
((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

648 | P a g e

www.ijacsa.thesai.org

A Real-Time Nature-Inspired Intrusion Detection in

Virtual Environments: An Artificial Bees Colony

Approach Based on Cloud Model

Ayanseun S. Ayanboye1, John E. Efiong2, Temitope O. Ajayi3, Rotimi A. Gbadebo4, Bodunde O. Akinyemi5,

Emmanuel A. Olajubu6, Ganiyu A. Aderounmu7

Department of Computer Science & Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria1, 2, 3, 4, 5

CyberSCADA Research Lab, Department of Computer Science & Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria6

CyberSCADA Research Lab, Africa Center of Excellence, OAU ICT-driven Knowledge OAK Park,

Obafemi Awolowo University, Ile-Ife, Nigeria7

Abstract—Real-time intrusion detection in virtual

environments is crucial for maintaining the security and integrity

of modern computing infrastructures. This paper proposes a

nature-inspired mathematical model designed to detect both

known and unknown attacks on virtual machines, focusing on

enhancing detection accuracy and minimizing false alarm rates.

The proposed model, named Developed Artificial Bee Colony

Optimization Based on Cloud Model (DABCO_CM), is inspired

by the foraging behavior of bee swarms and integrates principles

from the Artificial Bee Colony algorithm and the cloud model

rooted in fuzzy logic theory. The model was simulated using the

UNSW_NB15 datasets in Google Colab and benchmarked against

an existing model. It achieved a detection accuracy of 97.98%,

compared to the existing model's 95.35%. Sensitivity results

showed 99.92% for the proposed model, compared to 96.90% for

the existing model, while specificity increased to 93.86%, in

contrast to the existing model's 90.71%. These findings

demonstrate a 3.02% increase in sensitivity, a 2.63% increase in

accuracy, and a 3.15% increase in specificity, highlighting the

model's superior capability in detecting attacks and its potential

to learn from unlabeled data, addressing key challenges in virtual

machine security.

Keywords—Real-time intrusion detection; virtual environments;

artificial bee colony algorithm; cloud model algorithms; intrusion

detection system; feature selection; classification; swarm

intelligence; fuzzy logic; DNN; ABC_DNN DABCO_CM

I. INTRODUCTION

Virtual environments, encompassing applications such as
email, chat, and online document sharing, operate within shared
operating systems that allow Virtual Machines (VMs) to
function like physical computers without specific hardware
components. Virtualization abstracts the complexity of
hardware and software, typically implemented using hypervisor
devices that efficiently allocate system resources among
multiple VMs [1], [2]. Security in virtual environments relies
on traditional tools like firewalls and intrusion detection
systems (IDS), which are either network-based or host-based,
though they have limitations in detecting new threats [3] [8].
Traditional IDS methods often fall short in virtual environments
due to their inability to handle the dynamic and complex nature
of modern cyber threats effectively [9] [11]. These systems

struggle with high false alarm rates and limited accuracy in
detecting new, unknown attacks. This paper addresses these
challenges by proposing a bio-inspired mathematical model
that integrates the Artificial Bee Colony (ABC) algorithm with
fuzzy logic to enhance detection accuracy and minimize false
alarms in virtualized settings. The proposed model, named
Developed Artificial Bee Colony Optimization Based on Cloud
Model (DABCO_CM), draws inspiration from the foraging
behavior of bee swarms and leverages principles from the cloud
model rooted in fuzzy logic theory [12], [15].

The DABCO_CM model improves upon previous
approaches in several key ways:

 Enhanced Detection Accuracy: By optimizing feature
selection and classification processes through the ABC
algorithm, the model can more accurately identify
relevant patterns and anomalies, leading to higher
detection accuracy.

 Reduced False Alarms: The integration of cloud models
helps manage uncertainty and imprecision in data
analysis, significantly reducing false positive rates
compared to traditional IDS.

 Real-Time Detection: The model's design principles
ensure fast processing times, making it capable of real-
time intrusion detection, which is crucial for
maintaining the security of dynamic virtual
environments.

 Scalability and Adaptability: The hybrid approach of
combining swarm intelligence with fuzzy logic makes
the model more robust and adaptable to evolving cyber
threats, ensuring better performance in large-scale and
complex virtual environments.

The subsequent sections of this paper are structured as
follows:

 Literature Review: Discusses the application of
Artificial Bee Colony (ABC) algorithms in detecting
Distributed Denial-of-Service (DDoS) attacks within
virtual environments and highlights the need for further
optimization.

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

649 | P a g e

www.ijacsa.thesai.org

 Methodology: Describes the development process of the
DABCO_CM model, detailing its design principles,
components, and integration of ABC and cloud model
algorithms.

 Simulation and Testing: Explains the simulation
environment and the datasets used to evaluate the
model, including performance metrics and evaluation
parameters.

 Results and Discussion: Presents the simulation results,
comparing the performance of the proposed model
against existing models, and discusses the findings.

 Conclusion and Future Work: Summarizes the study's
contributions, highlights the model's effectiveness, and
suggests directions for future research.

