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Abstract—Stance classification in Online Social Networks 

(OSNs) is essential to comprehend users' standpoints on various 

issues relating to social, political, and commercial aspects. 

However, traditional methods applied to large datasets and 

complex text structures usually face several challenges. This study 

introduces the Enhanced Aquila Optimizer (EAO), a 

metaheuristic algorithm designed to improve convergence and 

precision in stance classification tasks. EAO incorporates three 

new strategies: Opposition-Based Learning (OBL) to improve the 

exploration, Chaotic Local Search (CLS) to escape from the local 

optima, and a Restart Strategy (RS) to rejuvenate the search 

process. Experimental assessments on benchmark OSN datasets 

prove the superiority of EAO in terms of accuracy, precision, and 

computational efficiency compared to state-of-the-art methods. 

These findings position EAO as a potential revolution for stance 

classification and other large-scale text analysis tasks by offering 

a robust solution that can be used in real-time for complex OSN 

scenarios. 
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I. INTRODUCTION 

In the past couple of years, the rapid development and 
growth of Online Social Networks (OSNs) have been driven by 
the remarkable evolution of our economic and social lives due 
to the internet [1]. OSNs represent powerful communication 
platforms for sharing interests, exchanging ideas, or creating 
communities. Schneider, et al. [2] defined OSNs as networks of 
individuals with common interests in activities and mutual 
relationships. Most OSNs enable users to share messages, 
photos, and videos, rate objects, or discuss any topic, from 
health problems to political opinions [3]. Another social 
network is Facebook, estimated to have 2.38 billion monthly 
registered users as of March 2019, and Twitter has around 330 
million monthly active users. These are dynamic and real-time 
sources of information wherein users actively post their views 
on certain topics. Thus, OSNs have become a significant means 
of understanding trends in public opinion and have valuable 
insights into how ideas originate and spread in complex social 
networks [4]. 

The challenges for position classification in OSNs are 
enormous, considering the immense volume and complexity of 
information exchanged daily. OSNs generate vast amounts of 
unstructured text data covering diverse subjects, from sixteen 
social issues to product reviews, often including various 
linguistic expressions, slang, abbreviations, and dialects of 
different regions [5]. This makes developing a model that can 

generalize for all types of content pretty tough. Moreover, the 
language used in OSNs is generally informal, with humor, 
sarcasm, and implicit cues included, making their correct 
classification challenging. Traditional machine learning 
techniques, including Neural Networks (NNs) and Support 
Vector Machines (SVM), often need to scale up efficiently for 
big dynamic data sets [6, 7]. These methods can only grab those 
subtle expressions reliant upon context and reduce the accuracy 
of finding users' positions. More advanced and scalable 
methods are needed to process the inherent complexity present 
in OSN data and improve the accuracy of position classification 
[8]. 

Metaheuristic optimization algorithms have gained 
considerable attention due to their efficiency in exploring large-
sized search spaces associated with complex classification tasks 
[9]. Unlike the conventional methods of optimization, which 
suffer from high dimensionality and run the risk of getting 
trapped in local optima, metaheuristic algorithms have shown 
flexibility in navigating through such complex landscapes [10]. 
All these algorithms are population-based and explore a range 
of possible solutions at every iteration, with a better chance of 
converging to a global optimum. Their adaptability predisposes 
them to be good performers across various scenarios, especially 
in data-rich dynamic environments like OSNs. Metaheuristic 
algorithms explore the balance between exploration and 
exploitation in high-dimensional classification tasks and 
complex data to reach high accuracy while reducing 
computational costs [11]. This flexibility and strength of 
position makes metaheuristic optimization a valuable tool in 
solving the problems of position classification in OSNs. 

Aquila Optimizer (AO) is a newly introduced metaheuristic 
algorithm. The algorithm is inspired by the hunting strategy of 
the Aquila bird, one of the best algorithms in balancing 
exploration and exploitation to find its prey. AO simulates four 
different phases of the hunting behavior of the Aquila bird for 
moving between diverse explorations to the search space and 
focused exploitation around promising solutions. So far, this 
approach has successfully solved several optimization 
tasks, positioning AO as one of the more promising choices 
for challenging high-dimensional problems. Like many other 
metaheuristics, however, AO has ample limitations. In complex 
problem spaces, convergence can be slow, and this method may 
get stuck in suboptimal regions. These all relate to the ability of 
the algorithm to balance the trade-off between exploration and 
exploitation, which is the central challenge in the efficient 
exploration of massive, complex Spatiotemporal data 
environments characterizing OSNs. This makes enhancements 
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of AO of paramount importance and assures better performance 
of such robust applications on classification. 

