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Abstract—Real-time intrusion detection in virtual 

environments is crucial for maintaining the security and integrity 

of modern computing infrastructures. This paper proposes a 

nature-inspired mathematical model designed to detect both 

known and unknown attacks on virtual machines, focusing on 

enhancing detection accuracy and minimizing false alarm rates. 

The proposed model, named Developed Artificial Bee Colony 

Optimization Based on Cloud Model (DABCO_CM), is inspired 

by the foraging behavior of bee swarms and integrates principles 

from the Artificial Bee Colony algorithm and the cloud model 

rooted in fuzzy logic theory. The model was simulated using the 

UNSW_NB15 datasets in Google Colab and benchmarked against 

an existing model. It achieved a detection accuracy of 97.98%, 

compared to the existing model's 95.35%. Sensitivity results 

showed 99.92% for the proposed model, compared to 96.90% for 

the existing model, while specificity increased to 93.86%, in 

contrast to the existing model's 90.71%. These findings 

demonstrate a 3.02% increase in sensitivity, a 2.63% increase in 

accuracy, and a 3.15% increase in specificity, highlighting the 

model's superior capability in detecting attacks and its potential 

to learn from unlabeled data, addressing key challenges in virtual 

machine security. 
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I. INTRODUCTION 

Virtual environments, encompassing applications such as 
email, chat, and online document sharing, operate within shared 
operating systems that allow Virtual Machines (VMs) to 
function like physical computers without specific hardware 
components. Virtualization abstracts the complexity of 
hardware and software, typically implemented using hypervisor 
devices that efficiently allocate system resources among 
multiple VMs [1], [2]. Security in virtual environments relies 
on traditional tools like firewalls and intrusion detection 
systems (IDS), which are either network-based or host-based, 
though they have limitations in detecting new threats [3] [8]. 
Traditional IDS methods often fall short in virtual environments 
due to their inability to handle the dynamic and complex nature 
of modern cyber threats effectively [9] [11]. These systems 

struggle with high false alarm rates and limited accuracy in 
detecting new, unknown attacks. This paper addresses these 
challenges by proposing a bio-inspired mathematical model 
that integrates the Artificial Bee Colony (ABC) algorithm with 
fuzzy logic to enhance detection accuracy and minimize false 
alarms in virtualized settings. The proposed model, named 
Developed Artificial Bee Colony Optimization Based on Cloud 
Model (DABCO_CM), draws inspiration from the foraging 
behavior of bee swarms and leverages principles from the cloud 
model rooted in fuzzy logic theory [12], [15]. 

The DABCO_CM model improves upon previous 
approaches in several key ways: 

 Enhanced Detection Accuracy: By optimizing feature 
selection and classification processes through the ABC 
algorithm, the model can more accurately identify 
relevant patterns and anomalies, leading to higher 
detection accuracy. 

 Reduced False Alarms: The integration of cloud models 
helps manage uncertainty and imprecision in data 
analysis, significantly reducing false positive rates 
compared to traditional IDS. 

 Real-Time Detection: The model's design principles 
ensure fast processing times, making it capable of real-
time intrusion detection, which is crucial for 
maintaining the security of dynamic virtual 
environments. 

 Scalability and Adaptability: The hybrid approach of 
combining swarm intelligence with fuzzy logic makes 
the model more robust and adaptable to evolving cyber 
threats, ensuring better performance in large-scale and 
complex virtual environments. 

The subsequent sections of this paper are structured as 
follows: 

 Literature Review: Discusses the application of 
Artificial Bee Colony (ABC) algorithms in detecting 
Distributed Denial-of-Service (DDoS) attacks within 
virtual environments and highlights the need for further 
optimization. 
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 Methodology: Describes the development process of the 
DABCO_CM model, detailing its design principles, 
components, and integration of ABC and cloud model 
algorithms. 

 Simulation and Testing: Explains the simulation 
environment and the datasets used to evaluate the 
model, including performance metrics and evaluation 
parameters. 

 Results and Discussion: Presents the simulation results, 
comparing the performance of the proposed model 
against existing models, and discusses the findings. 

 Conclusion and Future Work: Summarizes the study's 
contributions, highlights the model's effectiveness, and 
suggests directions for future research. 

