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Abstract—Nowadays, pest infestations cause significant 

reductions in agricultural productivity all over the world. To 

control pests, farmers often apply excessive volumes of pesticides 

due to the difficulty of manually detecting the pest at an early 

stage. Their overuse of pesticides has led to environmental 

pollution and health risks. To address these challenges, many 

novel systems have been developed to identify pests early, allowing 

farmers to be alerted about the exact location where pests are 

detected. However, these systems are constrained by their lack of 

real-time detection capabilities, limited mobile integration, ability 

to detect only a small number of pest classes, and the absence of a 

web-based monitoring system. This paper introduces a pest 

detection system that leverages the lightweight YOLO deep 

learning framework and is integrated with a web-based 

monitoring platform. The YOLO object detection architectures, 

including YOLOv8n, YOLOv9t, and YOLOv10-N, were studied 

and optimized for pest detection on smartphones. The models were 

trained and validated using merging publicly datasets containing 

29 pest classes. Among them, the YOLOv9t achieves top 

performance with a mAP@0.5 value of 89.8%, precision of 87.4%, 

recall of 84.4%, and an inference time of 250.6ms. The web-based 

monitoring system enables dynamic real-time monitoring by 

providing farmers with instant updates and actionable insights for 

effective and sustainable pest management. From there, farmers 

can take necessary actions immediately to mitigate pest damage, 

reduce pesticide overuse, and promote sustainable agricultural 

practices. 
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I. INTRODUCTION 

Agriculture is a key activity that provides humans with 
basic needs including food, medicine, shelter, and clothing. 
Recent research indicates that 35-40% of the world's land area 
is used for agricultural purposes [1]. With the global population 
expected to grow to approximately 9.7 billion by 2050, the 
demand for agricultural output has never been higher [2]. 
Unfortunately, various factors continue to influence 
agricultural productivity, leading to reduced yields and placing 
farms at serious risk. According to the Food and Agricultural 
Organization (FAO), insects, pests, illnesses, and weed 
infestations are estimated to damage around 40% of agricultural 
production per year [3]. The main reason behind this issue is 

that the control levels of pests are not always attained due to the 
absence of an accurate diagnosis at the right moment. 

Today, many farmers still depend on traditional methods 
that involve manual field inspections by themselves to 
determine signs of infestation. In simple words, they rely on 
their own knowledge and experience when faced with a pest 
infestation. Due to the wide variety of crops and pests, manual 
detection is challenging and error prone [4]. Aside from that, 
the frequent emergence and recurrence of pests has further 
hampered the effectiveness of traditional early detection 
measures [5]. Also, insufficient knowledge leads the farmers to 
use a variety of pesticides as their primary method for 
eliminating pests in order to protect crops and increase the 
quality of their yields [6]. Excessive use or misuse of pesticides 
can harm the ecosystem and potentially cause long-term 
diseases like cancer, respiratory infections and fetal deaths [7]. 
To reduce the widespread reliance on harmful pesticides, 
modern technology plays a key role in detecting pests at an 
early stage in agriculture. 

Over the past few years, deep learning has changed the field 
of machine learning with the potential in revolutionizing 
numerous applications, particularly in object detection [8]. This 
has opened the possibility for innovative solutions that could 
tackle various agricultural challenges. Nevertheless, many 
existing systems designed for pest detection in agriculture have 
significant limitations. They often lack real-time processing 
capabilities, have minimal mobile integration, and can detect 
only a limited number of pest classes. Hence, most current 
systems do not perform well under diversified agricultural 
settings. Moreover, although some of these systems have 
already been integrated into smartphones, they lack a web-
based monitoring system with real-time updating and tracking 
features necessary for effective pest management. 

To overcome these challenges, one of the most prominent 
deep learning algorithms, YOLO (You Only Look Once), is 
remarkable with its ability to perform quick detection with high 
accuracy [9]. It is well-suited for applications that need rapid 
and accurate object detection, which includes identifying pests 
in agriculture. The YOLO family of algorithms has been very 
successful in many studies including those in agriculture. 
Among these, YOLOv8 has proven to be especially effective 
with many studies demonstrating its capability to balance 
detection accuracy with computational efficiency, making it a 
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widely accepted choice [10]. However, YOLOv9 and 
YOLOv10 which have been recently released in the market 
have not been applied yet to the field of pest detection. 
Therefore, this study involves training and evaluating these 
versions including YOLOv8, YOLOv9, and YOLOv10, to 
determine which model is most effective for pest detection in 
agricultural settings. 

