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Abstract—A significant area of study within data mining is 

high-utility itemset mining (HUIM). The exponential problem of 

broad search space usually comes up while using traditional 

HUIM algorithms when the database size or the number of unique 

objects is huge. Evolutionary computation (EC) -based algorithms 

have been presented as an alternate and efficient method to 

address HUIM problems since they can quickly produce a set of 

approximately optimum solutions. In transactional databases, 

finding entire high-utility itemset (HUIs) still need a lot of time 

using EC-based methods. In order to deal with this issue, we 

propose a hybrid Ant colony optimization-based HUIM algorithm. 

Genetic operators’ crossover is applied to the generated solution 

by the ant in the Ant Colony optimization algorithm. In this study, 

a single-point crossover is employed wherein, the crossover point 

is selected randomly and a mutation operator is applied by 

changing one or many random bits in a string. This technique 

requires less time to mine the same number of HUIs than state-of-

the-art EC-based HUIM algorithms. 
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I. INTRODUCTION 

The purpose of data mining is to uncover valuable insights 
or cognition from data which can aid in decision-making, 
prediction, and revealing hidden patterns or relationships within 
the data. Frequent itemset mining (FIM) is a crucial data mining 
approach aimed at identifying groups of items or elements that 
commonly occur together in large datasets. It is often applied in 
association rule learning, where the objective is to uncover 
relationships or patterns among items in transactional data, such 
as in market basket analysis. Although FIM mines itemsets 
based on the count of occurrence, the item’s utility (profit) is not 
taken into consideration. To address this shortcoming, the 
concept of High Utility Itemset (HUI) was introduced. While 
traditional frequent itemset mining identifies itemsets based on 
their frequency of occurrence, HUIM takes into account the 
actual value or utility of items, which can include factors like 
profit, revenue, or user preference. An itemset is deemed high 
utility if its utility exceeds the user specified threshold. Here, a 
minimum utility value will be set, either manually or through a 
probabilistic function. Traditional HUIM algorithms encounter 
and have to deal with the exponential search space problem with 
increasing number of transactions and database items. 
Evolutionary algorithms such as genetic algorithms (GA), Ant 
Colony Optimization (ACO) algorithm, Particle swarm 
Optimization (PSO), and Artificial bee colony (ABC) algorithm 
are some efficient algorithms that solve the exponential search 
space problem. In order to find near-optimal solutions based on 

fitness functions, evolutionary algorithms effectively search 
enormous problem spaces. For mining HUIs beyond a minimum 
utility threshold, evolutionary-based HUIM algorithms are 
quicker than conventional precise approaches, although they 
still require a lot of time. Enhancing the diversity of the 
generated population is one way of reducing the time. Hybrid 
approach balances exploration and exploitation, handles sizably 
voluminous and unevenly distributed datasets preponderant, and 
acclimates well to dynamic environments. It outperforms 
standalone PSO, GA, or ACO in terms of haste, scalability, and 
solution quality. The Hybrid Ant Colony Optimization (GA-
ACO) algorithm ameliorates HUI mining by cumulating the 
iterative refinement of ACO with the expeditious ecumenical 
search of GA, which expedites convergence and truncates the 
early-stage impuissance’s of ACO. 

II. RELATED WORK 

Agrawal and Srikant [1] explored association rules in large 
sales transaction databases. Agrawal, Imielinski, and Swami [2] 
used novel estimation and pruning techniques for efficient and 
fast mining of association rules. Tseng et al. [3] developed 
algorithms for mining high utility itemsets from a transactional 
database. They presented two algorithms, Utility-Pattern-
Growth (UP-Growth) and also UP-Growth+, to carry out the 
mining of high utility itemset with a collection of effective 
approaches for pruning potential itemsets. They stored 
information associated with high utility itemsets into a tree-
based data structure called “utility pattern tree” in such a way 
that candidate itemsets could be developed with only two scans 
of the database and obtained significant improvement in 
extracting high utility itemsets. Chan, Yang, and Shen [4] 
proposed a technique that targets mining the top-K high utility 
closed patterns directly aligned with a specific business 
objective. Their experimental results demonstrate that the 
algorithm does not require a user-defined minimum utility, 
making it practical and effective in real-world applications. 

