
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

551 | P a g e

www.ijacsa.thesai.org

The Impact of Malware Attacks on the Performance

of Various Operating Systems

Maria-Mădălina Andronache1, Alexandru Vulpe2, Corneliu Burileanu3

Research Institute “CAMPUS”, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania1

Telecommunication Department, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania2

Speech and Dialogue Research Lab, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania3

Abstract—Latest research in the field of cyber security

concludes that a permanent monitoring of the network and its

protection, based on various tools or solutions, are key aspects for

protecting it against vulnerabilities. So, it is imperative that

solutions such as firewall, antivirus, Intrusion Detection System,

Intrusion Prevention System, Security Information and Event

Management to be implemented for all networks used. However,

if the attack has reached the network, it is necessary to identify

and analyze it in order to be able to assess the damage, to prevent

similar events from happening and to build an incident response

adapted to the network used. This work analyzes the impact of

malicious and benign files that have reached a network. Thus,

during the work, various analysis methods (both static and

dynamic) of real malicious software will be developed, in two

different operating systems (Windows 10 and Ubuntu 22.04).

Thereby, both the malware and benign files and their impact on

various operating systems will be analyzed.

Keywords—Cybersecurity; network security; network

monitoring; incident analysis; incident response

I. INTRODUCTION

Network security includes a large number of technologies
and devices that must work together based on a predefined set
of rules. These rules are primarily intended to protect sensitive
information in a system. However, it must be considered that
security aspects cannot work with the same set of rules
indefinitely because the threat environment is constantly
changing, attackers are always trying to find new vulnerabilities,
and network architectures are increasingly complex and
different. This is the main reason why network security
management tools or applications are also constantly updated.

In this security context, malicious files are an extremely
difficult aspect to ignore. So, they are represented by malicious
software that is created to produce, according to study [1],
various exfiltration of information or to cause various
interruptions. Their general purpose is to obtain ideas, to damage
the reputation of a company or a system, or material gains.
Malicious files can achieve these aspects precisely because of
the possibility of exploiting some vulnerabilities or due to the
negligence of certain people who perform various actions
unfavorable to the security context (disabling the antivirus,
deactivating the firewall). From study [2], malicious files and
cyber-attacks have expanded their action exponentially in recent
years, being encountered more and more often both within
companies and for ordinary users. Their greatest impact is given
by affecting critical systems such as the health area, the
financial-banking area, the area of government attacks or the

industrial area. Although malicious files and new types of
attacks appear daily, a main part of them are based on the
skeletons of older malware to which various code improvements
are added. Thus, it is imperative to analyze the existing malware
and understand their characteristics because they can generate
patterns of future attacks. To perform this type of analysis, it is
important to distinguish between static and dynamic analysis of
files. This differentiation is made considering various sources
such as [3], [4] and [5]. Static analysis of a malicious file
involves testing it without executing it. So, this involves the
analysis of the source code and other aspects such as the magic
number or the hash of the file in order to identify whether it is
malicious or not. Dynamic analysis is how the file is analyzed
after it is executed to observe how it affects various files or
various system registries. Given the fact that this method also
involves the execution of the file, it is necessary for this to be
done in a closed and controlled environment. Following these
two types of analysis, it will be determined whether the file is
malicious. The most frequently encountered types of malware
present in a system are those known as zero-day. However, the
static and dynamic analysis methods cannot detect this type of
attack if it does not have a known pattern. For all the other types
of malicious files: ransomware, trojan, virus, worm, backdoor,
this analysis can be performed for the purpose of documentation
and for the purpose of identifying the main characteristics
necessary to prevent a possible subsequent attack. These
characteristics are also considered based on the literature in [6],
[7], [8] and [9].

The purpose of this work is to perform a comparative
analysis of how different types of files are executed within two
different types of operating systems. For this purpose, a test
environment is created, which includes both static and dynamic
analysis methods. The contributions of this work consist in
creating a test environment (which is similar to a regular user,
within a company and does not rely on existing sandboxes),
choosing the most recent files from a public malware database
(that are not predefined and used in another labeled database),
analyzing various events and logs (after the execution of the
files) and making a comparison on the key characteristics of
these files.

This paper is organized as follows. Section II provides an
evaluation of the specialized literature and research related to the
analysis of malicious files. Section III provides the area of
background work. Experiments and results are presented in
Table IV. Discussion is given in Section V and finally, Section
VI concludes the paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

552 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

To perform a complete analysis of malware files, a thorough
review of the research activity and tools required in the process
is required. Through this section, a deeper understanding of the
existing research in the field will be achieved, an aspect that will
also lead to the framing of this work in the current security
context.

Taking into consideration the paper [10], it is found that it
introduces a study related to the dynamic analysis of malicious
files, evaluating an open source SIEM (Security Information and
Event Management) system called Elastic Stack. Thus, by
capturing the event logging mode in Windows, a complete
description of the events within the system could be achieved.
Malware analysis included in the paper contains a Dynamic
Analysis. This type of analysis is also used in the current paper,
but compared to the work [10], this paper includes experiments
within both Linux and Windows operating system.

The vulnerabilities of a system are an extremely sensitive
subject for traditional detection methods because they contain
extremely complex functions and algorithms, which cannot be
interpreted by them. In the paper [11], detection of these
vulnerabilities is carried out in a binary code, by means of neural
network algorithms and by means of the NDSS18 database. This
database contains CVEs (Common Vulnerabilities and
Exposures) for both Windows and Linux operating systems. The
results indicate a good performance of the model given by
machine-learning algorithms. In this paper, both operating
systems will be used to see the interaction of some malware files
with the default processes of these operating systems.

In paper [12], a method for detecting the behavior of
malicious Android activities is proposed through a hybrid, static
and dynamic approach with automatic learning. The results of
the work indicate an accuracy of 97% for the detection of
anomalies. The advantages of the work would be the reduced
use of some permission functions and the consumption of
resources, which improve the efficiency of the system. In the
present work, the absence of experiments in the area of the
Android operating system is identified, as it is not a desktop
environment. However, the work in [12] indicates various
similarities between the operating modes of malicious files in
the desktop area and in the mobile area, the static analysis being
carried out identically.