The proposed implementation of a pest detection system 
based on YOLO is a step into a new era in agriculture. This 
paper aims to develop a pest detection system using an optimal 
lightweight YOLO framework integrated with a smartphone for 
real-time detection of multiple pest classes and coupled with a 
web-based monitoring system. Farmers can easily monitor their 
crops by positioning their smartphones in various areas of their 
fields, with data being sent to a server for analysis. The web-
based system then allows farmers to observe real-time results 
and receive instant recommendations for effective pest 
mitigation. 

The rest of the paper is arranged as follows. Section II 
reviews related works in pest detection and classification. 
Section III covers the materials and methods used, including the 
methodology, pest image datasets, preprocessing techniques, 
YOLOv8, YOLOv9, and YOLOv10 model implementations, 
and the relevant evaluation metrics. Section IV describes the 
experimental setup and presents the results and discussion. The 
deployment of the optimal model in real-time applications for 
pest detection is discussed in Section V. Section VI outlines the 
limitations encountered during the study. Section VII concludes 
the paper and suggests enhancements for future work. 

II. SIMILAR WORK 

Recent advancements in deep learning and mobile 
technologies have significantly influenced the development of 
real-time image-based pest detection systems in agriculture 
[11]. Many studies have explored different CNN architectures 
for mobile devices. However, these systems often encounter 
limitations including restricted pest class detection, hardware 
constraints, and challenges in achieving real-time performance 
[12] [13]. Various researchers have investigated object 
detection techniques for identifying insect pests, each 
contributing unique approaches and highlighted persistent 
challenges. 

For instance, Fuentes et al. integrated SSD, R-CNN, and 
Faster R-CNN deep learning models with a VGG network and 
residual networks to recognize nine different types of tomato 
plant pests and diseases [14]. Although this approach achieved 
a mean Average Precision (mAP@0.5) value of 83.06%, it was 
confined to a limited number of pest classes, which limited its 
application to more diversified agricultural settings. Lin et al. 
employed Fast R-CNN to develop an anchor-free regional 
convolutional network using an end-to-end model approach 
[15]. The model is able to categorize 24 pest classes and 
achieved a mAP@0.5 value of 56.4% and a recall of 85.1%. 
These results surpassed the performance of traditional Fast R-
CNN in controlled environments. However, the method's 
applicability in real-time, dynamic agricultural environments 
remains uncertain. Another study conducted by Sabanci et al. 
constructed a convolutional recurrent hybrid network to 
identify wheat grain that has been affected by pests [16]. They 

combined AlexNet with bidirectional short-term memory 
(BiLSTM). The model achieved a remarkable cumulative 
accuracy of 99.50%. While this demonstrates high precision for 
specific tasks, the system’s scope was limited to wheat grain 
since it can only distinguish between two types such as healthy 
wheat grains and those damaged by sunn pests (SPD). Also, it 
did not address broader pest detection needs across various 
crops. 

In another effort, Koklu et al. devised a deep feature 
extraction method based on CNN-SVM [17]. The researchers 
classified five distinct species of grapevine leaves and achieved 
an accuracy of 97.60%. Although effective for leaf 
classification, this method has yet to be tested in the more 
complex domain of insect pest detection. Another notable 
example is that Li et al. created a real-time system for 
identifying pests and plant disease through the implementation 
of Faster R-CNN [18]. Their approach effectively detected 
unseen rice diseases in video footage but focused primarily on 
disease rather than insect pest detection. 

Additionally, a visual flying insect detection system based 
on the YOLO architecture was introduced by Zhong et al. using 
a Raspberry Pi [19]. A cumulative accuracy of 92.50% and a 
classification accuracy of 90.18% are both achieved by the 
system. Although this system showed promise in identifying 
flying insects, the limited processing power of Raspberry Pi 
constrained its application in more computationally intensive 
tasks. In addition, Arunabha M. Roy and Jayabrata Bhaduri 
introduced an enhanced version of YOLOv4, called Dense-
YOLOv4, by incorporating DenseNet into its backbone to 
improve the feature transfer and reuse [20]. This model 
achieved an impressive mAP@0.5 value of 96.20% in 
identifying various phases of mango growth within a 
complicated orchard setting. However, its heavy computational 
demands pose challenges for deployment on mobile devices. 
Although it achieved an impressive recognition rate of 99.3% 
within an average processing time of 44 milliseconds, but these 
models were only specialized for a single type of crop, which 
limits their broader applicability. 

