
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

628 | P a g e

www.ijacsa.thesai.org

Mining High Utility Itemset with Hybrid Ant Colony

Optimization Algorithm

Keerthi Mohan1, Anitha J2

Research Scholar1, Professor2,

Department of Computer Science and Engineering, RV Institute of Technology and Management, Bangalore, India

Abstract—A significant area of study within data mining is

high-utility itemset mining (HUIM). The exponential problem of

broad search space usually comes up while using traditional

HUIM algorithms when the database size or the number of unique

objects is huge. Evolutionary computation (EC) -based algorithms

have been presented as an alternate and efficient method to

address HUIM problems since they can quickly produce a set of

approximately optimum solutions. In transactional databases,

finding entire high-utility itemset (HUIs) still need a lot of time

using EC-based methods. In order to deal with this issue, we

propose a hybrid Ant colony optimization-based HUIM algorithm.

Genetic operators’ crossover is applied to the generated solution

by the ant in the Ant Colony optimization algorithm. In this study,

a single-point crossover is employed wherein, the crossover point

is selected randomly and a mutation operator is applied by

changing one or many random bits in a string. This technique

requires less time to mine the same number of HUIs than state-of-

the-art EC-based HUIM algorithms.

Keywords—Utility mining; high utility itemset; ant colony

optimization; genetic algorithm; evolutionary computation

I. INTRODUCTION

The purpose of data mining is to uncover valuable insights
or cognition from data which can aid in decision-making,
prediction, and revealing hidden patterns or relationships within
the data. Frequent itemset mining (FIM) is a crucial data mining
approach aimed at identifying groups of items or elements that
commonly occur together in large datasets. It is often applied in
association rule learning, where the objective is to uncover
relationships or patterns among items in transactional data, such
as in market basket analysis. Although FIM mines itemsets
based on the count of occurrence, the item’s utility (profit) is not
taken into consideration. To address this shortcoming, the
concept of High Utility Itemset (HUI) was introduced. While
traditional frequent itemset mining identifies itemsets based on
their frequency of occurrence, HUIM takes into account the
actual value or utility of items, which can include factors like
profit, revenue, or user preference. An itemset is deemed high
utility if its utility exceeds the user specified threshold. Here, a
minimum utility value will be set, either manually or through a
probabilistic function. Traditional HUIM algorithms encounter
and have to deal with the exponential search space problem with
increasing number of transactions and database items.
Evolutionary algorithms such as genetic algorithms (GA), Ant
Colony Optimization (ACO) algorithm, Particle swarm
Optimization (PSO), and Artificial bee colony (ABC) algorithm
are some efficient algorithms that solve the exponential search
space problem. In order to find near-optimal solutions based on

fitness functions, evolutionary algorithms effectively search
enormous problem spaces. For mining HUIs beyond a minimum
utility threshold, evolutionary-based HUIM algorithms are
quicker than conventional precise approaches, although they
still require a lot of time. Enhancing the diversity of the
generated population is one way of reducing the time. Hybrid
approach balances exploration and exploitation, handles sizably
voluminous and unevenly distributed datasets preponderant, and
acclimates well to dynamic environments. It outperforms
standalone PSO, GA, or ACO in terms of haste, scalability, and
solution quality. The Hybrid Ant Colony Optimization (GA-
ACO) algorithm ameliorates HUI mining by cumulating the
iterative refinement of ACO with the expeditious ecumenical
search of GA, which expedites convergence and truncates the
early-stage impuissance’s of ACO.

II. RELATED WORK

Agrawal and Srikant [1] explored association rules in large
sales transaction databases. Agrawal, Imielinski, and Swami [2]
used novel estimation and pruning techniques for efficient and
fast mining of association rules. Tseng et al. [3] developed
algorithms for mining high utility itemsets from a transactional
database. They presented two algorithms, Utility-Pattern-
Growth (UP-Growth) and also UP-Growth+, to carry out the
mining of high utility itemset with a collection of effective
approaches for pruning potential itemsets. They stored
information associated with high utility itemsets into a tree-
based data structure called “utility pattern tree” in such a way
that candidate itemsets could be developed with only two scans
of the database and obtained significant improvement in
extracting high utility itemsets. Chan, Yang, and Shen [4]
proposed a technique that targets mining the top-K high utility
closed patterns directly aligned with a specific business
objective. Their experimental results demonstrate that the
algorithm does not require a user-defined minimum utility,
making it practical and effective in real-world applications.

Yao, Hamilton, and Butz [5] examined the utility
relationships among itemsets and identified two key properties:
the utility bound property and the support bound property. They
also developed a mathematical model for utility mining based
on these principles. Ahmed et al. [6] introduced tree structures
to efficiently conduct incremental and interactive high-utility
pattern (HUP) mining. Their first tree structure, the Incremental
HUP Lexicographic Tree (IHUPL-Tree), is organized by an
item’s lexicographic order, capturing incremental data without
requiring any restructuring. The second tree structure, the IHUP
Transaction FrequencyTree (IHUPTF-Tree), optimizes size by
arranging items in descending order of transaction frequency. To

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

629 | P a g e

www.ijacsa.thesai.org

reduce mining time, the third structure, the IHUP Transaction-
Weighted Utilization Tree (IHUPTWU-Tree), is based on the
descending TWU (Transaction-Weighted Utilization) values of
items. The authors demonstrated that these tree structures are
highly efficient and scalable for incremental and interactive
HUP mining.

