 𝐸， training epochs 𝑒𝑝𝑜𝑐ℎ𝑠；  

set 𝑡𝑢𝑟𝑛 = 1, 𝑖 = 1  

repeat 

 initialize hidden state 𝐻𝑡
0，randomly select a batch (input 

𝑋 ∈ 𝑅𝑃×𝑁×𝐷 ， output 𝑌 ∈ 𝑅𝑄×𝑁×𝐷 ， time of day 𝑇 ∈
𝑅𝑄×𝑁×𝐷) from 𝑋𝑝; 

 if 𝑡𝑢𝑟𝑛%𝑠 == 0 and 𝑖 < 𝐾 then 

  𝑖 = 𝑖 + 1  

 end if 

  for 𝑝 in 0,1, . . . , 𝑃 − 1 do 

   Calculate �̃�𝑡
𝑙  and �̃�𝑡

𝑙 according to Eq.16, Eq.17

； 

 end for 

  sum �̃�𝑄 = ∑ �̃�𝑡
𝑙𝑙

1  

  Compute loss 𝐿 = 𝑙𝑜𝑠𝑠(�̃�𝑄,𝑦𝑄) 

  Back propagation and update parameters 
according to 𝐿; 

  𝑡𝑢𝑟𝑛 = 𝑡𝑢𝑟𝑛 + 1; 

 Until the model reaches a stable state; 

Output: the leaned DASGCRN model. 
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IV. EXPERIMENTS 

A. Datasets 

The experiment used two real-world traffic history datasets 
to verify the performance of different prediction models, as 
detailed in Table I. 

 Los-loop Dataset 

The dataset, from the City of Los Angeles, records speed 
information collected by loop detectors from March 1-7, 2012. 
It includes 207 road nodes and 1,313 road connections, 
collecting speed data every five minutes. 

 SZ-taxi Dataset. 

 The dataset comes from taxi tracks in Shenzhen City 
from January 1-31, 2015, covering 156 major roads in 
Luohu District, including 266 road connection 
relationships, with speed data collected every 15 minutes. 

TABLE I.  DETAILED INFORMATION OF TRAFFIC DATASETS FOR 

EXPERIMENT 

Dataset Number of Sensors Edge Time Interval Time Range 

SZ-taxi 156 266 15min 2015.1.1-2015.1.31 

Los-loop 207 1313 5min 2012.3.1-2012.3.7 

B. Parameter Settings 

According existing methods, we split the datasets into 
training and testing sets in the same way as the baseline, i.e. 8:2 
on the Los-loop and SZ-taxi datasets. Historical traffic speed 
data from the past hour is used to predict traffic speed in the 
future hour. The time step for the Los-loop dataset is set to 12 
(sampling for 5 minutes), while the time step for the SZ-taxi 
dataset is set to 4 (sampling for 15 minutes). The experiment was 
repeated for 5 times and the average value of the evaluation 
index was reported. 

The model employed the Adam optimizer with a learning 
rate of 0.003, 64 hidden units, an embedding dimension of 10, a 
batch size of 64, and an epoch value of 300. Mean Absolute 
Error (MAE) was used as the training loss function, along with 
an early stopping strategy to prevent overfitting. 

C. Baseline Methods 

HA: The Historical Average method (HA) predicts future 
speeds by analyzing the average values of historical speed data. 

SVR: Support Vector Regression (SVR) is one of the 
classical time series analysis models that employs linear support 
vector machines to perform regression tasks. 

Graph Convolutional Network (GCN): GCNs are capable of 
considering the spatial structural characteristics of graphs, 
extending convolution operations to graph structures. 

Gated Recurrent Unit (GRU): GRUs can capture significant 
data dependencies over large gaps in time series. 

T-GCN [11]: The T-GCN model simultaneously captures 
spatial and temporal dependencies using GCN and GRU. 

A3T-GCN [25]: The A3T-GCN model introduces an 
attention mechanism to the T-GCN framework to extract weight 
information for each time step. 

NA-DGRU [26]: The NA-DGRU model utilizes two GRUs 
to extract correlations between speed and time from both the 
original features and aggregated neighborhood features. 

MTA-CN [27]: The MTA-CN model transforms long time 
single feature historical data into short time multi-feature data 
and incorporates a two-stage attention mechanism to capture the 
significance of features in different time periods and time steps. 