The complexity of position classification in OSNs, marked 
by vast data volumes, high dimensionality, and nuanced 
language, demands highly efficient optimization methods. 
Although AO performed so well in optimization performance 
in many scenarios, the efficiency of the algorithms is crippled 
when dealing with the scale and intricacies of OSN data. 
Convergence to optimality can take a long time and sometimes 
even get stuck in local optima, which will make this algorithm 
deteriorate more for the performance of large-scale 
classification tasks where timely and proper analysis is 
required. Based on these findings, we will represent an 
Enhanced Aquila Optimizer (EAO) by implementing extra 
mechanisms into AO to enhance its capability. 

Metaheuristic optimization algorithms have drawn much 
interest since they can handle high dimensions and the inherent 
complexity of OSN's stance classification tasks. It is still 
challenging to efficiently map these complicated data structures 
into user and linguistic patterns. Recent breakthroughs in 
graph-based embeddings, such as Subgraph2vec, confirmed the 
power of random walk-based methods for meaningful 
representation extraction from structured data, including 
knowledge graphs [12]. Motivated by such techniques, our 
study focuses on optimizing the exploration and exploitation of 
high-dimensional data with the EAO. 

EAO unifies three central strategies, namely Opposition-
Based Learning (OBL), Chaotic Local Search (CLS), and a 
Restart Strategy (RS). OBL enhances the exploration capability 
by considering the opposite solutions; hence, it increases the 
diversity in exploiting the search space for high possibilities of 
converging to global optima. CLS contributes controlled 
randomness to the search process, which helps the algorithm 
maintain its distance from local optima and promotes diversity 
in potential solution regions. Finally, it uses RS in its last stage 
to reset the stagnated solution and reinitialize the diverted 
search agents into suboptimal areas, rejuvenating the 
exploration process and accelerating the convergence speed. 

II. RELATED WORK 

Several works have addressed position classification in 
OSNs using machine learning and optimization techniques. 
Parimi and Rout [13] envisaged a paradigm based on similarity 
to spread rival and counter-rumors. They introduced a 
probabilistic score-based system for determining whether a user 
should support a rumor or a counter-rumor. This paper uses a 
neighborhood analysis-based propagation methodology to 
examine the effects of rumor and counter-rumor cascades in 
OSNs. Determining the minimum user count that will start the 
counter-rumor and reducing communication costs in the 
application is another complex problem this study attempts to 
tackle. 

A comprehensive Hybrid Clustered Shuffled Frog-Leaping 
Algorithm-Particle Swarm Optimization (HCSFLA-PSO) 
algorithm was proposed by Hu, et al. [14] to quickly and 
continuously suppress rumors spread in OSNs. First, a novel 
scheme for refuting rumors and an inventive depiction of trust 
levels are presented by dissecting social interactions and 

examining intimacy, independence, and credibility. Second, a 
thorough HCSFLA-PSO algorithm is developed, utilizing the 
PSO algorithm's quick convergence and the SFLA's local 
clustering to refute rumors. This comprises the CP-HCSFLA-
PSO component for real-time rumor refutation during truth 
evolution and the CNP-HCSFLA-PSO sub-algorithm for 
timely rumor refutation, adapted to various social relationships 
with differing levels of trust. 

Saeidi [15] provided a straightforward, uncomplicated, and 
efficient approach to determining trust relationships between 
different OSN members. Consequently, four novel approaches 
for assessing the trustworthiness of users are developed and 
evaluated with the Anderson-Darling statistical hypothesis and 
Kolmogorov-Smirnov analyses to choose and verify the most 
suitable model using 20,613 empirical data from 4,552 
volunteers in social networks. A metaheuristic algorithm based 
on the Artificial Bee Colony (ABC) optimization approach was 
designed to address the temporal complexity of the issue and 
identify the optimal model fit. 

Fatehi, et al. [16] have developed a hybrid model that 
integrates graph-based and artificial intelligence methodologies 
to enhance the coverage and precision of online social 
networks. This method uses a distributed learning automaton 
rather than established graph-based search methods like 
breadth-first search, which can identify all reliable associations 
without limitations. Simulation findings conducted on an actual 
dataset from Epinions.com show enhanced accuracy and 
coverage relative to leading algorithms. The suggested 
approach demonstrates an accuracy of 0.939, indicating a 6% 
improvement over similar algorithms. 