Yao, Hamilton, and Butz [5] examined the utility 
relationships among itemsets and identified two key properties: 
the utility bound property and the support bound property. They 
also developed a mathematical model for utility mining based 
on these principles. Ahmed et al. [6] introduced tree structures 
to efficiently conduct incremental and interactive high-utility 
pattern (HUP) mining. Their first tree structure, the Incremental 
HUP Lexicographic Tree (IHUPL-Tree), is organized by an 
item’s lexicographic order, capturing incremental data without 
requiring any restructuring. The second tree structure, the IHUP 
Transaction FrequencyTree (IHUPTF-Tree), optimizes size by 
arranging items in descending order of transaction frequency. To 
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reduce mining time, the third structure, the IHUP Transaction-
Weighted Utilization Tree (IHUPTWU-Tree), is based on the 
descending TWU (Transaction-Weighted Utilization) values of 
items. The authors demonstrated that these tree structures are 
highly efficient and scalable for incremental and interactive 
HUP mining. 

In study [7], Liu and Qu introduced a data structure called 
the “utility-list” and introduced an algorithm named HUIMiner 
for mining high utility itemsets. The HUI-Miner algorithm 
introduces utility-lists to store utility and pruning information, 
enabling it to mine high utility itemsets without engendering 
candidate itemsets. This eliminates the computational overhead 
of traditional algorithms that process sizably voluminous 
numbers of low-utility candidates. By directly fixating on high 
utility itemsets, HUI-Miner evades the costly processes of 
itemset generation and utility computation. Performance 
comparisons with other state-of-the-art algorithms across 
multiple databases show that HUI-Miner offers better 
improvment in both runtime and memory utilization, making it 
a more efficient approach for mining high utility itemsets. 

Fournier-Viger et al. [8] presented a new algorithm called 
FHM- Fast High-Utility Miner which improved the performance 
of HUI-Miner algorithm. FHM’s key innovation lies in its 
strategic analysis of item cooccurrences, which substantially 
decreases the number of necessary join operations during the 
mining process. Testing on real-world datasets demonstrated 
FHM’s efficiency, reducing join operations by as much as 95% 
and operating up to six times faster than its predecessor, HUI-
Miner. 

Zida et al. [9] introduced EFIM, a new algorithm for mining 
high-utility itemsets. EFIM’s effectiveness arises from two main 
components: newly developed upper-bounds called the sub-tree 
utility and the local utility, and a streamlined array-based 
method named Fast Utility Counting. Their approach allows for 
linear time and space complexity when calculating these upper-
bounds. To further enhance efficiency, EFIM incorporates 
techniques for database projection and transaction merging, also 
achieving linear time and space complexity. These methods 
significantly reduce the computational cost associated with 
database scans. Comprehensive experiments across diverse 
datasets demonstrated EFIM’s superior performance. 

Peng, Koh, and Riddle [10] introduced mHUIMiner, which 
leverages a tree-based framework to steer the process of itemset 
growth. This approach efficiently eliminates the need to 
examine non-existent database itemsets. mHUIMiner emerges 
as different from other methods by avoiding complex and 
computationally intensive pruning mechanisms. 

One of the earliest works on mining high utility itemsets 
using evolutionary algorithms from transaction databases is 
using Genetic Algorithm (GA) proposed by Kannumuthu and 
Premalatha [11]. They proposed two approaches to mine high 
utility itemsets from transaction databases with or without 
specifying minimum utility threshold by using genetic 
algorithm. Results from experiments showed that authors’ GA 
approaches accomplished better performance in terms of 
scalability and efficiency. 

Lin et al. [12] proposed using discrete Particle Swarm 
Optimization (PSO) to represent particles as binary variables. 
They introduced HUIM-BPSO, an efficient PSO-based 
algorithm designed to discover High-Utility Itemsets (HUIs) 
effectively. Their algorithm employs the transaction-weighted 
utility (TWU) model to identify high-transaction-weighted 
utilization 1-itemsets (1-HTWUIs). They established that their 
method mitigated the combinatorial complexity typically 
encountered during the evolutionary process. 

Lan, Hong, and Tseng [13] introduced a novel pattern 
category called high transaction-weighted utility itemsets. Three 
key factors are taken into consideration in this approach: 
individual item profits, item quantities within transactions, and 
the overall contribution of each transaction to the database. To 
uncover these high transaction-weighted utility itemsets, the 
authors developed a two-stage mining algorithm. They 
demonstrated their methods through experiments conducted on 
synthetic datasets, which revealed promising performance 
results. 

A 2-phase algorithm was introduced by Liu, Liao, and 
Choudhary [15] which aimed at streamlining the high-utility 
itemset mining process. Their approach effectively minimized 
the candidate set while ensuring the comprehensive discovery of 
all high-utility itemsets. Their algorithm exhibited efficiency in 
both time and memory consumption across various database 
types - synthetic and real-world. Their method successfully 
handles large-scale databases that typically pose significant 
challenges for existing methods. 

