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Abstract—The significant use of Unmanned Aerial Vehicles 

(UAVs) in commercial and civilian applications presents various 

cybersecurity challenges, particularly in detection and 

authentication. Unauthorized UAVs can be very harmful to the 

people on the ground, the infrastructure, the right to privacy, and 

other UAVs. Moreover, using the internet for UAV 

communication may expose authorized ones to attacks, causing a 

loss of confidentiality, integrity, and information availability. This 

paper introduces radar-based UAV detection and authentication 

using Micro-Doppler (MD) signal analysis. The study provides a 

unique dataset comprising radar signals from three distinct UAV 

models captured under varying operational conditions. The 

dataset enables the analysis of specific features and classification 

through machine learning models, including k-nearest Neighbor 

(k-NN), Random Forest, and Support Vector Machine (SVM). The 

approach leverages radar signal processing to extract MD 

signatures for accurate UAV identification, enhancing detection 

and authentication processes. The result indicates that Random 

Forest achieved the highest accuracy of 100%, with high 

classification accuracy and zero false alarms, demonstrating its 

suitability for real-time monitoring. This also highlights the 

potential of radar-based MD analysis for UAV detection, and it 

establishes a foundational approach for developing robust UAV 

monitoring systems, with potential applications in aviation 

military surveillance, public safety, and regulatory compliance. 

Future work will focus on expanding the dataset and integrating 

Remote Identification (RID) policy. A policy that mandates UAVs 

to disclose their identity upon approaching any territory, this will 

help to enhance security and scalability of the system. 

Keywords—Authentication; detection; cybersecurity; Micro-

Doppler; radar; Unmanned Aerial Vehicle (UAV) 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) are rapidly gaining 
momentum across various sectors where information 
technology is crucial in enhancing efficiency and operations [1]. 
The popularity of UAVs is due to their cost-effectiveness, ease 
of use, and potential to streamline business processes [1]. UAVs 
are being deployed in various industries, including 
transportation, agriculture, surveillance, and defense, offering 
unprecedented flexibility and operational efficiency. However, 
this widespread adoption is not without challenges, as UAVs 
increasingly face cybersecurity threats. These threats pose risks 

to the integrity of UAV operations and the safety of the data they 
collect and transmit [2]. 

Cybersecurity is critical for the safe operation of UAVs. A 
breach in security can endanger ground personnel, 
infrastructure, personal privacy, and the UAVs themselves. 
Since UAVs rely heavily on internet connectivity, they are 
vulnerable to threats compromising confidentiality, integrity, 
and availability [3]. Confidentiality may be violated through 
data interception, physical tampering, eavesdropping, or social 
engineering attacks. Integrity is at risk from data tampering and 
hacking, while availability can be disrupted by interference, 
jamming, denial-of-service attacks, or natural events [3]. 

UAV detection is identifying and tracking UAVs using 
various technologies, such as radar, cameras, or acoustic sensors 
among others. It plays a crucial role in ensuring the safety and 
security of airspace by monitoring unauthorized and potentially 
harmful UAV activity. The detection and classification of UAVs 
can be challenging, and various technological approaches offer 
unique advantages and limitations [4]. 

1) Radar detection: This approach works by emitting radio 

waves (signals) that reflect off UAVs, allowing it to gather 

detailed information about the UAV’s distance, speed, and 

movement patterns [4]. Radar’s ability to operate in all weather 

conditions and low-visibility environments, such as during rain, 

fog, or nighttime, makes it highly reliable [8]. It is particularly 

effective for long-range detection and can differentiate UAVs 

from other objects by analyzing their motion and size. This 

robustness and capability to detect small UAVs over large 

distances make radar an essential tool in security-critical 

environments [5]. 

2) Video detection: It relies on cameras and image 

processing algorithms to visually identify UAVs. It excels in 

clear visibility conditions, offering high-resolution images for 

accurate UAV identification and classification [4]. Video 

detection can work in real time, leveraging machine learning to 

enhance accuracy. However, its effectiveness diminishes in 

poor lighting conditions, such as nighttime or foggy 

environments, and it struggles to detect small UAVs at long 

distances [5]. Consequently, while video detection is valuable 
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in specific contexts, its dependence on favorable visibility 

limits its reliability. 

3) Acoustic detection: It captures the unique sound 

signatures produced by UAVs, especially the noise from their 

propellers and motors [4]. The method uses microphones to 

monitor sound and can detect UAVs even when they are not 

visible. Acoustic detection is a cost-effective and 

straightforward solution for short-range detection, in quiet 

environments [5]. However, its range is limited, and it faces 

significant challenges in noisy environments, such as urban 

areas. In addition, it struggles to detect noiseless UAV models, 

making it less effective for comprehensive UAV detection over 

larger areas. 

4) RF-Based detection: It monitors the communication 

signals transmitted between UAVs and their controllers [4]. 

This method is highly effective for detecting UAVs as soon as 

they begin transmitting signals, and it can provide valuable 

information about both the UAV and its operator [5]. However, 

RF-based detection is ineffective against fully autonomous 

UAVs that do not rely on RF signals or operate with encrypted 

communications. Moreover, its range is limited to the 

transmission distance of the UAV’s signals, and it can be 

vulnerable to signal interference or jamming, reducing its 

reliability [5]. 

Among these methods, radar-based UAV detection is 
effective as it captures unique MD signatures generated by a 
UAV’s rotating blades and motion. The radar signals analysis 
can detect, classify, and track UAVs in low visibility conditions, 
providing valuable information for security, surveillance, and air 
traffic management [5], [6]. Radar detection is preferred for its 
versatility and reliability. Unlike video, acoustic, or RF-based 
detection, radar is unaffected by visibility, background noise, or 
signal dependence. Its ability to detect UAVs over long 
distances and in all weather, conditions make it the most robust 
solution for UAV detection, in security and defense applications 
where continuous and reliable monitoring is essential [5], [6], 
[7].  Despites the radar’s effectiveness, the existing systems 
struggle to identify specific UAV types using MD features or 
radar cross-section (RCS) characteristics. Furthermore, reliance 
on proprietary datasets limits the generalizability of findings and 
hinders benchmarking efforts. This shows the need for standard, 
and public available datasets to improve radar-based detection 
and authentication methods. 

In light of this, this research focuses on developing an 
identity-based UAV detection and authentication system that 
leverages information on radar signal analysis. The system uses 
radar to analyze the UAV’s signal through the MD effect, which 
reveals unique features of the UAV’s rotor movements and 
structure. These unique MD radar features will help to 
authenticate the UAV’s identity, ensuring that it matches the 
information and parameters of the known UAVs. Then, the 
proposed system employs the k-NN, Random Forest, and SVM 
to classify and authenticate UAVs based on the identified 
patterns in radar signal data. Furthermore, this research 
generates raw datasets for three distinct UAV models: DJI 
Matrice 600, DJI Matrice 300, and Phantom 4. The study offers 
an identity-based UAV detection, authentication, and 

classification model. The model handles detection and 
authentication in separate phases, while the combined model 
integrates both processes into a unified approach. The proposed 
model is compared with others to ascertain its efficiency and 
performance. This comparison underscores the advantages and 
limitations of each framework, demonstrating their applicability 
in real-world scenarios. 

The research makes stride contributions to the field of UAV 
detection, classification, and authentication. These contributions 
include a novel radar-based dataset, generated through 
simulations of three UAV models (DJI Matrice 600, DJI Matrice 
300, and Phantom 4), that can provide a foundation for advanced 
research in this domain. The study also develops a robust 
classification system employing machine learning algorithms 
(kNN, Random Forest, and SVM). The proposed model 
effectively detects and classifies UAVs and enhances 
authentication by comparing radar signal data with predefined 
UAV parameters. Furthermore, the performance of the proposed 
models is evaluated on the radar dataset, demonstrating 
improved detection accuracy and reliable classification and 
authentication. 

B. Our Contributions 

This research offers the following contributions: 

1) A novel radar-based dataset is created through 

simulation using three UAV models (DJI Matrice 600, DJI 

Matrice 300, and Phantom 4). This dataset will be instrumental 

for future UAV detection, authentication, and classification 

research. 