Mallick, et al. [17] devised a collaborative deep-learning 
algorithm for detecting fake news. The suggested method 
employs user input to assess the trustworthiness of 
communications, with message ranking established according 
to these evaluations. Messages of lower rank are preserved for 
linguistic analysis to verify their authenticity, whereas highly 
ranked information is acknowledged as legitimate 
communications. A Convolutional Neural Network (CNN) 
transforms user input into rankings inside the deep learning 
framework. Messages with negative ratings are returned to the 
system for CNN model training. 

Vaghefi, et al. [18] investigated personal disclosure and 
brand perception on online networks like Foursquare and 
Twitter. Based on social and hyper-personal information 
processing theories, relationships between peers, distance, and 
advertising messages are examined. An integrated dataset 
reveals that self-disclosure is significantly influenced by 
checking in with friends and their proximity. Especially when 
interacting with well-informed peers, individuals prefer to 
ignore inquiries that reflect poorly on their health. 

Bangyal, et al. [19] investigated sentiment analyses and the 
detection of fake news using machine learning and deep 
learning in different challenges, and significant data volumes 
arose and became dynamic over Twitter. They presented for the 
first time an innovative proposed method of detecting COVID-
19-related false information in deep learning models, 
particularly the BiGRU model, for which the obtained accuracy 
was scored very impressively at around 91%. Bangyal, et al. 
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[20] compared classical machine learning classifiers such as 
Support Vector Machines and Random Forests. The results 
proved efficient in the competition and improved the robustness 
of even simpler models. Bangyal, et al. [21] extended the work 
by including semantic models and the TF-IDF and compared 
eight machine-learning classifiers with four deep-learning 
classifiers. The valuable outcome provided a comparison 
between accuracy and computational cost. While an advance in 
sentiment analysis, these works pointed to the need for scalable 
algorithms of high precision that handle stance classification in 
large and complex datasets. This motivated the development of 
the EAO. 

Position classification in OSNs is an attractive topic since 
there has been a high demand from users to make effective use 

of people's opinions and to control information dissemination 
effectively. Various state-of-the-art machine learning and 
optimization techniques have been studied for the works shown 
in Table I regarding rumor suppression, trust evaluation, 
sentiment analysis, and fake news detection. These works span 
classical machine learning model applications, leveraging the 
latest metaheuristics algorithms and deep learning frameworks, 
each with different advantages and limitations. Despite such 
advances, most previous approaches also either suffer from 
issues like scalability and computation efficiency or are very 
poorly applicable to OSN data, which by default is complex and 
time-variant. This extends earlier work and bridges previous 
gaps in the literature that resulted in the development of the 
proposed EAO, providing for a state-of-the-art scalable and 
efficient stance classifier. 

TABLE I. AN OVERVIEW OF PREVIOUS STUDIES 

Reference Methodology/algorithm Dataset Key findings Limitations 

[13] 

Neighborhood analysis-based 

propagation and multi-objective 

genetic algorithm 

Actual datasets for rumor 
and counter-rumor analysis 

Efficiently reduced communication 

costs and minimized counter-rumor 

users 

Limited scalability for larger 
datasets 

[14] 

Hybrid clustered shuffled frog-

leaping algorithm-particle swarm 
optimization 

Simulated datasets for real-

time and evolving rumor 
refutation 

Effectively suppressed rumors, 

accounting for trust and timeliness 

High computational complexity 

for real-time adaptation 

[15] Artificial bee colony optimization 

Facebook dataset (20,613 

data points from 4,552 

users) 

Identified optimal trust models with 
reduced temporal complexity 

Requires significant 
computational resources 

[16] 
A graph-based and distributed 

learning automaton 
Epinions.com dataset 

Enhanced accuracy and coverage by 

6% and 10%, respectively 

Does not address dynamic 

changes in network topology 

[17] 
Collaborative deep learning with 

CNN 

Simulated datasets for fake 

news detection 

Achieved 98% accuracy in detecting 

fake news 

Dependent on user input for 

initial rankings 

[18] 
Integrated social and hyper-personal 

information processing theories 

Integrated dataset 

(Foursquare and Twitter) 