A new algorithm called HUIM-ACS for high-utility itemset 
(HUI) mining was introduced by Wu, Zhan, and Lin [16]. Their 
algorithm is an enhanced version of the standard ant colony 
optimization (ACO) technique called ant colony system (ACS). 
HUIM-ACS provides several benefits compared to existing 
methods like genetic algorithms and particle swarm 
optimization. It constructs solutions in a way that avoids 
impractical outcomes, maps the entire solution space to ensure 
comprehensive coverage, and uses pruning processes to improve 
efficiency. The algorithm also prevents redundant evaluations of 
solutions, saving computational resources. Experimentation on 
real-life datasets showed that HUIM-ACS outperforms other 
heuristic HUI mining algorithms in both the number of HUIs 
discovered and convergence speed. While most evolutionary 
algorithms can’t guarantee finding the global optimum, HUIM-
ACS’s comprehensive exploration of the solution space could 
potentially address this limitation in high utility itemset mining. 

Song and Huang [17] introduced Bio-HUI, a framework that 
adapts bio-inspired algorithms for high-utility itemset mining. 
Unlike traditional approaches, Bio-HUI selects discovered HUIs 
as targets for the next generation, enhancing population 
diversity. The proposed framework was implemented using 
genetic algorithms, particle swarm optimization and bat 
algorithms. Extensive testing on public datasets demonstrates 
that these Bio-HUI-based methods outperform current state-of-
the-art algorithms in efficiency, result quality, and convergence 
speed. The authors established that their method shows 
significant promise in advancing the field of high-utility itemset 
mining by leveraging the strengths of bio-inspired 
computational techniques. 
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Nawaz et al. [18] proposed two new algorithms for high-
utility itemset mining (HUIM): HUIM-HC based on Hill 
Climbing and HUIM-SA based on Simulated Annealing. These 
algorithms aim to focus on the limitations of existing 
evolutionary and heuristic methods, which are typically affected 
by long runtimes and may miss many high-utility itemsets 
(HUIs). Their techniques used efficient utility computation and 
search space pruning through bitmap transformation of the input 
database. Their algorithms also improved population diversity 
by using discovered HUIs as targets for subsequent generations, 
rather than simply maintaining current optimal values. Their 
experimentation using real-life datasets demonstrated that 
HUIM-HC and HUIM-SA outperform state-of-the-art heuristic 
and evolutionary HUIM algorithms in terms of speed. Their 
techniques represent a significant step forward in addressing the 
challenges of high-utility itemset mining, offering improved 
efficiency and effectiveness over existing methods. 

Song and Nan [19] introduced a new high-utility itemset 
mining algorithm called HUIM-ACO, based on ant colony 
optimization. HUIM-ACO uses a constructive approach to 
produce candidate itemsets, represented as search paths. 
Pheromone values are stored in a matrix to guide the search 
process, and an efficient enumeration technique is used to 
discover more itemsets. Their experimentation showed that 
HUIM-ACO outperforms existing algorithms in terms of speed 
and the count of high-utility itemsets discovered. 

Li et al. [20] also proposed a high-utility itemset mining 
algorithm called HUIM-ACO, based on ant colony 
optimization. HUIM-ACO uses a constructive approach to 
generate candidate itemsets, represented as search paths. 
Pheromone values are stored in a matrix to guide the search 
process, and an efficient enumeration technique is used to 
discover more itemsets. Experimental results demonstrated that 
HUIM-ACO outperforms existing algorithms in terms of both 
speed and the count of high-utility itemsets discovered. 

Han et al. [22] introduced a new high-utility itemset mining 
algorithm that incorporates two key strategies: positional 
evolution based on the female elephant factor to reduce the 
search space and improve efficiency, and two-phase population 
diversity maintenance to prevent premature convergence. Their 
experimentation showed that this algorithm outperforms 
existing heuristic methods in terms of both speed and 
effectiveness. 

In order to obtain a near-optimal solution based on fitness 
functions under a number of constraints, evolutionary 
algorithms can search through enormous problem spaces. Even 
though the current evolutionary-based HUIM algorithms can 
mine all HUIs that meet the minimum utility threshold faster 
than classic exact methods, they can still be quite time-
consuming. This is mostly because search and evolutionary 
algorithms, which perform well in problems with fewer optimal 
solutions, keep the best values from one population to direct the 
next. However, because it overemphasizes previously 
discovered optimal values within a small number of iterations, 
this strategy runs the risk of missing some itemsets in High 
Utility Itemset Mining (HUIM), when results are many and 
unevenly distributed. Enhancing the diversity of the generated 
population, as suggested by Song and Huang [17], is one way to 

solve this issue. Rather than selecting HUIs with high utility 
values from the current population, this method applied roulette 
wheel selection to all of the identified HUIs in order to 
probabilistically choose the initial target of the next population. 