II. LITERATURE REVIEW

The application of Artificial Bee Colony (ABC) algorithms
in detecting DDoS attacks within virtual environments is a
relatively familiar area with limited research. Despite its proven
effectiveness, particularly in filtering and mitigating attacks,
there is a recognized need for further research to optimize ABC
algorithm convergence in large-scale virtualized settings.
Studies by [6] and [15] collectively highlight the need to
enhance ABC algorithms to improve their robustness and
scalability in complex virtualized environments [6], [8].
Effective intrusion detection in virtual environments has been
the focus of numerous studies [4][5], highlighting the need for
innovative approaches to overcome the limitations of
traditional IDS [14]. The study in [1] highlighted the substantial
threat posed by distributed denial of service (DDoS) attacks to
network security in cloud computing. The study employed a
deep learning classifier to differentiate between attacked and
non-attacked data. The proposed FS-WOA–DNN framework
effectively protected against DDoS attacks, achieving a better
detection accuracy, outperforming other existing DDoS
detection models. The research in [13] addressed the impact of
DoS and DDoS attacks on cloud services. Using artificial
immune systems, they identified attack characteristics,
achieving high detection accuracy and low false alarm rates.
This method effectively maintained cloud service availability,
reducing financial losses and preserving reputations. Fig. 1
shows existing model.

A. Real-Time Intrusion Detection

Real-time intrusion detection requires systems capable of
processing large volumes of data quickly and accurately [2]
highlight the importance of high-performance algorithms in
achieving timely threat detection [7], [8]. They emphasize that
traditional methods often fall short due to their inability to
handle the dynamic nature of modern cyber threats effectively
[9].

B. Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm, proposed by
[4] [6] have shown promise in various optimization problems,
including intrusion detection. Its ability to efficiently search for
optimal solutions makes it suitable for enhancing IDS
performance. The study in [18] further explore the application
of ABC in optimizing feature selection and classification tasks,

demonstrating its potential for improving IDS accuracy and
efficiency.

Fig. 1. The existing model (Agarwal et al. 2022).

Fig. 2. Proposed model.

Fig. 2 shows proposed model and Fig. 3 depicts flowchart
of the proposed model.

C. Cloud Model Algorithms

Cloud models, which integrate fuzzy logic and probability
theory, offer a powerful tool for handling uncertainty and
imprecision in data analysis. The studies in [6][10][14][15]
discuss the application of cloud models in intrusion detection,
highlighting their capability to improve detection accuracy by
managing uncertainties. Their research underscores the benefits
of combining cloud models with other optimization techniques
to enhance IDS performance.

Africa Center of Excellence, OAU ICT-driven Knowledge OAK Park,
Obafemi Awolowo University, Ile-Ife, Nigeria

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

650 | P a g e

www.ijacsa.thesai.org

D. Integrated Approaches

Integrating the ABC algorithm with cloud models has been
explored to address the limitations of each technique
individually. The studies in [6][16] present a hybrid approach
that combines swarm intelligence with fuzzy logic to improve
IDS performance. Their study demonstrates that such
integration can offer a more robust and adaptable solution for
real-time intrusion detection.

III. METHODOLOGY

The development of the DABCO_CM model involves
several key steps to integrate the Artificial Bee Colony (ABC)
algorithm with cloud model algorithms, aiming to enhance real-
time intrusion detection in virtual environments:

A. Objectives and Requirements

The primary objectives for real-time intrusion detection are
to achieve high accuracy, minimize false alarms, and ensure
fast processing times. Requirements include the ability to
handle large volumes of data generated in virtual environments
and adapt to evolving cyber threats. The DABCO_CM model
is designed to meet these objectives by combining advanced
optimization techniques with robust data handling capabilities.

B. Design Principles

The DABCO_CM model is built on the principles of swarm
intelligence and fuzzy logic. The ABC algorithm is used to
optimize feature selection and classification processes,
enhancing the model’s ability to identify relevant patterns and
anomalies. Cloud model algorithms are integrated to manage
uncertainty and provide a probabilistic framework for intrusion
detection.

C. Components

The DABCO_CM model consists of the following
components:

 Feature Selection Module: Utilizes the ABC algorithm
to select the most relevant features for intrusion
detection. This module aims to improve detection
accuracy and reduce computational overhead.

 Classification Module: Applies machine learning
techniques to classify intrusion attempts based on
selected features. This module uses advanced
algorithms to enhance the accuracy of threat detection.

 Cloud Model Integration: Incorporates cloud models

to handle uncertainty and improve detection accuracy.

The cloud model algorithms provide a probabilistic

approach to managing imprecise data and enhancing

overall system performance.

D. Proposed Model Design

The proposed model integrates the Artificial Bee Colony
(ABC) optimization algorithm and the Cloud Model algorithm
to enhance intrusion detection in virtual environments.

1) Network traffic: Network traffic refers to the flow of

data across a computer network, encompassing all the data sent

and received by devices connected to the network.

2) Basic network feature selection: Feature selection

involves choosing a subset of relevant features for a machine

learning model using methods like filter, wrapper, and

embedded techniques. This balance ensures the model's

effectiveness. Fig. 4 shows diagrammatic representation of the

proposed model.

Fig. 3. Flowchart of the proposed model.

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

651 | P a g e

www.ijacsa.thesai.org

Fig. 4. Diagrammatic representation of the proposed model.

3) Decentralized decision-making with ABC and cloud

model: The ABC algorithm, inspired by bee foraging, and the

Cloud model, which handles uncertainty, collaboratively

improve system performance by enabling autonomous and

informed decision-making.