According to study [13], IoT devices occupy a special place
in the area of malware detection because they have different
characteristics depending on the environment and the platform
studied, making it extremely difficult to identify. The proposed
analysis method includes both static analysis, against software
shells, and dynamic analysis, through nine different sandboxes.
The analysis method required the creation of a database and, for
this, samples from the Padawan sandbox, VirusTotal [33] and
other open-source areas were taken into account. The malware
detection accuracy presented in the solution, evaluated using
XGBoost, SHAP and Scikit-Learn exceeds 98%. In the current
work, compared to the work [13], the sandbox used for dynamic
analysis is not a commercial one, but is given by common virtual
machines of common users of a company. Thus, the tools used
for the experiments are also different, but the key aspects
pursued are similar.

In the paper [14], a solution for detecting malicious files
using the YARA tool is presented. Thus, during the work, five
rules were developed for malware detection in the static analysis
area. From the expressed results, it is stated that the presented
solution reduces the identification time, improving the detection
efficiency. In this work, Yara rules will be also used for static
analysis.

Considering [15], the paper presents a way of detection and
prevention of malicious files before they corrupt the test system.
Thereby, a Virtual Box type environment is used in which a
static analysis of malicious files is carried out. The experiments
were carried out by means of IDAPro, a tool that will be used in
this work as well, and the malicious files were of the type of
Trojan horses. The results indicated various functions, strings,
imports and exports made by the malware program, and their
detection was done through Reverse Engineering.

Taking into account the experiments made in study [16], it
is concluded that a static analysis is carried out on a malicious
file, with the aim of detecting its behavior. The way to detect
malicious files is by extracting the APIs and checking them, and
the authors have developed a program that analyzes PE files.
The files on which this test is performed are benign,
Ransomware, Backdoor and Keylogger and this approach is also
found in the present work.

From study [17], it can be concluded how ransomware
works. Thus, through the specified paper, certain experiments
are carried out through the Kaspersky ransomware signature
database and a virtual environment. So, attacks are detected,
based on rules based on the signatures of these files, and an
analysis is made on their functionality and prevention.
Therefore, all analyzed files are either restricted or sent to the
detection area for further processing. The present work also
addresses ransomware files within the experiments, but the files
are different within the two papers.

In study [18], an analysis of the vulnerabilities of a software
system is presented. During the work, both the main types of
system vulnerabilities (from Buffer overflow to DOS or
Memory Corruption) are highlighted, as well as the detection
methods, which include, as in this work, static analysis, dynamic
analysis and hybrid analysis. The experimental data used in the
paper are the authors' own data and include historical
vulnerability data. These are evaluated for vulnerability
detection by means of machine-learning techniques. The
essential difference between the work [18] and the current paper
includes their motivation: one trains Machine Learning
algorithms and the other only extracts and analyzes key features
to form a complex database of malware files.

The previously cited literature sources highlight various
aspects of the cyber security area and various approaches similar
to the one in the present paper. A good part of them is based on
machine-learning algorithms and the development of robust
models through this technology. However, in the real security
environment, within various companies, there is still quite a lot
of skepticism regarding the area of artificial intelligence and the
methods used by it. Although the advantages of these solutions
are immense and solve a large part of repetitive tasks,
knowledge of traditional methods is still imperative to ensure a
complete and deep understanding of the field.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

553 | P a g e

www.ijacsa.thesai.org

III. BACKGROUND WORK

In order to carry out a complete analysis of the behavior of a
malicious file, both a static analysis and a dynamic analysis of it
are necessary. Thus, during the experiments carried out in this
work, both types of analysis will be performed on legitimate or
malicious files from the Windows 10 and Ubuntu 22.04
operating systems. The goal is to identify the essential
characteristics of various types of malware in order to create a
complete database of characteristics. This will be able to serve,
later, to create an automatic intrusion detection system within a
computer network of various sizes. These types of analysis, both
static and dynamic, will be implemented using various open-
source tools, and the results of the study will be analyzed
comparatively.

The analyzed files were downloaded from the
MalwareBazaar Database [25] and include various types of files
related to Windows and Linux operating systems. The method
of choosing the malware samples used did not follow any
specific algorithm but included the identification of similar types
of malware for the two types of operating systems used. This
need appeared after consulting the literature regarding similar,
relevant articles in the field, finding a predilection for known or
even outdated databases, which are permanently tested.
Therefore, out of the desire to perform the experiments with real
malware samples and not with pre-tagged databases, the
MalwareBazaar Database [25] source was chosen.

Within this database there are many different malware
samples, but the categories are represented by the main types of
malware. Thereby, similar samples were chosen (from the same
malware family, from the same category, appeared on the same
day, etc.), both for Windows and for Linux. By means of this
approach, the research can evaluate various ways of functioning
of malicious files in its own way and can lead to unpredictable
conclusions, which can contribute both in the literature and in
the area of commercial applications.

A. Static Analysis

The static analysis of this work will be carried out using
various open-source tools. These tools were chosen due to their
popularity and effectiveness in detecting key characteristics of
malicious files for both Windows and Linux operating systems.

 IDA Pro [19] is a tool that is able to disassemble the files
and identify the way in which the instructions are
executed in the assembly language. This tool is suitable
for both Windows and Linux OS.

 PeStudio [20] is an integrated tool for static analysis of
malicious software that indicates various information
about files (file headers, file entropy, character strings or
imported or exported functions). This tool is
characteristic of the Windows operating system, but for
Linux it will be an used an alternative named Malcat [26]
and Detect-It-Easy [27].

 YARA rules [21] – methods of identifying malicious
programs by means of commands written in a .txt
program that include instructions for identifying similar
sequences used or that have similar patterns.

B. Dynamic Analysis

Dynamic analysis of malicious files means executing them
to be able to observe the actual behavior. So, it is found that for
this aspect, it is necessary to create a safe and isolated sandbox
environment. Except for this aspect, it is also necessary to
introduce various tools that can be used to identify the described
behavior at runtime. Also, tests will be carried out through which
it will be possible to observe whether or not these types of files
raise various alerts through the antiviruses specific to each OS.

The essential characteristics that must be monitored in a
dynamic analysis are:

 Network traffic monitoring: To be able to track IPs and
DNSs contacted for file downloads or data exfiltration.

 System file monitoring: Monitoring how certain
registries are created, modified or deleted.

 CPU monitoring: To be able to observe if it becomes
overloaded by certain unknown requests.

 Memory area monitoring: To be able to identify activities
that are not visible.

 Code monitoring: If it can be decrypted, it provides
important information about how the malicious file
works.

This information can determine several aspects of the actual
attack and whether the system in which it was identified is the
target or only an intermediate step towards the final target.