2) A classification system is developed using kNN, 

Random Forest, and SVM for UAV detection and 

classification. The framework compares radar signal data with 

the known UAV information and parameters for enhanced 

authentication. 

3) The detection, classification, and authentication 

performances of the proposed frameworks are evaluated on the 

generated radar dataset. Detailed comparisons show that the 

proposed framework improves detection accuracy and achieves 

reliable classification and authentication. 

II. RELATED WORK 

This section reviews the approaches and methodologies in 
UAV detection, emphasizing radar-based systems and machine-
learning models for classification. A radar-based UAV detection 
method is proposed using the Empirical Mode Decomposition 
(EMD) algorithm to extract MD signals for identifying small 
UAVs [11]. The technique offers the advantage of isolating m-
D features crucial for differentiating UAVs from other moving 
objects, decomposes signals into intrinsic mode functions 
(IMFs), and addresses mode-mixing challenges by analyzing the 
extrema distribution. The EMD algorithm distinguishes UAVs 
from birds or other objects based on their rotor blade signatures, 
making it highly effective even in noisy environments. In 
addition, the paper points that while the EMD algorithm 
effectively processes non-stationary signals, it also has 
limitations, such as susceptibility to noise and increased 
computational load, which may hinder its real-time application 
in practical UAV detection scenarios. 
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A. Radar Approaches, and Machine Learning Models UAV 

Classification 

Ezuma et al. [9] presents a multistage system for detecting 
and classifying UAV controllers using radio frequency (RF) 
fingerprints in the 2.4 GHz band, even in environments with 
significant interference from Wi-Fi and Bluetooth devices. The 
system addresses the challenge of detecting UAV controllers in 
the presence of Wi-Fi and Bluetooth interference by first 
detecting RF signals using a Markov model-based Naïve Bayes 
algorithm, followed by interference detection and machine 
learning (ML) classification. The system extracts 15 statistical 
features from the UAV controller signals and achieves a 
classification accuracy of 98.13% using k-Nearest Neighbors 
(kNN) at 25 dB signal-to-noise ratio (SNR). Despite the 
effectiveness of the system, its limitation lies in distinguishing 
identical UAV controllers, such as pairs of DJI models, which 
slightly lowers accuracy due to signal similarity. 

Meanwhile, a system proposes using Frequency Modulated 
Continuous Wave (FMCW) radar to detect and identify UAVs 
by analyzing their MD signatures [10]. It addresses the 
challenge of extracting MD signatures caused by the rapid 
rotation of UAV rotor blades, which introduces high-frequency 
variations in radar signals. The system proposes a new approach 
for studying MD signatures in UAVs and presents both 
simulation and experimental results to demonstrate the 
effectiveness of this method. The analysis showcases the ability 
of FMCW radar to capture fine-grained UAV motion details, 
allowing for more accurate UAV detection and identification. 
This work improves UAV detection in target-dense 
environments and shows the advantages of MD signature 
analysis for characterizing UAVs in real-time scenarios. 

Similarly, a micro-motion model for detecting and 
identifying low-slow-small UAVs using radar systems is 
proposed [11]. The research focuses on the MD effects 
generated by the rotating blades of UAVs. It suggests a method 
to enhance detection performance by compensating for 
translational movement and employing an optimal 
demodulation operator for parameter estimation. The process 
improves the signal-to-noise ratio (SNR) and suppresses clutter, 
making it practical for detecting small UAVs even under 
challenging low-SNR conditions. The simulation and 
experimental results demonstrate the accuracy of the proposed 
technique in estimating MD parameters, which significantly aids 
in classifying UAVs based on their unique motion 
characteristics. This work is relevant for air defense systems 
identifying small, slow-flying UAVs based on radar signatures. 

Besides, a study establishes a theoretical foundation linking 
the MD signatures and motion dynamics of small UAVs, 
focusing on analyzing the Doppler spectrum as a more efficient 
tool than joint time-frequency (JTF) images [12]. It explores 
how MD features, such as blade length, rotor rotation rate, and 
radial velocity, can be derived from the Doppler spectrum, 
aiding in detecting and classifying small UAVs. The study 
demonstrates the correlation between the spectral distribution 
and UAV physical specifications through simulation and 
measured data. Compared to JTF images, the Doppler spectrum 
provides significant computational and storage benefits while 
delivering accurate MD signatures. However, the study 

acknowledges challenges in detecting chopping frequencies and 
resolving smearing effects caused by multiple rotors, especially 
in practical scenarios with complex UAV dynamics. Future 
work will focus on refining algorithms to address these issues 
for more reliable UAV detection and classification. 

In another development, a study explores the use of machine 
learning for drone classification based on radar signals [13]. It 
details the creation of datasets through simulation, considering 
radar specifications and SNR ranging from 0 to 20 dB. Each 
dataset, with 1000 spectrogram samples per class and smaller 
validation sets, was used to train a Convolutional Neural 
Network (CNN). The CNN architecture, comprising 
convolutional layers, SoftPlus activation, instance 
normalization, dropout, and linear layers, was adapted for 
different radar pulse repetition frequencies (PRFs). The 
performance of the model was evaluated using the macro-F1 
score, with results showing the X-band 2 kHz PRF radar 
outperforming the W-band radar, especially at lower SNRs. The 
study revealed that while the X-band radar achieved an F1 score 
of 0.816±0.011, it struggled with false alarms, particularly with 
noise being confused with the DJI Matrice 300 RTK drone. The 
model exhibited robustness to varying blade pitch and SNR 
values, maintaining performance with different pitch values and 
showing reduced effectiveness at lower SNRs. Future work aims 
to investigate the impact of various wavelengths, explore more 
complex CNN architectures, and validate models with real-
world data, addressing the current model’s limitations and 
extending its applicability. 

Furthermore, a novel lightweight architecture presents the 
development of an MD-based detection method called DIAT-
RadSATNet, a deep CNN (DCNN) designed for the detection 
and classification of Small UAVs (SUAVs) using MD 
signatures [14]. The method addresses the growing need for 
efficient SUAV detection in both defense and civilian 
applications. The proposed architecture is lightweight, with 40 
layers and only 0.45 million trainable parameters, achieving a 
high classification accuracy of 97.3%. The study indicates the 
radar system’s ability to classify various SUAVs, such as 
quadcopters and bionic birds, through field experiments and 
ablation studies, demonstrating superior performance compared 
to existing models. The DIAT-RadSATNet’s lightweight design 
allows for real-time implementation with reduced computational 
costs. However, the study acknowledges limitations, regarding 
the potential challenges in detecting SUAVs under complex 
environmental conditions and the need for further testing in 
diverse operational scenarios to validate the system’s robustness 
and scalability. 

Rojhani et al. [15] introduced a novel deterministic data 
augmentation method for UAV classification based on MD 
radar signatures. The technique generates synthetic training 
datasets using a physical radar backscattering model, reducing 
reliance on extensive measurement campaigns. Compared to 
conventional random signal processing augmentation, the 
deterministic approach produces datasets that maintain the 
physical integrity of features, resulting in better generalization 
and reducing classification bias. The study focuses on 
classifying UAVs based on their number of motors using CNN, 
achieving an accuracy of 78.68% and outperforming 
conventional augmentation methods, which resulted in 66.18% 
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accuracy with significant class bias. The results suggest that the 
deterministic augmenter provides more reliable and effective 
training datasets, for radar-based UAV classification, and can be 
extended to other scenarios, such as human recognition and 
medical imaging. The research indicates the potential for scaling 
this method to produce diverse datasets without costly and time-
consuming measurement campaigns. 

Further, a novel approach for UAV classification using radar 
digital twins is presented by generating full-wave 
electromagnetic simulations [16]. A Multiple-Input Multiple-
Output (MIMO) radar system is simulated using CAD models 
of various UAVs to create radar datasets that include Range-
Doppler and MD information. The datasets train a machine 
learning classifier, a one-versus-rest Support Vector Machine 
(SVM), for UAV detection and classification. The simulations 
allow for generating radar datasets without the need for 
expensive, time-consuming measurement campaigns. The study 
demonstrates high classification accuracy (minimum 97%) in 
multi-UAV scenarios, showing that the digital twin framework 
offers a flexible and cost-effective solution for UAV detection 
and classification in various operational conditions. 