Revealed self-disclosure influenced 

by peer proximity and advertising 

Limited to health-related and 

brand perception studies 

[19] BiGRU deep learning model 
COVID-19-related false 

information dataset 

Achieved 91% accuracy in detecting 

COVID-19-related fake news 

Focused only on COVID-19-

related data 

[20] 
Classical machine learning classifiers 

(SVM, Random Forest) 
Twitter datasets 

Proved efficient for simpler models 

in sentiment analysis 

Simpler models are less 

effective for nuanced stance 
classification 

[21] 
Semantic models with TF-IDF, 

multiple classifiers 

Twitter datasets with 

semantic enrichment 

Provided a trade-off comparison 

between accuracy and computational 
cost 

Needs scalable algorithms for 

complex stance classification 
tasks 

III. PROPOSED METHOD 

A. Problem Definition 

Position classification is a task aimed at estimating the 
stance of users concerning particular topics in OSNs, including 
opinion classification as favourable, unfavourable, or neutral 
towards various entities or topics. Unlike general sentiment 
analysis, which broadly adjectives text into positive, negative, 
or neutral areas, position classification is a closer sentiment 
analysis. It pinpoints users' opinions concerning clearly defined 
subjects, such as political figures, social problems, products, or 
happenings, offering a better perspective on public opinion. 

This fact renders this task especially hard due to the dynamism 
of the OSN data, which are often unstructured, different in 
linguistic styles, and very massive. 

One of the big questions is how to classify user opinions 
efficiently and accurately from a large dataset with high 
precision. OSNs generate magnificent volumes of textual data 
daily, from explicit endorsement to subtle criticism or neutral 
observations. Such data is usually unstructured and informal, 
including colloquialisms, abbreviations, and context-dependent 
meanings, which make their correct classification challenging. 
Moreover, the data in OSN is typically full of mixed emotions, 
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sarcasm, and idiomatic expressions, complicating their 
classification. 

This vast amount of data is bound together with complexity, 
and traditional machine learning with statistical methods faces 
scalability issues while handling this immense data. While the 
dataset grows, conventional models like support vector 
machines lose much of their accuracy and efficiency, or 
even simple neural networks take up much computational time 
and resources for training and inference. Moreover, these 
models must be revised to represent complicated relationships 
and subtleties specific to the context in the OSN language and 
limit generalization across a wide range of topics with users' 
expressions. 

Metaheuristic optimization is one of the ways of taming 
this. Considering position classification as an optimization 
problem, metaheuristic algorithms will handle high-
dimensional feature spaces to arrive at the uppermost solution, 
a highly performant classification with limited computational 
overhead. Within such a paradigm, the optimization algorithms 
must be solid and flexible enough to meet the peculiar demands 
of the data in OSNs. In this regard, it may likely involve the 
development of classical algorithms, such as Aquila Optimizer, 
for better exploration, adaptability, and higher accuracy 
regarding OSN position classification. 

B. Enhanced Aquila Optimizer 

AO is a newly formulated population-based optimization 
algorithm inspired by Aquila birds' predatory strategies 
proposed by Abualigah, et al. [22]. Aquila birds originate from 
the Northern Hemisphere and are considered one of the most 
famous predators, distinguished by their agility, strong talons, 
and strong feet. Thus, they may catch a wide range of prey, from 
squirrels and rabbits to marmots and hares. The proposed AO 
algorithm draws inspiration from four different foraging 
behaviors of Aquila birds that oscillate between exploration and 
exploitation during hunting. The AO algorithm starts with a 
randomly generated population of candidate solutions that can 
be mathematically expressed as follows: 

X =

[
 
 
 
 
 

X1,1 X1,2 ⋯ X1,j ⋯ X1,D

X2,1 X2,2 ⋯ X2,j ⋯ X2,D

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
Xn−1,1 Xn−1,2 ⋯ Xn−1,j ⋯ Xn−1,D

Xn,1 Xn,2 ⋯ Xn,j ⋯ Xn,D ]
 
 
 
 
 

 (1) 

Each element Xi,j in this matrix represents the position of an 
agent, calculated as follows: 

𝑋𝑖,𝑗 = 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗 ,   𝑖 = 1, … , 𝑛,   𝑗 =

1,… , 𝐷(2) 

Where rand represents a random number between 0 and 1, 
UBj and LBj  are the upper and lower bounds for each 
dimension, n denotes the population size, and D is the number 
of decision variables. The AO algorithm consists of four unique 
stages, facilitating the balance between exploration and 
exploitation. These stages are triggered under the following 
conditions: 

{
𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,         𝑖𝑓 𝑡 ≤

2

3
× 𝑇

𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
(3) 

Where T refers to the total number of iterations and t is the 
current iteration. 

1) Expanded exploration: At this stage, Aquila searches 

over a large area to find its prey by performing a high dive and 

then a soaring flight. In this phase, the position of each agent is 

updated using Eq. (4). 