 To enrich the efficiency, this work suggests a hybrid 
approach that coalesces Ant Colony Optimization (ACO) and 
Genetic Algorithms (GA). Despite achieving expeditious global 
convergence, GAs have trouble with feedback and may carry out 
dispensable iterations, which can truncate precision. The lack of 
pheromone trails causes ACO to perform poorly at first, but it 
excels at updating information for optimal convergence. To get 
beyond these restrictions, the suggested genetic ant colony 
algorithm makes utilization of the advantages of both 
approaches. We modeled the HUIM problem from the 
perspective of the hybrid genetic algorithm, using the work done 
in study [17] as a starting point. 

III. PROBLEM STATEMENT 

The problem of HUIM is: Given a transaction database (TD), 
its profit table (ptable) and a user specified minimum utility 
threshold, the problem of HUIM is to identify all itemsets that 
have utility values equal to or greater than min util. Let us say 
that Table I represents the Transaction Database of items 
procured and Table II represents the external profit value of each 
item. 

TABLE I. TRANSACTION DATABASE 

TD Transactions TU 

T0 (a, 3) (c, 12) (e, 3) 54 

T1 (b, 4) (d, 2) (e, 1) (f, 5) 47 

T2 (a, 3) (c, 2) (e, 1) 16 

T3 (a, 2) (d, 2) (f, 1) 15 

T4 (a, 1) (c, 5) (d, 7) 52 

T5 (b, 1) (d, 4) (f, 2) 29 

TABLE II. PROFIT TABLE 

Item a b c d e f 

profit 2 7 3 5 4 1 

From the transaction database in Table I and profit table 
from Table II, the utility value of an item e in the transaction T0 

is represented as u(e,T0) = 3 × 4 = 12. The utility of itemset {a, 
c} in transaction T0 is u({a,c},T0) = u(a,T0)+ u(c,T0) = 3 × 2 + 12 
× 3 = 42. Along similar lines, the utility value of an itemset {a, 
c} in the transaction database TD will be u({a,c},T0) + 
u({a,c},T2) + u({a,c},T4) = 42+12+17 = 71. The transaction 
utility (TU) of an entire transaction T0 is represented as TU(T0) 
= u({a,c,e},T0) = 54. If the threshold utility min util = 80 then 
the itemset {a, c} is not considered an HUI as the itemset utility 
value u({a,c}) < min util. However, as the itemset {a, c} is part 
of three transactions T0, T2 and T4 the TWU (Transaction 
Weighted-Utilization) is computed as TWU({a,c}) = TU(T0) + 
TU(T2) + TU(T4). The value of this expression is 122. Since 
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TWU of the itemset {a,c} > min util this itemset is considered 
an HTWUI (high transaction-weighted utilization itemset). 

A. Terminologies 

In this section, we define the terminologies related to the 
problem statement. Let I = {i0,i1,...,im} represent a finite set of m 
itemsets in the transaction database TD = {T0,T1,...,Td}. Each 
transaction Tk in TD is a subset of I which has a unique identifier 
k(1 ≤ k ≤ n) and is called TID. Also, the set X ⊆ I is called an 
itemset and an itemset which consists of k items is called a k-
itemset. An itemset X is contained inside a transaction Tk if X ⊆ 
Tk. Every item ij in Tk has a positive number q(ij,Tk) which is 
called it’s internal utility and indicates the quantity (or 
occurrence) of ij in Tk. The external utilityp(ij), represents the 
unit profit value of the item ij. The profit table ptable = 
{p1,p2,...,pm} depicts the profit value pj of each item ij in I. 