4) ABC training with cloud model and pheromone

communication: Combining the ABC algorithm with the Cloud

model and pheromone communication enhances decision-

making and collaboration among agents, leading to better

performance in virtual environments.

5) Exploration and exploitation of ABC and cloud model:

The ABC algorithm optimizes solutions by mimicking bee

behavior, while the Cloud model leverages distributed

computing. This integration enables efficient resource

allocation and problem-solving.

6) Feedback mechanisms of ABC and cloud model: ABC

and Cloud models use feedback to improve decision-making

and predictions. The ABC algorithm relies on bee feedback, and

the Cloud model refines its functions based on various inputs.

7) Network profiles: Network profiles represent behavioral

patterns of networks. By analyzing these profiles with ABC

optimization and Cloud Model, intrusion detection systems can

identify suspicious activities.

8) Best solution found and attack detected: Integrating

ABC and Cloud models optimizes solutions and enhances

system security by detecting potential attacks in virtual

environments. The framework combined the ABC algorithm

and the Cloud Model algorithm to create an optimized model

with the following key elements:

a) Objective: The primary goal of the framework had

been to develop a highly efficient intrusion detection model by

integrating the ABC algorithm and the Cloud Model algorithm.

b) Feature selection: To improve the accuracy of

intrusion detection, the framework had utilized the ABC

algorithm to optimize the feature selection process. This

involved selecting the most relevant features that significantly

contributed to identifying intrusions. An effective method to

achieve feature selection for improving intrusion detection

accuracy is to employ machine learning techniques such as

recursive feature elimination (RFE).

c) Uncertainty dandling: The Cloud Model algorithm

had played a vital role in handling uncertainties associated with

intrusion detection. It combined probability-based reasoning,

adaptive exploration, dynamic solution adjustment, ensemble

techniques, and continuous learning for robust and adaptive

solutions in the face of uncertainty.

d) Integration: The ABC and Cloud Model algorithms

had been seamlessly integrated into a unified framework. The

ABC algorithm optimized the feature selection procedure,

while the Cloud Model algorithm addressed uncertainty

reasoning. ABC algorithm scouts for the most promising

features, much like bees searching for the best flowers. The

Cloud Model carefully examines those features to assess their

uncertainty, ensuring a reliable selection. By working together,

they create a robust decision-making framework that considers

both feature relevance and potential uncertainties.

e) Real-Time detection and response: One of the key

objectives of the DABCO_CM framework has been to enable

real-time detection of intrusions. It has empowered the system

to promptly identify and respond to both known and unknown

intrusions occurring in the virtual environment. This capability

enhanced the system's security by enabling swift and effective

countermeasures against potential threats as they occur.

f) Evaluation: The effectiveness of the DABCO_CM

framework had been evaluated using various metrics, such as

intrusion identification, detection precision, and response time.

These evaluations provided validation of the framework's

performance and reliability. The DABCO_CM framework,

leverage the strengths of the ABC algorithm and the Cloud

Model algorithm. By optimizing feature selection, handling

uncertainties, and facilitating real-time intrusion detection, this

framework aimed to enhance the overall effectiveness of

intrusion detection systems in virtual environments.

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

652 | P a g e

www.ijacsa.thesai.org

E. Simulation and Testing

This methodology delved into the complexities of creating
a groundbreaking system that seamlessly integrated the
capabilities of Artificial Bee Colony (ABC) optimization with
Cloud Model-based techniques to handle imprecise data.
Datasets, specifically UNSW_NB15, were used to simulate two
classifiers (ANN and DNN). These classifiers were developed
and saved as models in the Google Research Collaboration
Environment, and relevant performance metrics were utilized.
The ABC optimization for intrusion detection in a virtual
environment used 100 random population initializations within
bounds. It ran 10 times for a fixed number of iterations, with
the dimensionality of the problem space varying. Customizing
parameters was essential for effective optimization, with
performance evaluated using benchmark functions and real
intrusion detection data.

F. Model Formulation of the Proposed Model

The mathematical representation of the Developed
Artificial Bee Colony Optimization Based on Cloud Model
(DABCO_CM) involved expressing the optimization
procedure using mathematical equations. This formulation
combined the core concepts of the Artificial Bee Colony (ABC)
algorithm and the Cloud Model algorithm to detect intrusions
in a virtual environment. During the initialization phase, the
population's food sources were randomly created and allocated
to the employed bees as in Eq. (1), [6]:

𝑋𝑖
𝑗
= 𝑋𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑(0,1)(𝑋𝑚𝑎𝑥

𝑗
− 𝑋𝑚𝑖𝑛

𝑗
) (1)

Fig. 5 shows Mapping of bee colony concepts to intrusion
detection in virtual environments and Table 1 depicts Mapping
of Bee Colony Concepts to Intrusion Detection in Virtual
Environments.

Fig. 5. Mapping of bee colony concepts to intrusion detection in virtual

environments.

The upper and lower limits of the solution vectors are
denoted by 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 respectively in Eq. (2).

𝑉𝑖
𝑗
= 𝑋𝑖

𝑗
+ 𝜑𝑖

𝑗
(𝑋𝑖

𝑗
− 𝑋𝑘

𝑗
) (2)

Subsequently, the comparison of 𝑉𝑖 to 𝑋𝑖 is made, and the
foraging bee employs a selection mechanism prioritizing the
food source with higher fitness, as expressed in Eq. (3).