𝑋1(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × (1 −
𝑡

𝑇
) + (𝑋𝑀(𝑡) − 𝑋𝑏𝑒𝑠𝑡(𝑡) ×

𝑟𝑎𝑛𝑑)     (4) 

Xbest represents the best position, and XM(t) gives the 
average position of the current population generation. 

2) Narrowed exploration: This process is Aquila's most 

commonly adopted hunting strategy. It involves a short gliding 

flight and contour-following maneuver. Eq. (5) updates the 

agent's position. 

𝑋2(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝐿𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑡) + (𝛾 − 𝑥) × 𝑟𝑎𝑛𝑑
 (5) 

Where Levy(D) is a Levy flight distribution, D represents 
the number of dimensions, and XR indicates an agent's position 
at random. The Levy flight is defined by Eq. (6). 

𝐿𝑒𝑣𝑦(𝐷) = 𝑠 ×
𝑢×𝜎

|𝜈|
1

𝛽⁄
   (6) 

Where β=1.5, u, and v are random values, and s=0.01 is a 
scaling factor. 

3) Expanded exploitation: In the third stage, the search 

scope is narrowed further; the agent is prepared for an attack 

through a low-flight preliminary assault. The position update is 

done as follows: 

𝑋3(𝑡 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑀(𝑡)) × 𝛼 − 𝑟𝑎𝑛𝑑 + ((𝑈𝐵 −

𝐿𝐵) × 𝑟𝑎𝑛𝑑 + 𝐿𝐵) × 𝛿  (7) 

Where α and δ are exploitation parameters set to 0.1. 

4) Narrowed exploitation: In this final stage, Aquila chases 

and attacks the prey using an escape trajectory. Eq. (8) updates 

the agent's position. 

𝑋𝑡(𝑡 + 1) = 𝑄𝐹 × 𝑋𝑏𝑒𝑠𝑡(𝑡) − (𝐺1 × 𝑋(𝑡) × 𝑟𝑎𝑛𝑑) − 𝐺2 ×
𝐿𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 × 𝐺1  (8) 

Here, QF represents the quality factor, where 𝑄𝐹(𝑡) =
𝑡

2×𝑟𝑎𝑛𝑑−1
/(1 − 𝑟)2 , and 𝐺1 = 2 × 𝑟𝑎𝑛𝑑 − 1 and 𝐺2 = 2 ×

(1 −
𝑡

T
) manage different motion and attack angle aspects. 

C. Opposition-based Learning 

The OBL strategy was first proposed by Tizhoosh [23], and 
since then, it has been implemented for several swarm 
optimization algorithms to improve their performance 
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significantly. Many researchers have practiced this technique 
on swarm optimization algorithms to enhance the exploration 
and convergence potential of the swarm optimization 
algorithm. For instance, OBL is combined with the SSA 
framework in [24] to avoid local optimization problems. In 
[25], the Harris Hawks Optimization (HHO) algorithm 
combines the OBL concept with a chaotic local search to 
substantially improve its exploration capability. Zhang, et al. 
[26] used OBL to enhance the algorithm's performance in 
arithmetic optimization. The OBL works based on comparing 
the original solution's fitness value with its opposition. The 
opposition solution of an integer x in the bounds [lb, ub] can be 
computed using Eq. (9). 

𝑥̅ = 𝑢𝑏 + 𝑙𝑏 − 𝑥   (9) 

For a vector x, the opposite value of each component can be 
determined as follows. 

𝑥𝑗̅ = 𝑢𝑏𝑗 + 𝑙𝑏𝑗 − 𝑥𝑗   (10) 

Where lbj and ubj represent the lower and upper bounds for 
the jth dimension. 

D. Chaotic Local Search 

CLS is one of the well-known algorithms applied to various 
swarm optimization techniques, such as the Jaya Algorithm 
[27], brainstorm optimization [28], and WOA [29]. The CLS 
approach is usually implemented by using a logistic map in the 
following: 

𝑜𝑠+1 = 𝐶𝑜𝑠(1 − 𝑜𝑠)  (11) 

Where s denotes the iteration and C is a control parameter, 
typically set to 4. Values of o1 can be initialized at 0.25, 0.50, 
or 0.75. CLS focuses on local searches around the optimal 
solution found so far, aiming to enhance accuracy within that 
neighborhood. The CLS-generated values Cs  in iteration i are 
computed as follows: 

𝐶𝑠 = (1 − 𝜇) × 𝑇 + 𝜇𝐶̂𝑖 ,   𝑖 = 1,2, … , 𝑛 (12) 

Where 𝐶̂𝑖 is calculated as: 