In recent years, the YOLO algorithm family has evolved 
significantly to enhance real time object detection for 
lightweight and mobile friendly applications. For example, a 
YOLOv5-S model was developed by Thanh-Nghi Doan for 
real-time insect detection and was integrated into resource-
constrained mobile devices [21]. The model performance was 
reported up to 70.5% classification accuracy on the Insect10 
dataset and 42.9% on the IP102 larger dataset. These results 
prove that the model performs reasonably well on smaller 
dataset but struggles to achieve the accuracy required for 
effective agricultural pest detection as the size and complexity 
of the pest dataset increases. 

Moreover, an updated version, YOLOv8, is widely adopted 
due to its faster and more accurate performance in real-time 
object detection tasks. Additionally, its architecture allows for 
easy refinement and customization to adapt to specific tasks. 
For example, Yin Jian Jun enhanced the YOLOv8 model by 
refining its feature extraction algorithm and reducing the 
number of parameters count to a achieve lightweight model 
design [22]. Through the refined training techniques, the model 
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achieved a remarkable mAP@0.5 value of 97.3%. for detecting 
eight different species of rice pest. Although YOLOv8 has now 
been widely applied in many studies, it was usually applied to 
detect only a few pest species, hence making its application 
disadvantageous in more complicated agricultural settings. 

Recently, the latest works in the YOLO series, such as 
YOLOv9 and YOLOv10, have come up to introduce more 
features that bring greater performance at lesser computational 
overhead. YOLOv9 is upgraded with enhancements like 
Generalized Efficient Layer Aggregation Network (GELAN) 
and Programmable Gradient Information (PGI), which are at 
the root of improved detection performance [23].  On the other 
hand, YOLOv10 has been developed by the Tsinghua 
University researchers with the aid of the Ultralytics Python 
package, introducing an innovative technique to real-time 
detection by solving post-processing issues and model 
architecture shortcomings that were present in previous YOLO 
versions [24]. By omitting non-maximum suppression (NMS) 
and refining several aspects of the model architecture, 
YOLOv10 achieves cutting edge results at a substantially lower 
computational cost. However, despite these advancements, the 
practical application of both YOLOv9 and YOLOv10 in 
detecting agricultural pests is yet to be applied. 

Although these studies have made remarkable progress, 
numerous challenges are still unsolved. First, the majority of 
these current models can only detect a few numbers of pest or 
object classes. This limits the application of these methods in 
different agricultural scenarios. Also, since their datasets are 
small with fewer classes, their data preprocessing techniques 
such as data augmentation and clean processes are often simpler 
and overlooked. This deficiency can hinder accurate detection 
as the size and variety of classes increase. Third, the real-time 
deployment of these models in a mobile device is generally 
hindered by hardware limitations. In many cases, the real-time 
detection capabilities are frequently restricted by the 
computational demands of deep learning models [25]. 
Therefore, there is a great need for a lightweight model in terms 
of overcoming these weaknesses. Although some have been 
developed and integrated with smartphones, such systems are 
not capable of providing real-time updates and comprehensive 
pest detection across multiple classes. Additionally, they also 
lack a web-based platform responsible for pest data monitoring 
and analysis. 

To address the limitations identified in existing studies, this 
paper aims to develop a pest detection system using a 
lightweight and optimized YOLO deep learning framework, 
integrated into mobile devices and complemented with a web-
based monitoring system. 

The main contributions of this paper are as outlined below: 

 Employing advanced data augmentation techniques, 
including hue adjustment, horizontal flipping, and 
scaling, to significantly increase dataset diversity and 
enhance the model's ability to classify pests in complex 

agricultural conditions. 

 Introducing a lightweight YOLO-based deep learning 
model that is optimized to detect a broader range of pest 
classes compared to previous studies, balancing accuracy 
and efficiency for real-time smartphone applications in 
diverse agricultural settings. 

 Integrating the optimized model with smartphone 
technology for real time detection of multiple pest 
classes, making advanced pest detection tools more 
accessible and user-friendly. 

 Creating an interactive web-based monitoring platform 
that offers dynamic real-time updates of pest detection 
and provides sustainable recommendations for effective 
pest management strategies. 