It is mentioned that some of the tools used in the created
sandboxes are characteristic of the operating system, and
another part of them is common to both Windows and Linux.
The chosen tools have the advantages of being open-source and,
according to the literature, have increased efficiency in
monitoring malicious activity.

 Regshot [22] is a dynamic analysis tool that performs a
comparison of a created file with the status of registers
and system keys before and after the execution of the
malicious file. This tool identifies the changes made by
the malicious file and is characteristic of the Windows
operating system, but it can also be adapted for Linux,
through a series of commands.

 Wireshark [23] is a tool that can be used to capture and
analyze data packets from a network. In this work, this
analyzer will be used to identify the exchange of
messages between the malware file executed within the
network and any IPs to which the request is made.
Although this tool is normally used in the Windows
operating system, adaptations can also be found for the
Linux area.

 FakeNet-NG [24] is a tool that simulates Internet traffic,
specially created for the malware analysis area. Thus, the
malicious programs consider that the workstation is
connected to the Internet and try to access various
resources. These are later captured to be analyzed in the
file behavior characteristics area. This tool can be
implemented both in the Windows operating system
area, as well as in the Linux OS area.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

554 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTS AND RESULTS

As can be seen from the Fig. 1, the steps necessary to
perform the two types of analysis are: choosing the file type,
choosing the analysis method with the related implications
(analyzing the file, without executing it, and analyzing it by
executing it, in a sandbox environment) and choosing the
appropriate tools for each analysis, separately. Considering the
fact that, in the case of dynamic analysis, the execution of
malicious files will involve affecting some registers or even the
entire test environment, the experiments will be performed in a
virtual work environment. This offers the possibility of returning
to the previous settings through the Snapshot function.

This work approach will be preserved for both operating
systems. In addition to the basic tools, which will be used to
detect malware files, additional resources will be used, such as
various functions from Microsoft or the detection of differences
in the state of the CPU and memory during the attack. Also, in
order to be able to analyze the involvement of anti-virus
software in the experiments, this resource will also be used, and
its involvement will be analyzed comparatively, depending on
the operating system.

Fig. 1. Workflow diagram of the system.

A. Experiments in the Windows Operating System

a) Static analysis: In the framework of the static analysis

present in the Windows operating system, all the tools that were

previously presented, in Section III, will be used.

The files used for the experiments in this scenario are of
different types, containing both non-malicious and malicious
files downloaded from an online database or from public
resources (for benign files). For the experiments carried out, the
legitimate files are of various types – from executable files to
document-type files, archived or photo-type files. The benign
file that has .exe extension is the strings64.exe file from the
Strings library [28]. Apart from benign files, several different
types of malicious files were also chosen from MalwareBazaar
Database [25]. Each of these was analyzed using PEStudio,
strings64.exe, YARA Rules and IDA Pro. By means of these
tools, it was possible to analyze the hash values of the files
(MD5-Message Digest Method 5, SHA1-Secure Hash
Algorithm 1, SHA256-Secure Hash Algorithm 256), their
imphashes, entropy values, imported libraries or APIs. In Table
I, you can find the values of file types, their imphash or MD5
hash and the entropy values for each one of them.

TABLE I. STATIC ANALYSIS OF MALICIOUS FILES IN THE WINDOWS

OPERATING SYSTEM

File Type
Characteristics

MD5/ Imphash Entropy

Benign .exe 4d936b630620ff7c59da22b1206636e 6.42

Benign .doc 6698b2a4a15f86ddd4fc90ad65521cf7 7.76

Benign .txt 42631b1af161defcf4844fb1e26cfc70 4.40

Benign .jpg 2be5d32efb9c3f4b6acf94a1d1e707b4 7.96

Benign .mp4 37d7f751daa745beba4cf44b6373f2be 8.00

Benign .pdf f9067cb2369fa0ec4e3753f67638fbca 7.34

Benign .zip 8273b4301f7a6d678c0523bb07fedd80 7.99

Benign .html 40c15f040bc8f4aeb81909fb36aa9905 4.29

Benign .iso 089a3a344f301a34dc40cc3702f2b873 7.93

Botnet .exe 5e146bf6c1ef160162ed271c0ddde908 3.54

Backdoor .dll f34d5f2d4577ed6d9ceec516c1f5a744 4.42

Keylogger .exe 008a6a7f7e2610edadf3e2f26c73b646 7.63

Malware .exe 11ea24073ee65343ee563e3160c77fde 7.81

Ransomware .exe 914685b69f2ac2ff61b6b0f1883a054d 7.18

RAT .exe 8d5087ff5de35c3fbb9f212b47d63cad 6.59

Trojan .exe d6d4965d7fe2d90a52736f0db331f81a 6.59

Worm .exe 2dfc2c74864b84f5530ab40a343c56d8 5.36

Imphash is, from study [31], the method by which a hash is
calculated based on the libraries and APIs imported by the file.
This is useful to determine if two apparently different files come
from the same source or belong to the same family. Within the
values presented in Table I, the imphash values are not similar
and, therefore, the analyzed files are different and do not belong
to the same malware family. Given the fact that the imphash
value can only be calculated for executable files, for benign files,
which also contain other types of files (except for .exe), the
values related to the MD5 type string were added.

The entropy value gives, according to [30] the level of
randomness of a file. Thus, the higher the value of the file, apart
from the interval [0, 8], it can be concluded that the file is
encrypted or packed and can be identified as malware. This
aspect is not respected within the values in Table I because the
benign files, which are also executable, have, sometimes, a
higher value than malicious files such as backdoor or worm. In
the case of benign files, the highest entropy values are recorded
in the case of .doc, .jpg, .mp4, .pdf, .zip and .iso files.

The explanation for this phenomenon is that, in the case of
.jpg or .zip files, the compression algorithms used increase the
randomization of the data in order to compact them in a safe
way. In the case of .mp4 type files, they encode various
waveforms, which leads to a random appearance of the file. For
files of type .doc or .pdf, the entropy can have a high value due
to various images or text with different fonts. In the case of .iso
files, they contain several types of smaller files (which can have
various extensions), so its randomization index will be high.

Since the static analysis of a file, especially in the case of
those considered malicious, includes aspects such as access and
manipulation of memory resources, reading the source code or
imported functions or libraries, a deeper look at these resources
is necessary.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

555 | P a g e

www.ijacsa.thesai.org

Fig. 2. DLLs imported by malicious files in Windows operating system.