FD-TGCN [28]: The spatial module introduces a novel 
Dynamic Convolution Matrix (DCM) to learn the characteristics 
of dynamic road structures, while the temporal module employs 
a Fast Temporal Convolution Network (FTCN) to model long-
term temporal relationships. 

D. Experimental Evaluation Metrics 

The experiment employs five commonly used evaluation 
metrics to assess the performance of various prediction methods: 

1) Mean Absolute Error (MAE): This index intuitively 

reflects the actual forecast error, as shown in Eq. (20). 

2) Root Mean Squared Error (RMSE): RMSE is sensitive 

to outliers and is often used as a standard to measure the 

predictive performance of deep learning models, as shown in 

Eq. (21). 

3) Accuracy (ACC): This measure describes the degree of 

fit between the predicted value and the true value; The closer 

the value is to 1, the better the prediction performance, as shown 

in Eq. (22). 

4) Coefficient of Determination (R2): This statistic 

evaluates the goodness of fit of regression models; higher 

values indicate better predictive accuracy, as defined in Eq. 

(23). 

5) Explained Variance Score (var): This score measures 

the model's ability to explain the variance in the data; values 

closer to 1 indicate a higher explanatory power of the model, as 

defined in Eq. (24). 

 𝑀𝐴𝐸 =
1

𝑀𝑁
∑ ∑ |𝑦𝑖𝑗 − �̃�𝑖𝑗|

𝑁
𝑖=1

𝑀
𝑗=1  

 𝑅𝑀𝑆𝐸 = √
1

𝑀𝑁
∑ ∑ (𝑦𝑖𝑗 − �̃�𝑖𝑗)

2𝑁
𝑖=1

𝑀
𝑗=1  

 𝐴𝐶𝐶 = 1 −
𝑌−�̃�𝐹

𝑌𝐹
 

 𝑣𝑎𝑟 = 1 −
𝑉𝑎𝑟{𝑌−�̃�}

𝑉𝑎𝑟{𝑌}
 

 𝑅2 = 1 −
∑ ∑ (𝑦𝑖𝑗−�̃�𝑖𝑗)

2𝑁
𝑖=1

𝑀
𝑗=1

∑ ∑ (𝑦𝑖𝑗−�̅�)
2𝑁

𝑖=1
𝑀
𝑗=1

 

In the above equations, 𝑦𝑖𝑗 and �̃�𝑖𝑗 represent the actual and 

predicted traffic speeds on road 𝑖-th at time 𝑡, respectively. 𝑀 
denotes the sample size of the traffic series, while 𝑁 represents 

the set of roads. 𝑌 and �̃� denote the sets of 𝑦𝑖𝑗 and �̃�𝑖𝑗, with �̅� 

being the average of 𝑌. Both MAE and RMSE describe error 
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values, where smaller values indicate better model performance. 
On the contrary, the accuracy reflects the correctness of the 
prediction, and the higher the value, the better the prediction 
effect. 

E. Experimental Results 

Table II presents a comparison of the DASGCRN model 
with nine baseline models on the Los-loop and SZ-taxi datasets. 
The metrics underlined in the table indicate the best results, 
while the models in bold italic type denote those whose 
prediction results are directly referenced from the published 
papers. A “/” indicates that the baseline model did not provide 
that metric at the time of publication. It is evident from the 
experimental results that the proposed DASGCRN model 
outperforms all other models on all evaluation indicators of the 

two datasets. Statistical methods and traditional machine 
learning models have high requirements for data stationarity and 
usually focus only on temporal correlation. This leads to 
challenges in meeting these requirements for traffic data, 
resulting in poor predictive performance from traditional 
methods. In contrast, compared with GCN and GRU, the 
DASGCRN model improved on all evaluation measures. This 
shows that the model effectively captures the spatial topological 
features of urban road network and the temporal changes of 
traffic state. In addition, other baseline models also achieve 
better predictive performance compared to traditional methods, 
highlighting the strong spatial-temporal correlations in traffic 
data. Capturing these spatial-temporal features enhances traffic 
prediction accuracy. 