In study [7], Liu and Qu introduced a data structure called
the “utility-list” and introduced an algorithm named HUIMiner
for mining high utility itemsets. The HUI-Miner algorithm
introduces utility-lists to store utility and pruning information,
enabling it to mine high utility itemsets without engendering
candidate itemsets. This eliminates the computational overhead
of traditional algorithms that process sizably voluminous
numbers of low-utility candidates. By directly fixating on high
utility itemsets, HUI-Miner evades the costly processes of
itemset generation and utility computation. Performance
comparisons with other state-of-the-art algorithms across
multiple databases show that HUI-Miner offers better
improvment in both runtime and memory utilization, making it
a more efficient approach for mining high utility itemsets.

Fournier-Viger et al. [8] presented a new algorithm called
FHM- Fast High-Utility Miner which improved the performance
of HUI-Miner algorithm. FHM’s key innovation lies in its
strategic analysis of item cooccurrences, which substantially
decreases the number of necessary join operations during the
mining process. Testing on real-world datasets demonstrated
FHM’s efficiency, reducing join operations by as much as 95%
and operating up to six times faster than its predecessor, HUI-
Miner.

Zida et al. [9] introduced EFIM, a new algorithm for mining
high-utility itemsets. EFIM’s effectiveness arises from two main
components: newly developed upper-bounds called the sub-tree
utility and the local utility, and a streamlined array-based
method named Fast Utility Counting. Their approach allows for
linear time and space complexity when calculating these upper-
bounds. To further enhance efficiency, EFIM incorporates
techniques for database projection and transaction merging, also
achieving linear time and space complexity. These methods
significantly reduce the computational cost associated with
database scans. Comprehensive experiments across diverse
datasets demonstrated EFIM’s superior performance.

Peng, Koh, and Riddle [10] introduced mHUIMiner, which
leverages a tree-based framework to steer the process of itemset
growth. This approach efficiently eliminates the need to
examine non-existent database itemsets. mHUIMiner emerges
as different from other methods by avoiding complex and
computationally intensive pruning mechanisms.

One of the earliest works on mining high utility itemsets
using evolutionary algorithms from transaction databases is
using Genetic Algorithm (GA) proposed by Kannumuthu and
Premalatha [11]. They proposed two approaches to mine high
utility itemsets from transaction databases with or without
specifying minimum utility threshold by using genetic
algorithm. Results from experiments showed that authors’ GA
approaches accomplished better performance in terms of
scalability and efficiency.

Lin et al. [12] proposed using discrete Particle Swarm
Optimization (PSO) to represent particles as binary variables.
They introduced HUIM-BPSO, an efficient PSO-based
algorithm designed to discover High-Utility Itemsets (HUIs)
effectively. Their algorithm employs the transaction-weighted
utility (TWU) model to identify high-transaction-weighted
utilization 1-itemsets (1-HTWUIs). They established that their
method mitigated the combinatorial complexity typically
encountered during the evolutionary process.

Lan, Hong, and Tseng [13] introduced a novel pattern
category called high transaction-weighted utility itemsets. Three
key factors are taken into consideration in this approach:
individual item profits, item quantities within transactions, and
the overall contribution of each transaction to the database. To
uncover these high transaction-weighted utility itemsets, the
authors developed a two-stage mining algorithm. They
demonstrated their methods through experiments conducted on
synthetic datasets, which revealed promising performance
results.

A 2-phase algorithm was introduced by Liu, Liao, and
Choudhary [15] which aimed at streamlining the high-utility
itemset mining process. Their approach effectively minimized
the candidate set while ensuring the comprehensive discovery of
all high-utility itemsets. Their algorithm exhibited efficiency in
both time and memory consumption across various database
types - synthetic and real-world. Their method successfully
handles large-scale databases that typically pose significant
challenges for existing methods.

A new algorithm called HUIM-ACS for high-utility itemset
(HUI) mining was introduced by Wu, Zhan, and Lin [16]. Their
algorithm is an enhanced version of the standard ant colony
optimization (ACO) technique called ant colony system (ACS).
HUIM-ACS provides several benefits compared to existing
methods like genetic algorithms and particle swarm
optimization. It constructs solutions in a way that avoids
impractical outcomes, maps the entire solution space to ensure
comprehensive coverage, and uses pruning processes to improve
efficiency. The algorithm also prevents redundant evaluations of
solutions, saving computational resources. Experimentation on
real-life datasets showed that HUIM-ACS outperforms other
heuristic HUI mining algorithms in both the number of HUIs
discovered and convergence speed. While most evolutionary
algorithms can’t guarantee finding the global optimum, HUIM-
ACS’s comprehensive exploration of the solution space could
potentially address this limitation in high utility itemset mining.