The overall utility value of an item ij in a transaction Tk is 
defined by the following equation as: 

        u(ij,Tk) = p(ij) × q(ij,Tk)                       (1) 

In any given transaction Tk, the utility if the itemset X is 
represented as u(X,Tk) and characterizes the amount of money 
from the sale of X in that transaction [14]. Also, the overall 
utility value of an itemset X in TD denoted by u(X) represents 
the total amount of money that the itemset yields for all 
transactions where X is purchased in the database. These two 
ideas are formally defined as: 

         u(X,Tk) = X u(ij,Tk)                                     (2) 

                              ij∈X∧X⊆Tk 

  u(X) = X u(X,Tk)                                          (3) 

                              X⊆Tk∧Tk∈TD 

The user set minimum utility threshold (δ) is the percentage 
of total sum of all TU values in the input database. The 
minimum-utility value is defined as:  

                         (4) 

An itemset X is considered an HUI if u(X) ≥ min util. Search 
space reduction is often carried out in HUIM by defining another 
term called transaction weighted-utilization (TWU) which is an 
upper bound on the utility value of an itemset and its 
supersets.The TWU of an itemset X is the total sum of transaction 
utility values of all the transactions that contain X and is defined 
as: 

    TWU(X) = X TU(Tk)                                      (5) 
                                                X⊆Tk∧Tk∈TD 

An itemset X is considered a high transaction 
weightedutilization itemset (HTWUI) if TWU(X) ≥ min util; 
otherwise X is considered a low transaction weighted-utilization 
itemset (LTWUI). 

IV. PROPOSED METHODOLOGY 

This study addresses the challenge of high-utility itemset 
mining by proposing a hybrid algorithm approach which 

combines Genetic Algorithms (GA) and Ant Colony 
Optimization (ACO). Both GA and ACO are iterative 
optimization techniques, which forms the basis for their 
integration. GAs excel at rapid global convergence but struggle 
with feedback information. Once a solution reaches a certain 
range, GAs tend to perform redundant iterations, potentially 
reducing the accuracy of the final result. In contrast, ACO 
continuously gathers and updates information so that it 
converges to the optimal solution, leveraging its global search 
capabilities and parallel processing. However, ACO’s initial 
performance is hindered by the lack of early pheromone trails. 
To address this limitation, we propose a genetic ant colony 
algorithm which capitalizes on the complementary strengths of 
both methods. The ACO algorithm is applied to itemsets, 
utilizing its ability to gather and update information 
continuously. Subsequently, GA is employed on the discovered 
High Utility Itemsets (HUI) to streamline the algorithm. In each 
iteration, mutation generates an HUI where crossover can be 
applied. GAs, inspired by natural selection and genetics, model 
the evolution of potential solutions through selection, crossover, 
and mutation. They are versatile and applicable to various 
optimization and search problems. ACO, on the other hand, 
mimics the foraging behavior of ants, simulating how they find 
paths by depositing and following pheromone trails. ACO excels 
in exploring complex solution spaces, adapting to changing 
conditions, and finding near-optimal solutions mainly for 
problems which have large search spaces. The hybrid approach 
aims to mitigate the premature convergence problem often 
encountered in genetic algorithms. By combining GA and ACO, 
the algorithm strikes a balance between exploitation and 
exploration. The ACO/GA hybrid typically reduces the number 
of offspring produced by constructing solutions gradually. This 
results in fewer new solutions needing to be stored in memory 
compared to a standard GA, leading to a larger pool of offspring 
for selection and significantly reduced memory usage. 

A. Encoding and Pruning  

An efficient representation method for mining HUIs is 
transformation of initial transaction database into a bitmap [16]. 
Here, the transaction is encoded using binary notation; an entry 
of ’0’ denotes the absence of an item, whereas an entry of ’1’ 
denotes its presence. The bitmap cover of an itemset X is 
computed as Bit(X) = bitwise-AND i∈X(Bit(i)). This indicates 
that X is a bit vector that is produced by applying a bitwise-AND 
operation to the bitmap covers of each and every item in X. For 
two itemsets X and Y , Bit(X ∪ Y ) can be evaluated as Bit(X) ∩ 
Bit(Y ), the bitwise-AND of Bit(X) and Bit(Y ). 

TABLE III. BITMAP REPRESENTATION 

Tk a b c d e f 

T0 0 1 1 0 1 0 

T1 1 0 1 0 1 1 

T2 1 0 1 0 1 0 

T3 0 1 0 1 0 1 

T4 1 0 1 1 0 0 

T5 1 0 0 1 0 1 
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Table III illustrates the bitmap of Table I’s database, for 
reference. The column vectors B(a) = 011011 and B(c) = 
111010, respectively, represent the bitmap covers of items a and 
c. The bitmap cover of itemset {a,c} is the column vector 
obtained by performing the bitwise-AND of B(a) and B(c), that 
is B({a,c}) = 011010. The study in [17] proposed a promising 
encoding vector for speeding up the process of mining HUI and 
is employed in this proposed work too. 