TABLE II.  COMPARISON DASGCRN AND BASELINE MODELS ON LOS-LOOP AND SZ-TAXI 

T 
Datasets Los-loop 

Methods HA SVR GCN GRU TGCN A3T-GCN 
NA-

DGRU 

MTA-

GN 

FD-

TGCN 
DSAGCRN 

15min 

MAE 4.0162 3.7285 5.3525 3.0602 3.1802 3.1365 3.0281 3.1004 3.083 2.7888 

RMSE 7.5323 6.0084 7.7922 5.2182 5.1264 5.0904 5.1348 5.1058 5.133 5.0462 

ACC 0.8715 0.8977 0.8673 0.9109 0.9127 0.9133 0.9126 / 0.9119 0.9140 

R2 0.7083 0.8123 0.6843 0.8576 0.8634 0.8653 / 0.8670 / 0.8675 

Var 0.7084 0.8146 0.6844 0.8577 0.8634 0.8653 / 0.8679 / 0.8682 

30min 

MAE 4.4136 3.7248 5.6118 3.6505 3.7466 3.6610 3.6692 3.6041 3.712 3.0812 

RMSE 8.3204 6.9588 8.3353 6.2802 6.0598 5.9974 6.1358 5.8462 5.904 5.8436 

ACC 0.8581 0.8815 0.8581 0.8931 0.8968 0.8979 0.8955 / 0.8960 0.9004 

R2 0.6408 0.7492 0.6402 0.7957 0.8098 0.8173 / 0.8148 / 0.8205 

Var 0.6409 0.7523 0.6404 0.7958 0.8100 0.8173 / 0.8148 / 0.8220 

45min 

MAE 4.7898 4.1288 5.9534 4.0915 4.1158 4.1712 4.0567 3.9483 / 3.2735 

RMSE 9.0213 7.7504 8.8036 7.0343 6.7065 6.6840 6.7604 6.5731 / 6.3597 

ACC 0.8462 0.8680 0.8500 0.8801 0.8857 0.8861 0.8851 / / 0.8916 

R2 0.5783 0.6899 0.5999 0.7446 0.7679 0.7694 / 0.7726 / 0.7869 

Var 0.5783 0.6947 0.6001 0.7451 0.7684 0.7705 / 0.7732 / 0.7894 

60min 

MAE 5.1504 4.5036 6.2892 4.5186 4.6021 4.2343 4.4256 4.0154 4.535 3.4260 

RMSE 9.6602 8.4388 9.2657 7.6621 7.2677 7.0990 7.2776 6.8749 6.983 6.7397 

ACC 0.8354 0.8562 0.8421 0.8694 0.8762 0.8790 0.8764 / 0.8760 0.8852 

R2 0.5070 0.6336 0.5583 0.6980 0.7283 0.7407 / 0.7492 / 0.7605 

Var 0.5070 0.5593 0.5593 0.6984 0.7290 0.7415 / 0.7495 / 0.7637 

T 
Datasets SZ-taxi 

Metric HA SVR GCN GRU TGCN A3TGCN 
NA-

DGRU 
MTA-

CN 
FD-

TGCN 
DSAGCRN 

15min 

MAE 2.7842 2.6233 4.2367 2.5955 2.7145 2.6840 2.7387 2.6105 2.667 2.4964 

RMSE 4.2991 4.1455 5.6596 3.9994 3.9825 3.9989 4.0587 4.0440 4.036 3.9716 

ACC 0.7005 0.7012 0.6107 0.7149 0.7195 0.7218 0.7173 / 0.7187 0.7233 

R2 0.8305 0.8423 0.6654 0.8329 0.8539 0.8512 / 0.8526 / 0.8554 

Var 0.8305 0.8424 0.6655 0.8329 0.8539 0.8512 / 0.8530 / 0.8559 

30min 

MAE 2.8191 2.6875 4.2647 2.6906 2.7522 2.7038 2.7280 2.6158 2.778 2.5064 

RMSE 4.3508 4.1628 5.6918 4.0942 4.0317 4.1749 4.0683 4.0684 4.083 3.9899 

ACC 0.6969 0.7100 0.6085 0.7184 0.7167 0.7202 0.7166 / 0.7154 0.7221 
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R2 0.8264 0.8410 0.6616 0.8249 0.8451 0.8493 / 0.8507 / 0.8541 