Song and Huang [17] introduced Bio-HUI, a framework that
adapts bio-inspired algorithms for high-utility itemset mining.
Unlike traditional approaches, Bio-HUI selects discovered HUIs
as targets for the next generation, enhancing population
diversity. The proposed framework was implemented using
genetic algorithms, particle swarm optimization and bat
algorithms. Extensive testing on public datasets demonstrates
that these Bio-HUI-based methods outperform current state-of-
the-art algorithms in efficiency, result quality, and convergence
speed. The authors established that their method shows
significant promise in advancing the field of high-utility itemset
mining by leveraging the strengths of bio-inspired
computational techniques.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

630 | P a g e

www.ijacsa.thesai.org

Nawaz et al. [18] proposed two new algorithms for high-
utility itemset mining (HUIM): HUIM-HC based on Hill
Climbing and HUIM-SA based on Simulated Annealing. These
algorithms aim to focus on the limitations of existing
evolutionary and heuristic methods, which are typically affected
by long runtimes and may miss many high-utility itemsets
(HUIs). Their techniques used efficient utility computation and
search space pruning through bitmap transformation of the input
database. Their algorithms also improved population diversity
by using discovered HUIs as targets for subsequent generations,
rather than simply maintaining current optimal values. Their
experimentation using real-life datasets demonstrated that
HUIM-HC and HUIM-SA outperform state-of-the-art heuristic
and evolutionary HUIM algorithms in terms of speed. Their
techniques represent a significant step forward in addressing the
challenges of high-utility itemset mining, offering improved
efficiency and effectiveness over existing methods.

Song and Nan [19] introduced a new high-utility itemset
mining algorithm called HUIM-ACO, based on ant colony
optimization. HUIM-ACO uses a constructive approach to
produce candidate itemsets, represented as search paths.
Pheromone values are stored in a matrix to guide the search
process, and an efficient enumeration technique is used to
discover more itemsets. Their experimentation showed that
HUIM-ACO outperforms existing algorithms in terms of speed
and the count of high-utility itemsets discovered.

Li et al. [20] also proposed a high-utility itemset mining
algorithm called HUIM-ACO, based on ant colony
optimization. HUIM-ACO uses a constructive approach to
generate candidate itemsets, represented as search paths.
Pheromone values are stored in a matrix to guide the search
process, and an efficient enumeration technique is used to
discover more itemsets. Experimental results demonstrated that
HUIM-ACO outperforms existing algorithms in terms of both
speed and the count of high-utility itemsets discovered.

Han et al. [22] introduced a new high-utility itemset mining
algorithm that incorporates two key strategies: positional
evolution based on the female elephant factor to reduce the
search space and improve efficiency, and two-phase population
diversity maintenance to prevent premature convergence. Their
experimentation showed that this algorithm outperforms
existing heuristic methods in terms of both speed and
effectiveness.

In order to obtain a near-optimal solution based on fitness
functions under a number of constraints, evolutionary
algorithms can search through enormous problem spaces. Even
though the current evolutionary-based HUIM algorithms can
mine all HUIs that meet the minimum utility threshold faster
than classic exact methods, they can still be quite time-
consuming. This is mostly because search and evolutionary
algorithms, which perform well in problems with fewer optimal
solutions, keep the best values from one population to direct the
next. However, because it overemphasizes previously
discovered optimal values within a small number of iterations,
this strategy runs the risk of missing some itemsets in High
Utility Itemset Mining (HUIM), when results are many and
unevenly distributed. Enhancing the diversity of the generated
population, as suggested by Song and Huang [17], is one way to

solve this issue. Rather than selecting HUIs with high utility
values from the current population, this method applied roulette
wheel selection to all of the identified HUIs in order to
probabilistically choose the initial target of the next population.

 To enrich the efficiency, this work suggests a hybrid
approach that coalesces Ant Colony Optimization (ACO) and
Genetic Algorithms (GA). Despite achieving expeditious global
convergence, GAs have trouble with feedback and may carry out
dispensable iterations, which can truncate precision. The lack of
pheromone trails causes ACO to perform poorly at first, but it
excels at updating information for optimal convergence. To get
beyond these restrictions, the suggested genetic ant colony
algorithm makes utilization of the advantages of both
approaches. We modeled the HUIM problem from the
perspective of the hybrid genetic algorithm, using the work done
in study [17] as a starting point.

III. PROBLEM STATEMENT

The problem of HUIM is: Given a transaction database (TD),
its profit table (ptable) and a user specified minimum utility
threshold, the problem of HUIM is to identify all itemsets that
have utility values equal to or greater than min util. Let us say
that Table I represents the Transaction Database of items
procured and Table II represents the external profit value of each
item.