II. LITERATURE REVIEW 

The application of Artificial Bee Colony (ABC) algorithms 
in detecting DDoS attacks within virtual environments is a 
relatively familiar area with limited research. Despite its proven 
effectiveness, particularly in filtering and mitigating attacks, 
there is a recognized need for further research to optimize ABC 
algorithm convergence in large-scale virtualized settings. 
Studies by [6] and [15] collectively highlight the need to 
enhance ABC algorithms to improve their robustness and 
scalability in complex virtualized environments [6], [8]. 
Effective intrusion detection in virtual environments has been 
the focus of numerous studies [4][5], highlighting the need for 
innovative approaches to overcome the limitations of 
traditional IDS [14]. The study in [1] highlighted the substantial 
threat posed by distributed denial of service (DDoS) attacks to 
network security in cloud computing. The study employed a 
deep learning classifier to differentiate between attacked and 
non-attacked data. The proposed FS-WOA–DNN framework 
effectively protected against DDoS attacks, achieving a better 
detection accuracy, outperforming other existing DDoS 
detection models. The research in [13] addressed the impact of 
DoS and DDoS attacks on cloud services. Using artificial 
immune systems, they identified attack characteristics, 
achieving high detection accuracy and low false alarm rates. 
This method effectively maintained cloud service availability, 
reducing financial losses and preserving reputations. Fig. 1 
shows existing model. 

A. Real-Time Intrusion Detection 

Real-time intrusion detection requires systems capable of 
processing large volumes of data quickly and accurately [2] 
highlight the importance of high-performance algorithms in 
achieving timely threat detection [7], [8]. They emphasize that 
traditional methods often fall short due to their inability to 
handle the dynamic nature of modern cyber threats effectively 
[9]. 

B. Artificial Bee Colony Algorithm 

The Artificial Bee Colony (ABC) algorithm, proposed by 
[4] [6] have shown promise in various optimization problems, 
including intrusion detection. Its ability to efficiently search for 
optimal solutions makes it suitable for enhancing IDS 
performance. The study in [18] further explore the application 
of ABC in optimizing feature selection and classification tasks, 

demonstrating its potential for improving IDS accuracy and 
efficiency. 

 
Fig. 1. The existing model (Agarwal et al. 2022). 

 
Fig. 2. Proposed model. 

Fig. 2 shows proposed model and Fig. 3 depicts flowchart 
of the proposed model. 

C. Cloud Model Algorithms 

Cloud models, which integrate fuzzy logic and probability 
theory, offer a powerful tool for handling uncertainty and 
imprecision in data analysis. The studies in [6][10][14][15] 
discuss the application of cloud models in intrusion detection, 
highlighting their capability to improve detection accuracy by 
managing uncertainties. Their research underscores the benefits 
of combining cloud models with other optimization techniques 
to enhance IDS performance. 

Africa Center of Excellence, OAU ICT-driven Knowledge OAK Park, 
Obafemi Awolowo University, Ile-Ife, Nigeria 
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D. Integrated Approaches 

Integrating the ABC algorithm with cloud models has been 
explored to address the limitations of each technique 
individually. The studies in [6][16] present a hybrid approach 
that combines swarm intelligence with fuzzy logic to improve 
IDS performance. Their study demonstrates that such 
integration can offer a more robust and adaptable solution for 
real-time intrusion detection. 

III. METHODOLOGY 

The development of the DABCO_CM model involves 
several key steps to integrate the Artificial Bee Colony (ABC) 
algorithm with cloud model algorithms, aiming to enhance real-
time intrusion detection in virtual environments: 

A. Objectives and Requirements 

The primary objectives for real-time intrusion detection are 
to achieve high accuracy, minimize false alarms, and ensure 
fast processing times. Requirements include the ability to 
handle large volumes of data generated in virtual environments 
and adapt to evolving cyber threats. The DABCO_CM model 
is designed to meet these objectives by combining advanced 
optimization techniques with robust data handling capabilities. 

B. Design Principles 

The DABCO_CM model is built on the principles of swarm 
intelligence and fuzzy logic. The ABC algorithm is used to 
optimize feature selection and classification processes, 
enhancing the model’s ability to identify relevant patterns and 
anomalies. Cloud model algorithms are integrated to manage 
uncertainty and provide a probabilistic framework for intrusion 
detection. 

C. Components 

The DABCO_CM model consists of the following 
components: 

 Feature Selection Module: Utilizes the ABC algorithm 
to select the most relevant features for intrusion 
detection. This module aims to improve detection 
accuracy and reduce computational overhead. 

 Classification Module: Applies machine learning 
techniques to classify intrusion attempts based on 
selected features. This module uses advanced 
algorithms to enhance the accuracy of threat detection. 

 Cloud Model Integration: Incorporates cloud models 

to handle uncertainty and improve detection accuracy. 