𝑓𝑖𝑡𝑖 = {

1

1+𝑓1
 𝑓1 ≥ 0

1 + 𝑎𝑏𝑠(𝑓1) 𝑓1 < 0
 (3)

This chosen food source, "𝑋𝑖," was then updated in the same
way as the working bees, determined by its probability value
"P" as defined in Eq. (4) and the given expression.

𝑃 =
0.9𝑓𝑖𝑡(𝑋1)
𝑁𝑒
𝑚𝑎𝑥
𝑚=1

𝑓𝑖𝑡(𝑋𝑚)

+ 0.1 (4)

The formulation of the cloud model could be expressed as
follows in Eq. (5), [6]:

∀𝑋 𝜖 𝑈 → 𝜇(𝑋) ∈ {0,1} (5)

Each droplet is uniquely identified by its index 𝑖, and N
indicates the total number of such droplets.

𝐸𝑛𝑖
1 = 𝑁(𝐸𝑛,𝐻𝑒2) (6)

𝐸𝑛𝑖
1 represents a property associated with the cloud droplet

𝑖. It is derived as a random value from a normal distribution
with mean 𝐸𝑛 and variance.

𝐻𝑒2. 𝑥𝑖 = 𝑁(𝐸𝑥, (𝐸𝑛𝑖
1)2) (7)

This equation defines the 𝑥 -coordinate of the cloud droplet
𝑖. It is generated as a random value from a normal distribution

with mean 𝐸𝑥 and variance (𝐸𝑛𝑖
1)2.

𝜇𝑖 = exp {−
(𝑥𝑖−𝐸𝑥)

2(𝐸𝑛𝑖
1)
2 (8)

This equation defines the μ-coordinate (or y-coordinate) of
the cloud droplet 𝑖 . It is calculated using the exponential
function of the negative of the difference between 𝑥𝑖 and 𝐸𝑥,

divided by 2(𝐸𝑛𝑖
1)2.

𝑋𝐼 = 𝐸𝑥 ± √−2 ln(𝜇) ∗ 𝐸𝑛𝑖
1 (9)

The derivation of this equation involves solving for 𝑿𝑰 from
the expression of the exponential distribution in Eq. (8).

{

 𝑁𝑒
𝐸𝑥 = max 𝑓𝑖𝑡𝑖
 𝑖 = 1

𝐸𝑛 =
𝐸𝑥−𝑓𝑖𝑡𝑖

12

𝐻𝑒 =
𝐸𝑛

3

 (10)

Eq. (10) is derived to define parameters (𝐸𝑥, 𝐸𝑛, 𝐻𝑒) in the
ABC algorithm using the cloud model. The derivation
emphasizes exploitation by setting 𝐸𝑥 as the maximum fitness.
𝐸𝑛 introduces variability based on fitness differences, and 𝐻𝑒
contributes to overall variability. This formulation enhances
exploration and exploitation for effective optimization. Table I
shows Mapping of Bee Colony Concepts to Intrusion Detection
in Virtual Environments.

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

653 | P a g e

www.ijacsa.thesai.org

{

 𝑁𝑒
𝐸𝑥 = min 𝑓𝑖𝑡𝑖
 𝑖 = 1

𝐸𝑛 =
𝑓𝑖𝑡𝑖−𝐸𝑥

12

𝐻𝑒 =
𝐸𝑛

3

 (11)

Eq. (11) is derived to enhance the ABC algorithm using the
cloud model, emphasizing less proficient individuals by
choosing 𝐸𝑥 as the minimum fitness. The formulation

promotes exploration and diversification for a more
comprehensive search. Therefore, Eq. (10) is designed to
exploit the best solutions by focusing on the maximum fitness,
improving optimization by refining the search around the most
promising solutions while Eq. (11) is designed to explore the
search space by focusing on the minimum fitness, encouraging
diversification and a comprehensive search for potentially
better solutions.

TABLE I. MAPPING OF BEE COLONY CONCEPTS TO INTRUSION DETECTION IN VIRTUAL ENVIRONMENTS

Concept (Bee Colony) Concept (Intrusion Detection) Description Layer

Hierarchy of Roles Network Layer, Application Layer, Intrusion Detection

System Layer

Levels of security architecture -

Individual Bee/Group with Defined

Function

VM, Network Device, Software Application Elements within the virtual environment -

VM1, VM2, VM3, VM4 Specific Virtual Machines Individual VMs within the environment -

Employed Bee (EB) Actively Engaged VM VM searching for potential attack patterns Layer 1

Onlooker Bee (OB) Monitoring VM VM learning from employed bees' findings Layer 2

Scout Bee (SB) Searching VM VM looking for new attack patterns or

vulnerabilities

Layer 3

Search Looking for Something Process of finding something (nectar or
vulnerabilities)

Layer 1,
Layer 3

Nectar (NT) Network Traffic (NT) Collected data -

Location (L) Log Files Source of information about potential threats Layer 2

Explore Scanning and Analyzing Discovering something (nectar or threats) Layer 1,
Layer 3

Report Communicating Information Sharing discoveries (waggle dance or alerts) Layer 2,

Layer 3

𝑃 = exp {= (𝑥−𝐸𝑥)
2

2(𝐸𝑛1)2
} (12)

Eq. (12) is derived by adapting the probability density
function of a normal distribution to formulate the probability
(𝑃) of selecting an individual bee based on its position (𝑥) in
relation to cloud model attributes (𝐸𝑥, 𝐸𝑛1).