Var 0.8264 0.8413 0.6617 0.8250 0.8451 0.8493 / 0.8512 / 0.8546 

45min 

MAE 2.8488 2.7359 4.2844 2.7743 2.7645 2.7261 2.7393 2.6954 / 2.5157 

RMSE 4.3916 4.1885 5.7142 4.1534 4.0910 4.2461 4.0777 4.1168 / 4.0034 

ACC 0.6941 0.7082 0.6069 0.7143 0.7155 0.7186 0.7159 / / 0.7211 

 
R2 0.8231 0.8391 0.6589 0.8198 0.8436 0.8474 / 0.8412 / 0.8531 

Var 0.8231 0.8397 0.6590 0.8199 0.8436 0.8474 / 0.8415 / 0.8536 

60min 

MAE 2.8754 2.7751 4.3034 2.7712 2.7860 2.7391 2.7487 2.6396 2.762 2.5254 

RMSE 4.4302 4.2156 5.7361 4.0747 4.1299 4.2707 4.0851 4.1637 4.104 4.0167 

ACC 0.6914 0.7063 0.6054 0.7197 0.7142 0.7169 0.7154 / 0.7141 0.7202 

R2 0.8199 0.8370 0.6564 0.8266 0.8421 0.8454 / 0.8434 / 0.8521 

Var 0.8199 0.8379 0.6564 0.8267 0.8421 0.8454 / 0.8440 / 0.8526 
 

The experiment further divided the data of one day from the 
Los-loop and SZ-taxi test sets. It drew the prediction curves of 
DASGCRN and T-GCN models within the interval of 5 minutes 
and 60 minutes, and compared them with the Ground Truth, as 
shown in Fig. 4. As can be seen from the dotted box in Fig. 4, 
the DASGCRN model is more sensitive to capturing data with 
sudden increases or decreases in speed than the T-GCN, so the 
predictions are more accurate. This improved performance is 

attributed to the integration of time series modeling in 
DASGCRN's dynamic graph structure, which enables the model 
to focus on specific patterns of dynamic change, resulting in 
faster and more accurate predictions. As highlighted by the pink 
dotted boxes in Fig. 4(c) and Fig. 4(d), DASGCRN showed 
superior performance in both short (5 minutes) and long (60 
minutes) predictions. 

 
(a)                                                                                             (b) 

 
(c)                                                                                             (d) 

Fig. 4. The prediction curves of two datasets. 
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Fig. 5 illustrates the absolute error heatmaps of predicted 
values versus actual values for the DASGCRN model across two 
datasets. Due to the large size of the dataset, we selected only 
the first 60 time steps of the 12 roads in each dataset and 
generated heatmaps for each dataset with four different 
prediction ranges. Generally, the prediction performance of the 
model tends to decline with the increase of the prediction range. 

However, the heatmap shows that DASGCRN has maintained 
good performance across both the short-term and long-term 
forecast ranges. This is due to the dynamic graph convolution 
module used in the DASGCRN model, which replace the matrix 
multiplication in GRU. It can allow for more flexible control 
over feature information transmission and enhance the model's 
ability to capture long-term dependencies.

 

 

Fig. 5. The heatmaps of different forecasting granularity of DASGCRN two datasets. 

V. ABLATION STUDY 

To validate the effectiveness of key components in the 
DASGCRN model, nine variants of the DASGCRN model were 
designed: 

w/o 𝐼𝑁: DASGCRN without the self-loop adjacency matrix. 

w/o 𝐴𝑝𝑎𝑟 : DASGCRN without the learnable parameter 

matrix. 

w/o 𝐷𝐴𝑡 : DASGCRN without the dynamic adjacency 
matrix. 

w/o 𝐹𝐶𝐿 : Replacing dynamic graph convolution with a 
simple fully connected layer in DASGCRN. 

w/o 𝑇𝐷 : DASGCRN without temporal embeddings, using 
only spatial embeddings to generate dynamic embeddings. 

w/o 𝐷𝐴𝑡𝐼𝑁: DASGCRN without dynamic graph convolution 
and the self-loop adjacency matrix. 

w/o 𝐷𝐴𝑡𝐴𝑝𝑎𝑟 : DASGCRN without dynamic graph 

convolution and the learnable parameter matrix. 

w/o 𝑀𝑖𝑥 : DASGCRN without residual connections in 
dynamic graph convolution, using the last hop's output as the 
output of dynamic graph convolution. 

w/o 𝑇𝑆: DASGCRN without segmented training. 