𝐶̂𝑖 = 𝐿𝐵 + 𝐶𝑖 × (𝑈𝐵 − 𝐿𝐵)  (13) 

Here, 𝜇 represents a shrinking factor, determined by: 

𝜇 =
𝑇−𝑡+1

𝑇
      (14) 

E. Restart Strategy 

In the optimization process, some agents will be entrapped 
or stuck in a particular local optimal and fail to obtain the best 
performance. Such agents cannot contribute to improving the 
search but consume additional computing resources. Zhang, et 
al. [30] proposed RS that restarts or relocates such stagnant 
agents. The RS strategy traces the improvement frequency of 
each agent. If an agent does not find newer and better solutions, 
a trial will increase in value. When it reaches a certain threshold 
predefined, the position of the agent resets according to the 
following equations: 

𝑋(𝑡 + 1) = 𝑙𝑏 + rand ⋅ (𝑢𝑏 − 𝑙𝑏)  (15) 

𝑋(𝑡 + 1) = rand ⋅ (𝑢𝑏 + 𝑙𝑏) − 𝑋(𝑡) (16) 

F. Proposed Algorithm 

EAO, the improvisation proposed in this paper, tries to 
overcome its bottleneck with the help of standard AO by 
applying strategies like OBL, RS, and CLS. OBL applied 
during initialization and in the position updates ensures that the 
optimizer is initialized with a robust set of agents and explores 
a good amount of solution space. CLS fine-tunes the best 
solution in every iteration to ensure an enhanced search 
precision neighborhood. Finally, RS re-positions the stagnant 
agents, which stirs the exploration process. Fig. 1 shows the 
pseudocode of EAO. To obtain the computational complexity 
of EAO, one can focus on the three phases separately: 
initialization, assessment, and position update. This gives, in 
total, the complexity O(EAO): 

𝑂(𝐸𝐴𝑂) = 𝑂(Initialization) + 𝑂(Assessment) +
𝑂(Position update) + 𝑂(CLS + OBL + RS)  (17) 

Assuming T as the total iterations, N as the population size, 
and D as the number of dimensions, each component has the 
following complexity: 

 Initialization: O(N) 

 Assessment: 𝑂(𝑁 × 𝑇) 

 Position update: 𝑂(𝑁 × 𝐷 × 𝑇) 

 RS and OBL: 𝑂(𝑁 × 𝐷 × 𝑇) 

 CLS: 𝑂(𝑁 × 𝑇) 

The overall complexity of the EAO can be expressed as 
follows: 

𝑂(𝐸𝐴𝑂) = 𝑂(𝑁) + 𝑂(𝑁 × 𝑇) + 𝑂(𝑁 × 𝐷 × 𝑇) +
𝑂(𝑁 × 𝐷 × 𝑇) = 𝑂(𝑁 × 𝐷 × 𝑇)  (18) 
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Fig. 1. Enhanced Aquila Optimizer. 

IV. PERFORMANCE EVALUATION 

Stance detection involves an automated method for 
determining how a writer expresses support, opposition, or 
neutrality toward a particular argument or topic. The scope of 
analysis in this field is extensive and may include subjects such 
as individuals, organizations, governmental policies, social 
movements, or commercial products. For instance, a detailed 
examination of Barack Obama’s speeches could be conducted 
to ascertain his position on regulating guns in the U.S. 
Individuals convey their opinions on various issues through 
various platforms, including Facebook, YouTube, Twitter, and 
online forums. This approach applies to several areas, such as 
stand-alone stance classification, information retrieval, 
automatic text summarization, and text inference. Over the past 
decade, significant research has focused on modeling stances in 
digital media. This study utilized four datasets from an existing 
database, comprising training and testing data derived from 
tweets. These datasets cover over two million stance 
expressions across four topics. 

In this work, stance classification is analyzed as an 
optimization problem. The dataset is initially converted into 
structured data for analysis. Such datasets used to perform 
experimentation include Hillary Clinton, the Legalization of 
Abortion, Atheism, and the Feminist Movement, which 
constitute an optimization space. Firstly, documents are 
generated for each dataset after the preprocessing steps. Since 

the number of tweets is taken across rows in the document 
array, the total volume of words obtained by preprocessing 
defines the dimensionality of a single tweet. If a word from a 
set is featured in a given tweet, its column will be assigned a 
value equal to 1. In other cases, when some word from a set 
does not appear in the text of a certain tweet, the respective 
column will be recorded with 0. Consequently, the document 
matrix is only composed of zeros and ones. 