{
𝐸𝑥 = 𝑋𝑖

𝑗

𝐸𝑛 = 𝑒𝑥
𝐻𝑒 = 𝐸𝑛

10

 (13)

Eq. (13) in the cmABC algorithm derives 𝑬𝒙 as the current

position of food sources (𝑿𝒊
𝒋
), En as a dynamic variable (𝒆𝒙),

and 𝑯𝒆 as one-tenth of 𝑬𝒏. This formulation emphasizes the
current position, adaptability, and variability in the cloud
model, enhancing exploration and exploitation. In this scenario,
𝑋𝑖 represented the current position of the food sources, where j
belonged to the set {1, 2, ..., D}, and 𝑒𝑥 was a variable.

{
𝐸𝑛1 = 𝐸𝑛,𝐻𝑒2

𝑉𝑖
𝑗
= 𝑁(𝐸𝑥, 𝐸𝑛𝑖2)

 (14)

Eq. (14) introduces variability in the cmABC algorithm by

defining 𝐸𝑛1 as 𝐸𝑛 with 𝐻𝑒2 and 𝑉𝑖
𝑗
 as a normal distribution

with mean 𝐸𝑥 and variance 𝐸𝑛𝑖2 . This enhances exploration
and adaptability, crucial for optimal solution search.

𝑒𝑥 = −(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)(𝑡/𝑇𝑚𝑎𝑥)
2 (15)

Eq. (15) dynamically adjusts 𝑒𝑥 in the cmABC algorithm.

It uses a quadratic function (𝑡/𝑇𝑚𝑎𝑥)
𝟐 with a scaled coefficient

−(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛). The adjustment evolves with the iteration
count for improved solution accuracy and controlled
exploration.

{

𝐸𝑥 = 𝑋𝑗
𝑖

𝐸𝑛 = 2
3
|𝑋𝑗

𝑖
 − 𝑋

𝑗
𝑘 |

𝐻𝑒 = 𝐸𝑛
10

 (16)

Eq. (16) in the cmABC algorithm is derived to define cloud
model attributes. 𝐸𝑥 depends on food source positions in a
specific dimension, 𝐸𝑛 incorporates variability between
positions, and 𝐻𝑒 contributes proportionally to overall
variability, enhancing exploration and exploitation.

G. Feature Selection

There were 42 features in both the trained and tested
datasets, and all of these features were relevant in building the
model. Some features needed to be removed from the datasets
to avoid affecting the model's performance. To determine the
relevance of each feature to the target feature, an entropy-based
algorithm (mutual information gain) was used to rank the
features according to their effectiveness in building the model.
Features with non-zero mutual information gain [17] were
initially selected to build the model, while the remaining
features were discarded.

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

654 | P a g e

www.ijacsa.thesai.org

H. Model Performance Metrics Evaluation Using Parameters

The following performance metrics were used to evaluate
the model:

1) Accuracy: this is the ratio of correctly classified positive

and negative tuples to the total number of traffic connections. It

can be expressed mathematically in Eq. (17) as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (17)

where TP = True Positive: The number of positive tuples
correctly classified by the predictive model,

TN= True Negative: The number of negative tuples
correctly classified by the predictive model,

FP = False Positive: The number of positive tuples
incorrectly classified by the predictive model and

FN = False Negative: The number of negative tuples
incorrectly classified by the predictive model.

2) Sensitivity: this is the proportion of actual positives

which are predicted positive. Therefore, it measures the

effectiveness of the model in predicting positive classes. It is

used to determine the false positive rate of the model. It is

defined in Eq. (18) as

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃+ 𝐹𝑁)
 (18)

3) Specificity: this is the proportion of actual negatives

which are predicted negative. Therefore, it measures the

effectiveness of the model in predicting negative classes. It is

used to determine the false negative rates of the model. It is

defined in Eq. (19) as

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+ 𝐹𝑃)
 (19)

I. Model performance metrics evaluation using graphical

tools

The performance of the model was also evaluated using the
following graphical tools:

1) Confusion Matrix: A confusion matrix is a matrix whose

rows represents the positive and negative values predicted by

the classifier and columns represents the actual positive and

negative values.

2) Receiver operative curve (ROC): The receiver operative

curve evaluates the false positive rates represented on the Y-axis

and the true positive rates represented on the X-axis generated

during the classification stage. The Area Under the Curve

(AUC) shows how well the classifier performs in terms of these

two variables (false positive and true positives). The closer it is

to 1 the better.