TABLE I. TRANSACTION DATABASE

TD Transactions TU

T0 (a, 3) (c, 12) (e, 3) 54

T1 (b, 4) (d, 2) (e, 1) (f, 5) 47

T2 (a, 3) (c, 2) (e, 1) 16

T3 (a, 2) (d, 2) (f, 1) 15

T4 (a, 1) (c, 5) (d, 7) 52

T5 (b, 1) (d, 4) (f, 2) 29

TABLE II. PROFIT TABLE

Item a b c d e f

profit 2 7 3 5 4 1

From the transaction database in Table I and profit table
from Table II, the utility value of an item e in the transaction T0

is represented as u(e,T0) = 3 × 4 = 12. The utility of itemset {a,
c} in transaction T0 is u({a,c},T0) = u(a,T0)+ u(c,T0) = 3 × 2 + 12
× 3 = 42. Along similar lines, the utility value of an itemset {a,
c} in the transaction database TD will be u({a,c},T0) +
u({a,c},T2) + u({a,c},T4) = 42+12+17 = 71. The transaction
utility (TU) of an entire transaction T0 is represented as TU(T0)
= u({a,c,e},T0) = 54. If the threshold utility min util = 80 then
the itemset {a, c} is not considered an HUI as the itemset utility
value u({a,c}) < min util. However, as the itemset {a, c} is part
of three transactions T0, T2 and T4 the TWU (Transaction
Weighted-Utilization) is computed as TWU({a,c}) = TU(T0) +
TU(T2) + TU(T4). The value of this expression is 122. Since

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

631 | P a g e

www.ijacsa.thesai.org

TWU of the itemset {a,c} > min util this itemset is considered
an HTWUI (high transaction-weighted utilization itemset).

A. Terminologies

In this section, we define the terminologies related to the
problem statement. Let I = {i0,i1,...,im} represent a finite set of m
itemsets in the transaction database TD = {T0,T1,...,Td}. Each
transaction Tk in TD is a subset of I which has a unique identifier
k(1 ≤ k ≤ n) and is called TID. Also, the set X ⊆ I is called an
itemset and an itemset which consists of k items is called a k-
itemset. An itemset X is contained inside a transaction Tk if X ⊆
Tk. Every item ij in Tk has a positive number q(ij,Tk) which is
called it’s internal utility and indicates the quantity (or
occurrence) of ij in Tk. The external utilityp(ij), represents the
unit profit value of the item ij. The profit table ptable =
{p1,p2,...,pm} depicts the profit value pj of each item ij in I.

The overall utility value of an item ij in a transaction Tk is
defined by the following equation as:

 u(ij,Tk) = p(ij) × q(ij,Tk) (1)

In any given transaction Tk, the utility if the itemset X is
represented as u(X,Tk) and characterizes the amount of money
from the sale of X in that transaction [14]. Also, the overall
utility value of an itemset X in TD denoted by u(X) represents
the total amount of money that the itemset yields for all
transactions where X is purchased in the database. These two
ideas are formally defined as:

 u(X,Tk) = X u(ij,Tk) (2)

 ij∈X∧X⊆Tk

 u(X) = X u(X,Tk) (3)

 X⊆Tk∧Tk∈TD

The user set minimum utility threshold (δ) is the percentage
of total sum of all TU values in the input database. The
minimum-utility value is defined as:

 (4)

An itemset X is considered an HUI if u(X) ≥ min util. Search
space reduction is often carried out in HUIM by defining another
term called transaction weighted-utilization (TWU) which is an
upper bound on the utility value of an itemset and its
supersets.The TWU of an itemset X is the total sum of transaction
utility values of all the transactions that contain X and is defined
as:

 TWU(X) = X TU(Tk) (5)
 X⊆Tk∧Tk∈TD

An itemset X is considered a high transaction
weightedutilization itemset (HTWUI) if TWU(X) ≥ min util;
otherwise X is considered a low transaction weighted-utilization
itemset (LTWUI).

IV. PROPOSED METHODOLOGY

This study addresses the challenge of high-utility itemset
mining by proposing a hybrid algorithm approach which

combines Genetic Algorithms (GA) and Ant Colony
Optimization (ACO). Both GA and ACO are iterative
optimization techniques, which forms the basis for their
integration. GAs excel at rapid global convergence but struggle
with feedback information. Once a solution reaches a certain
range, GAs tend to perform redundant iterations, potentially
reducing the accuracy of the final result. In contrast, ACO
continuously gathers and updates information so that it
converges to the optimal solution, leveraging its global search
capabilities and parallel processing. However, ACO’s initial
performance is hindered by the lack of early pheromone trails.
To address this limitation, we propose a genetic ant colony
algorithm which capitalizes on the complementary strengths of
both methods. The ACO algorithm is applied to itemsets,
utilizing its ability to gather and update information
continuously. Subsequently, GA is employed on the discovered
High Utility Itemsets (HUI) to streamline the algorithm. In each
iteration, mutation generates an HUI where crossover can be
applied. GAs, inspired by natural selection and genetics, model
the evolution of potential solutions through selection, crossover,
and mutation. They are versatile and applicable to various
optimization and search problems. ACO, on the other hand,
mimics the foraging behavior of ants, simulating how they find
paths by depositing and following pheromone trails. ACO excels
in exploring complex solution spaces, adapting to changing
conditions, and finding near-optimal solutions mainly for
problems which have large search spaces. The hybrid approach
aims to mitigate the premature convergence problem often
encountered in genetic algorithms. By combining GA and ACO,
the algorithm strikes a balance between exploitation and
exploration. The ACO/GA hybrid typically reduces the number
of offspring produced by constructing solutions gradually. This
results in fewer new solutions needing to be stored in memory
compared to a standard GA, leading to a larger pool of offspring
for selection and significantly reduced memory usage.