The cloud model algorithms provide a probabilistic 

approach to managing imprecise data and enhancing 

overall system performance. 

D. Proposed Model Design 

The proposed model integrates the Artificial Bee Colony 
(ABC) optimization algorithm and the Cloud Model algorithm 
to enhance intrusion detection in virtual environments. 

1) Network traffic: Network traffic refers to the flow of 

data across a computer network, encompassing all the data sent 

and received by devices connected to the network. 

2) Basic network feature selection: Feature selection 

involves choosing a subset of relevant features for a machine 

learning model using methods like filter, wrapper, and 

embedded techniques. This balance ensures the model's 

effectiveness.  Fig. 4 shows diagrammatic representation of the 

proposed model. 

 
Fig. 3. Flowchart of the proposed model. 
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Fig. 4. Diagrammatic representation of the proposed model.

3) Decentralized decision-making with ABC and cloud 

model: The ABC algorithm, inspired by bee foraging, and the 

Cloud model, which handles uncertainty, collaboratively 

improve system performance by enabling autonomous and 

informed decision-making. 

4) ABC training with cloud model and pheromone 

communication: Combining the ABC algorithm with the Cloud 

model and pheromone communication enhances decision-

making and collaboration among agents, leading to better 

performance in virtual environments. 

5) Exploration and exploitation of ABC and cloud model: 

The ABC algorithm optimizes solutions by mimicking bee 

behavior, while the Cloud model leverages distributed 

computing. This integration enables efficient resource 

allocation and problem-solving. 

6) Feedback mechanisms of ABC and cloud model: ABC 

and Cloud models use feedback to improve decision-making 

and predictions. The ABC algorithm relies on bee feedback, and 

the Cloud model refines its functions based on various inputs. 

7) Network profiles: Network profiles represent behavioral 

patterns of networks. By analyzing these profiles with ABC 

optimization and Cloud Model, intrusion detection systems can 

identify suspicious activities. 

8) Best solution found and attack detected: Integrating 

ABC and Cloud models optimizes solutions and enhances 

system security by detecting potential attacks in virtual 

environments. The framework combined the ABC algorithm 

and the Cloud Model algorithm to create an optimized model 

with the following key elements: 

a) Objective: The primary goal of the framework had 

been to develop a highly efficient intrusion detection model by 

integrating the ABC algorithm and the Cloud Model algorithm. 

b) Feature selection: To improve the accuracy of 

intrusion detection, the framework had utilized the ABC 

algorithm to optimize the feature selection process. This 

involved selecting the most relevant features that significantly 

contributed to identifying intrusions. An effective method to 

achieve feature selection for improving intrusion detection 

accuracy is to employ machine learning techniques such as 

recursive feature elimination (RFE). 

c) Uncertainty dandling: The Cloud Model algorithm 

had played a vital role in handling uncertainties associated with 

intrusion detection. It combined probability-based reasoning, 

adaptive exploration, dynamic solution adjustment, ensemble 

techniques, and continuous learning for robust and adaptive 

solutions in the face of uncertainty. 

d) Integration: The ABC and Cloud Model algorithms 

had been seamlessly integrated into a unified framework. The 

ABC algorithm optimized the feature selection procedure, 

while the Cloud Model algorithm addressed uncertainty 

reasoning. ABC algorithm scouts for the most promising 

features, much like bees searching for the best flowers. The 

Cloud Model carefully examines those features to assess their 

uncertainty, ensuring a reliable selection. By working together, 

they create a robust decision-making framework that considers 

both feature relevance and potential uncertainties. 

e) Real-Time detection and response: One of the key 

objectives of the DABCO_CM framework has been to enable 

real-time detection of intrusions. It has empowered the system 

to promptly identify and respond to both known and unknown 

intrusions occurring in the virtual environment. This capability 

enhanced the system's security by enabling swift and effective 

countermeasures against potential threats as they occur. 

f) Evaluation: The effectiveness of the DABCO_CM 

framework had been evaluated using various metrics, such as 

intrusion identification, detection precision, and response time. 