IV. RESULTS AND DISCUSSION

A. Simulation Environment

In the study, models were simulated using the Google
Research Collaboration Environment. An online Python
environment, Colab, facilitated the creation of texts, codes, and

the execution of codes to generate output. Python machine
learning tools, such as Scikit-learn, pandas, numpy, matplotlib,
seaborn, hyperopt, joblib, and scikit-fuzzy libraries, were
utilized for dataset analysis, model construction, saving model
as pickle file, and evaluating model performance:

 Scikit-learn: Used for machine learning algorithms and
model evaluation.

 pandas: Utilized for data manipulation and analysis.

 numpy: Used for numerical operations.

 matplotlib and seaborn: Applied for data visualization.

 hyperopt: Employed for hyperparameter optimization.

 joblib: Used for saving models as pickle files.

 scikit-fuzzy: Utilized for fuzzy logic and operations.

These tools were integral in constructing various models,
with the highest-performing model selected for final
implementation.

B. Feature Selection

There were 42 features in both the trained and tested
datasets, and all of these features were relevant in building the
model. Some features needed to be removed from the datasets
to avoid affecting the model's performance. To determine the
relevance of each feature to the target feature, an entropy-based
algorithm (mutual information gain) was used to rank the
features according to their effectiveness in building the model.
Features with non-zero mutual information gain were initially
selected to build the model, while the remaining features were
discarded.

V. SIMULATION RESULT

The training dataset, which constituted 32%, and the testing
dataset, making up 68% of the total dataset, were input into the
Google Research Collaboration Python Environment. This
environment clustered the dataset into two categories and
labeled them as 0 and 1. These labeled datasets were employed
to construct six models, allowing them to learn from previous
data and enabling them to classify future network instances as
either normal or attack instances. After successfully
constructing the models, instances from the testing dataset were
utilized to assess their performance. The proposed models
successfully classified attack instances as true positives (TP)
and accurately classified normal instances as true negatives
(TN). However, the results also indicated that attack instances
were misclassified as normal instances (false negatives - FN),
and normal instances were misclassified as attack instances
(false positives - FP). The proposed DNN model was able to
classify 112, 694 instances as attacks (TP), while 50, 183 were
correctly classified as normal (TN). The results also showed
that 6, 647 attack instances were misclassified as normal (FN),
while 5, 817 normal instances were misclassified as attacks
(FP). The proposed ABC_DNN model was able to classify 117,
380 instances as attacks (TP), while 48, 120 were correctly
classified as normal (TN). The results also showed that 4, 215
attack instances were misclassified as normal (FN), while 4,626
normal instances were misclassified as attacks (FP). The
proposed DABCO_CM_DNN model was able to classify

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

655 | P a g e

www.ijacsa.thesai.org

119250 instances as attacks (TP), while 52, 562 were correctly
classified as normal (TN). The results also showed that 91
attack instances were misclassified as normal (FN), while 3,
438 normal instances were misclassified as attacks (FP).

VI. MODEL EVALUATION

In evaluating the performance of the models, four
evaluation metrics were used: accuracy, sensitivity, specificity,
and error. All these performance metrics were calculated using
the results of the confusion matrix table, which were
categorized as true negative, true positive, false positive, and
false negative, respectively.

VII. PERFORMANCE EVALUATION AND BENCHMARKING

The models developed and benchmarked in this study,
including DNN, ABC_DNN, and DABCO_CM, were
evaluated based on accuracy, sensitivity, specificity, and error
rate. These models were compared to existing models presented
in the literature, specifically those by [1] and [13], which
employed techniques such as Feature Selection using Whale
Optimization Algorithm (FS-WOA) and Artificial Immune
Systems (AIS). The FS-WOA-DNN model presented by [1]
achieved an accuracy of 95.35%, sensitivity of 96.9%,
specificity of 90.71%, and an error rate of 0.0928. In
comparison, Prathyusha et al. (2021) focused on ANN, SVM,
and AIS models, with the AIS model showing the highest
performance, achieving an accuracy of 96.56%, sensitivity of
96.4%, specificity of 91.9%, and an error rate of 0.0713. In this
study, the DNN classifier was chosen and optimized using the
Artificial Bee Colony (ABC) algorithm, resulting in the
ABC_DNN model. The DABCO_CM model was further
developed by integrating a cloud model based on fuzzy logic,
enhancing the performance of the ABC_DNN model. The
performance of the three proposed models demonstrated
competitive results. The DNN model achieved an accuracy of
92.89%, sensitivity of 94.43%, specificity of 89.61%, and an
error rate of 0.0711. The ABC_DNN model improved upon this
with an accuracy of 94.38%, sensitivity of 96.53%, specificity
of 91.22%, and an error rate of 0.0562. The DABCO_CM
model emerged as the best performer, achieving an accuracy of
97.98%, sensitivity of 99.92%, specificity of 93.86%, and an
error rate of 0.0202. These results clearly show that the
DABCO_CM model surpasses the FS-WOA-DNN model in
terms of accuracy, sensitivity, and specificity. The
DABCO_CM model's sensitivity of 99.92% indicates its strong
ability to identify both known and unknown attacks, while its
specificity of 93.86% underscores its effectiveness in
accurately distinguishing between attacks and benign activities.
In contrast, the ABC_DNN model, while exhibiting high
sensitivity at 96.53%, had a lower specificity of 91.22%,
suggesting that there is still potential for improvement in
differentiating benign instances more effectively. These
performance metrics highlight the strengths of both
DABCO_CM and ABC_DNN, where DABCO_CM achieved
the highest overall performance across all metrics. The
differences in dataset characteristics (UNSW-NB15 used in this
study versus datasets like KDD Cup 99 and CICIDS2017 in
previous studies) and simulation environments (Google Colab
in this study versus MATLAB and CloudSim) contribute to
variations in model performance. Despite these differences, the

results clearly indicate that DABCO_CM provides superior
capabilities in accurately detecting and classifying attacks,
addressing critical challenges in virtual machine security. The
results obtained from the confusion matrices of the proposed
models, categorizing actual and predicted attacks for
performance metric evaluation, are presented in Table II and
performance metrics are presented in Table III.