III. MATERIALS AND METHODS 

A. Methodology 

The proposed methodology follows a structured approach 
to develop an effective pest detection model for agricultural 
applications as shown in Fig. 1. At the beginning, the 
researchers collected multiple pest image datasets and merged 
them to form a unified dataset through several preprocessing 
processes such as data standardization. Data standardization is 
a technique to ensure that datasets are in a consistent and 
standardized format for configuring the YOLO format. 
Secondly, the researchers preprocessed the dataset by 
employing data augmentation techniques including hue 
adjustments, image translation, horizontal flipping and scaling 
to expand the training dataset for enhancing its variability. This 
step aims to prepare a dataset that can be used to train a robust 
detection model capable of generalizing across diverse 
agricultural scenarios. Following this, the images were 
annotated with bounding boxes to label pest instances 
accurately. After that, the researchers split the dataset by 
allocating 80% of the dataset for the model training and 20% 
for the model validation. Researchers then proceeded to train 
various YOLO object detection models with the pest training 
dataset. The trained models were fine-tuned to optimize their 
performance across different YOLO versions. Then, 
researchers validated and evaluated the performance of each 
base and fine-tuned model by using the shared validation 
dataset. During validation, new pest images that were not 
previously used for training or fine-tuning were introduced to 
assess the models' effectiveness with unseen data. The 
researchers also integrated each model into the smartphone 
application for measuring their real-time performance to assess 
its capabilities in a practical setting. By comparing the results, 
the optimal model was identified for practical field adaptation. 
This model was then deployed within a smartphone application 
to enable real-time pest detection in agricultural environments. 
Finally, a web-based monitoring system was developed to 
provide dynamic and real-time updates on pest detection. This 
allows users like farmers to monitor captured pest data and 
receive actionable insights for effective pest management. 
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Fig. 1. Proposed methodology to develop the pest detection system. 

B. Data Collection 

To train and evaluate the pest detection model, the 
researchers utilized two publicly available datasets from 
Roboflow platform as a source in the experimental study: 
YOLOIP1 dataset and Pest_Dataset_3 [26] [27]. Since both 
datasets are different in terms of the structures and class 
distribution, the datasets were subjected to a data 
standardization process to ensure uniformity. Both datasets 
were reorganized to have consistent directory structures, file 
naming conventions, and annotation formats. After 
standardization, the researchers removed the redundant classes 
to avoid confusion due to the similar morphological features. 
For example, classes like “white margined moth” and 
“margined moth” which differed only slightly in color were 
removed. The researchers then merged the datasets manually 
by selecting the most relevant pest classes that are frequently 
encountered in agricultural scenarios for accurate detection. 
The final merged dataset comprised 29 pest classes. Each class 
contains a significant number of images as detailed in Table I. 
However, the merged dataset contained fewer images than the 
expected threshold of a total of 10k images. Therefore, data 
augmentation techniques were employed in the next step to 
expand the dataset’s size. 

TABLE I. FINAL CLASS DISTRIBUTION OF THE MERGED DATASET 

Index Pest Class Total Count 

0 Alfafa plant bug 99 

1 Ampelophaga 126 

2 Aphids 886 

3 Beet spot flies 79 

4 Flea beetle 414 

5 Grain spreader thrips 118 

6 Grub worm 522 

7 Icerya-purchasi-Maskell 73 

8 Limacodidae 95 

9 Lycorma delicatula 111 

10 Lygus 318 

11 Mole cricket 888 

12 Oides decempunctata 77 

13 Paddy stem maggot 94 

Index Pest Class Total Count 

14 Peach moth 223 

15 Pieries canidia 147 

16 Plant hopper 856 

17 Protaetia 180 

18 Red spider 245 

19 Rice gall midge 244 

20 Rice leaf caterpillar 235 

21 Rice leaf roller 233 

22 Rice leafhopper 242 

23 Rice shell pest 115 

24 Rice stemfly 108 

25 Weevil 650 

26 Wireworm 464 

27 Xylotrechus 68 

28 Yellow rice borer 591 

Total number of images 8,501 

C. Data Augmentation 

To improve the generalization capabilities of models, 
several data augmentation techniques were applied to the 
dataset. Firstly, the researchers adjusted the hue, saturation and 
value (HSV) of images to randomly alter the color intensity and 
brightness in a manner to mimic different environmental 
conditions. Secondly, the researchers shifted the images along 
the x and y axes through image translation. This step is to 
provide different angles of the same image. They also applied 
horizontal flipping to mirror the images for creating variations 
in how objects are oriented. Finally, they resized images while 
keeping their aspect ratios through image scaling process to 
ensure the model remains robust and can handle differences in 
object size effectively. Fig. 2 illustrates examples of the 
augmented images. 