Let’s say that V represents an encoding vector that contains 
0s and/or 1s and corresponds to a solution. If Bit(X) only 
contains 0s then V is called an unpromising encoding vector 
(UPEV ), otherwise V is called a promising encoding vector (PEV 
). Since an empty encoding vector indicates that the itemset does 
not contain any HTWUI, it is simple to understand that each 
itemset (solution) X that is represented by a UPEV cannot be an 
HUI. 

This type of solution can significantly cut down on runtime 
because it does not require the fitness value to be computed. This 
technique is called PEV-Check (PEVC) pruning approach [17]. 
Every newly generated solution goes through this strategy to 
make sure that the solution actually exists in the database. The 
pseudocode of this strategy is given as follows: 

Algorithm 1: Encoding and Pruning 
 

 

Step 1 Determine which of the elements in 

the encoding vector (EV ) are 

represented by 1s and stores it in V N 

after looking for 1s in the vector. 

Step 2 Initialize a variable XV with bitmap cover of 

the first item in EV . 

Step 3 Start a loop, for each item ik, perform 

bitwise AND operation on XV with bitmap 

cover of ik. 

Step 4 If the resulting bit vector is a UPV , then 

the item is not kept in XV and the bits of ik 

in EV is changed from 0 to 1. 

Step 5 Repeat Steps 3 to 4 till V N is empty 

B.   Population Initialization 

The initial population for hybrid ACO/GA is generated 
randomly. Algorithm 2 initially searches the database for all 1-
HTWUIs, and as 1LTWUIs cannot be a part of any HUI, they 
are subsequently removed. After that, a bitmap is created from 
the database. After that, a for loop creates the first individuals 
one at a time, assigning a random number of 1s to each person 
in the ith bit vector, where n is an integer between 1 and |1 - 
HTWUIs |. A bit vector with 1s in it is formed. The following 
formula indicates the likelihood that the bit corresponding to ij 

will be set to 1 is as follows: 

                    (6) 

Algorithm 2: Population Initialization 
 

Step 1 Perform a single scan on D to remove 1-LTWUIs 

                     and identify all 1-HTWUIs 

Step 2 Transform the database D to a bitmap 

                   representation of D; 

Step 3  Start a for loop from i = 1 to P 

 3.1Generate a random number ni,an integer      

                        between 1 and |1-HTWUIs |; 

 3.2Generate Vi with ni bits set to 1using the Eq 6 

 3.3 if ni > 1 then 

                                  Vi = PEV C(Vi); 

      endif    

                 endfor 

   end 

C. Hybrid ACO Algorithm 

The primary objective of ACO algorithm is to take full 
advantage of the features of ACO and GA for mining itemsets 
with high utility. Both ACO and GA gives best result for mining 
HUI. In the proposed technique, population is initialized by 
following Algorithm 2. The entire number of transactions in the 
database is represented by the number of ants' SN. Pheromones 
are initialized with the utility values, iff TWU(X,Tc) ≥ min util. 
Genetic operators crossover is applied on the generated solution 
by the ant. In this study, a single-point crossover is utilized. The 
crossover point is selected randomly. Now mutation operator is 
applied by changing one or more random bits in a string when 
Pm ≥ randomly generated value. 

Algorithm 3: Hybrid ACO algorithm 
 

Step 1 Population initialization 

Step 2 Pheromone initialization with utility value 

Step 3 iter = 1 

Step 4 while (iter ≤ max iter) 

Step 5 for each transaction in D 

Start each ant to visit each vertex 

endfor 

Step 6 Apply genetic operators crossover 

on the selected population 

Step 7 Perform mutation on the population of 

individuals with mutation probability pm. 

7.1 Verify the fitness value of individuals, 

7.2 If fv ≥ min util go to Step 6 

7.3 Else go to Step 8 

Step 8 Pheromone update 

Step 9 End of while 

Step 10 Output all HUIs 
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V. RESULT AND DISCUSSION 

This part includes a discussion of the findings and 
experimental assessment of the suggested algorithms. 
Experiments were performed on a computer equipped with an 8-
core 3.6 GHz CPU and 8 GB RAM running Windows 10. The 
program was developed in Java. 

A. Dataset  

Four standard benchmark datasets- Chess, Mushroom, 
Connect, and Accident - are utilized to assess the performance 
and effectiveness of the suggested algorithm. The algorithm 
performance is also evaluated against a real dataset downloaded 
from the UCI repository. The benchmark datasets were sourced 
from SPMF data mining library [23]. 