These evaluations provided validation of the framework's 

performance and reliability. The DABCO_CM framework, 

leverage the strengths of the ABC algorithm and the Cloud 

Model algorithm. By optimizing feature selection, handling 

uncertainties, and facilitating real-time intrusion detection, this 

framework aimed to enhance the overall effectiveness of 

intrusion detection systems in virtual environments. 
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E. Simulation and Testing 

This methodology delved into the complexities of creating 
a groundbreaking system that seamlessly integrated the 
capabilities of Artificial Bee Colony (ABC) optimization with 
Cloud Model-based techniques to handle imprecise data. 
Datasets, specifically UNSW_NB15, were used to simulate two 
classifiers (ANN and DNN). These classifiers were developed 
and saved as models in the Google Research Collaboration 
Environment, and relevant performance metrics were utilized. 
The ABC optimization for intrusion detection in a virtual 
environment used 100 random population initializations within 
bounds. It ran 10 times for a fixed number of iterations, with 
the dimensionality of the problem space varying. Customizing 
parameters was essential for effective optimization, with 
performance evaluated using benchmark functions and real 
intrusion detection data. 

F. Model Formulation of the Proposed Model 

The mathematical representation of the Developed 
Artificial Bee Colony Optimization Based on Cloud Model 
(DABCO_CM) involved expressing the optimization 
procedure using mathematical equations. This formulation 
combined the core concepts of the Artificial Bee Colony (ABC) 
algorithm and the Cloud Model algorithm to detect intrusions 
in a virtual environment. During the initialization phase, the 
population's food sources were randomly created and allocated 
to the employed bees as in Eq. (1), [6]: 

𝑋𝑖
𝑗
= 𝑋𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑(0,1)(𝑋𝑚𝑎𝑥

𝑗
− 𝑋𝑚𝑖𝑛

𝑗
)  (1) 

Fig. 5 shows Mapping of bee colony concepts to intrusion 
detection in virtual environments and Table 1 depicts Mapping 
of Bee Colony Concepts to Intrusion Detection in Virtual 
Environments. 

 
Fig. 5. Mapping of bee colony concepts to intrusion detection in virtual 

environments. 

The upper and lower limits of the solution vectors are 
denoted by 𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛 respectively in Eq. (2). 

𝑉𝑖
𝑗
= 𝑋𝑖

𝑗
+ 𝜑𝑖

𝑗
(𝑋𝑖

𝑗
− 𝑋𝑘

𝑗
)      (2) 

Subsequently, the comparison of 𝑉𝑖 to 𝑋𝑖 is made, and the 
foraging bee employs a selection mechanism prioritizing the 
food source with higher fitness, as expressed in Eq. (3). 

𝑓𝑖𝑡𝑖 = {

1

1+𝑓1
             𝑓1 ≥ 0

1 + 𝑎𝑏𝑠(𝑓1)  𝑓1 < 0
                     (3) 

This chosen food source, "𝑋𝑖," was then updated in the same 
way as the working bees, determined by its probability value 
"P" as defined in Eq. (4) and the given expression. 

𝑃 =  
0.9𝑓𝑖𝑡(𝑋1)
𝑁𝑒
𝑚𝑎𝑥
𝑚=1

𝑓𝑖𝑡(𝑋𝑚)

+ 0.1       (4) 

The formulation of the cloud model could be expressed as 
follows in Eq. (5), [6]: 

∀𝑋 𝜖 𝑈 →  𝜇(𝑋) ∈ {0,1}        (5) 

Each droplet is uniquely identified by its index 𝑖, and N 
indicates the total number of such droplets. 

𝐸𝑛𝑖
1 = 𝑁(𝐸𝑛,𝐻𝑒2)  (6) 

𝐸𝑛𝑖
1 represents a property associated with the cloud droplet 

𝑖. It is derived as a random value from a normal distribution 
with mean 𝐸𝑛 and variance. 

𝐻𝑒2. 𝑥𝑖 = 𝑁(𝐸𝑥, (𝐸𝑛𝑖
1)2)           (7) 

This equation defines the 𝑥 -coordinate of the cloud droplet 
𝑖. It is generated as a random value from a normal distribution 

with mean 𝐸𝑥 and variance (𝐸𝑛𝑖
1)2. 

𝜇𝑖 = exp {−
(𝑥𝑖−𝐸𝑥)

2(𝐸𝑛𝑖
1)
2         (8) 

This equation defines the μ-coordinate (or y-coordinate) of 
the cloud droplet 𝑖 . It is calculated using the exponential 
function of the negative of the difference between 𝑥𝑖 and 𝐸𝑥, 

divided by 2(𝐸𝑛𝑖
1)2. 

𝑋𝐼 = 𝐸𝑥 ± √−2 ln(𝜇) ∗ 𝐸𝑛𝑖
1   (9) 

The derivation of this equation involves solving for 𝑿𝑰 from 
the expression of the exponential distribution in Eq. (8). 