After completing the data augmentation process, the final 
dataset was prepared with sufficient images and met the 
expected requirements to have at least 10,000 images for 
training the robust model. The details of the dataset after 
augmentation are presented in Table II. 

 
Fig. 2. Samples of augmented pest images. 
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TABLE II. DETAILS OF DATASET 

Dataset Aspect Number 

Number of classes 29 

Number of images 14,147 

Number of instances (objects labeled within the images) 17,856 

D. Data Annotation 

After data augmentation, the researchers carefully reviewed 
the images to ensure that each one was annotated and assigned 
with a pest class ID correctly. A deep learning model such as 
YOLO model learn features from the labeled images [28]. 
Therefore, the correctness of feature labeling will greatly 
influence the performance of training model especially 
considering the similarities between many pest species. If any 
discrepancies were found such as incorrect class labels or 
annotations, the researchers made corrections to those 
particular images using the Roboflow platform. The annotation 
process involved normalizing the coordinates between 0 and 1 
to accommodate varying image sizes. After this process, the 
annotations across the entire dataset were consistent and 
accurate. Each annotation was recorded in a text file containing 
the following details for each bounding box as shown in Eq. (1). 
A sample of a pest image with the correct annotation bounding 
box is shown in Fig. 3. 

(𝑖𝑑𝑐𝑙𝑎𝑠𝑠, 𝑥𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑦𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) 

 
Fig. 3. Visualization of labeled images. 

E. Data Splitting 

Before training the YOLO model, the researchers split the 
dataset into training and validation sets with an 8:2 ratio. This 
step is to ensure that the model is trained on a diverse and 
representative set of images while also being evaluated on a 
separate validation set. The summary of final dataset aspects is 
shown in Table III. It is well prepared for the next stages of 
model training and evaluation. 

TABLE III. SUMMARY OF FINAL DATASET ASPECTS 

Dataset Aspect Details 

Number of classes 29 

Image Size 640x640 pixels 

Training Images and Label Files 10,097 

Validation Images and Label Files 4,050 

Total Instances in Training 12,658 

Total Instances in Validation 5,198 

F. Overview of YOLO Model 

The YOLO algorithm, which stands for “You Only Look 
Once” was first introduced by Joesph Redmon et al. in 2015 

[29]. It is renowned for its efficiency in object detection since 
it can identify objects and their positions by examining the 
entire image only once. As seen in Fig. 4 below, the YOLO 
algorithm divides the image into N grids, each of which 
contains an equal-sized S × S region.  Each grid is responsible 
for detecting and locating the object within it. 

Unlike the conventional methods that employ two-stage 
object detectors, YOLO treats object detection as a regression 
problem [30]. It predicts bounding boxes around the objects and 
their corresponding class probabilities straight from the feature 
maps in a single pass. This means that YOLO can recognize 
objects in an image faster than the two-stage detector. 
Therefore, the YOLO algorithm is considered as a one-stage 
detector that prioritizes speed and is thus ideal for real-time 
object detection. 

 
Fig. 4. Illustration of the YOLO framework for object detection [31]. 

1) YOLOv8: YOLOv8 is the most popular and widely used 

model in the whole You Only Look Once (YOLO) series. It 

signifies a notable development in the domain of object 

detection with its remarkable enhancements in both speed and 

accuracy through extensive architectural optimization and 

innovation. The architecture of YOLOv8 is depicted in Fig. 5. 

The YOLOv8 model considers the multi-scale attributes of 

objects by using three detection layers at different scales to 

handle objects that come in different sizes [32]. This method 

allows the model to efficiently manage objects of varying sizes 

and proportions. 

In its architectural design, there are three main components 
including Backbone, Neck and Head [33]. The Backbone is 
used for extracting multi-scale features to ensure the model can 
perceive inputs across different scales. It includes modules such 
as Conv, C2f, and SPPF (Spatial Pyramid Pooling-Fast). In the 
Neck section, YOLOv8 combines features without enforcing 
standardized channel dimensions by integrating a path 
aggregation network and a feature pyramid network [34] [35]. 
This method reduces both the number of parameters and the 
overall tensor size. To simplify anchor box operations and 
prevent displacement issues, YOLOv8 adopts a decoupled head 
method to separate the detection and classification head [36]. 
The Head component is responsible for tasks such as bounding 
box regression, target classification and confidence assessment 
in the prediction layers. It ultimately delivers precise detection 
results through the use of non-maximum suppression. 
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To support diverse computational requirements, YOLOv8 
is available in five versions as detailed in Table IV [37]. Each 
model comes with different parameter counts and resource 
consumption due to differences in width and depth parameters. 
The higher the scale of the model is, the higher the detection 
performance is as the parameter count and resource 
consumption rise. The MS COCO dataset is frequently used for 
benchmarking object detection models. By comparing the 
performance between models on the MS COCO dataset, the 
researchers selected YOLOv8n as their baseline model for this 
study because of its relatively low parameter count and resource 
efficiency. FLOPs (Floating Point Operations per Second) are 
listed in Table IV to indicate the computational complexity of 
each model. 