Moreover, a review of radar-based drone detection, tracking, 
and classification techniques focusing on real-world data from 
25 drone trials using the Gamekeeper radar and over 55,000 
trajectories and diverse drone types like the DJI Phantom 2 and 
DJI Inspire 2 is conducted [17]. The challenges established 
include differentiating drones from non-drones and managing 
varying SNRs. The performance metrics such as accuracy, F1 
score, true positive confidence, false alarm rate, and 
classification time delay are discussed, with the false alarm rate 
remaining a significant hurdle. The study explores 
advancements in distributed and multi-static radar systems, 
quantum oscillators, advanced antennas, ML, and AI, 
emphasizing their role in improving automatic target 
classification (ATC). It suggests future directions, including 
leveraging cognitive radar systems, digital twins for rapid 
algorithm development, and integrating contextual and meta-
level information to enhance performance. The study concludes 
that while radar systems have made significant progress, 
challenges remain, in complex environments, and suggests a 
multisensor approach for more robust detection and 
classification of drones. 

Furthermore, a study proposes a fully convolutional network 
(FCN)-based approach for fast detection of UAVs using pulse 
Doppler radar. The traditional constant false alarm rate (CFAR) 
methods, effective for uniform backgrounds, struggle with low-
small UAVs [18]. The proposed FCN operates on the entire 
range-Doppler map to enhance detection speed while 

maintaining high accuracy. The network leverages a bifurcated 
classification and regression architecture, reduces 
computational overhead, and integrates a post-processing 
mechanism for precise target location. The experimental results 
show the FCN-based method improves detection speed by up to 
47 times compared to previous methods while ensuring high 
detection accuracy and reduced false alarms. Despite its 
achievements, it has difficulties detecting multiple UAVs in the 
same grid cell due to resolution constraints, with plans to address 
this via sampling in future research. 

In another research, a study investigates the use of 
MATLAB simulations for analyzing MD signatures of rotating 
propeller blades and flapping wings using an S-band 
continuous-wave (CW) radar system [6]. The system 
demonstrates the effectiveness of the Short Time Fourier 
Transform (STFT) and Fast Fourier Transform (FFT) in 
distinguishing between the unique signatures of micro- UAVs 
and birds. It employed a 100 kHz sampling frequency and 
700ms integration time, revealing significant Doppler shifts and 
frequency dispersion associated with different propeller blade 
lengths and flapping frequencies. The results show STFT’s 
capability to provide detailed time-frequency analysis, 
contributing to improved detection and characterization of small 
UAVs and avian targets. This work supports the development of 
advanced radar systems for enhanced detection and tracking, 
aligning with the goals of optimizing UAV identification and 
authentication in the context of radar signal analysis. 

B. Research Gap 

Significant advancements in UAV detection, classification, 
and authentication are attained across various methods, as 
observed in literature and as depicted in Table I. Despite this 
strides, significant gaps remain, in datasets and radar-based 
detection approaches. The reviewed research often relies on 
proprietary datasets, limiting generalizability, which indicates 
the need for publicly available, standardized UAV/drone 
datasets to benchmark the systems. In addition, radar systems 
are adequate for general UAV detection but lack robust methods 
for identifying specific UAV types based on MD or RCS 
features. Further innovation is needed to improve radar detection 
capability and address environmental challenges in urban areas, 
such as noise and clutter. To address these gaps, our research 
aims to develop a novel raw dataset for UAV identification and 
authentication, leveraging unique features and employing three 
models, kNN, Random Forest, and SVM, to classify UAVs 
based on their MD signatures. This proposed approach will 
enhance the accuracy of radar-based systems and utilize MD 
signatures for identity-based detection and authentication of 
UAVs. 

TABLE I.  COMPARATIVE ANALYSIS OF RELATED WORKS 

Study Methodology Main Features Accuracy/Performance Limitations/Challenges Future Work 

(Zhao & 

Su, 2020) 

EMD algorithm for 

MD extraction 

Isolation of MD 

features of UAVs 

Effective in noisy environments, 

good UAV differentiation 

Computational load affects real-

time performance 

Optimizing real-

time application and 

noise handling 

(Ezuma et 

al., 2020) 

RF fingerprints for 

UAV controller 

detection 

Detects UAV 

controllers in noisy 

RF environments 

Classification accuracy of 

98.13% using kNN at 25 dB 

SNR 

Struggles with identical 

controllers, limited in low SNR 

Sensor fusion for 

improved UAV 

detection 
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Study Methodology Main Features Accuracy/Performance Limitations/Challenges Future Work 

(Reddy & 

Peter, 

2021) 

FMCW radar and MD 

signatures 

Analyzes MD 

signatures caused by 

rapid rotor blade 
rotation 

Effective in capturing fine-

grained UAV motion details; 

improve detection in dense 
environments 

Challenges in extracting MD 

signatures and dealing with high-

frequency variations 

Improve techniques 

for better MD 

signature extraction 
and analysis 

(Ji et al., 

2021) 

Micro-motion model 

and radar systems 

Enhances detection 

performance for small 

UAVs; improved 

signal-to-noise ratio 
(SNR) and optimal 

demodulation 

Accurate in estimating MD 

parameters; effective in low-

SNR conditions 

Detection challenges due to 

clutter and small UAV dynamics 

Refine algorithms 

for better 
performance in 

cluttered 

environments 

(Kang et 
al., 2021) 

MD signatures and 
Doppler spectrum 

Links MD signatures 

to UAV motion 

dynamics; efficient 
compared to joint 

time-frequency (JTF) 

images 

Accurate with significant 

computational and storage 
benefits; good correlation with 

UAV specs 

Detection challenges due to 

chopping frequencies and 
smearing effects from multiple 

rotors 

Refine algorithms 

to address detection 
challenges with 

complex UAV 
dynamics 

(Raval et 

al., 2021) 

Machine learning with 

radar signals and 

CNNs 

Creates datasets with 

different radar 

specifications; 

evaluates X-band vs. 
W-band radar 

performance 

X-band radar achieved F1 score 

of 0.816±0.011; struggles with 

false alarms at lower SNRs 

False alarms due to noise 

confusion; reduced effectiveness 

at lower SNRs 

Investigate impact 

of different 

wavelengths and 
complex CNN 

architectures; 

validate with real-
world data 

(Kumawat 

et al., 2022) 

MD-based detection 

with DIAT-

RadSATNet 

Lightweight DCNN 

architecture with 40 

layers and 0.45 

million parameters; 
high classification 

accuracy 

Achieves 97.3% classification 

accuracy; real-time 

implementation with reduced 
computational costs 

Challenges in detecting SUAVs 

under complex conditions; needs 

further testing in diverse 
scenarios 

Validate system’s 

robustness and 
scalability in 

various operational 

environments 

(Rojhani et 

al., 2023) 

Deterministic data 

augmentation for UAV 

classification using 

MD radar 

Generates synthetic 

datasets using radar 
backscattering; 

focuses on UAVs 

classified by motor 
count with CNN 

Achieved 78.68% accuracy; 

outperformed conventional 
augmentation methods (66.18%) 

Class bias with conventional 

methods; potential for scaling to 

other domains like human 

recognition and medical imaging 

Extend method to 

diverse scenarios 

and other 

applications such as 
human recognition 

and medical 

imaging 

(Sayed et 

al., 2023) 

Radar digital twins for 

UAV classification 

using electromagnetic 
simulations 

Simulates MIMO 

radar with CAD 

models to generate 

datasets; uses SVM 

for classification 

Achieves minimum 97% 

classification accuracy in multi-

UAV scenarios 

Cost-effective but requires 

validation in real operational 

conditions; limited to simulated 
scenarios 

Validate system in 

real-world 

scenarios and 
diverse conditions 

(Ahmad et 

al., 2024) 

Radar-Based 

Detection and 
Tracking 

Reviews radar 

systems and 
performance metrics; 

discusses 

advancements in 
radar technology. 