A. Encoding and Pruning

An efficient representation method for mining HUIs is
transformation of initial transaction database into a bitmap [16].
Here, the transaction is encoded using binary notation; an entry
of ’0’ denotes the absence of an item, whereas an entry of ’1’
denotes its presence. The bitmap cover of an itemset X is
computed as Bit(X) = bitwise-AND i∈X(Bit(i)). This indicates
that X is a bit vector that is produced by applying a bitwise-AND
operation to the bitmap covers of each and every item in X. For
two itemsets X and Y , Bit(X ∪ Y) can be evaluated as Bit(X) ∩
Bit(Y), the bitwise-AND of Bit(X) and Bit(Y).

TABLE III. BITMAP REPRESENTATION

Tk a b c d e f

T0 0 1 1 0 1 0

T1 1 0 1 0 1 1

T2 1 0 1 0 1 0

T3 0 1 0 1 0 1

T4 1 0 1 1 0 0

T5 1 0 0 1 0 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

632 | P a g e

www.ijacsa.thesai.org

Table III illustrates the bitmap of Table I’s database, for
reference. The column vectors B(a) = 011011 and B(c) =
111010, respectively, represent the bitmap covers of items a and
c. The bitmap cover of itemset {a,c} is the column vector
obtained by performing the bitwise-AND of B(a) and B(c), that
is B({a,c}) = 011010. The study in [17] proposed a promising
encoding vector for speeding up the process of mining HUI and
is employed in this proposed work too.

Let’s say that V represents an encoding vector that contains
0s and/or 1s and corresponds to a solution. If Bit(X) only
contains 0s then V is called an unpromising encoding vector
(UPEV), otherwise V is called a promising encoding vector (PEV
). Since an empty encoding vector indicates that the itemset does
not contain any HTWUI, it is simple to understand that each
itemset (solution) X that is represented by a UPEV cannot be an
HUI.

This type of solution can significantly cut down on runtime
because it does not require the fitness value to be computed. This
technique is called PEV-Check (PEVC) pruning approach [17].
Every newly generated solution goes through this strategy to
make sure that the solution actually exists in the database. The
pseudocode of this strategy is given as follows:

Algorithm 1: Encoding and Pruning

Step 1 Determine which of the elements in

the encoding vector (EV) are

represented by 1s and stores it in V N

after looking for 1s in the vector.

Step 2 Initialize a variable XV with bitmap cover of

the first item in EV .

Step 3 Start a loop, for each item ik, perform

bitwise AND operation on XV with bitmap

cover of ik.

Step 4 If the resulting bit vector is a UPV , then

the item is not kept in XV and the bits of ik

in EV is changed from 0 to 1.

Step 5 Repeat Steps 3 to 4 till V N is empty

B. Population Initialization

The initial population for hybrid ACO/GA is generated
randomly. Algorithm 2 initially searches the database for all 1-
HTWUIs, and as 1LTWUIs cannot be a part of any HUI, they
are subsequently removed. After that, a bitmap is created from
the database. After that, a for loop creates the first individuals
one at a time, assigning a random number of 1s to each person
in the ith bit vector, where n is an integer between 1 and |1 -
HTWUIs |. A bit vector with 1s in it is formed. The following
formula indicates the likelihood that the bit corresponding to ij

will be set to 1 is as follows:

 (6)

Algorithm 2: Population Initialization

Step 1 Perform a single scan on D to remove 1-LTWUIs

 and identify all 1-HTWUIs

Step 2 Transform the database D to a bitmap

 representation of D;

Step 3 Start a for loop from i = 1 to P

 3.1Generate a random number ni,an integer

 between 1 and |1-HTWUIs |;

 3.2Generate Vi with ni bits set to 1using the Eq 6

 3.3 if ni > 1 then

 Vi = PEV C(Vi);

 endif

 endfor

 end

C. Hybrid ACO Algorithm

The primary objective of ACO algorithm is to take full
advantage of the features of ACO and GA for mining itemsets
with high utility. Both ACO and GA gives best result for mining
HUI. In the proposed technique, population is initialized by
following Algorithm 2. The entire number of transactions in the
database is represented by the number of ants' SN. Pheromones
are initialized with the utility values, iff TWU(X,Tc) ≥ min util.
Genetic operators crossover is applied on the generated solution
by the ant. In this study, a single-point crossover is utilized. The
crossover point is selected randomly. Now mutation operator is
applied by changing one or more random bits in a string when
Pm ≥ randomly generated value.

Algorithm 3: Hybrid ACO algorithm

Step 1 Population initialization

Step 2 Pheromone initialization with utility value

Step 3 iter = 1

Step 4 while (iter ≤ max iter)

Step 5 for each transaction in D

Start each ant to visit each vertex

endfor

Step 6 Apply genetic operators crossover

on the selected population

Step 7 Perform mutation on the population of

individuals with mutation probability pm.