A widely used dataset from the UCI Machine Learning 
Repository, the Mushroom dataset is often employed in 
association rule mining and High-Utility Itemset (HUI) mining 
applications. There are 8,124 different species of mushrooms in 
it, and each one is characterized by 22 different categories, 
including gill spacing, color, cap shape, and odour. Every 
instance has a label designating it as deadly or edible. The 
dataset can be modified in the context of HUI mining by giving 
utility values (such as profit or significance) to particular 
features in order to discover desirable itemsets based on utility 
thresholds as opposed to just frequency. When it comes to HUI 
mining, the Mushroom Dataset presents a problem because it 
requires categorical data to be transformed into a format that 
makes utility-based itemset mining feasible. In order to match 
with the utility mining paradigm, this frequently entails defining 
the utility of goods (attributes) and transactions (mushroom 
instances) in novel ways. 

The chess dataset is widely used in High-Utility Itemset 
(HUI) mining as a benchmark for assessment of the performance 
of various algorithms. This dataset represents chess games 
transactionally, with each transaction denoting a series of moves 
or itemsets. Finding itemsets (e.g., common move sequences) 
with high utility, like winning strategies, is the goal. In this case, 
the utility values could stand for the significance or regularity of 
moves within the dataset. As the chess dataset is structured, 
repetitious, and dynamic [21], it’s a great resource for 
researching utility-based itemset mining. Every transaction in 
HUI mining can be compared to a position in a chess game. Each 
item can stand for a particular move or the location of a chess 
piece. 

Based on actual accident data, the Accident 10% dataset is 
a 10% sampling of the entire dataset. The dataset comprises 
transactions that typically contain attributes related to an 
accident, such as conditions, location, and involved entities. The 
utility values assigned to each attribute indicate its significance 
or influence. When mining for interesting patterns, this dataset 
aids researchers in assessing the accuracy, scalability and 
execution time of HUI algorithms. 

High-utility itemset (HUI) mining research frequently uses 
the Connect dataset as a benchmark. It is derived from a 
Connect-4 game and is sourced from the UCI Machine Learning 
Repository. With 43 categorical attributes, the dataset consists 
of 67,557 instances, each of which represents a unique board 

configuration in the game. Each configuration can be looked at 
as a transaction in the context of HUI mining, where the 
objective is to mine itemsets (board configurations) that offer 
high utility or significance, frequently based on different utility 
values ascribed to different configurations. The Connect dataset 
is a valuable resource for examining recurring and noteworthy 
patterns in gaming, since its utility may be linked to winning 
plays or strategies in the Connect-4 game. 

The proposed algorithm is also tested against a real dataset - 
the online retail dataset downloaded from UCI Repository. The 
dataset has 541909 instances with six features. A UKbased 
online retailer’s sales transactions are included in this dataset 
from a period of December 2010 to December 2011. The dataset 
includes 8 attributes with approximately 4000 distinct items. 
Cancelled orders, returns (negative quantities), and possibly 
outliers are included in the dataset. In order to handle returned 
items or eliminate invalid transactions, preprocessing is 
frequently necessary. The dataset exhibits a high degree of 
transaction data skewness because it includes both huge bulk 
transactions and numerous low-quantity sales. The identification 
of high-utility itemsets is impacted by this skewness. Since 
utility values were not included in the dataset, they had to be 
manually determined using the following technique so that they 
could be used in HUI mining where Utility = quantity × unit 
price. Table IV shows characteristics of datasets and Table V 
shows sample online retail dataset. 

TABLE IV. CHARACTERISTICS OF DATASETS 

Dataset Trans. Len No. of items No. of Trans Type 

Mushroom 23 119 8,416 Dense 

Chess 37 75 3,196 Dense 

Connect 43 129 67,557 Dense 

Accident 10% 34 468 34,018 Dense 

TABLE V. SAMPLE ONLINE RETAIL DATASET 

Invoice 

No 

Stock 

Code 

Descri 

ption 

Quan 

tity 

Invoice 

Date 

Unit 

Price 

Custo 

merID 

Coun 

try 

536365 71053 

Jam 

making 

set 

5 
12/1/ 

2010 
2.25 13047 

United 

Kingdom 

536366 85123A 

Jam 

making 

set 

1 
12/1/ 

2010 
2.25 12583 France 

536367 71057 

White 

Hanging 

Heart 

6 
12/1/ 

2010 
3.39 17850 

United 

Kingdom 

536367 22993 

White 

Hanging 

Heart 

6 
12/1/ 

2010 
4.25 12678 France 

B. Runtime efficiency  

Experiments are conducted to assess the efficiency of the 
proposed algorithm with regards to runtime. The efficiency is 
tested by varying the minimum utility value. 
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Table VI summarizes the minimum utility value set for the 
dataset. 