Metrics discussed include 

accuracy, F1 score, and false 

alarm rate; specifics not 

provided. 

False alarm rates and 

differentiation challenges; 
complex environments. 

Multisensor 

approaches and 

cognitive radar for 
improved 

performance. 

(Tian et al., 

2024) 

Fully Convolutional 

Network (FCN) for 
Fast Detection 

Uses FCN for 

enhanced speed and 
accuracy in detecting 

UAVs; bifurcated 

architecture for 
classification. 

47 times faster detection speed; 

high accuracy and reduced false 
alarms. 

Difficulty in detecting multiple 

UAVs in the same grid cell. 

Up-sampling 

techniques to 

address resolution 

constraints. 

(Zulkarnain 

et al., 2024) 

MATLAB Simulations 

of MD Signatures 

Analyzes MD 

signatures using 

STFT and FFT to 

distinguish UAVs 
from birds. 

Effective in distinguishing 

UAVs from birds; detailed time-

frequency analysis. 

Limited by radar system 

capabilities and integration time. 

Advanced radar 

systems for 

improved detection 

and tracking. 

Proposed 

Model 

Micro-Doppler 

Signature and Doppler 

Spectrum 

Uses Radar system 

for detection, kNN, 
Random Forest, and 

SVM for 

classification. 

Achieves 100% accuracy with 

Random Forest. 

kNN, and SVM are struggling in 

distinguishing some types of 

UAVs due to their similarities. 

To integrate RID 

Policy in UAVs 

detection and 
authentication. 
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III. SIMULATION SETUP 

This research presents a novel approach to generating a raw 
dataset of UAVs, focusing on three distinct types: the DJI 
Matrice 600, DJI Matrice 300, and DJI Phantom 4. The dataset 
is designed to capture radar signals reflective of these UAVs’ 
unique characteristics, facilitating a detailed analysis of their 
operational signatures. The radar system is configured to 
simulate detections of the UAVs at distances of up to 1 kilometer 
in both hovering and motion operations. This involves UAVs 
located 1 kilometer towards the radar and 1 kilometer away from 
it, with all the points between the intervals of 10 meters 
inclusive. The simulation considers various UAV operations, 
such as stationary hovering and different flying speeds, 
providing a robust dataset that reflects real-world operational 
conditions. The generated data, which encompasses detailed 
radar reflections and MD signatures unique to each UAV type, 
is used to train machine learning models utilizing kNN, Random 
Forest, and SVM algorithms. These models are employed to 
classify and detect UAVs based on their distinct radar 
signatures, enhancing the system’s capability to differentiate 
between the DJI Matrice 600, DJI Matrice 300, and DJI 
Phantom 4 across various operational modes. This research 
contributes to advancing more effective and precise UAV 
detection and classification systems. 

The flowchart in Fig. 1 illustrates the detection and 
classification processes. Radar sends continuous signals to 
detect UAVs and collects return signals for analysis. The data is 
processed through the three models. In kNN, the Euclidean 
distance between the test data and training samples is calculated, 
and the UAV is classified based on the majority class among the 
five (5) nearest neighbors. While, Random Forest uses feature 
selection and bootstrapped datasets to train multiple decision 
trees, and combine their votes to classify the UAV. As SVM 
involves feature selection, kernel function selection (linear, 
polynomial, or RBF), hyperplane construction, and margin 
maximization to separate classes, and classify UAV based on a 
one-vs-all strategy. Then, the model with the highest accuracy is 
chosen to make the final classification decision. This ensures a 
systematic approach to UAV detection and classification using 
machine learning, and demonstrates the complementary work by 
the three integrated models. 

A. UAV Parameters 

The three simulated UAVs have the following parameters: 

1) DJI Matrice 600: It is set to have  𝑁𝑟
𝑀600 = 6 𝑟𝑜𝑡𝑜𝑟𝑠 , 

blades with a length  𝐿𝑏
𝑀600 = 0.5 𝑚 , a rotor speed  𝜔𝑀600 =

2200 𝑅𝑃𝑀 = 36.7 𝐻𝑧, a propeller distance 𝐷𝑝
𝑀600 = 1.13 𝑚, 

and 𝑁𝑎
𝑀600 = 6 𝑎𝑟𝑚𝑠. 

2) DJI Matrice 300: It is set to have  𝑁𝑟
𝑀300 = 4 𝑟𝑜𝑡𝑜𝑟𝑠 , 

blades with a length  𝐿𝑏
𝑀300 = 0.4 𝑚 , a rotor speed  𝜔𝑀300 =

2400 𝑅𝑃𝑀 = 40.0 𝐻𝑧 , a propeller distance  𝐷𝑝
𝑀300 =

0.885 𝑚, and 𝑁𝑎
𝑀300 = 4 𝑎𝑟𝑚𝑠. 

3) DJI Phantom 4: It is set to have  𝑁𝑟
𝑀600 = 4 𝑟𝑜𝑡𝑜𝑟𝑠 , 

blades with a length  𝐿𝑏
𝑃4 = 0.3 𝑚 , a rotor speed  𝜔𝑃4 =

3500 𝑅𝑃𝑀 = 58.3 𝐻𝑧 , a propeller distance  𝐷𝑝
𝑃4 = 0.35 𝑚 , 

and 𝑁𝑎
𝑃4 = 4 𝑎𝑟𝑚𝑠. 

These parameters are used to simulate the MD signatures 
generated by the rotor blades. The rotor speed (in Hz) and blade 
length define the periodic motion, while the propeller distance 
and number of arms influence the radar reflections. This level of 
detail is essential for modeling radar signals that differentiate 
between UAV types based on their distinct physical 
characteristics. The factors are significant in generating unique 
MD patterns that facilitate the classification and identification of 
the UAVs. 

B. Radar Parameters 

The radar system is simulated to operate in this research at a 
carrier frequency, 𝑓𝑐 =  77 𝐺𝐻𝑧. It features a maximum range 
(detectable range), 𝑅 =  1200 𝑚  and a range of 
resolutions, 𝛥𝑅 =  1 𝑚 . The radar’s bandwidth is calculated as 
the speed of light divided by twice the range resolution, 𝐵 =
𝑐

2𝛥𝑅
= 150 𝑀𝐻𝑧. The sweep time, 𝑇𝑠 = 5.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, while the 

chirp slope is derived from the bandwidth and sweep time, ϒ =
𝐵

𝑇𝑠
= 2.27 ×  106 𝐻𝑧𝑠−1. The radar’s maximum beat frequency 

and range beat frequency, 𝑓𝑏𝑒𝑎𝑡,𝑚𝑎𝑥  are set to handle the 

operational parameters effectively. The system supports MD 
processing for velocities, 𝑉𝑚𝑎𝑥 = 50 𝑚𝑠

−1, with the maximum 
Doppler frequency set to accommodate these speeds, 𝑓𝑑𝑜𝑝𝑝𝑙𝑒𝑟 =
2𝑉𝑚𝑎𝑥𝑓𝑐

𝑐
= 25.67 𝑘𝐻𝑧. The radar simulation encompasses, 𝑁𝑝 =

10 𝑝𝑢𝑙𝑠𝑒𝑠 each consisting of 𝑁𝑐 = 60 𝑐ℎ𝑖𝑟𝑝𝑠 and  𝑁𝑠 =
80 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑐ℎ𝑖𝑟𝑝𝑠. The pulse repetition frequency (PRF) 
is determined based on these parameters where Np, Nc, and Ns 
stand for number of pulses, number of chirps, and number of 
samples respectively. 

1) Transmitted chirp signal: The transmitted chirp signal 

models how the radar transmits a signal over time. This chirp 

signal is essential for determining the range and Doppler 

characteristics of UAVs. The selected UAVs in this research 

are DJI Matrice 600, DJI Matrice 300, and DJI Phantom 4. 