Thus, bearing in mind that the files are of different types and,
therefore, the imported functions are also diverse, a comparative
analysis at their level would be extremely difficult to achieve.
However, what can be analyzed is the domain of libraries
imported by each individual file. For the current work scenario,
this data can be found in Fig. 2. From this figure, you can see
what type of libraries can be imported by the file, if it will be
executed. All these libraries are considered legitimate libraries
and compatible with the Windows operating system, having
various specific functions. As an example, the kernel32.dll
library deals with memory management and the control of
various processes, while user32.dll considers the user interface
and various inputs given by them. However, in the case of
malicious files, these libraries have different functionalities.
Basically, an attacker names a part of the malicious file identical
to a known library but attaches it to a different directory within
the file suite. This is also a direct way to detect if a library is
legitimate or not. Moreover, even the fact that a file wants to
create or overwrite a system library is a fairly solid indicator of
the presence of malicious software.

Taking into account the fact that, through static analysis, the
considered parameters can create confusion regarding the
malware characteristics of a file, a dynamic analysis is also
needed, which can clarify certain aspects. Therefore, the
analysis of these files will have to be carried out in the next
paragraph, in order to be able to observe how legitimate and
malicious software functions in a real environment.

b) Dynamic analysis: Dynamic analysis is important

because it allows evaluating the behavior of a software program

during its execution. In the case of this scenario, the motivation

for its realization is the more defined perspective on the key

aspects of some legitimate files, compared to some malicious

ones.

The aspects identified in the dynamic analysis will be related
to the presence or absence of system changes. Thereby, by
means of values in Table II, it will be identified if there are
modified key values or registers (identified by the Regshot tool),
if the connection to various Internet sources (Fake Net and
Wireshark) is started, if there are changes to the CPU resources
and memory and if the presence of the malware is identified by
the antivirus.

TABLE II. DYNAMIC ANALYSIS OF MALICIOUS FILES IN THE WINDOWS

OPERATING SYSTEM

File Type

Characteristics

Values/

Keys

Modified

Network

Activity

CPU/

Memory

Detected

by AV

Benign .exe √ X X X

Benign .doc √ X X X

Benign .txt √ X X X

Benign .jpg √ X X X

Benign .mp4 √ X √ X

Benign .pdf √ X √ X

Benign .zip √ X X X

Benign .html √ √ X X

Benign .iso √ X X X

Botnet .exe √ √ √ √

Backdoor .dll √ √ √ √

Keylogger .exe √ √ √ √

Malware .exe √ √ √ √

Ransomware .exe √ √ √ √

RAT .exe √ √ √ √

Trojan .exe √ √ √ √

Worm .exe √ √ √ √

During the experiments carried out in the Windows sandbox,
all files were executed sequentially. After running each type of
malware, the test environment needed to be replaced via the
Snapshot function. This aspect was also valid for benign files,
even if their execution does not endanger other files. However,
it was desired that the execution of one of the files to not
influence the execution of subsequent files in any way. The files
that strongly affected the test environment were Worm and
Ransomware. In the case of these two types of experiments, the
results, given by running the malicious files, led to temporary
interruptions of the virtual machines or even to the
irretrievability of some data.

A slightly more atypical aspect, resulting from experiments,
was in the case of the experiments carried out with the Worm
type file, because the Fake Net area could not stop making
recordings, having this behavior for a few minutes. During all
this time, many HTTP (POST) or DNS related events were
recorded, through which the malicious file tried to access
ihcnogskt.biz or kkqypycm.biz multiple times.

Fig. 3. Changing the file extension after conducting experiments with the

malicious ransomware type file.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

556 | P a g e

www.ijacsa.thesai.org

In the case of the experiments carried out with the
Ransomware type file, after execution, it encrypted all the files
of the working system, giving them a new type of file extension
that can be seen in Fig. 3. As a result of this aspect, the virtual
machine became inaccessible, and the files could no longer
return to the previous extension type. Even after trying to return
to the default settings of the virtual machine, the initial files
could not be recovered. Thus, it was necessary to create another
working environment.

It is mentioned that the duration of all the experiments done
in the test environment did not last more than 5-10
minutes/experiment out of concern not to irreparably affecting
the test environment.

B. Experiments in the Ubuntu 22.04 Operating System

a) Static analysis: In the case of the experiments carried

out in this scenario, benign files, that are completely different

from those used in Windows operating system, contain

different file types, from a python executable called impelf.py

[29], to some other file types corresponding to the Linux

operating system. The malicious files are also different, but the

way in which they were chosen was by comparing them with

the previous chosen ones (be from the same malware family, be

announced around the same time, etc.). Each of these files were

analyzed using Malcat, Detect-it-Easy, readelf, md5sum,

sha1sum, sha256sum. Since .elf and benign files have no

information about their executable mode, the imphash hash

could only be generated for Keylogger and Worm files, which

were .exe. For the rest of the files, in Table III, their md5 hash

was added.

Taking into consideration that a complete static analysis
needs to include aspects related to various properties of the files
(the imports made or file structures), it is also necessary to
understand the malicious files in this scenario. Thus, an
important amount of the files analyzed within the experiments
have the extension .elf. From [32], these files are characteristic
of the Linux systems, being executable files or libraries. This
type of file is structurally divided into two parts: the header area
and the segment area. The header contains various metadata, and
the segments describe various memory operations, which are
performed during execution. These segments are of various
types, but the most common ones are those found in Fig. 4.

Fig. 4. Segments imported by the malicious files in the ubuntu 22.04

operating system.

Thus, as can be seen from the figure, the first type of segment
is LOAD segment and it indicates the memory location where
the file will be loaded and its various permissions, while the
NOTE type segment includes information that can be used by
the system kernel such as version, debug data, etc.

In the context of the analysis of some malicious files,
although certain segments appear to be legitimate, being usually
found in executable files, they can be modified to have the
character of malware. Thereby, the malicious behavior can be
hidden in "stuffing" segments in order to be able to pass
undetected by various types of antiviruses. If these segments
also have file modification or execution privileges, this behavior
may indicate the presence of malware. Another detection index
of these types of files is the atypically large size of some
segments that are apparently legitimate.

In addition to the general segments, such as LOAD or
GNU_STACK, which are present in almost all files of the .elf
type, there are also segments that are a little more atypical for an
ordinary file. Among these types of segments is
LOOS+5041580. The fact that, even at the level of Internet
resources, extremely little data about this type of segment can be
identified, may indicate the presence of malware. It is
emphasized that, even the searches based on the LOOS segment,
without the numerical suffix, did not indicate details about a
usual work segment.