{
 
 

 
 

          𝑁𝑒 
𝐸𝑥 =  max 𝑓𝑖𝑡𝑖
                𝑖 = 1

𝐸𝑛 =
𝐸𝑥−𝑓𝑖𝑡𝑖

12

𝐻𝑒 =
𝐸𝑛

3

   (10) 

Eq. (10) is derived to define parameters (𝐸𝑥, 𝐸𝑛, 𝐻𝑒) in the 
ABC algorithm using the cloud model. The derivation 
emphasizes exploitation by setting 𝐸𝑥 as the maximum fitness. 
𝐸𝑛 introduces variability based on fitness differences, and 𝐻𝑒 
contributes to overall variability. This formulation enhances 
exploration and exploitation for effective optimization. Table I 
shows Mapping of Bee Colony Concepts to Intrusion Detection 
in Virtual Environments. 
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{
 
 

 
 

            𝑁𝑒 
𝐸𝑥 =    min 𝑓𝑖𝑡𝑖
                𝑖 = 1

𝐸𝑛 =
𝑓𝑖𝑡𝑖−𝐸𝑥

12

𝐻𝑒 =
𝐸𝑛

3

   (11) 

Eq. (11) is derived to enhance the ABC algorithm using the 
cloud model, emphasizing less proficient individuals by 
choosing 𝐸𝑥  as the minimum fitness. The formulation 

promotes exploration and diversification for a more 
comprehensive search. Therefore, Eq. (10) is designed to 
exploit the best solutions by focusing on the maximum fitness, 
improving optimization by refining the search around the most 
promising solutions while Eq. (11) is designed to explore the 
search space by focusing on the minimum fitness, encouraging 
diversification and a comprehensive search for potentially 
better solutions. 

TABLE I. MAPPING OF BEE COLONY CONCEPTS TO INTRUSION DETECTION IN VIRTUAL ENVIRONMENTS

Concept (Bee Colony) Concept (Intrusion Detection) Description Layer 

Hierarchy of Roles Network Layer, Application Layer, Intrusion Detection 

System Layer 

Levels of security architecture - 

Individual Bee/Group with Defined 

Function 

VM, Network Device, Software Application Elements within the virtual environment - 

VM1, VM2, VM3, VM4 Specific Virtual Machines Individual VMs within the environment - 

Employed Bee (EB) Actively Engaged VM VM searching for potential attack patterns Layer 1 

Onlooker Bee (OB) Monitoring VM VM learning from employed bees' findings Layer 2 

Scout Bee (SB) Searching VM VM looking for new attack patterns or 

vulnerabilities 

Layer 3 

Search Looking for Something Process of finding something (nectar or 
vulnerabilities) 

Layer 1, 
Layer 3 

Nectar (NT) Network Traffic (NT) Collected data - 

Location (L) Log Files Source of information about potential threats Layer 2 

Explore Scanning and Analyzing Discovering something (nectar or threats) Layer 1, 
Layer 3 

Report Communicating Information Sharing discoveries (waggle dance or alerts) Layer 2, 

Layer 3 
 

𝑃 = exp {=  (𝑥−𝐸𝑥)
2

2(𝐸𝑛1)2
}  (12) 

Eq. (12) is derived by adapting the probability density 
function of a normal distribution to formulate the probability 
(𝑃) of selecting an individual bee based on its position (𝑥) in 
relation to cloud model attributes (𝐸𝑥, 𝐸𝑛1). 

{
𝐸𝑥 =  𝑋𝑖

𝑗

𝐸𝑛 = 𝑒𝑥
𝐻𝑒 =  𝐸𝑛

10

    (13) 

Eq. (13) in the cmABC algorithm derives 𝑬𝒙 as the current 

position of food sources (𝑿𝒊
𝒋
), En as a dynamic variable (𝒆𝒙), 

and 𝑯𝒆 as one-tenth of 𝑬𝒏. This formulation emphasizes the 
current position, adaptability, and variability in the cloud 
model, enhancing exploration and exploitation. In this scenario, 
𝑋𝑖 represented the current position of the food sources, where j 
belonged to the set {1, 2, ..., D}, and 𝑒𝑥 was a variable. 

{
𝐸𝑛1 = 𝐸𝑛,𝐻𝑒2

𝑉𝑖
𝑗
= 𝑁(𝐸𝑥, 𝐸𝑛𝑖2)

       (14) 

Eq. (14) introduces variability in the cmABC algorithm by 

defining 𝐸𝑛1  as 𝐸𝑛 with 𝐻𝑒2 and 𝑉𝑖
𝑗
 as a normal distribution 

with mean 𝐸𝑥  and variance 𝐸𝑛𝑖2 . This enhances exploration 
and adaptability, crucial for optimal solution search. 