Hence, the chirp signal detects and measures their distance and 

movement by analyzing the returned signals as in Eq. (1), 

𝑆𝑟(𝑛, 𝑡) = 𝑎𝑡𝑟𝑒𝑐𝑡 (
t̂ − td
τ
) 𝑒𝑗[2𝜋𝑓𝑐𝑡𝑑+𝜋ϒ(𝑡̂−𝑡𝑑)

2] (1) 

where 𝑆𝑟(𝑛, 𝑡), is the transmitted baseband signal from the 
radar at the time t̂ for the nth pulse and 𝑎𝑡 is the amplitude of the 
return signal, often defined by the radar range equation, and it 
depends on the transmitted power, target radar cross-section 

(RCS), and range. While 𝑟𝑒𝑐𝑡 (
t̂−td

τ
) is the rectangular window 

function that represents the radar pulse shape. The function 
limits the signal to the time interval τ, which is the pulse width. 
It centers on the delayed time, td where td is the round-trip time 

delay is related to the range R  of the target by td =  
2R

c
. 

Meanwhile, 𝑒𝑗[2𝜋𝑓𝑐𝑡𝑑+𝜋ϒ(𝑡̂−𝑡𝑑)
2] is the complex exponential that 

describes the frequency modulation (FM) of the chirp signal and 
𝑓𝑐  is the radar’s carrier frequency (center frequency of the 
transmitted signal). In addition, γ is the chirp rate or chirp slope, 
representing the rate of frequency change in the transmitted 
chirp signal and (𝑡̂ − 𝑡𝑑)

2 represents the quadratic phase term, 
where 𝑡̂ is the time within a pulse and 𝑡𝑑 is the delay due to the 
target’s range. 
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Fig. 1. Flowchart of the proposed model. 

2) Received chirp signal: The received chirp signal 𝑆𝑅(𝑡) 
models the interaction between the radar and UAVs. The time 

delay τ =2r/c reflects the time it takes for the radar signal to 

travel to the UAV and back. This model is crucial for 

calculating the distance of the UAVs from the radar. Therefore, 

the received signal can be written as in Eq. (2), 

𝑆𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑛, 𝑡) = 𝑆𝑈𝐴𝑉(𝑛, 𝑡) + 𝑆𝑐𝑙𝑢𝑡𝑡𝑒𝑟(𝑛, 𝑡)
+ 𝑁𝑜𝑖𝑠𝑒(0, 𝜎2) 

(2) 

where 𝑆𝑈𝐴𝑉(𝑛, 𝑡) is the signal reflected by the target (UAV), 
𝑆𝑐𝑙𝑢𝑡𝑡𝑒𝑟(𝑛, 𝑡) is the clutter signal, which is the sum of reflections 
from multiple clutter sources and  𝑁𝑜𝑖𝑠𝑒(0, 𝜎2) is the additive 
noise in Gaussian distribution. 
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3) Dechirped intermediate frequency signal: The 

dechirping is the mixing (multiplying) of the received signal 

with a delayed version of the transmitted signal (reference 

chirp). This multiplication produces the Intermediate 

Frequency (IF) signal as described in Eq. (3), which contains 

the difference between the transmitted and received 

frequencies. 

𝑆𝐼𝐹(𝑛, 𝑡) = 𝑆𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑛, 𝑡) × 𝑆𝑟
∗(𝑛, 𝑡) (3) 

𝑆𝑟
∗(𝑛, 𝑡)  is the complex conjugate of the transmitted 

signal 𝑆𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑛, 𝑡). When the received signal is mixed with 
the conjugate of the transmitted chirp, the high-frequency terms 
cancel out, leaving behind a low-frequency signal (beat signal) 
that encodes target information such as range and Doppler shifts. 
The resulting signal 𝑆𝐼𝐹(𝑛, 𝑡) will have components related to 
the difference in time delay and Doppler shift between the 
transmitted and received signals. The UAV reflection of the IF 
signal is given by Eq. (4), where 𝑓𝑏𝑒𝑎𝑡 = 𝑓𝑐(𝑡𝑟 − 𝑡𝑑) is the beat 
frequency proportional to the time delay,  (𝑡𝑟 − 𝑡𝑑) , which 
relates to the range of the target. 𝜙(𝑡) is the phase component, 
which includes Doppler frequency information. 

𝑆𝐼𝐹,𝑈𝐴𝑉(𝑛, 𝑡) = 𝑎𝑟𝑟𝑒𝑐𝑡 (
t̂ − tr
τ
) 𝑒𝑗[2𝜋𝑓𝑏𝑒𝑎𝑡𝑡+𝜙(𝑡)] (4) 

The IF signal after dechirping contains beat frequency and 
phase modulation. The beat frequency is proportional to the 
range of the UAV (or other targets); the greater the range, the 
higher the beat frequency. Meanwhile, phase modulation is 
caused by Doppler shifts, which provide information about the 
relative velocity of the UAV. 

4) Dechirped signal: The dechirped signal, 𝑆0(𝑡, 𝑡𝑠) assists 

in analyzing the radar return signal by removing residual phase 

terms. This step is essential for accurately processing and 

analyzing the data collected from UAVs, ensuring that the 

range and Doppler measurements used for classification are 

precise. The dechirped signal would also include contributions 

from clutter and noise. Therefore, the IF signal after 
dechirping becomes Eq. (5), where, 𝑆𝐼𝐹,𝑈𝐴𝑉(𝑛, 𝑡) is the beat 
signal from the UAV, while 𝑆𝐼𝐹,𝑐𝑙𝑢𝑡𝑡𝑒𝑟(𝑛, 𝑡) represents the 
beat signals from clutter sources and 𝑁𝑜𝑖𝑠𝑒(0, 𝜎2) is the 
noise (modeled as Gaussian noise). 

𝑆𝐼𝐹(𝑛, 𝑡) = 𝑆𝐼𝐹,𝑈𝐴𝑉(𝑛, 𝑡) + 𝑆𝐼𝐹,𝑐𝑙𝑢𝑡𝑡𝑒𝑟(𝑛, 𝑡)

+ 𝑁𝑜𝑖𝑠𝑒(0, 𝜎2) 
(5) 

5) MD effect: The MD effect is significant in detecting and 

identifying the UAVs’ distinct features, such as rotor blades’ 

motion. MD is a time-varying frequency shift caused by small 

periodic motions like the rotor blades of the UAV. It is modeled 

in Eq. (6) where, 𝑣(𝑡)  is the instantaneous velocity of the 

rotating or moving part, 𝜆 is the wavelength of the radar signal, 

and 𝑓𝑚𝐷(𝑡) represents the MD frequency shift. 

𝑓𝑚𝐷(𝑡) =
2𝑣(𝑡)

𝜆
 

(6) 

The overall received signal, including the MD effect, is 
represented in Eq. (7) where 2𝜋𝑓𝑐𝑡𝑟  is the bulk Doppler shift 
and the MD shift is 2𝜋𝑓𝑚𝐷(𝑡)𝑡. 

𝑆𝑟(𝑛, 𝑡)

= 𝑎𝑟𝑟𝑒𝑐𝑡 (
t̂ − tr
τ
) 𝑒𝑗[2𝜋𝑓𝑐𝑡𝑟 + 2𝜋𝑓𝑚𝐷(𝑡)𝑡 + 𝜋ϒ(𝑡̂−𝑡𝑟)

2] 

(7) 

6) Received Signal with MD and Noise: The total received 

radar signal, including the reflected signal from the UAV, 

clutter sources, MD effects, and noise, can be modeled in Eq. 

(8). 