Similar to the experiments carried out in the Windows
operating system, the presence of malicious activity cannot be
clearly defined to be able to conclude that one of the chosen files
is truly legitimate or has malicious characteristics (entropy has
different values, segment type files also have a legitimate
character, etc.). Thus, the dynamic analysis of the files is also
needed to be able to have a more explicit conclusion on the mode
of operation and the influence they have on the Ubuntu 22.04
operating system.

TABLE III. STATIC ANALYSIS OF MALICIOUS FILES IN THE UBUNTU

OPERATING SYSTEM

File Type
Characteristics

MD5/ Imphash Entropy

Benign .py b6014a53db0e1797301ec118f2625c45 4.53

Benign .txt 6045aa2bdbbfa5839a382fbc383307ac 4.75

Benign .mp4 a6b8790aeeffaa6b08b1b7dfa2b0a1f7 7.99

Benign .sh fc331af161311d2000fb18d02764a062 5.49

Benign .tar 38544f88237f2b1184c8822289a1899d 7.99

Benign .iso 05fde34ce38913489a1a988175240f27 7.99

Benign .pdf e9ef095f7dec56b483d2c31f915e177c 7.98

Benign .jpg 0fe826c9fad792732c9081b59bbcb613 7.85

Benign .conf e95d5425c026ab1142a025d49bf23dc9 4.81

Backdoor .elf 9a85bf5e1b4ca4db7b5654aa48df5f2e 5.65

Botnet .elf 4d58d0cae526ee6364f7c738b83f2961 6.01

Keylogger .gz 888988a74b67d0e75f5293688ab07b71 4.12

Malware .elf 171d2a50c6d7e69281d1c3ef98d510f2 6.00

Ransomware .elf 56cabcf95add39a6feb09391ccc40dcd 6.18

RAT .elf 9f539613aae69eec04ed66550f814f6b 7.98

Trojan .elf 1655222d44cfc33dcc3d10f8a4f2e2db 1.51

Worm .tar 5a46892a133f6e380a5a2acb389c5af6 6.93

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

557 | P a g e

www.ijacsa.thesai.org

b) Dynamic analysis: Following the experiments carried

out, in the Ubuntu 22.04 operating system, the same structure

found in the dynamic analysis in the Windows 10 sandbox was

kept. So, both the benign files and the malicious files were run

one by one.

The results of the experiments can be found in Table IV,
where the key elements of the detection are reproduced.
Thereby, it can be observed that for all types of files, there are
modified values or registry keys, and different CPU and memory
values recorded during the attack. However, the situation is
different for the network activity when the file is executed and
the files that are detected by the ClamAV antivirus indicators.
Thus, although some files are declared as malware in public
databases, in our experiments, it can easily pass the security
system of the virtual machine. The less favorable aspects
happened in the case of running two different types of files, the
one with malware and the one with ransomware. So, after
running the malware file, the message "Exporting key" is
recorded, after which the workstation becomes unusable,
performing a restart. After the execution of the ransomware file,
not even this message is displayed, but after restarting the test
environment, some files are unusable. For these experiments,
recording the malicious behavior was quite difficult due to the
continuous restart of the virtual machine. Thereby, in order to
succeed in capturing the parameters for Table IV, it was
necessary to repeat the tests several times.

It is mentioned that the recording duration of the malicious
events was carried out in an interval of approximately 5-10
minutes after the execution of the malware file. The values
presented in Table IV reveal only the aspects recorded within
this interval. It is also mentioned that, even for the benign files,
after each execution, the test environment was returned to the
default settings, so that the experiments are not inter-influenced.

TABLE IV. DYNAMIC ANALYSIS OF MALICIOUS FILES IN THE UBUNTU

OPERATING SYSTEM

File Type

Characteristics

Values/

Keys

Modified

Network

Activity

CPU/

Memory

Detected

by AV

Benign .py √ X √ X

Benign .txt √ X √ X

Benign .mp4 √ X √ X

Benign .sh √ X X X

Benign .tar √ X √ X

Benign .iso √ X X X

Benign .pdf √ X X X

Benign .jpg √ X X X

Benign .conf √ X X X

Backdoor .elf √ X √ √

Botnet .elf √ X √ √

Keylogger .gz √ √ √ X

Malware .elf √ X √ X

Ransomware .elf √ X √ X

RAT .elf √ X √ √

Trojan .elf √ X √ √

Worm .tar √ X √ X

V. DISCUSSION

Taking into account the aspects analyzed in the previous
section, a comparative analysis of how the benign files and the
malicious software affected the test systems is necessary.
Although, in Fig. 1, these analyses are treated independently, in
fact, an analysis of malware files is complete only by
encompassing all aspects analyzed through all experiments
performed and tools used. Thus, in the static analysis, carried out
in the case of both analyzed operating systems, it is found that
the test files have different entropies, included in the range
[3.54-8.00] for Windows and [1.51-7.99] for Ubuntu. Although
the initial expectations were that malicious files have a higher
entropy value (corresponding to the way in which the malicious
file is encrypted and packaged to avoid detection), it is observed
that, in the case of both operating systems, some of the files that
do not contain malware has a higher entropy value than some
files containing malware. This aspect is caused by the
randomization achieved by compressing certain files (archive
type), by including certain metadata such as photos or different
fonts (in the case of document type files) or by processing
certain different waveforms (in the case of .mp4 files).

Regarding the hash part, for both operating systems it was
necessary to discover various types of hashes. Although,
initially, for the tests, the representation of the data by imphash
was chosen, this aspect proved to be inconsistent for files that
are not Portable Executable. This aspect had an impact in both
operating systems because, given the fact that the construct part
of some files is not executable or is a binary one, imphash cannot
be represented. Therefore, it was chosen to complete the table
with the MD5 value for these types of files. A good aspect that
needs to be mentioned is the purpose for which it was necessary
to find out the hash of a file. Basically, according to study [3],
the hash of files within the tables had two directions of
development. The first direction is given by the fact that a good
part of the malicious files is recognized in some tools by hashes.
The second direction, which derives from the first, is the fact
that, depending on various hash values (MD5, SHA, SHA256,
SHA512, imphash), the characteristics of malicious files can be
found in various public databases. The most used example, in
this case, is through the VirusTotal tool through which, after
searching for a hash, it shows extremely relevant information
about the respective file. This tool can also be included in the
static analysis area, being an extremely useful aspect in
discovering similar files or the characteristics of a certain type
of malware.