𝑒𝑥 =  −(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)(𝑡/𝑇𝑚𝑎𝑥)
2   (15) 

Eq. (15) dynamically adjusts 𝑒𝑥  in the cmABC algorithm. 

It uses a quadratic function (𝑡/𝑇𝑚𝑎𝑥)
𝟐 with a scaled coefficient 

−(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛). The adjustment evolves with the iteration 
count for improved solution accuracy and controlled 
exploration. 

{

𝐸𝑥 = 𝑋𝑗
𝑖

𝐸𝑛 =  2
3
|𝑋𝑗

𝑖
  −  𝑋

𝑗
𝑘 |

𝐻𝑒 =  𝐸𝑛
10

   (16) 

Eq. (16) in the cmABC algorithm is derived to define cloud 
model attributes. 𝐸𝑥  depends on food source positions in a 
specific dimension, 𝐸𝑛  incorporates variability between 
positions, and 𝐻𝑒  contributes proportionally to overall 
variability, enhancing exploration and exploitation. 

G. Feature Selection 

There were 42 features in both the trained and tested 
datasets, and all of these features were relevant in building the 
model. Some features needed to be removed from the datasets 
to avoid affecting the model's performance. To determine the 
relevance of each feature to the target feature, an entropy-based 
algorithm (mutual information gain) was used to rank the 
features according to their effectiveness in building the model. 
Features with non-zero mutual information gain [17] were 
initially selected to build the model, while the remaining 
features were discarded. 
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H. Model Performance Metrics Evaluation Using Parameters 

The following performance metrics were used to evaluate 
the model: 

1) Accuracy: this is the ratio of correctly classified positive 

and negative tuples to the total number of traffic connections. It 

can be expressed mathematically in Eq. (17) as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
   (17) 

where TP = True Positive: The number of positive tuples 
correctly classified by the predictive model, 

TN= True Negative: The number of negative tuples 
correctly classified by the predictive model,  

FP = False Positive: The number of positive tuples 
incorrectly classified by the predictive model and  

FN = False Negative: The number of negative tuples 
incorrectly classified by the predictive model. 

2) Sensitivity: this is the proportion of actual positives 

which are predicted positive. Therefore, it measures the 

effectiveness of the model in predicting positive classes. It is 

used to determine the false positive rate of the model. It is 

defined in Eq. (18) as 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃+ 𝐹𝑁)
  (18) 

3) Specificity: this is the proportion of actual negatives 

which are predicted negative. Therefore, it measures the 

effectiveness of the model in predicting negative classes. It is 

used to determine the false negative rates of the model.  It is 

defined in Eq. (19) as 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+ 𝐹𝑃)
      (19) 

I. Model performance metrics evaluation using graphical 

tools 

The performance of the model was also evaluated using the 
following graphical tools: 

1) Confusion Matrix: A confusion matrix is a matrix whose 

rows represents the positive and negative values predicted by 

the classifier and columns represents the actual positive and 

negative values. 

2) Receiver operative curve (ROC): The receiver operative 

curve evaluates the false positive rates represented on the Y-axis 

and the true positive rates represented on the X-axis generated 

during the classification stage. The Area Under the Curve 

(AUC) shows how well the classifier performs in terms of these 

two variables (false positive and true positives). The closer it is 

to 1 the better. 

IV. RESULTS AND DISCUSSION 

A. Simulation Environment 

In the study, models were simulated using the Google 
Research Collaboration Environment. An online Python 
environment, Colab, facilitated the creation of texts, codes, and 

the execution of codes to generate output. Python machine 
learning tools, such as Scikit-learn, pandas, numpy, matplotlib, 
seaborn, hyperopt, joblib, and scikit-fuzzy libraries, were 
utilized for dataset analysis, model construction, saving model 
as pickle file, and evaluating model performance: 

 Scikit-learn: Used for machine learning algorithms and 
model evaluation. 

 pandas: Utilized for data manipulation and analysis. 

 numpy: Used for numerical operations. 

 matplotlib and seaborn: Applied for data visualization. 

 hyperopt: Employed for hyperparameter optimization. 

 joblib: Used for saving models as pickle files. 

 scikit-fuzzy: Utilized for fuzzy logic and operations. 

These tools were integral in constructing various models, 
with the highest-performing model selected for final 
implementation. 