𝑆𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑛, 𝑡)

= 𝑎𝑟𝑟𝑒𝑐𝑡 (
t̂ − tr

τ
) 𝑒𝑗[2𝜋𝑓𝑐𝑡𝑟 + 2𝜋𝑓𝑚𝐷(𝑡)𝑡 + 𝜋ϒ(𝑡̂−𝑡𝑟)

2]

+   𝑎𝑐𝑖𝑟𝑒𝑐𝑡

𝑁𝑐

𝑖=1

(
𝑡̂ − 𝑡𝑐𝑖

𝜏
) 𝑒𝑗[2𝜋𝑓𝑐𝑡𝑐𝑖 + 2𝜋𝑓𝑚𝐷(𝑡)𝑡 + 𝜋ϒ(𝑡̂−𝑡𝑐𝑖)

2]

+  𝑁𝑜𝑖𝑠𝑒(0, 𝜎2) 

(8) 

C. File Format and Metadata 

The data is stored in an Excel file and is organized into four 
sheets, each containing 8,120,601 samples of the three different 
UAVs (DJI Matrice 600, DJI Matrice 300, and DJI Phantom 4). 
The data is captured as the UAVs move within a 3D space 
ranging from 1 km away towards the radar to 1 km towards the 
radar. The movement is recorded at 10-meter intervals in each 
direction. Each sheet includes the following data for every 
sample: Raw RX Data, UAV Type, UAV Features, and 
Location. The captured information is utilized to train the 
machine learning models kNN, Random Forest, and SVM for 
classification purposes. 

D. UAV Classification 

The classification of UAVs is an approach for identifying 
UAV types and their operational modes based on the received 
radar information, specifically range-Doppler maps. The 
method leverages the kNN, Random Forest, and SVM 
algorithms, which classify a test sample by considering its 
proximity to the labeled training samples in features’ space as 
described in equation (9). The dataset is represented as  𝑋 =
{x1, x2, ⋯  , xN}, where, xi represents the features of a sample, 
such as the range-Doppler map. Each yi ∈ 𝑌, where 𝑌 contains 
UAV types or operational modes. yi ∈ {DJI Matrice 600, DJI 
Matrice 300, Phantom 4} 

1) Data preparation and feature extraction: To train the 

classifiers for identifying UAV types and their operational 

states, the raw radar signal (range-Doppler maps) is first 

preprocessed. The range-Doppler map, which represents the 

response of the radar to a moving object in terms of range and 

velocity, is flattened into a one-dimensional vector. 

Mathematically, let the range-Doppler map for a UAV 𝑈 and 

velocity 𝑉  be denoted as 𝑅𝐷𝑈,𝑉(𝑟, 𝑓𝐷) , where 𝑟  represents 

range and 𝑓𝐷 represents Doppler frequency. To simplify this for 

machine learning, each map 𝑅𝐷𝑈,𝑉 is reshaped into a feature 

vector 𝑋𝑢,𝑣 ∈ ℝ
𝑛 , where 𝑛 is the total number of points in the 
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range-Doppler map. Thus, the feature matrix 𝑋 for all UAVs 

and states becomes Eq. (9): 

𝑋 = [

𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑉
𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑉
⋮ ⋮ ⋱ ⋮
𝑋𝑈,1 𝑋𝑈,2 ⋯ 𝑋𝑈,𝑉

] (9) 

where 𝑈  represents the number of UAV types and 𝑉 
represents the number of velocity states (including hovering). 
Each row in 𝑋 corresponds to the real part of the radar signal 
response, ensuring compatibility with standard machine 
learning models as indicated in Eq. (10). 

𝑌 =  [

𝑈𝐴𝑉 𝑇𝑦𝑝𝑒 1 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛1
𝑈𝐴𝑉 𝑇𝑦𝑝𝑒2 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛2
⋮ ⋮

𝑈𝐴𝑉 𝑇𝑦𝑝𝑒𝑁 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁

] (10) 

a) Dataset: The dataset consists of radar return signals 

from three different types of UAVs: DJI Matrice 600, DJI 

Matrice 300, and DJI Phantom 4. Each UAV is simulated, and 

its features are captured across a range of distances from the 

radar, spanning between [1000; 1000; 1000] meters (1km) 

towards the radar and [-100; -1000; -1000] meters (1km) away 

from the radar, with measurements taken in 10m intervals 

inclusive. The features extracted from the UAVs are the 

reflected radar signals from the UAVs that capture unique 

characteristics, structural design, movement patterns, and 

operational parameters such as rotor speed, body dimensions, 

and altitude. These features, derived from the signal’s 

amplitude, phase shifts, and Doppler effects, provide distinctive 

signatures that can be used for identifying and classifying each 

UAV at various distances and orientations relative to the radar 

system. These reflected signals can be used to train machine-

learning models to recognize the specific identity of each UAV, 

enabling robust identity-based authentication and detection. 

The dataset is extensive, capturing radar return signals from 

multiple locations within a specified range. Each UAV 

covering all locations within the range of [-1000; -1000; -1000] 

to [1000; 1000; 1000] at intervals of 10 meters, the total number 

of samples is calculated as the following. 

Total samples per UAV: 

UAV = 201 × 201 × 201 = 8, 120, 601 

Therefore, the total dataset samples of the three UAVs (DJI 
Matrice 600, DJI Matrice 300, and DJI Phantom 4) is the total 
number of samples across the UAVs. 

Total Dataset Samples = 8, 120, 601 × 3
= 24, 361, 803 samples 

This results in a dataset containing 24,361,803 samples in 
total, providing unique radar profiles for each UAV at all 
specified distances. This comprehensive dataset enables 
efficient training of machine-learning models for UAV 
identification and classification based on their radar return 
signals. 

The structure of the captured information is described as 
follows: 

 Reflected Signal: This matrix captures the amplitude of 
the radar return signals reflected by the DJI Matrice 600 
at [1000; 1000; 0]: 

𝑋 = [

−1.15193589623129 2.79463633718335 ⋯ 0.854456914633749
−0.267289748658581 −0.368824215433807 ⋯ −0.671501576572502

⋮ ⋮ ⋱ ⋮
−0.382196398043339 0.0841435521978612 ⋯ −1.14575173405667

] 

 Drone Type: The UAV information captured is that of 
DJI Matrice 600. 

 Drone Features: The details of the UAV captured include 
the number of rotors, rotor radius, rotor speed, and other 
relevant features [6 0.5 36.6666666666667 1.13 6]. 

 Location: Indicates the coordinates of the UAV towards 
the radar [1000; 1000; 0]. 

b) Feature extraction: The range-Doppler maps are 

generated from radar signals for each UAV, capturing 

significant features related to the movement and MD signatures 

of the drone. These maps encode essential information about 

the range and velocity of UAVs, making them a valuable 

feature set for classification tasks. The formula of Range-

Doppler maps is defined in Eq. (11): 

𝑅𝐷(𝑛, 𝑓) = 𝐹𝐹𝑇𝑡{𝐹𝐹𝑇𝑟{𝑆𝑟(𝑛, 𝑡)}}      (11) 

Therefore, the features extracted from the Range Doppler 
maps are Mean Range  𝜇𝑟 , Mean Doppler-Shift 𝜇𝑑 , Standard 
Deviation of Range  𝜎𝑟 , and Standard Deviation of Doppler 
Shift 𝜎𝑑. These are described in Eq. (12), (13), (14), and (15) 
respectively. Others include Peak-to-Average-Ratio (PAR), 
Spectral Centroid (SC), Spectral Bandwidth (SB), Peak 
Amplitude (PA), Number of Peaks, Energy Ratio (ER), and 
Entropy. The PAR, SC, SB, PA, ER, and Entropy are 
represented in Eq. (16), (17), (18), (19), (20) and (21) 
respectively. 

𝜇𝑟 =
1

𝑁
 𝑟(𝑛)

𝑁

𝑛=1

 (12) 

𝜇𝑑 =
1

𝑀
 𝑑(𝑓)

𝑀

𝑓=1

 (13) 

𝜎𝑟 =  
1

𝑁 − 1
 (𝑟(𝑛) − 𝜇𝑟)

2

𝑁

𝑛=1

 (14) 

𝜎𝑑 =  
1

𝑀 − 1
 (𝑑(𝑓) − 𝜇𝑑)

2

𝑀

𝑓=1

 (15) 

(𝑃𝐴𝑅) =  
𝑚𝑎𝑥𝑑
𝜇𝑑

 (16) 

𝑆𝐶 =  
∑ 𝑓 × 𝑅𝐷(𝑛, 𝑓)𝑓

∑ 𝑅𝐷(𝑛, 𝑓)𝑓

 (17) 
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𝐵𝐷 =  √
∑ (𝑓 − 𝑆𝐶)2 × 𝑅𝐷(𝑛, 𝑓)f

∑ 𝑅𝐷(𝑛, 𝑓)𝑓

 (18) 

𝑃𝐴 =  𝑚𝑎𝑥𝑛,𝑓 × 𝑅𝐷(𝑛, 𝑓) (19) 

The number of peaks counts the significant peaks in the 
range-Doppler map, which is related to the number of rotating 
blades or moving parts. 