A vector of word weights is also constructed based on word 
weights within documents. The “maximum word passes” 
denotes the highest quantity of records where a single word 
occurs. The weight for each word is then calculated as the ratio 
of the word's frequency to the maximum occurrence across all 
documents. These calculated weights collectively form the 
word weight vector used in the optimization analysis. 

In this research, the similarities among the population 
participants (potential solutions) and the document structure are 
critical for constructing an effective classification system. 
Specifically, correlations between document matrix 
components and possible solutions are carefully evaluated. 
Various methods exist for measuring similarity, including 
Overlap, Dice, Jaccard, and Cosine. This study found that the 
Jaccard similarity measure yielded the best results, and a 
modified Jaccard similarity measure quantified correlations 
across texts. This approach determines standard features by 
calculating the proportion of shared features over the entire text. 
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Mathematically, for an individual 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑀) 
in the population and a corresponding line 𝐷𝑗 =

(𝐷𝑗1, 𝐷𝑗2, . . . , 𝐷𝑗𝑀) Jaccard similarity is calculated as follows: 

J(Dj, Xi) =
Xi∩Dj

Xi∪Dj
   (19) 

The extended Jaccard similarity is computed using Eq. (20). 

J(Dj, Xi) =
∑ 𝐷𝑗𝑘𝑋𝑖𝑘

𝑀
𝑘=1

∑ (𝐷𝑗𝑘
2 )𝑀

𝑘=1 +∑ (𝑋𝑖𝑘
2 )𝑀

𝑘=1 −∑ 𝐷𝑗𝑘𝑋𝑖𝑘
𝑀
𝑘=1

 (20) 

Furthermore, to account for the significance of word 
frequency, tweet word counts relative to the total document 
word count were included. This ratio is calculated using Eq. 
(21). 

𝑟𝑎𝑡𝑖𝑜𝑗 =
𝑁𝑜.𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑜𝑚𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 (21) 

This ratio helps assign appropriate word weights based on 
their occurrence within the preprocessed dataset. The new 
similarity measure, incorporating both the Jaccard similarity 
and the word frequency ratio, is defined as: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖𝑗 = 𝛼 × 𝑗𝑎𝑐𝑐𝑎𝑟𝑑 + 𝛽 × 𝑟𝑎𝑡𝑖𝑜𝑗  (22) 

Where 𝛼  and 𝛽 are coefficients whose sum equals one, 
allowing for a balanced weighting scheme to optimize the 
model’s performance. 

The similarity of each Xi within the population was 
evaluated based on all tweets included in the dataset. 
Classification of tweets was conducted by comparing the 
similarity value to a predefined threshold: tweets were 
classified as either above or below this threshold. To determine 
an individual's fitness in similarity analysis, Eq. (23) was used: 

𝐹 = 𝛼 ×
𝑇𝑃

𝑙𝑒𝑛𝑔𝑡ℎ
+ 𝛽 ×

𝑇𝑃

𝐹𝑃+𝑇𝑃
+ 𝛾 ×

𝑇𝑁

𝐹𝑃+𝑇𝑁
+ 𝜔 ×

𝑇𝑃

𝐹𝑁+𝑇𝑃
(23) 

Where False Negative (FN) refers to the number of 
instances in which the rule incorrectly identified as negative 
when they belong to the positive class, True Negative (TN) 
stands for the number of cases accurately recognized as 
negative by the rule, False Positive (FP) signifies the count of 
instances incorrectly labeled as positive by the rule, even 
though they belong to the negative class, and True Positive (TP) 

represents the number of cases correctly identified by the rule 
as belonging to the positive class. 

The coefficients 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝜔 are weight values that must 
collectively sum to one. These weights are customizable and 
can be adjusted to optimize the performance of the fitness 
function, allowing the algorithm to be tailored for the best 
possible results in a given context. 

The proposed EAO algorithm's effectiveness in addressing 
the stance detection problem, a complex task in online social 
network analysis, was evaluated and compared against several 
classifiers. The experiments were performed using MATLAB 
R2018b on a system equipped with an Intel Core i5-12400F 
CPU running at 2.5 GHz and 8 GB of RAM. The comparative 
analysis of the algorithms' results was based on the following 
classification metrics. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑇𝑃

𝐹𝑁+𝐹𝑃+2𝑇𝑃
  (24) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
    (25) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
   (26) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑎𝑙𝑒𝑑 𝑑𝑎𝑡𝑎 =
𝑇𝑁+𝑇𝑃

𝐹𝑁+𝑇𝑁+𝐹𝑃+𝑇𝑃
 (27) 

Tables II to V present a comparative analysis of EAO, ACO, 
and AO algorithms applied to stance detection datasets on 
various social issues. Each table illustrates the performance of 
multiple classification algorithms, focusing on F-measure, 
recall, precision, accuracy, and correctly labeled data metrics. 
For the Feminist Movement dataset (Table II), EAO performs 
better than others, achieving an accuracy rate of 61.387%, while 
NaiveBayes and staking also show competitive results. 
Similarly, in the Atheism dataset (Table III), EAO achieves the 
highest accuracy of 64.593%, followed closely by random 
forest. 