7.1 Verify the fitness value of individuals,

7.2 If fv ≥ min util go to Step 6

7.3 Else go to Step 8

Step 8 Pheromone update

Step 9 End of while

Step 10 Output all HUIs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

633 | P a g e

www.ijacsa.thesai.org

V. RESULT AND DISCUSSION

This part includes a discussion of the findings and
experimental assessment of the suggested algorithms.
Experiments were performed on a computer equipped with an 8-
core 3.6 GHz CPU and 8 GB RAM running Windows 10. The
program was developed in Java.

A. Dataset

Four standard benchmark datasets- Chess, Mushroom,
Connect, and Accident - are utilized to assess the performance
and effectiveness of the suggested algorithm. The algorithm
performance is also evaluated against a real dataset downloaded
from the UCI repository. The benchmark datasets were sourced
from SPMF data mining library [23].

A widely used dataset from the UCI Machine Learning
Repository, the Mushroom dataset is often employed in
association rule mining and High-Utility Itemset (HUI) mining
applications. There are 8,124 different species of mushrooms in
it, and each one is characterized by 22 different categories,
including gill spacing, color, cap shape, and odour. Every
instance has a label designating it as deadly or edible. The
dataset can be modified in the context of HUI mining by giving
utility values (such as profit or significance) to particular
features in order to discover desirable itemsets based on utility
thresholds as opposed to just frequency. When it comes to HUI
mining, the Mushroom Dataset presents a problem because it
requires categorical data to be transformed into a format that
makes utility-based itemset mining feasible. In order to match
with the utility mining paradigm, this frequently entails defining
the utility of goods (attributes) and transactions (mushroom
instances) in novel ways.

The chess dataset is widely used in High-Utility Itemset
(HUI) mining as a benchmark for assessment of the performance
of various algorithms. This dataset represents chess games
transactionally, with each transaction denoting a series of moves
or itemsets. Finding itemsets (e.g., common move sequences)
with high utility, like winning strategies, is the goal. In this case,
the utility values could stand for the significance or regularity of
moves within the dataset. As the chess dataset is structured,
repetitious, and dynamic [21], it’s a great resource for
researching utility-based itemset mining. Every transaction in
HUI mining can be compared to a position in a chess game. Each
item can stand for a particular move or the location of a chess
piece.

Based on actual accident data, the Accident 10% dataset is
a 10% sampling of the entire dataset. The dataset comprises
transactions that typically contain attributes related to an
accident, such as conditions, location, and involved entities. The
utility values assigned to each attribute indicate its significance
or influence. When mining for interesting patterns, this dataset
aids researchers in assessing the accuracy, scalability and
execution time of HUI algorithms.

High-utility itemset (HUI) mining research frequently uses
the Connect dataset as a benchmark. It is derived from a
Connect-4 game and is sourced from the UCI Machine Learning
Repository. With 43 categorical attributes, the dataset consists
of 67,557 instances, each of which represents a unique board

configuration in the game. Each configuration can be looked at
as a transaction in the context of HUI mining, where the
objective is to mine itemsets (board configurations) that offer
high utility or significance, frequently based on different utility
values ascribed to different configurations. The Connect dataset
is a valuable resource for examining recurring and noteworthy
patterns in gaming, since its utility may be linked to winning
plays or strategies in the Connect-4 game.

The proposed algorithm is also tested against a real dataset -
the online retail dataset downloaded from UCI Repository. The
dataset has 541909 instances with six features. A UKbased
online retailer’s sales transactions are included in this dataset
from a period of December 2010 to December 2011. The dataset
includes 8 attributes with approximately 4000 distinct items.
Cancelled orders, returns (negative quantities), and possibly
outliers are included in the dataset. In order to handle returned
items or eliminate invalid transactions, preprocessing is
frequently necessary. The dataset exhibits a high degree of
transaction data skewness because it includes both huge bulk
transactions and numerous low-quantity sales. The identification
of high-utility itemsets is impacted by this skewness. Since
utility values were not included in the dataset, they had to be
manually determined using the following technique so that they
could be used in HUI mining where Utility = quantity × unit
price. Table IV shows characteristics of datasets and Table V
shows sample online retail dataset.

TABLE IV. CHARACTERISTICS OF DATASETS

Dataset Trans. Len No. of items No. of Trans Type

Mushroom 23 119 8,416 Dense

Chess 37 75 3,196 Dense

Connect 43 129 67,557 Dense

Accident 10% 34 468 34,018 Dense

TABLE V. SAMPLE ONLINE RETAIL DATASET

Invoice

No

Stock

Code

Descri

ption

Quan

tity

Invoice

Date

Unit

Price

Custo

merID

Coun

try

536365 71053

Jam

making

set

5
12/1/

2010
2.25 13047

United

Kingdom

536366 85123A

Jam

making

set

1
12/1/

2010
2.25 12583 France

536367 71057

White

Hanging

Heart

6
12/1/

2010
3.39 17850

United

Kingdom

536367 22993

White

Hanging

Heart

6
12/1/

2010
4.25 12678 France

B. Runtime efficiency

Experiments are conducted to assess the efficiency of the
proposed algorithm with regards to runtime. The efficiency is
tested by varying the minimum utility value.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

634 | P a g e

www.ijacsa.thesai.org

Table VI summarizes the minimum utility value set for the
dataset.