𝐸𝑅 =  
∑ 𝑅𝐷(𝑛, 𝑓)(𝑛,𝑓)∈𝑅𝑒𝑔𝑖𝑜𝑛

∑ 𝑅𝐷(𝑛, 𝑓)𝑛,𝑓

 (20) 

ER is a ratio of energy in specific regions of the range-
Doppler map to the total energy, which indicates specific 
features related to the UAVs. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − 
𝑅𝐷(𝑛,𝑓)

𝐸
 𝑙𝑜𝑔 (

𝑅𝐷(𝑛,𝑓)

𝐸
) 

𝑛,𝑓
, (21) 

Where 

𝐸 = 𝑅𝐷(𝑛, 𝑓)

𝑛,𝑓

 

Therefore, 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑉𝑒𝑐𝑡𝑜𝑟 (𝐹𝑖) =
[𝜇𝑟 , 𝜇𝑑 , 𝜎𝑟 , 𝜎𝑑 , 𝑃𝐴𝑅, 𝑆𝐶, 𝑆𝐵, 𝑃𝐴,𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑒𝑎𝑘𝑠, 𝐸𝑅, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ]     

The features vector provides a comprehensive representation 
of the UAV’s radar signature that can ensure classification 
accuracy. 

2) Training the classifiers: The kNN, Random Forest, and 

SVM classifiers are trained using the feature matrix 𝑋 and the 

corresponding label matrix 𝑌 . The goal is to classify two 

outputs: the type of UAV and its operation. Let 𝑦𝑈𝐴𝑉 𝑇𝑦𝑝𝑒 be 

the vector containing the UAV type labels, and 𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 be 

the vector containing the operational states (hovering or 

moving). The kNN classifier identifies the k nearest training 

points for each test point based on a chosen distance metric. In 

contrast, the Random Forest model uses an ensemble of 

decision trees to make predictions by averaging the outputs of 

multiple trees, while the SVM model finds the optimal 

hyperplane that maximizes the margin between classes for 

classification. Given a new test point 𝑋𝑇𝑒𝑠𝑡 ∈ ℝ
𝑛, the classifier 

computes the distances to all training points 𝑋𝑖 ∈ ℝ
𝑛 𝑖𝑛 𝑋 as in 

Eq. (22). 

d(𝑋𝑇𝑒𝑠𝑡 , 𝑋𝑖) =    𝑋𝑇𝑒𝑠𝑡(𝑗) − 𝑋𝑖(𝑗) 
2

n

j=1

 (22) 

The kNN, Random Forest, and SVM classifiers are each 
used to classify both UAV type and operational state. The kNN 
classifier identifies the 𝑘 nearest points and uses majority voting 
to assign the test point 𝑋𝑇𝑒𝑠𝑡 to a class for both the UAV type 
and the operation. While Random Forest aggregates predictions 
from decision trees, and SVM identifies the optimal hyperplane 
to separate classes. In this case, two separate classifiers are 

trained: one for UAV-type prediction and one for operational 
state prediction. 

3) Classification: The kNN, Random Forest, SVM models 

are trained to classify new radar signal data from unknown 

UAVs. For each radar signal, represented by its corresponding 

range-Doppler map 𝑋𝑇𝑒𝑠𝑡, the models predicts both the UAV 

type and its operation. The UAV type classifier,  𝑓𝑈𝐴𝑉 𝑇𝑦𝑝𝑒, 
assigns a predicted class label based on the features of the test 

data: 

ŷUAV Type = fUAV Type(XTest) (23) 

Similarly, the operation classifier,  𝑓𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , predicts the 

UAV’s operational state by analyzing the same test signal. 

𝑦̂𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑋𝑇𝑒𝑠𝑡) (24) 

Both classifiers work in tandem to identify the UAV type 
and its operational state from the radar signal data, making 
predictions based on the nearest neighbors in the training set. 

E. Visualization of the Signals 

The visualization of radar signals from various UAVs is 
critical for understanding their operational characteristics and 
enhancing classification tasks. The research used the generated 
raw data to visualize the UAVs’ extracted features through 
maps. These maps include time/frequency spectrograms, mean 
spectrograms, and range-Doppler maps of the captured signals 
to facilitate detailed analysis of UAV’s behaviors under 
different conditions. 

1) Time/Frequency-Spectrograms: The time/frequency 

spectrograms provide a dynamic view of how the frequency 

content of the radar signals varies over time. The spectrograms 

get frequency on the vertical axis and time on the horizontal 

axis to demonstrate how the UAV’s motion influences the 

received radar signals. Fig. 2 depicts rapid changes in 

frequency, indicating a UAV accelerating or maneuvering, 

while stable frequency patterns suggest hovering or cruising at 

a constant speed. This visualization is particularly useful for 

identifying unique operational signatures associated with 

different UAV types. 

 

Fig. 2. UAV spectrograms. 

2) Time/Frequency-mean spectrograms: The mean 

spectrograms is generated by averaging on multiple 

time/frequency spectrograms to emphasize the consistent 

features inherent to each UAV type. The smoothing out the 
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variability in individual recordings, mean spectrograms 

highlight the dominant frequencies and patterns associated with 

specific UAVs as indicated in Fig. 3. This helps in 

distinguishing between UAVs, as each type tends to exhibit 

distinct frequency profiles that can be utilized for classification. 

 
Fig. 3. UAV mean spectrograms 

3) Doppler frequency/Range-Range-Doppler map: The 

Range-Doppler maps are pivotal in integrating both range and 

Doppler information into a single representation as indicated in 

Fig. 4. These maps reveal the detected UAVs’ characteristics in 

a comprehensive manner. The intensity of the colors within the 

maps indicates the strength of the received radar signals, 

highlighting features specific to different UAV types. The 

variations in intensity help to differentiate between larger 

UAVs, which may have a stronger radar return, and smaller 

ones, which produce weaker signals. 

 
Fig. 4. UAV Range-Doppler Map 

4) Doppler frequency/Range-Mean Range-Doppler maps: 

The mean range-Doppler maps are generated by averaging the 

range-Doppler data over multiple samples. This process 

reduces noise and highlights the typical signatures of each UAV 

type as described in Fig. 5. The mean range-Doppler maps 

assist in the classification process, making it easier to identify 

the unique characteristics associated with each UAV. 

5) Doppler intensity plots: The Doppler intensity plots 

focus on specific points within the Doppler domain, illustrating 

the intensity of the received signals at various frequencies as 

presented in Fig. 6. These plots are beneficial for examining 

how signal intensity varies with Doppler frequency, offering 

insights into the operational states of the UAVs. The 

frequencies exhibit higher intensity levels during specific 

operations, such as takeoff or landing, enabling observers to 

infer the UAV’s activity at a given time. 

 

Fig. 5. UAV mean range-doppler map. 

 
Fig. 6. UAV doppler frequency intensity. 

IV. EVALUATION AND TESTING 

The captured radar signals information is deployed to kNN, 
Random Forest, and SVM to enable real-time classification of 
unknown UAVs based on their range-Doppler signatures. The 
relevant features are extracted from the radar signal and input 
into the classifiers to predict both the UAV type and its 
operational state (e.g., hovering or moving). The performances 
of the models are evaluated by comparing the predictions with 
the known ground truth. The performance metrics include 
classification accuracy, the F1 score, true positive confidence, 
and the false alarm rate. Additionally, the classification time 
delay is assessed to determine how fast the system can make 
predictions to ensure the model’s viability for real-time UAV 
detection and authentication. These metrics provide an inclusive 
assessment of the classifier’s effectiveness in accurately 
identifying UAV types and operational states from radar data. 