TABLE III.  COMPARISON OF ABLATION RESULTS OF DASGCRN AND VARIANT ON LOS-LOOP DATASET 

T 

Datasets Los-loop 

Methods DASGCRN w/o 𝑰𝑵 w/o 𝑨𝒑𝒂𝒓 w/o 𝑫𝑨𝒕 w/o 𝑭𝑪𝑳 w/o 𝑻𝑫 
w/o 

𝑫𝑨𝒕𝑰𝑵 

w/o 

𝑫𝑨𝒕𝑨𝒑𝒂𝒓 
w/o 𝑴𝒊𝒙 w/o 𝑻𝑺 

15min 

MAE 2.7888 3.6346 3.6731 9.1303 7.7888 3.4029 11.5724 13.6317 3.4096 2.9895 

RMSE 5.0462 6.3577 6.0787 13.7764 11.0462 5.5153 15.6325 17.0738 5.4673 5.3043 

ACC 0.8715 0.8977 0.8673 0.9109 0.9127 0.9133 0.9126 / 0.9119 0.9140 

R2 0.8675 0.7937 0.8106 0.0516 0.8075 0.8430 0.0427 0.0572 0.8452 0.8541 

Var 0.8682 0.7992 0.8178 0.0529 0.8082 0.8462 0.0429 0.0573 0.8453 0.8553 
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30min 

MAE 3.0812 3.8443 3.9975 9.1325 8.0812 3.7666 11.9750 14.0136 3.8089 3.3411 

RMSE 5.8436 6.9098 6.9040 13.7807 11.8436 6.2646 16.4364 17.6247 6.2148 6.1151 

ACC 0.9004 0.8822 0.8823 0.7651 0.7004 0.8932 0.5946 0.5062 0.8941 0.8958 

R2 0.8205 0.7546 0.7528 0.0492 0.7205 0.7951 0.0375 0.0489 0.7979 0.8037 

Var 0.8220 0.7601 0.7595 0.0505 0.7220 0.7978 0.0374 0.0490 0.7980 0.8050 

45min MAE 3.2735 4.0607 4.2960 9.1320 8.2735 4.1217 12.5917 14.9371 4.1324 3.6399 

 