B. Feature Selection 

There were 42 features in both the trained and tested 
datasets, and all of these features were relevant in building the 
model. Some features needed to be removed from the datasets 
to avoid affecting the model's performance. To determine the 
relevance of each feature to the target feature, an entropy-based 
algorithm (mutual information gain) was used to rank the 
features according to their effectiveness in building the model. 
Features with non-zero mutual information gain were initially 
selected to build the model, while the remaining features were 
discarded. 

V. SIMULATION RESULT 

The training dataset, which constituted 32%, and the testing 
dataset, making up 68% of the total dataset, were input into the 
Google Research Collaboration Python Environment. This 
environment clustered the dataset into two categories and 
labeled them as 0 and 1. These labeled datasets were employed 
to construct six models, allowing them to learn from previous 
data and enabling them to classify future network instances as 
either normal or attack instances. After successfully 
constructing the models, instances from the testing dataset were 
utilized to assess their performance. The proposed models 
successfully classified attack instances as true positives (TP) 
and accurately classified normal instances as true negatives 
(TN). However, the results also indicated that attack instances 
were misclassified as normal instances (false negatives - FN), 
and normal instances were misclassified as attack instances 
(false positives - FP). The proposed DNN model was able to 
classify 112, 694 instances as attacks (TP), while 50, 183 were 
correctly classified as normal (TN). The results also showed 
that 6, 647 attack instances were misclassified as normal (FN), 
while 5, 817 normal instances were misclassified as attacks 
(FP). The proposed ABC_DNN model was able to classify 117, 
380 instances as attacks (TP), while 48, 120 were correctly 
classified as normal (TN). The results also showed that 4, 215 
attack instances were misclassified as normal (FN), while 4,626 
normal instances were misclassified as attacks (FP). The 
proposed DABCO_CM_DNN model was able to classify 
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119250 instances as attacks (TP), while 52, 562 were correctly 
classified as normal (TN). The results also showed that 91 
attack instances were misclassified as normal (FN), while 3, 
438 normal instances were misclassified as attacks (FP). 

VI. MODEL EVALUATION 

In evaluating the performance of the models, four 
evaluation metrics were used: accuracy, sensitivity, specificity, 
and error. All these performance metrics were calculated using 
the results of the confusion matrix table, which were 
categorized as true negative, true positive, false positive, and 
false negative, respectively. 

VII. PERFORMANCE EVALUATION AND BENCHMARKING 

The models developed and benchmarked in this study, 
including DNN, ABC_DNN, and DABCO_CM, were 
evaluated based on accuracy, sensitivity, specificity, and error 
rate. These models were compared to existing models presented 
in the literature, specifically those by [1] and [13], which 
employed techniques such as Feature Selection using Whale 
Optimization Algorithm (FS-WOA) and Artificial Immune 
Systems (AIS). The FS-WOA-DNN model presented by [1] 
achieved an accuracy of 95.35%, sensitivity of 96.9%, 
specificity of 90.71%, and an error rate of 0.0928. In 
comparison, Prathyusha et al. (2021) focused on ANN, SVM, 
and AIS models, with the AIS model showing the highest 
performance, achieving an accuracy of 96.56%, sensitivity of 
96.4%, specificity of 91.9%, and an error rate of 0.0713. In this 
study, the DNN classifier was chosen and optimized using the 
Artificial Bee Colony (ABC) algorithm, resulting in the 
ABC_DNN model. The DABCO_CM model was further 
developed by integrating a cloud model based on fuzzy logic, 
enhancing the performance of the ABC_DNN model. The 
performance of the three proposed models demonstrated 
competitive results. The DNN model achieved an accuracy of 
92.89%, sensitivity of 94.43%, specificity of 89.61%, and an 
error rate of 0.0711. The ABC_DNN model improved upon this 
with an accuracy of 94.38%, sensitivity of 96.53%, specificity 
of 91.22%, and an error rate of 0.0562. The DABCO_CM 
model emerged as the best performer, achieving an accuracy of 
97.98%, sensitivity of 99.92%, specificity of 93.86%, and an 
error rate of 0.0202. These results clearly show that the 
DABCO_CM model surpasses the FS-WOA-DNN model in 
terms of accuracy, sensitivity, and specificity. The 
DABCO_CM model's sensitivity of 99.92% indicates its strong 
ability to identify both known and unknown attacks, while its 
specificity of 93.86% underscores its effectiveness in 
accurately distinguishing between attacks and benign activities. 
In contrast, the ABC_DNN model, while exhibiting high 
sensitivity at 96.53%, had a lower specificity of 91.22%, 
suggesting that there is still potential for improvement in 
differentiating benign instances more effectively. These 
performance metrics highlight the strengths of both 
DABCO_CM and ABC_DNN, where DABCO_CM achieved 
the highest overall performance across all metrics. The 
differences in dataset characteristics (UNSW-NB15 used in this 
study versus datasets like KDD Cup 99 and CICIDS2017 in 
previous studies) and simulation environments (Google Colab 
in this study versus MATLAB and CloudSim) contribute to 
variations in model performance. Despite these differences, the 