 

Fig. 5. Model architecture of YOLOv8 [38]. 

TABLE IV. YOLOV8 VARIANT COMPARISON 

Model 
Params  

(M) 

FLOPs 

(B) 

YOLOv8n 3.2 8.7 

YOLOv8s 11.2 28.6 

YOLOv8m 25.9 78.9 

YOLOv8l 43.7 165.2 

YOLOv8x 68.2 257.8 

2) YOLOv9: YOLOv9 is the most recent addition to the 

YOLO versions in 2024. It introduces two major innovations 

such as the Programmable Gradient Information (PGI) and the 

Generalized Efficient Layer Aggregation Network (GELAN).  

The PGI framework tackles the challenges of information 

bottlenecks in deep neural networks and makes supervision 

mechanisms compatible with lightweight architecture [39]. By 

leveraging PGI, substantial accuracy improvements can be 

achieved in both complex and lightweight architectures. This is 

due to the fact that PGI mandates reliable gradient information 

during training, which in turn enhances the architecture’s 

ability to learn and make predictions. 
The GELAN architecture was designed with a purpose of 

improving the performance of objection detection tasks by 
lightweight and high efficiency footprint [40]. Because of its 
strong performance across different depth configurations and 
computational blocks, it is well-suited for deployment on 
various inference devices including devices that are resource 
constrained. In simple words, PGI and GELAN solved the 
issues related to computational efficiency and information loss. 
By integrating both GELAN and PGI frameworks, YOLOv9 
represents a substantial advancement in lightweight object 
detection. 

Table V presents five YOLOv9 variants along with their 
parameter count and FLOPs as assessed on the MS COCO 
Dataset [41]. YOLOv9t was chosen as another baseline model 
for this study due to its lowest parameter count and 
computational demand. 

TABLE V. YOLOV9 VARIANT COMPARISON 

Model 
Params  

(M) 

FLOPs 

(B) 

YOLOv9t 2.0 7.7 

YOLOv9s 7.2 26.7 

YOLOv9m 20.1 76.8 

YOLOv9c 25.5 102.8 

YOLOv9e 58.1 192.5 

3) YOLOv10: In 2024, another groundbreaking 

development emerged with the introduction of YOLOv10. This 

version further expands the boundaries of real-time object 

detection by resolving its inherent difficulties. It sets a new 

benchmark by completely eliminating non-maximum 

suppression (NMS) during post-processing, thereby enhancing 

inference speed [42]. The model introduces a novel dual-label 

assignment system to maintain an optimal balance between 

accuracy and speed. By integrating one-to-one and one-to-

many label assignments, YOLOv10 benefits from rich 

supervisory signals during its training, ensuring computational 

efficiency while acquiring important detection features without 

any post-preprocessing NMS [43]. 

Furthermore, the enhancements in YOLOv10's architecture 
involve the implementation of spatial-channel decoupled down 
sampling, lightweight classification heads, and rank-guided 
block design [42]. Each of these additions lowers the 
computational requirements and the number of parameters. 
These enhancements enhance both the efficiency and 
scalability of the model over a wide range of devices from 
powerful servers to edge devices with limited processing power 
and storage capacity. The performance of both the lightweight 
and heavyweight versions of YOLOv10 model on the COCO 
dataset is compared in Table VI [44]. YOLOv10-N with the 
least parameters and computational resource is selected for this 
study as the baseline model for YOLOv10. 
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TABLE VI. YOLOV10 VARIANT COMPARISON 

Model 
Params  

(M) 

FLOPs 

(G) 

YOLOv10-N 2.3 6.7 

YOLOv10-S 7.2 21.6 

YOLOv10-M 15.4 59.1 

YOLOv10-B 19.1 92.0 

YOLOv10-L 24.4 120.3 

YOLOv10-X 29.5 160.4 

G. Evaluation Metrics 

In object recognition methods, the detection result and 
classifier performance are the two key indices used to evaluate 
models [45]. Mean Average Precision (mAP) is a widely used 
metric for evaluating the overall performance of object 
detection systems [46]. The mAP score is derived by comparing 
the predicted bounding boxes with the ground truth boxes. 
Higher mAP score indicates more accurate model detections. 
This metric is calculated using several sub-metrics: Precision, 
Recall, Intersection over Union (IoU), and data from the 
Confusion Matrix. 