TABLE VI. MINIMUM UTILITY VALUES

Dataset Minimum Utility Threshold

Chess 28.5 29 29.5 30 30.5

Mushroom 14 14.5 15 15.5 16

Connect 31.8 32 32.2 32.4 32.6

Accident 10% 12.6 12.8 13 13.2 13.4

Fig. 1, 2, 3, and 4 show the execution time of our algorithm
presented in this work. The runtime efficiency of our proposed
algorithm is compared with HUIM-GA. Hybrid ACO/GA
produces better runtime efficiency because it focuses on
promising areas early on, reducing unnecessary evaluations of
low utility items. The incremental building of solutions impacts
the efficiency of our proposed algorithm. Also, the adaptive
mechanisms such as pheromone evaporation leads to an efficient
search, thus reducing runtime.

Fig. 1. Chess dataset (based on runtime).

Fig. 2. Mushroom dataset (based on runtime).

Fig. 3. Accident_10% dataset (based on runtime).

Fig. 4. Connect dataset (based on runtime).

A real-time retail dataset is also used to evaluate the
recommended algorithm’s runtime efficiency. Here at minimum
utility threshold of 10%, maximum number of HUI’s were
identified. Fig. 5 demonstrates the result.

Fig. 5. Retail dataset (based on runtime).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

635 | P a g e

www.ijacsa.thesai.org

C. Discovered number of High utility items(HUI)

This section analyzes the performance of the hybrid

ACO/GA approach by evaluating the number of HUIs

identified at various threshold levels. The proposed algorithm

discovers the maximum number of HUIs. Fig. 6 to 10

demonstrate the graphical representation of the experimental

results. It may be noticed that hybrid ACO/GA discovers more

number of HUIs in most cases. However, for the real time retail

dataset, the number of HUIs identified by hybrid ACO/GA

algorithm were comparable to that of HUIM-GA algorithm as

may be seen in Fig. 10.

Fig. 6. Chess dataset.

Fig. 7. Mushroom dataset (based on number of HUIs).

Fig. 8. Accident_10%dataset (based on number of HUIs).

Fig. 9. Connect dataset (based on number of HUIs)..

Fig. 10. Retail dataset (based on number of HUIs)..

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

636 | P a g e

www.ijacsa.thesai.org

D. Convergence

Using the four datasets - Chess, Mushroom, Accident, and
Connect, 4000 fitness evaluations were conducted to assess the
convergence properties of the proposed approach. Minimum
utility threshold was kept at the value which gives the maximum
number of HUIs discovered in each dataset. Premature
convergence of genetic algorithm is avoided here. Convergence
curves obtained on the Chess, Mushroom and Retail datasets on
both hybrid ACO/GA are represented in Fig. 11, 12 and 13
respectively.

Fig. 11. Chess dataset (convergence).

Fig. 12. Mushroom dataset (convergence).

Fig. 13. Retail dataset (convergence).

VI. CONCLUSION AND FUTURE ENHANCEMENT

With a wide range of applications, HUIM is a significant
data mining task. When mining HUIs, EC-based HUIM
algorithms outperform conventional HUIM algorithms such as
HUPEumu-GRAM, HUIM-BPSOsig, HUIM-BPSO, and
BioHUIF-GA. Even though these algorithms offer an effective
method for extracting HUIs from the transition datasets, finding
the full or significant proportion of HUIs still takes a lot of effort.
While hybrid ACO-GA algorithm yields good results on generic
datasets, the suggested technique uses more resources to create
HUIs on real-time datasets. Our proposed algorithm yields the
same significant number of HUIs as other algorithms and after a
certain period of time both algorithms converge and the quantity
of HUI generated is sparse. The suggested algorithm will be
used to mine high utility itemsets from the e-commerce dataset
in order to implement dynamic pricing strategies. This will
allow for real-time price modifications based on patterns of
customer demand and product profitability. Dynamic pricing is
made possible by mining HUIs in e-commerce datasets to find
high-utility items and product groups. Through value-driven
tactics, this aids companies in maintaining client loyalty,
increasing revenue, and optimizing pricing in real-time. Our
next improvement can be to use fewer resources to address the
HUIM issue and improvise our proposed algorithm.

REFERENCES

[1] Agarwal R., and Srikant R., “Fast algorithms for mining association
rules”, In the Proceedings of 20th International Conf. Very Large Data
Bases, pp.487-499, 1994.

[2] Agrawal R., Imielinski T, Swami A, “Mining association rules between´
sets of items in large databases”, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data - SIGMOD ‘93. pp.207,
1993.