However, this approach was not necessary in the case of
benign files because these files could be represented by the
actual name. Their values, that are, in Table I and III, also in the
form of hash have the purpose of a unitary way of data
representation.

Considering that a complete static analysis must also include
aspects related to the actual content of the file, it is necessary for
it to include various information such as the strings used, APIs
or DLLs imported or the source code, as in study [3], [4] and
[10]. Therefore, in the case of both scenarios, these aspects were
also analyzed. Unfortunately, due to the difference in the
structure of the analyzed files, they cannot be the basis of a
comparative analysis, being also extremely different. Thus, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

558 | P a g e

www.ijacsa.thesai.org

approach consisted in delimiting the two scenarios and
performing a comparative analysis only according to the
malicious files within the respective scenario. Therefore, within
the Windows operating system, the most frequently encountered
imported DLLs were chosen, to be able to observe if there are
common characteristics between the analyzed malware files and
the intentions of each malicious file, separately. It was
concluded that these files import both common libraries and
independent libraries. Within Fig. 2, only the common ones
were included, the most frequently encountered being
kernel32.dll, user32.dll, shell32.dll and mscore.dll. These have
as their main characteristics file operations, privilege escalation,
avoid analysis, user interface or memory management
operations. The importance of these DLLs imported by
malicious files can lead to conclusions about the behavior of the
malicious file (as in [16]), its inclusion in a certain family, the
creation of similarities with other files known to be malicious or
the creation of action patterns of certain types of files.

In the Ubuntu 22.04 operating system, the analyzed files,
from a static point of view, imposed the analysis of some files
with .elf extensions. These are, in essence, binary files and
therefore it is quite difficult to extract some essential features, in
a similar way to the previous scenario. The initial analysis of
these files consisted of examining the file structure (the size of
the headers, their number, etc.) or the strings used, but these
characteristics could not define a comparative analysis that
would indicate an atypical character of the file. Therefore, the
chosen feature consisted of presenting the segments loaded in
memory during execution. Considering Fig. 4, it is indicated that
the most frequently used segments for malicious files were
LOAD, GNU_STACK and PHDR. Their essential
characteristics include indications on an executable code, on
working with the memory stack or on various memory locations
that need to be accessed or written. In the case of malicious files,
these segments include the possibility of attacks that include
self-modifying, returning addresses from the memory stack or
escalation of privileges. Therefore, it is extremely important for
these characteristics to be known, in order to get an overview of
the behavior of the malicious files. Apart from the mentioned
aspects, in Fig. 4 you can see the absence of segments for two
types of files - Keylogger and Worm. This aspect is due to the
fact that the two types of files are not of the .elf type, but of the
.gz type. Thus, they must be characterized in a different way.

Considering the aspects mentioned for static analysis and
papers [3], [4], [5] and [15], it is necessary to emphasize that
they are quite insufficient for a complete characterization of a
file type. Therefore, a dynamic analysis would complete the
unknown aspects or for which the static analysis is insufficient
and would offer the possibility of an overview of the malicious
file's mode of action.

Dynamic event analysis involved conducting experiments
on how file execution works in a sandbox environment.
However, in order to distinguish between a malicious file and a
benign one, it was necessary to establish some indicators of the
presence of malicious software, similar to [4], [5], [10] and [17].
Therefore, detection by OS-specific antivirus was one of the
main parameters that should be considered. Also, the steep
increase in machine performance, given by the CPU and
memory values, is one of the necessary indicators of the

presence of non-compliant activity. Other important aspects
were given by the monitoring of the traffic within the network
and the values or keys changed at the level of the operating
system registries.

Although analyzed independently, the performance
parameters could be considered insufficient (CPU and memory
values increase even when running a legitimate application), in
the analysis, they work as a whole. The discrepancy in results
between the two operating systems is due to both the way the
malicious files work and the actual file type. Not having the
same applicable file available for both operating systems leads
to different experimental values.

Taking into consideration all this, it was found that, if at the
level of the Windows operating system, aspects are more
uniform, the malware files leaving positive traces for all the
mentioned indicators, in Ubuntu operating system, things are
less favorable because some malicious files are not even
recognized by the antivirus. Thus, they can go unnoticed and can
attack systems without being detected. The worst aspect is that
ransomware and malware files that, after execution, lead to the
temporary inaccessibility of the virtual machine, are, initially,
undetected by the antivirus. This does not mean that keylogger
or worm files cannot affect systems or perform various lateral
movements. Therefore, in the case of the Linux-type operating
system, the fact that the antivirus used fails to effectively
identify certain malicious files is an important problem.

The importance of a preliminary analysis of a file is recalled
here to avoid, as much as possible, the unfavorable aspects of
executing a malicious file. Thus, considering the results
presented in Fig. 3 and [17], attention is drawn to the fact that,
for the execution of ransomware, the working environment or
even the network may become unusable. And, if the file backup
area is located within the same network, it will most likely be
affected as well. In all experiments performed, the performance
of the virtual machine was affected by running the malicious
software, with related CPU values increasing instantly, certain
processes stopping or becoming temporarily inaccessible.

For benign files, there was also an increase in CPU and
memory values, especially for larger files. So, in the case of the
experiments carried out through the Windows operating system,
the CPU and memory values increased for the .pdf and .mp4
files, while, in the case of the Ubuntu 22.04 operating system,
the same values increased for the .py type files, .txt, .mp4 and
tar. The only common aspect is the fact that, in both cases, the
CPU and memory values increased when executing the .mp4 file
because they are quite resource consuming. No conclusions can
be drawn for the rest of the files, as the CPU and memory values
may also increase depending on the characteristics of the file
itself (its size, the information contained, etc.).

As for the area of activity of the network resources, it is
different within the analyzed operating systems. Thus, if in the
first scenario all malicious files register the need for access
outside the network (trying to access various resources from the
Internet), in the case of the second scenario, this event was
registered only for the keylogger type file.

For the benign files, they did not register the need to access
additional resources from the Internet, with the exception of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

559 | P a g e

www.ijacsa.thesai.org

html file, in Windows operating system. Although, initially, its
execution can be done in an offline mode, as additional aspects
are opened within it, internet resources are needed. It is very
likely that, in this case too, there will be changes to the system
after the working time allocated to the realization of the
experiments.