TABLE VI. MINIMUM UTILITY VALUES 

Dataset Minimum Utility Threshold 

Chess 28.5 29 29.5 30 30.5 

Mushroom 14 14.5 15 15.5 16 

Connect 31.8 32 32.2 32.4 32.6 

Accident 10% 12.6 12.8 13 13.2 13.4 

Fig. 1, 2, 3, and 4 show the execution time of our algorithm 
presented in this work. The runtime efficiency of our proposed 
algorithm is compared with HUIM-GA. Hybrid ACO/GA 
produces better runtime efficiency because it focuses on 
promising areas early on, reducing unnecessary evaluations of 
low utility items. The incremental building of solutions impacts 
the efficiency of our proposed algorithm. Also, the adaptive 
mechanisms such as pheromone evaporation leads to an efficient 
search, thus reducing runtime. 

 
Fig. 1. Chess dataset (based on runtime). 

 

Fig. 2. Mushroom dataset (based on runtime). 

 

Fig. 3. Accident_10% dataset (based on runtime). 

 
Fig. 4. Connect dataset (based on runtime). 

A real-time retail dataset is also used to evaluate the 
recommended algorithm’s runtime efficiency. Here at minimum 
utility threshold of 10%, maximum number of HUI’s were 
identified. Fig. 5 demonstrates the result. 

 
Fig. 5. Retail dataset (based on runtime). 
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C.  Discovered number of High utility items(HUI) 

This section analyzes the performance of the hybrid 

ACO/GA approach by evaluating the number of HUIs 

identified at various threshold levels. The proposed algorithm 

discovers the maximum number of HUIs. Fig. 6 to 10 

demonstrate the graphical representation of the experimental 

results. It may be noticed that hybrid ACO/GA discovers more 

number of HUIs in most cases. However, for the real time retail 

dataset, the number of HUIs identified by hybrid ACO/GA 

algorithm were comparable to that of HUIM-GA algorithm as 

may be seen in Fig. 10. 

 
Fig. 6. Chess dataset. 

 

Fig. 7. Mushroom dataset (based on number of HUIs). 

 

Fig. 8. Accident_10%dataset (based on number of HUIs). 

 

Fig. 9. Connect dataset (based on number of HUIs).. 

 

Fig. 10. Retail dataset (based on number of HUIs).. 
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D. Convergence 

Using the four datasets - Chess, Mushroom, Accident, and 
Connect, 4000 fitness evaluations were conducted to assess the 
convergence properties of the proposed approach. Minimum 
utility threshold was kept at the value which gives the maximum 
number of HUIs discovered in each dataset. Premature 
convergence of genetic algorithm is avoided here. Convergence 
curves obtained on the Chess, Mushroom and Retail datasets on 
both hybrid ACO/GA are represented in Fig. 11, 12 and 13 
respectively. 

 
Fig. 11. Chess dataset (convergence). 

 

Fig. 12. Mushroom dataset (convergence). 

 

Fig. 13. Retail dataset (convergence). 

VI. CONCLUSION AND FUTURE ENHANCEMENT 

With a wide range of applications, HUIM is a significant 
data mining task. When mining HUIs, EC-based HUIM 
algorithms outperform conventional HUIM algorithms such as 
HUPEumu-GRAM, HUIM-BPSOsig, HUIM-BPSO, and 
BioHUIF-GA. Even though these algorithms offer an effective 
method for extracting HUIs from the transition datasets, finding 
the full or significant proportion of HUIs still takes a lot of effort. 
While hybrid ACO-GA algorithm yields good results on generic 
datasets, the suggested technique uses more resources to create 
HUIs on real-time datasets. Our proposed algorithm yields the 
same significant number of HUIs as other algorithms and after a 
certain period of time both algorithms converge and the quantity 
of HUI generated is sparse. The suggested algorithm will be 
used to mine high utility itemsets from the e-commerce dataset 
in order to implement dynamic pricing strategies. This will 
allow for real-time price modifications based on patterns of 
customer demand and product profitability. Dynamic pricing is 
made possible by mining HUIs in e-commerce datasets to find 
high-utility items and product groups. Through value-driven 
tactics, this aids companies in maintaining client loyalty, 
increasing revenue, and optimizing pricing in real-time. Our 
next improvement can be to use fewer resources to address the 
HUIM issue and improvise our proposed algorithm. 
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