[3] Tseng V.S., Shie Bai-En, Wu Cheng-Wei and Yu Pillip S., “Efficient
Algorithms for Mining High Utility Itemset from Transactional
Databases”, IEEE Transactions on Knowledge and Data Engineering,
Vol. 25, No. 8, pp. 1172-1786, 2013.

[4] Chan R., Yang Q., and Shen Y., “Mining High Utility Itemsets”,
Proceedings of the IEEE 13th International Conference on Data Mining,
Melbourne, Florida, pp.19- 26, 2003.

[5] Yao H., Hamilton H.J., and Butz C.J., “A Foundational Approach to
Mining Itemset Utilities from Databases”, Proceedings of the 2004 SIAM
International Conference on Data Mining, Lake Buena Vista, Florida,
USA, pp.482-486, 2004.

[6] Ahmed C.F., Tanbeer S.K., Jeong Byeong-Soo, and Lee Young-Koo,
“Efficient Tree Structures for High Utility Pattern Mining in Incremental
Databases”, IEEE Transactions on Knowledge and Data Engineering,
Vol. 21, No. 12, pp. 1708-1721, 2009.

[7] Liu M. and Qu J., “Mining High Utility Itemsets without Candidate
Generation”, Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, pp. 55-64, 2012.

[8] Philippe Fournier Viger, Cheng-Wei Wu, Souleymane Zida, Vincent S.
Tseng, “FHM: Faster High-Utility Itemset Mining using Estimated

Utility Co-occurrence Pruning”, Proc. 21st International Symposium on
Methodologies for Intelligent Systems (ISMIS 2014), Springer, LNAI, pp
83-92, 2014.

[9] Artificial Intelligence Advances in Artificial Intelligence and Soft
Computing pp 530-546, 2015.
Peng A., Koh Y. S, and Riddle P. J., “mHUIMiner: A Fast High Utility
Itemset Mining Algorithm for Sparse Datasets” Proceedings 21st Pacific-
Asia Conference on Advances in Knowledge Discovery and Data Mining,
pp.196-207, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

637 | P a g e

www.ijacsa.thesai.org

[10] Utility Itemset Mining Algorithm for Sparse Datasets” Proceedings 21st
Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining, pp.196-207, 2017.

[11] Souleymane Zida, Philippe Fournier-Viger, Jerry Chun-Wei Lin,
ChengWei Wu, Vincent S. Tseng, “EFIM: A Highly Efficient Algorithm
for High-Utility Itemset Mining”, Mexican International Conference on

[12] Kannumuthu S., and Premalatha K., “Discovery of High Utility Itemsets
Using Genetic Algorithm” International Journal of Engineering and
Technology (IJET), Vol. 5 No. 6, pp. 4866-4880, 2013.

[13] Lin C.W, Yang L., Fournier-Viger P., Hong T.P., and Voznak M., “A
Binary PSO Approach to Mine High-Utility Itemsets”, Soft Computing,
Vol. 21, pp. 5103-5121, 2016.

[14] Lan G.C., Hong T.P.; and Tseng V.S., “Mining High-Transaction
Weighted Utility Itemsets”, 2010 Second International Conference on
Computer Engineering and Applications, Bali, Indonesia, pp. 314-318,
2010.

[15] Lichman M., UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml, 2013.

[16] Liu Y., Liao Wk., and Choudhary, A., “A Two-Phase Algorithm for Fast
Discovery of High Utility Itemsets”, Lecture Notes in Computer Science,
Vol. 3518, pp. 689-695, 2005.

[17] Wu J.M-T, Zhan J., and Lin, J. C-W, “An ACO-based Approach to Mine
High-Utility Itemsets”, Knowledge-Based Systems, Vol. 116, pp. 102113,
2017.

[18] Song W., and Huang C., “Mining High Utility Itemsets Using BioInspired
Algorithms: A Diverse Optimal Value Framework”, IEEE Access, Vol.
6, pp. 19568-19582, 2018.

[19] Nawaz M. S., Fournier-Viger P., Yun U., Wu Y., and Song, W., “Mining
High Utility Itemsets with Hill Climbing and Simulated Annealing”.
ACM Transactions on Management Information Systems, Vol. 13 No. 1,
pp. 1-22, 2021.

[20] Song W., and Nan J., “Mining High Utility Itemsets using Ant Colony
Optimization” Advances in Natural Computation, Fuzzy Systems and
Knowledge Discovery, pp. 98-107, 2020.

[21] Li Y., Zhao Y., Shang Y., and Liu J., “An improved firefly algorithm with
dynamic self-adaptive adjustment”, PLoS One, Vol. 16, 2021.

[22] Han M., He F., Zhang R., Li C., and Meng F., “Mining High Utility
Itemsets with Elephant Herding Optimization”,
https://doi.org/10.21203/rs.3.rs-3881656/v1, 2024.

[23] Fournier-Viger P., Gomariz A., Gueniche T., Soltani A., Wu C.W., and
Tseng V.S., “SPMF: A Java Open-Source Pattern Mining Library”,
Journal of Machine Learning Research, Vol. 15, pp. 3569-3573, 2014.