To evaluate the detection result, Intersection over Union 
(IoU) metric is employed. IoU measures the ratio of the 
intersection to the union of predicted and ground truth bounding 
boxes [47]. It indicates how closely the predicted bounding box 
matches the ground truth. When the IoU value exceeds a 
threshold of 0.5, the detection is regarded as a True Positive 
(TP). Conversely, if the IoU value falls below 0.5, the detection 
is considered a False Positive (FP). A False Negative (FN) 
occurs when the model fails to detect an object that exists in the 
ground truth. A True Negative (TN) refers to the model 
correctly identifying that no object exists in a region where 
there is indeed no object. The concept of IoU is illustrated in 
Fig. 6, where the rectangles R1 and R2 serve as bounding 
frames for the object's ground truth and prediction. 

 
Fig. 6. Concept of Intersection over Union (IoU). 

For accessing the performance of the classifier, a Confusion 
Matrix is used. It categorizes the model's predictions into four 
attributes [48]: 

 True Positives (TP): The model correctly identifies and 
matches a label with the ground truth data. 

 True Negatives (TN): The model correctly identifies that 
a label is absent when it is indeed not present in the 
ground truth data. 

 False Positives (FP): The model incorrectly predicts a 
label that is not actually present in the ground truth data. 

 False Negatives (FN): The model fails to detect a label 
that is present in the ground truth data. 

Using the IoU value along with the Confusion Matrix 
outputs (TP, TN, FP, and FN), key performance metrics such as 
Precision, Recall, and mAP are calculated. All these metrics are 
used to assess the overall performance of object detection 
models by calculating them using Formulas (1) to (3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘
𝑘=𝑛
𝑘=1   

APk = the average precision of class k, and n = number of 
classes 

IV. RESULT AND DISCUSSIONS 

A. Experimental Setup and Training 

In this study, the training and evaluation of the selected 
YOLO models like YOLOv8n, YOLOv9t and YOLOv10-N 
were conducted on Google Colab using Nvidia L4 GPU with 
24 GB of RAM. The dataset which had already been 
preprocessed and split into 80:20 ration in previous phase was 
used to ensure consistent and high-quality input for model 
training. Each YOLO model was trained on the training set 
which consists of 10,097 pest images while their performances 
were evaluated on the validation set containing 4,050 images. 

To ensure a fair comparison, all YOLO models were trained 
using the same hyperparameters. The model was created using 
Pytorch and runs for 150 epochs to train with a batch size of 16, 
learning rates of 0.001 and default dropout rates provided by 
the YOLO framework. Adam optimizer which is known as 
“Adaptive Moment Estimation” was used as the optimization 
algorithm. After training the model, a fine-tuning process was 
conducted using a grid search method to optimize each model. 
Grid search method tuned the model by testing out all 
combinations of critical parameters [49]. This fine-tuning 
process ran for 10 additional epochs to refine the models’ 
performance. 

During training, the YOLO models will automatically 
perform in-training evaluations at the end of each epoch using 
the validation set. The metrics reflect the ongoing learning 
process and may result in slightly higher performance or 
overfitting due to continuous weight adjustments [50]. Once 
training is completed, the reseachers conducted a post-training 
evaluation to access the model’s generalization ability by using 
the same validation set in a static environment with fixed 
weights. 
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The experimental configuration for training and testing 
these models is detailed in Table VII. 

TABLE VII. EXPERIMENTAL CONFIGURATION 

Configuration Params (M) 

Platform Google Colab 

CPU 2.0 Intel Xeon (R) CPU @ 2.20GHz × 12 

GPU Nvidia L4 (24 GB RAM) 

Accelerated Environment Nvidia L4 CUDA 12.2 

Operating System Ubuntu 22.04.3 LTS 

CUDA Version 12.2 

PyTorch GPU Availability True 

PyTorch CUDA Version 12.4 

B. Experimental Results 

1) Training loss: Training loss is the first focus of this 

analysis. It encompasses multiple components including 

classification loss (cls_loss), distribution focal loss (dfl_loss) 

and bounding box loss (box_loss). Each component of the 

training loss tracks the degree of error in the model’s outputs. 