TABLE II. CONFUSION METRICES RESULTS

 TP TN FP FN

DNN 112694 50183 5817 6647

ABC_DNN 117380 48120 4626 4215

DABCO_CM_DNN 119250 52562 3438 91

Fig. 6 shows DNN Model Confusion Matrix, Figure 7
shows Line Graph for DNN model, Figure 8 shows ABC_DNN
model confusion matrix, Fig. 9 displays Line Graph for
ABC_DNN model, Fig. 10 shows DABCO_CM_DNN model
confusion matrix and Fig. 11 shows Line Graph for
DABCO_CM_ DNN model. The confusion matrices of three
important models and their corresponding line graphs are
displayed below.

The new models were found to be impressive and superior
to the existing system. The definitions of metrics and
benchmarked results were displayed below.

 Accuracy: Accuracy measured the overall correctness of
a classification model.

Accuracy =
TP+TN

TP+TN+FP+FN

 Sensitivity (Same as Detection Rate/Recall): Sensitivity
measured the proportion of actual positive instances
correctly classified.

Sensitivity =
TP

TP+𝐹𝑁

TABLE III. PERFORMANCE METRICS

Model Accuracy Sensitivity Specificity Error

Rate

Agarwa et al.

(2022)

FS-WOA-

DNN

95.35% 96.9% 90.71% 0.0928

Prathyusha et

al. (2021)

AIS 96.56% 96.4% 91.9% 0.0713

Proposed

Models

DNN 92.89% 94.43% 89.61% 0.0711

ABC_DNN 96.38% 96.53% 91,22% 0.0562

DABCO_CM 97.98% 99.92% 93.86% 0.0202

 Specificity: Specificity measured the proportion of
actual negative instances correctly classified.

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

656 | P a g e

www.ijacsa.thesai.org

Specificity =
T𝑁

TN+𝐹𝑃

 Error: Error is the difference between an observed or
predicted value and the true or expected value.

Error (residual) = Observed Value - Predicted Value.

Fig. 6. DNN model confusion matrix.

Fig. 7. Line graph for DNN model.

Fig. 8. ABC_DNN model confusion matrix.

Fig. 9. Line Graph for ABC_DNN model.

Fig. 10. DABCO_CM_DNN model confusion matrix.

Fig. 11. Line graph for DABCO_CM_DNN model.

VIII. CONCLUSION AND FUTURE WORK

This study introduces a pioneering Intrusion Detection
System (IDS) to tackle growing security challenges in
virtualized computing. The proposed system integrates the
Artificial Bee Colony (ABC) optimization algorithm with a

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

657 | P a g e

www.ijacsa.thesai.org

fuzzy logic-based Cloud Model and a Deep Neural Networks
(DNN) classifier, resulting in a highly effective approach for
categorizing various cyber threats. When compared with the
existing Feature Selection Whales Optimization Algorithm
with Deep Neural Network Model (FS-WOA_DNN), the newly
developed Artificial Bees Optimization-based Cloud Algorithm
with Deep Neural Networks Model (DABCO_CM_DNN)
shows a 3.02% increase in sensitivity, a 2.63% increase in
accuracy, a 3.15% increase in specificity, and a slight decrease
in error rate. This indicates that the DABCO_CM model
significantly enhances real-time intrusion detection by
achieving high accuracy, lowering false positives, and ensuring
efficient processing. Future research will aim to refine the
model, explore additional bio-inspired techniques, and expand
its application across different virtualized environments. Real-
world deployment and integration with existing security
systems will also be pursued to validate the model’s
effectiveness and practicality, ensuring its continued relevance
in combating evolving cyber threats.

ACKNOWLEDGMENT

We extend our heartfelt gratitude to the Africa Centre of
Excellence (ACE), OAU ICT-Driven Knowledge Park (OAK
Park), Obafemi Awolowo University, Ile-Ife, Nigeria, for their
invaluable support and sponsorship in facilitating this research.
We are particularly grateful to Professor G.A. Aderounmu, the
Centre Director, whose visionary leadership and commitment
to fostering innovation and academic excellence have
significantly contributed to the success of this work. This
publication is a testament to the remarkable infrastructure and
collaborative environment provided by ACE OAK Park,
enabling groundbreaking research and capacity building in
ICT-driven knowledge.

REFERENCES

[1] Agarwal, A., Khari, M., & Singh, R. (2022). Detection of DDOS Attack
using Deep Learning Model in Cloud Storage Application. Wireless
Personal Communications, 127(1), 419–439.
https://doi.org/10.1007/s11277-021-08271-z.

[2] Ahmed, N., Sadhayo, I. H., Yousif, Z., Naeem, N., & Parveen, S. (2019).
Analysis and Detection of DDoS Attacks Targetting Virtualized Servers.
International Journal of Computer Science and Network Security (Vol. 19),
6. Retrieved from https://www.researchgate.net/publication/334325978.