In the analysis of the Legalization of Abortion dataset 
(Table IV), EAO emerges as the top-performing classification 
algorithm with an impressive accuracy rate of 70.201%, 
significantly higher than the other contenders. Finally, for the 
Hillary Clinton dataset (Table V), EAO shows better accuracy 
at 83.921%, indicating enhanced performance than the other 
algorithms. 

TABLE II. RESULTS FOR THE FEMINIST MOVEMENT DATASET 

Algorithm F-measure Recall Precision Accuracy (%) Correctly labeled data 

EAO 0.574 0.598 0.613 61.387 173 

NaiveBayes 0.561 0.552 0.601 55.112 158 

Stacking 0.522 0.563 0.521 56.845 164 

QDA 0.522 0.563 0.521 56.845 163 

REPTree 0.518 0.569 0.548 56.849 163 

Random forest 0.512 0.517 0.505 51.586 148 

Random tree 0.509 0.514 0.502 51.581 147 

Extra tree 0.459 0.462 0.475 45.619 129 
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TABLE III. RESULTS FOR THE ATHEISM DATASET 

Algorithm F-measure Recall Precision Accuracy (%) Correctly labeled data 

EAO 0.621 0.578 0.654 64.593 143 

Random forest 0.619 0.628 0.623 62.784 139 

Extra tree 0.559 0.571 0.569 57.705 127 

Random tree 0.588 0.592 0.586 59.084 131 

NaiveBayes 0.556 0.617 0.648 61.375 136 

QDA 0.506 0.578 0.584 57.714 128 

REPTree 0.501 0.528 0.577 52.716 117 

Stacking 0.501 0.528 0.577 52.716 117 

TABLE IV. RESULTS FOR THE LEGALIZATION OF ABORTION DATASET 

Algorithm F-measure Recall Precision Accuracy (%) Correctly labeled data 

EAO 0.691 0.686 0.695 70.201 197 

NaiveBayes 0.676 0.672 0.688 67.135 187 

Random forest 0.666 0.678 0.682 67.845 191 

Extra tree 0.643 0.651 0.647 65.342 182 

Stacking 0.599 0.625 0.611 62.742 175 

Random tree 0.597 0.601 0.605 60.254 168 

QDA 0.578 0.635 0.578 63.572 177 

REPTree 0.576 0.572 0.641 57.098 159 

TABLE V. RESULTS FOR THE HILLARY CLINTON DATASET 

Algorithm F-measure Recall Precision Accuracy (%) Correctly labeled data 

EAO 0.811 0.853 0.856 83.921 248 

NaiveBayes 0.813 0.821 0.808 82.372 242 

Random forest 0.801 0.818 0.799 82.371 242 

REPTree 0.783 0.835 0.822 83.715 243 

Extra tree 0.779 0.782 0.776 78.306 230 

Random tree 0.727 0.733 0.721 73.546 216 

QDA 0.632 0.677 0.719 67.786 199 

Stacking 0.628 0.587 0.702 58.306 173 

V. CONCLUSION 

This paper proposed and evaluated EAO on the OSN stance 
detection problem, a complex high-dimensional classification 
problem. The performance of EAO was rigorously compared to 
ACO and classical AO on multiple datasets about social issues. 
In this regard, a comparative analysis was conducted, where the 
EAO outperforms its competitors on the classification accuracy 
of F-measure, recall, and precision for most of them, thus 
proving the more remarkable ability of EAO in exploring the 
search space in most cases. Our results suggest that embedding 
superior methodologies such as OBL and CLS contributes to 
robustness and efficiency while handling complex problems 
with EAO. EAO effectively resolves the challenges posed by 
stance detection in OSNs through improvements in 
convergence speed while sustaining diversity among solutions. 
This work may be extended by further optimization or 
hybridization strategies, including adaptation of EAO for other 
tasks related to social media analysis and deep learning 
frameworks for better performance. The proposed algorithm 
EAO has considerable potential for wild applications in 

dynamic and data-heavy settings, serving as a valid tool for 
large-scale social network data analysis. 
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