1) Accuracy: This measures the proportion of correct 

predictions out of the total predictions made by the classifier. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (25) 

where TP is True Positive, TN is True Negative, FP is False 
Positive, and FN is False Negative. 

2) F1 Score: It provides a balance between precision and 

recall, especially useful for imbalanced classes. It is the 

harmonic mean of precision and recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (26) 

Where 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, and 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

3) True positive confidence: This reveals the confidence 

level of the classifier in its correct predictions, expressed in a 

percentage form. It is the average confidence score assigned to 

true positive predictions. 

𝑇𝑃𝐶 =
𝛴1=1
𝑛  𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑇𝑃𝑖)

𝑛
 (27) 

where TPi is the confidence of each true positive prediction 
and n is the number of classes. 

4) False Alarm Rate (FAR): This indicates the number of 

times the classifier incorrectly predicts the presence of a UAV 

when there is none (false positive rate). 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (28) 

5) Classification time delay: It measures the time taken for 

the classifier to process the radar signal and make a prediction. 

This is critical for real-time systems and can be represented as: 

𝐶𝑇𝐷 = 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡 (29) 

Where CTD is the classification delay time. 

V. RESULT AND DISCUSSION 

The results of classification performance of the three models 
(kNN, Random Forest, and SVM) have been evaluated across 
three UAV classes (DJI Matrice 600, DJI Matrice 300, and DJI 
Phantom 4). The results, as presented in confusion matrices 
shown Fig. 7, Fig. 8, and Fig. 9, and summarized in Table II, 
Table III, and Table IV, provide overview of how each model 
performs. The performances are in terms of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives 
(FN), offering insights into their strengths and weaknesses. 

 

Fig. 7. kNN’s classification confusion matrix. 

TABLE II.  KNN’S CLASSIFICATION SUMMARY 

Class TP TN FP FN 

1 (DJI Matrice 600) 36 82 6 8 

2 (DJI Matrice 300) 18 65 23 26 

3 (DJI Phantom 4) 23 60 26 23 

Total 77 207 55 57 

The kNN exhibits varying levels of performance in the 
classification of UAV types. Class 1 (DJI Matrice 600):  The 
classifier performs well and achieved 36 (TPs) with minimal FP 
(6) and FN (8). It shows the highest accuracy (89.4%) in this 
class, indicating that it can effectively distinguish the DJI 
Matrice 600 from the other UAVs. However, the classifier 
struggles with Class 2 (DJI Matrice 300), where it only correctly 
identifies 18 samples as Matrice 300, while misclassifying 23 
samples from other classes as Matrice 300. In addition, it misses 
26 actual Matrice 300 samples, leading to a moderate 
performance in the class. While, in Class 3 (DJI Phantom 4), 
kNN performs moderately well but faces challenges in 
balancing FPs and FNs, correctly classifying 23 samples as 
Phantom 4, while misclassifying 26 samples from other classes 
and failing to classify 23 actual Phantom 4 samples. 

 

Fig. 8. Random forest’s classification confusion matrice. 

TABLE III.  RANDOM FOREST’S CLASSIFICATION SUMMARY 

Class TP TN FP FN 

1 (DJI Matrice 600) 44 88 0 0 

2 (DJI Matrice 300) 44 88 0 0 

3 (DJI Phantom 4) 44 88 0 0 

Total 132 264 0 0 

In contrast, the Random Forest demonstrates outstanding 
performance in classifying all the UAV classes, and achieved 
100% classification with no FPs or FNs, as indicated in Table 
III. Each class (DJI Matrice 600, DJI Matrice 300, and DJI 
Phantom 4) samples are correctly classified, and no 
misclassifications occur. It recorded 132 (TPs) and 264 (TNs) 
across all classes, and achieved an accuracy of 100%, 
showcasing its robustness and ability to effectively separate 
UAV classes. This perfect performance shows the utility of 
Random Forest for UAV detection and classification tasks, 
indicating that it can reliably distinguish between different UAV 
types without ambiguity. 

Meanwhile, the SVM model performs well, with strong 
results across all three classes. Class 1 (DJI Matrice 600), the 
SVM achieves perfect classification, with 100% precision and 
100% recall, correctly identifying all instances of this class. This 
suggests that the SVM model excels at detecting the DJI Matrice 
600 UAV. While, in Class 2 (DJI Matrice 300), the model 
achieves a precision of 79.1% and a recall of 86.4%, with a 

1 2 3

1 36 4 4 89.40% 10.60%

2 4 18 22 62.90% 37.10%

3 2 19 23 62.90% 37.10%

Percentage %

1 2 3

1 44

2 44

3 44

100%

100%

100%

Perc. %
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resulting F1-score of 0.826. While some FPs are present, the 
model correctly identifies the majority of DJI Matrice 300 
instances, but occasional confusion with other UAV types 
lowers its performance slightly. Also, in Class 3 (DJI Phantom 
4), the SVM model achieves 85% precision and 77.3% recall, 
with an F1-score of 0.81. While the model correctly identifies 
most Phantom 4 samples, some instances are misclassified as 
other UAV types. 

 
Fig. 9. SVM’s classification confusion matrice. 

TABLE IV.  SVM’S CLASSIFICATION SUMMARY 

Class TP TN FP FN 

1 (DJI Matrice 600) 44 88 0 0 

2 (DJI Matrice 300) 38 78 10 6 

3 (DJI Phantom 4) 34 82 6 10 

Total 114 248 16 16 

TABLE V.  SUMMARY OF PERFORMANCE OF THE THREE MODELS 

Class Accuracy F1 Score TPC FAR 

kNN 71.73% 58.14% 58% 0.21 

Random Forest 100% 100% 100% 0.00 

SVM 93.27% 88% 87% 0.06 

 
Fig.10. Models performances. 

The Random Forest emerged as the best-performing model 
due to its perfect classification accuracy (100%) and zero false 
alarms as shown in Fig. 10 and Table V. This makes it well-
suited for real-time UAV monitoring, where minimizing errors 
is paramount. Although kNN and SVM achieved high accuracy 
for some UAV types, their issues with misclassifying between 
DJI Matrice 300 and Phantom 4 suggest that further tuning or 
additional feature engineering is needed to improve their 
performance in distinguishing these specific UAV types. 

VI. CONCLUSION AND FUTURE DIRECTION 

This research presents significant strides in the detection and 
authentication of UAVs through the creation of a unique radar 
dataset comprising three distinct UAV models (DJI Matrice 600, 
DJI Matrice 300, and Phantom 4). The research has laid the 
groundwork for enhanced UAV detection and classification. 
The utilization of MD radar signals allows for detailed analysis 
of UAV characteristics, facilitating accurate identification and 
robust authentication processes. Among the three machine 
learning models tested, Random Forest demonstrated 
exceptional performance, achieving 100% classification 
accuracy with zero false alarms, making it highly suitable for 
real-time UAV monitoring where precision is critical. While 
kNN and SVM models also showed strong results, they 
encountered misclassification issues attributed to the similarities 
in the radar signatures of the DJI Matrice 300 and DJI Phantom 
4 UAVs. These UAVs share the same number of rotors and 
propellers, as well as other design features. Their structural 
similarities result in overlapping micro-Doppler effects and 
radar reflections, making it difficult for the models to distinguish 
between the two UAV classes, suggesting a need for further 
refinement. 

However, future work will focus on developing a system that 
leverages the Remote ID (RID) policy, and the radar datasets 
generated in this study to improve the detection, identification, 
and authentication of UAVs. The system will utilize the kNN, 
Random Forest, and SVM models, with particular attention to 
improving the performance of kNN and SVM to reduce 
misclassifications and enhance accuracy. These enhancements, 
combined with the broader application of RID data, will enable 
a more robust scalable solution that will detect and identify 
unknown UAVs and ensure monitoring and security in various 
operational environments. 
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