[3] Aishwarya, R., & Malliga, S. (2014). Intrusion detection system- An
efficient way to thwart against Dos/DDos attack in the cloud environment.
2014 International Conference on Recent Trends in Information
Technology, ICRTIT 2014, 6.
https://doi.org/10.1109/ICRTIT.2014.6996163.

[4] Aldwairi, M., Khamayseh, Y., & Al-Masri, M. (2015). Application of

artificial bee colony for intrusion detection systems. Security and
Communication Networks, 8(16), 2730–2740.
https://doi.org/10.1002/sec.588.

[5] Gu, T., Chen, H., Chang, L., & Li, L. (2019). Intrusion detection system
based on improved abc algorithm with tabu search. IEEJ Transactions on
Electrical and Electronic Engineering, 14(11), 1652–1660.
https://doi.org/10.1002/tee.22987.

[6] Jin, Y., Sun, Y., & Ma, H. (2018). A developed Artificial Bee Colony
algorithm based on cloud model. Mathematics, 6(4), 61.
https://doi.org/10.3390/math6040061.

[7] Khalaf, B. A., Mostafa, S. A., Mustapha, A., Ismaila, A., Mahmoud, M. A.,
Jubaira, M. A., & Hassan, M. H. (2019). A simulation study of syn flood
attack in cloud computing environment. AUS Journal, 26(1), 188–197.

[8] Kumar, J. (2019). Cloud computing security issues and its challenges: A
comprehensive research. International Journal of Recent Technology and
Engineering (Vol. 8), 10-14.

[9] Kuo, R. J., Huang, S. B. L., Zulvia, F. E., & Liao, T. W. (2018). Artificial
bee colony-based support vector machines with feature selection and
parameter optimization for rule extraction. Knowledge and Information
Systems, 55(1), 253–274. https://doi.org/10.1007/s10115-017-1083-8.

[10] Mthunzi, S. N., & Benkhelifa, E. (2017). Trends Towards Bio-inspired
Security Countermeasures for Cloud Environments. Paper presented at the
IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, 11th Proceedings, 18-22 September 2017, Tucson, Arizona, USA.
University of Arizona, IEEE Computer Society, Institute of Electrical and
Electronics Engineers, National Science Foundation (U.S.).

[11] Navaz, A. S., Sangeetha, V., & Prabhadevi, C. (2013). Entropy based
Anomaly Detection System to Prevent DDoS Attacks in Cloud.
International Journal of Computer Applications (Vol. 62), 9.
https://doi.org/10.5120/10160-5084.

[12] Otor, S. U., Akinyemi, B. O., Aladesanmi, T. A., Aderounmu, G. A., &
Kamagaté, B. H. (2021). An improved bio-inspired based intrusion
detection model for a cyberspace. Cogent Engineering, 8(1), 24.
https://doi.org/10.1080/23311916.2020.1859667.

[13] Prathyusha, D. J., & Kannayaram, G. (2021). A cognitive mechanism for
mitigating DDoS attacks using the artificial immune system in a cloud
environment. Evolutionary Intelligence, 14(2), 607–618.
https://doi.org/10.1007/s12065-019-00340-4.

[14] Sharma, S., Gupta, A., & Agrawal, S. (2016). An intrusion detection system
for detecting denial-of-service attack in cloud using artificial bee colony.
In Advances in Intelligent Systems and Computing (Vol. 438, pp. 137–145).
Springer Verlag. https://doi.org/10.1007/978-981-10-0767-5_16.

[15] Tayab, A., Talib, W., & Fuzail, M. (2015). Security Challenges for
Virtualization in Cloud (Vol. 20), 6. Retrieved from
https://www.researchgate.net/publication/326261342.

[16] Wang, B., Zheng, Y., Lou, W., & Hou, Y. T. (2014). DDoS attack protection
in the era of cloud computing and software-defined networking. In
Proceedings - International Conference on Network Protocols, ICNP (pp.
624–629). IEEE Computer Society. https://doi.org/10.1109/ICNP.2014.99.

[17] Young, C. (2016). Data Centers: A Concentration of Information Security
Risk. The Juilliard School · Department of Information Technology, (pp.
339-357). https://doi.org/10.1016/B978-0-12-809643-7.00015-2.

[18] Yu, X., Han, D., Du, Z., Tian, Q., & Yin, G. (2019). Design of DDoS attack
detection system based on intelligent bee colony algorithm. International
Journal of Computational Science and Engineering, 19(2), 22.

https://doi.org/10.1007/s11277-021-08271-z
https://www.researchgate.net/publication/334325978
https://doi.org/10.1109/ICRTIT.2014.6996163
https://doi.org/10.1002/sec.588
https://doi.org/10.1002/tee.22987
https://doi.org/10.3390/math6040061
https://doi.org/10.1007/s10115-017-1083-8
https://doi.org/10.5120/10160-5084
https://doi.org/10.1080/23311916.2020.1859667
https://doi.org/10.1007/s12065-019-00340-4
https://doi.org/10.1007/978-981-10-0767-5_16
https://www.researchgate.net/publication/326261342
https://doi.org/10.1109/ICNP.2014.99
https://doi.org/10.1016/B978-0-12-809643-7.00015-2