Regarding the Values/Keys Modified parameter, whose
value is based on the Regshot tool, but also on various
processing tools such as Process Monitor, it is observed that, for
all types of files analyzed (both benign and the malicious ones),
there are changes at the level of various registries or keys of the
operating system, regardless of whether we consider the
Windows or Ubuntu 22.04 platform.

Considering all these aspects, it is necessary to open a
discussion about how the execution of these files affects the
performance of the analyzed test systems. Thus, taking into
account both the aspects mentioned in the static analysis and
those in the dynamic analysis, it is appreciated that, if a file is
unknown to a user, a simple check of its hash or entropy can be
a sufficient index good to see if the file is, in fact, malicious
software. These aspects can be done both individually and using
various tools or resources from the Internet. It is particularly
important that the unknown file is not executed, if no data is
known about it, in order to protect both the system through
which the file was received, and the network of which it is a part,
if applicable.

If the file has been executed, the way in which the
performance of a system is affected includes some effective
evaluation indicators. Among them, the high CPU and memory
values are counted because the malicious file requires various
resources to be able to increase its coverage area or to access
various types of sensitive information. An immediate effect
would be longer response times for applications or even the
impossibility of accessing them, various crashes or even restarts
of the operating systems. Another performance parameter, taken
into account in the case of this work, is the access area to
unknown internet resources. As a result of this fact, Internet
resources can become difficult to access, and latency can
increase.

Other ways in which operating systems are affected include
a slower boot, changes to registries or their keys, deletion of
various information or files and even their full encryption. It
needs to be mentioned that since a system is compromised, it can
open various backdoors for further infections.

If, when running, the file is detected by the antivirus, it will
block its effective execution and delete it. But, as was observed
from the experiments, sometimes antiviruses can also let
malicious files pass. Therefore, increased attention is required in
the case of unknown files.

Even benign files can affect the performance of operating
systems. Thus, although they do not cause the same damage as
malicious files, the fact that they are large files or archives with
many files of various types affects the operating system.
Another way in which they can impact the performance of the
operating system is if they contain outdated software. These not
only affect the total performance, not having any updates, but
they can also create many vulnerabilities, which facilitate

various types of attacks. Also, if there are files that contain errors
or have modified extensions, they can also corrupt other files,
even from the installer area of the operating system.

Considering all this, it is imperative that the files be verified,
especially when they come from unknown sources. The
verification methods can be both simple (checking the hash and
comparing it with the effective extension of the file), as well as
complex (which can include reverse engineering). It is also
necessary to keep in mind that even benign files can affect
system performance. Therefore, increased attention is needed
regarding the public sources for downloading them and the way
of implementation, both within the respective system and in the
case of various communication networks.

In this paper, certain limitations related to the field of
cybersecurity are also admitted. Among these, the method of
selecting malware samples is listed, since they focused only on
executables from the Windows and Linux operating systems.
Also, the selection method did not have a predefined set of rules,
the files being chosen according to the malware family they
come from, their category and the publication date (the aim
being to perform experiments with the most recent files). Thus,
it is possible that files with relevant characteristics were omitted
from the study. Another important limitation is given by the
isolated environment in which the experiments were performed,
because it was not possible to record the working mode of the
malicious files at the network level and the impact that it may
have on other network resources. Mentioning these limitations
is important for identifying how to perform future experiments.

VI. CONCLUSIONS

In this work, a comparative analysis was presented on the
way of working of various operating systems with malicious or
legitimate files. Therefore, for this aspect, it was necessary to
download samples of malicious files from public resources and
to choose various types of legitimate files, to be able to make a
comparison between them. Later, they were analyzed at the level
of the Windows and Ubuntu operating systems, both through
static and dynamic analysis.

The static analysis was carried out by means of open-source
tools and made an identification of the malicious and benign
files, without them being executed. This type of analysis was
based on the identification of file hashes, their entropy, the
strings used within the system, the imported libraries and the
APIs called. However, given the fact that they were quite diverse
and ambiguously related, they could not be the basis of a
comparative analysis between the two types of operating
systems used. Thus, the aspects taken into account at the level
of this work were the imphash or the MD5 hash, the entropy of
the files and, depending on the operating system, the imported
libraries and the structural segments of the file.

In the dynamic analysis area, two sandbox virtual machines
were built, with two different operating systems (Windows 10
and Ubuntu 22.04). Within these virtual machines, an isolated
file execution environment was created, and the network area
was simulated by means of a public tool. The analysis required
the execution of the files, and this aspect led, in some cases, to
the temporary unavailability of the virtual machines or even to
the corruption of all the files within it.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

560 | P a g e

www.ijacsa.thesai.org

Taking into consideration all this analysis, a discussion was
also carried out on the impact that various types of files have on
operating systems, either from the perspective of legitimate files
or from the perspective of malicious files. The conclusion of this
discussion led to underlining the importance of preliminary
verification of files received from unknown authors or
downloaded from various less obscure public sources, in order
to prevent damage to the actual operating system or the network
of which it is a part.

The most surprising conclusions that can be drawn from the
experiments are given by the way in which the ransomware file,
run in the Windows operating system, led to the impossibility of
accessing them and by the fact that some malicious files went
unnoticed by the Linux operating system antivirus. These
aspects may impact the academic and work environment to carry
out similar experiments to try to make antiviruses more efficient
or to analyze new methods for restoring files affected by
ransomware attacks.

For future work, other types of malicious files will be taken
into account (adware, rootkits, bots), and the analysis will also
be performed at the level of other types of operating systems
(MAC OS, for desktop area, and Android and iOS, for mobile
area). The final goal is to create a robust database, which
contains more recent malware samples and their key features,
which can be adapted to current security systems and can be
considered can be considered a working basis for other
experiments that will be carried out in the literature.

REFERENCES

[1] F. Ullah et al., “Data Exfiltration: A Review of External Attack Vectors
and Countermeasures,” Journal of Network and Computer Applications,
2017, doi: 101. 10.1016/j.jnca.2017.10.016.

[2] A. Ghosh, “An overview article on 600% increase in Cyber Attack in
2021,” 2021, doi: 10.13140/RG.2.2.18205.52968.

[3] R. Sihwail, K. Omar, A. Zainol, A. Khairul Akram, “A Survey on
Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory
Analysis,” 2018, doi: 8. 1662. 10.18517/ijaseit.8.4-2.6827.