results clearly indicate that DABCO_CM provides superior 
capabilities in accurately detecting and classifying attacks, 
addressing critical challenges in virtual machine security. The 
results obtained from the confusion matrices of the proposed 
models, categorizing actual and predicted attacks for 
performance metric evaluation, are presented in Table II and 
performance metrics are presented in Table III. 

TABLE II. CONFUSION METRICES RESULTS 

 TP TN FP FN 

DNN 112694 50183 5817 6647 

 

ABC_DNN 117380 48120 4626 4215 

 

DABCO_CM_DNN 119250 52562 3438 91 

 

Fig. 6 shows DNN Model Confusion Matrix, Figure 7 
shows Line Graph for DNN model, Figure 8 shows ABC_DNN 
model confusion matrix, Fig. 9 displays Line Graph for 
ABC_DNN model, Fig. 10 shows DABCO_CM_DNN model 
confusion matrix and Fig. 11 shows Line Graph for 
DABCO_CM_ DNN model.   The confusion matrices of three 
important models and their corresponding line graphs are 
displayed below. 

The new models were found to be impressive and superior 
to the existing system. The definitions of metrics and 
benchmarked results were displayed below. 

 Accuracy: Accuracy measured the overall correctness of 
a classification model. 

Accuracy = 
TP+TN

TP+TN+FP+FN
 

 Sensitivity (Same as Detection Rate/Recall): Sensitivity 
measured the proportion of actual positive instances 
correctly classified. 

Sensitivity = 
TP

TP+𝐹𝑁
 

TABLE III. PERFORMANCE METRICS 

Model Accuracy Sensitivity Specificity Error 

Rate 

Agarwa et al. 

(2022) 

    

FS-WOA-

DNN 

95.35% 96.9% 90.71% 0.0928 

Prathyusha et 

al. (2021) 

    

AIS 96.56% 96.4% 91.9% 0.0713 

Proposed 

Models 

    

DNN 92.89% 94.43% 89.61% 0.0711 

ABC_DNN 96.38% 96.53% 91,22% 0.0562 

DABCO_CM 97.98% 99.92% 93.86% 0.0202 

 Specificity: Specificity measured the proportion of 
actual negative instances correctly classified. 
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Specificity = 
T𝑁

TN+𝐹𝑃
 

 Error: Error is the difference between an observed or 
predicted value and the true or expected value. 

Error (residual) = Observed Value - Predicted Value. 

 

Fig. 6. DNN model confusion matrix. 

 

Fig. 7. Line graph for DNN model. 

 
Fig. 8. ABC_DNN model confusion matrix. 

 
Fig. 9. Line Graph for ABC_DNN model. 

 
Fig. 10. DABCO_CM_DNN model confusion matrix. 

 

Fig. 11. Line graph for DABCO_CM_DNN model. 

VIII. CONCLUSION AND FUTURE WORK 

This study introduces a pioneering Intrusion Detection 
System (IDS) to tackle growing security challenges in 
virtualized computing. The proposed system integrates the 
Artificial Bee Colony (ABC) optimization algorithm with a 
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fuzzy logic-based Cloud Model and a Deep Neural Networks 
(DNN) classifier, resulting in a highly effective approach for 
categorizing various cyber threats. When compared with the 
existing Feature Selection Whales Optimization Algorithm 
with Deep Neural Network Model (FS-WOA_DNN), the newly 
developed Artificial Bees Optimization-based Cloud Algorithm 
with Deep Neural Networks Model (DABCO_CM_DNN) 
shows a 3.02% increase in sensitivity, a 2.63% increase in 
accuracy, a 3.15% increase in specificity, and a slight decrease 
in error rate. This indicates that the DABCO_CM model 
significantly enhances real-time intrusion detection by 
achieving high accuracy, lowering false positives, and ensuring 
efficient processing. Future research will aim to refine the 
model, explore additional bio-inspired techniques, and expand 
its application across different virtualized environments. Real-
world deployment and integration with existing security 
systems will also be pursued to validate the model’s 
effectiveness and practicality, ensuring its continued relevance 
in combating evolving cyber threats. 
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