RMSE 6.3597 7.4254 7.5872 13.7751 11.3597 6.8776 16.7614 18.4267 6.7719 6.7389 

ACC 0.8916 0.8735 0. 8707 0.7652 0.6916 0.8828 0.5348 0.4371 0.8846 0.8852 

R2 0.7869 0.7143 0.6984 0.0478 0.7869 0.7509 0.0325 0.0427 0.7582 0.7597 

Var 0.7894 0.7196 0.7047 0.0490 0.7894 0.7538 0.0325 0.0429 0.7584 0.7612 

60min 

MAE 3.4260 4.2945 4.5812 9.1300 8.4260 4.4270 14.3057 15.7381 4.1324 3.9130 

RMSE 6.7397 7.9381 8.2088 13.7699 11.7397 7.3856 18.1420 18.9570 6.7719 7.2682 

ACC 0.8852 0.8648 0.8602 0.7654 0.7852 0.8742 0.4733 0.3502 0.8846 0.8762 

R2 0.7605 0.6702 0.6434 0.0462 0.6605 0.7109 0.0274 0.0391 0.7582 0.7185 

Var 0.7658 0.6753 0.6491 0.0473 0.6637 0.7137 0.0274 0.0394 0.7584 0.7202 

T 

Datasets SZ-taxi 

Metric DASGCRN w/o 𝐼𝑁 w/o 𝐴𝑝𝑎𝑟 w/o 𝐷𝐴𝑡 w/o  𝐹𝐶𝐿 w/o 𝑇𝐷 
w/o 

𝐷𝐴𝑡𝐼𝑁 

w/o 

𝐷𝐴𝑡𝐴𝑝𝑎𝑟 
w/o 𝑀𝑖𝑥 w/o 𝑇𝑆 

15min 

MAE 2.4964 2.5311 2.7136 7.8361 6.5102 3.5257 9.6270 12.1762 2.5381 2.6109 

RMSE 3.9716 3.9888 4.1893 9.9781 8.0270 4.0046 11.3872 13.7591 4.0457 4.1046 

ACC 0.7233 0.7221 0.7040 0.3049 0.6143 0.7210 0.2371 0.2169 0.7182 0.7141 

R2 0.8554 0.8541 0.6733 0.0873 0.6588 0.8530 0.0674 0.0593 0.8498 0.8454 

Var 0.8559 0.8541 0.6733 0.0873 0.6592 0.8537 0.0680 0.0595 0.8500 0.8454 

30min 

MAE 2.5064 2.6485 2.7365 7.8344 6.3132 3.5600 10.3725 12.8530 2.5531 2.6485 

RMSE 3.9899 4.1580 4.3476 9.9757 8.6667 4.0576 11.3774 14.6328 4.0684 4.1580 

ACC 0.7221 0.7103 0.6714 0.3050 0.6034 0.7173 0.2046 0.1928 0.7166 0.7103 

R2 0.8541 0.8414 0.6573 0.0878 0.6521 0.8491 0.0592 0.0578 0.8482 0.8414 

Var 0.8546 0.8414 0.6573 0.0878 0.6524 0.8498 0.0592 0.0579 0.8484 0.8414 

45min 

MAE 2.5157 2.6530 2.7942 7.8392 6.1271 3.5883 11.9260 13.6430 2.5858 2.6530 

RMSE 4.0034 4.1669 4.6217 9.9800 8.0709 4.0908 12.8517 15.0647 4.1209 4.1669 

ACC 0.7211 0.7098 0.6350 0.3049 0.5965 0.7151 0.1794 0.1744 0.7130 0.7098 

R2 0.8531 0.8408 0.6114 0.0874 0.6067 0.8467 0.0516 0.0538 0.8444 0.8408 

Var 0.8536 0.8408 0.6112 0.0874 0.6070 0.8473 0.0510 0.0542 0.8445 0.8408 

60min 

MAE 2.5254 2.6635 2.8272 7.8342 6.6996 3.6056 11.7428 13.6430 2.5981 2.6635 

RMSE 4.0167 4.1821 4.9261 9.9778 6.3843 4.1166 14.2693 15.0647 4.1365 4.1821 

ACC 0.7202 0.7085 0.5073 0.3050 0.5512 0.7133 0.1274 0.1744 0.7119 0.7087 

R2 0.8521 0.8397 0.5800 0.0882 0.5856 0.8448 0.0375 0.0538 0.8432 0.8397 

Var 0.8526 0.8397 0.5800 0.0882 0.5860 0.8453 0.0374 0.0542 0.8435 0.8397 
 

Table III presents the ablation study results for the 
DASGCRN variants on the Los-loop and SZ-taxi datasets, 
indicating that each design module performs as expected. To 
visually compare the performance of DASGCRN and its 
variants. Fig. 6 further illustrates the comparative results for 
both datasets. From the results, we can observe: 

1) When the dynamic adjacency matrix 𝐷𝐴𝑡  is removed, 

the model's predictive performance declines sharply, 

demonstrating the necessity of capturing dynamic information  

within the road network. 

2) The learnable parameter matrix 𝐴𝑝𝑎𝑟  can adaptively 

explore potential spatial relationships between nodes, 

contributing to improved predictive performance. 

3) The removal of temporal embeddings 𝑇𝐷  results in a 

decrease in overall model performance. This indicates that 

temporal embeddings have a significant impact on the 

predictive capability of DASGCRN. 
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Fig. 6. Ablation experimental results on Los-loop and SZ-taxi 

VI. CONCLUSION 

A traffic speed prediction model DASGCRN based on 
dynamic spatial-temporal information is proposed. Firstly, the 
parameterized matrix and self-recurrent adjacency matrix are 
used to represent the spatial relationship between nodes 
effectively, which surpasses the traditional static adjacency 
matrix. Secondly, the dynamic graph is generated by using 
spatial-temporal feature embedding and traffic speed sequence, 
and the effective combination of dynamic graph and predefined 
graph is realized by step generation process. This method 
reduces the dependence on the prior knowledge of the road 
network and enhances the capture of the dynamic spatial-
temporal dependence in the traffic network. Finally, the residual 
decomposition with skip connection is used to facilitate the 
transfer of feature information. It improves the training process 
of the model, and further improve the performance of the model. 

In the future, we will further integrate more real-time 
datasets associated with traffic flow prediction, such as Internet 
of Things devices, autonomous vehicles, and mobile sensors, the 
model can capture the dynamic variations of the traffic network 
more accurately. Meanwhile, we will also enhance our attention 
to external factors such as weather and road conditions, and 
incorporate them as key features into the model, thereby 
enhancing the model's expressive capacity and predictive 
accuracy in a data-driven manner. 
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