[4] A. Belea, “Methods for Detecting Malware Using Static, Dynamic and
Hybrid Analysis,” International Conference on Cybersecurity and
Cybercrime, 10, 258–265, 2023, doi:10.19107/CYBERCON.2023.34

[5] R. Baker del Aguila, Carlos Daniel Contreras Pérez, Alejandra Guadalupe
Silva-Trujillo, Juan C. Cuevas-Tello, Jose Nunez-Varela. “Static Malware
Analysis Using Low-Parameter Machine Learning Models,” 2024,
Computers 13, no. 3: 59, doi: 10.3390/computers13030059

[6] F. Almeida, M. Imran, J. Raik, S. Pagliarini, “Ransomware Attack as
Hardware Trojan: A Feasibility and Demonstration Study,” IEEE Access,
2022, doi: 10. 44827 - 44839. 10.1109/ACCESS.2022.3168991.

[7] N. Ravichandran, T. Tewaraja, V. Rajasegaran, S. Kumar, S. Gunasekar,
S. Sindiramutty, “Comprehensive Review Analysis and Countermeasures
for Cybersecurity Threats: DDoS, Ransomware, and Trojan Horse
Attacks,” 2024, doi:10.20944/preprints202409.1369.v1.

[8] A. Sheikh, “Trojans, Backdoors, Viruses, and Worms,” 2021, doi:
10.1007/978-1-4842-7258-9_5.

[9] B. Rajesh, P. Praveen Yadav, C. V. Chakradhar, “Malicious Computer
Worms and Viruses: A Survey,” International Journal of Trend in
Research and Development (IJTRD), , ISSN: 2394-9333, Special Issue |
RIET-17 , December 2017, URL:
http://www.ijtrd.com/papers/IJTRD13399.pdf

[10] R. Mahmoud, M. Anagnostopoulos, S. Pastrana and J. M. Pedersen,
“Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon
and ELK Integration,” in IEEE Access, vol. 12, pp. 68624-68636, 2024,
doi: 10.1109/ACCESS.2024.3400167

[11] S. Yuan et al., "Research on Vulnerability Detection Techniques Based
on Static Analysis and Program Slice," 2024 6th International Conference
on Electronic Engineering and Informatics (EEI), Chongqing, China,
2024, pp. 965-969, doi: 10.1109/EEI63073.2024.10696068.

[12] Y. Tian et al., “Research on Personal Privacy Security Detection
Techniques for Android Applications,” 2024 9th International Conference
on Electronic Technology and Information Science (ICETIS), Hangzhou,
China, 2024, pp. 375-379, doi: 10.1109/ICETIS61828.2024.10593754.

[13] S. Wang et al., “A Novel Detection System for Multi-Architecture IoT
Malware,” 2024 27th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), Tianjin, China, 2024, pp. 1758-
1763, doi: 10.1109/CSCWD61410.2024.10580682.

[14] R. H. Mahdi and H. Trabelsi, “Detection of Malware by Using YARA
Rules,” 2024 21st International Multi-Conference on Systems, Signals &
Devices (SSD), Erbil, Iraq, 2024, pp. 1-8, doi:
10.1109/SSD61670.2024.10549308.

[15] M. F. Ismael and K. H. Thanoon, “Investigation Malware Analysis
Depend on Reverse Engineering Using IDAPro,” 2022 8th International
Conference on Contemporary Information Technology and Mathematics
(ICCITM), Mosul, Iraq, 2022, pp. 227-231, doi:
10.1109/ICCITM56309.2022.10031698

[16] H. A. Noman, Q. Al-Maatouk and S. A. Noman, “A Static Analysis Tool
for Malware Detection,” 2021 International Conference on Data Analytics
for Business and Industry (ICDABI), Sakheer, Bahrain, 2021, pp. 661-
665, doi: 10.1109/ICDABI53623.2021.9655866.

[17] K. Khaliq et al., “Ransomware Attacks: Tools and Techniques for
Detection,” 2024 2nd International Conference on Cyber Resilience
(ICCR), Dubai, United Arab Emirates, 2024, pp. 1-5, doi:
10.1109/ICCR61006.2024.10532926.

[18] H. Durgapal and D. Kumar, "Software Vulnerabilities Using Artificial
Intelligence," 2024 International Conference on Electrical Electronics and
Computing Technologies (ICEECT), Greater Noida, India, 2024, pp. 1-6,
doi: 10.1109/ICEECT61758.2024.10739067.

[19] Hex-rays, “IDA Pro,” Retrieved June 18, 2024 from https://hex-
rays.com/ida-pro/

[20] Winitor, “pestudio” Retrieved June 19, 2024 from
https://www.winitor.com/download

[21] yara, “yara v3.4.0,” Retrieved June 19, 2024 from
https://yara.readthedocs.io/en/v3.4.0/gettingstarted.html

[22] GitHub, “Regshot,” Retrieved June 19, 2024 from
https://github.com/Seabreg/Regshot

[23] Wirehark, “The world's most popular network protocol analyzer,”
Retrieved June 19, 2024 from https://www.wireshark.org/

[24] GitHub, “flare-fakenet-ng” Retrieved June 19, 2024 from
https://github.com/mandiant/flare-fakenet-ng

[25] MalwareBazaar by ABUSE, “MalwareBazaar Database” Retrieved June
20, 2024 from https://bazaar.abuse.ch/browse/

[26] MALCAT - the binary file dissector, “Malcat,” Retrieved June 20, 2024
from https://malcat.fr/index.html

[27] GitHub, “Detect-It-Easy” Retrieved June 20, 2024 from
https://github.com/horsicq/Detect-It-Easy

[28] Microsoft, “Strings v2.54,” Retrieved June 21, 2024 from
https://learn.microsoft.com/en-us/sysinternals/downloads/strings

[29] GitHub, “impelf,” Retrieved June 21, 2024 from
https://github.com/signalblur/impelf

[30] IBM, “Analyzing files for embedded content and malicious activity”,
Retrieved Nov 4, 2024 from
https://www.ibm.com/docs/en/qsip/7.5?topic=content-analyzing-files-
embedded-malicious-activity

[31] Chris Balles and Ateeq Sharfuddin, “Breaking Imphash”, 2019,
10.48550/arXiv.1909.07630

[32] I. Seung-Soon, “Tool interface standard (TIS) executable and linking
format (ELF) specification.”, 1995.

[33] VirusTotal, “VirusTotal”, Retrieved Nov 4, 2024 from
https://www.virustotal.com/gui/home/upload