It provides insights into how well the models fit the data and 

aids in determining the best weights [51]. As shown in Fig. 7 to 

Fig. 9, all training loss curves demonstrate a clear downward 

trend throughout the training process. This means that the 

proposed models excel at learning early and detecting pests 

during the training time. As the networks undergo further 

epochs, the classification loss declines slowly. The models 

converged after 140 epochs. This enabled researchers to 

conclude that 150 epochs was a good parameter for building the 

model. 

 

Fig. 7. Classification loss graph. 

As can be seen in Fig. 7 to Fig. 9, YOLOv8n and YOLOv9t 
architecture have achieved similar and lower training losses 
when compared to the YOLOv10-N. This observation could be 
attributed to the increased complexity of YOLOv10-N 
architecture. YOLOv10-N learns more intricate patterns from 
the data to handle the object detection tasks. However, this 
statement does not imply that other models are inadequate. 
Further analysis is required to determine a balanced approach 

where the model performs well on both training data and real-
world data. 

 
Fig. 8. Distribution focal loss graph. 

 
Fig. 9. Bounding box loss graph. 

2) Performance evaluation: To further evaluate the 

models’ performance, the researchers compared the baseline 

and fine-tuned versions of YOLOv8n, YOLOv9t, and 

YOLOv10-N using the statistical indicators which includes 

precision, recall, mAP@ 0.5 and mAP@ 0.5:0.95. The results 

of models are presented in Table VIII and illustrated in Fig. 10. 

All fine-tuned models demonstrate improvements across all the 

key metrics. As depicted by the graph below, the YOLOv8n 

model does not top in any of these metrics but shows 

improvement over its baseline. In fact, it has actually achieved 

quite good results when not compared with other versions. 

Moving to the YOLOv9t model, the fine-tuned version attained 

the highest precision of 94.2% and the best value for recall of 

91.4%. This points to a high effectiveness of the YOLOv9t 

model in doing accurate pest identifications. Meanwhile, the 

fined-tuned version of YOLOv10-N model achieved the 

highest mAP@0.5 at 96.7% and mAP@0.5:0.95 at 77.1%. This 

means that the YOLOv10-N model performs exceptionally well 

in detecting pests across various IoU thresholds. It is 

particularly robust for handling complex detection tasks. From 

this point onward, all references to the YOLO models will 

pertain to their fine-tuned versions. 
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TABLE VIII. RESULTS OF YOLOV8N, YOLOV9T AND YOLOV10-N ON VALIDATION DATASET DURING TRAINING 

Models Precision Recall mAPval@0.5 mAPval@0.5:0.95 

YOLOv8n Baseline 0.853 0.847 0.881 0.629 

YOLOv9t Baseline 0.85 0.823 0.874 0.637 

YOLOv10-N Baseline 0.884 0.829 0.884 0.643 

YOLOv8n Fine-tuned 0.932 0.891 0.951 0.733 

YOLOv9t Fine-tuned 0.942 0.914 0.962 0.751 

YOLOv10-N Fine-tuned 0.94 0.93 0.967 0.771 
 

 
Fig. 10. Comparison of YOLOv8n, YOLOv9t, and YOLOv10-N on 

validation data during training. 

3) Confusion matrix analysis: To better demonstrate the 

results, confusion metrices were employed to evaluate and 

visualize the performance of the trained YOLO models. A 

confusion matrix describes the actual and predicted object 

classification of a classification system [52]. The significance 

of the prediction results is indicated by the diagonal line in the 

central of the confusion matrix. The horizontal line shows false 

negatives, whereas the vertical line shows false positives. The 

darker the blue in the matrix, the higher the count of correct 

classifications. Based on the confusion matrices presented in 

Fig. 11 to Fig. 13, all YOLO models have done quite well with 

high accuracy values among their predictions. 

4) Post-Training evaluation: The previous validation 

results were all generated automatically by YOLO itself during 

training. These in-training metrics tend to be higher due to the 

dynamic adjustments the models make during the learning 

process such as ongoing weights and gradient updates. 

Therefore, the researchers reassessed the models using the same 

validation set containing 4050 images in a post-training static 

environment where the weights and parameters of each model 

were fixed. The results are presented in Table IX. It reveals that 

the YOLOv9t model emerged as the top performer with the 

highest scores in Precision at 87.4%, Recall at 84.4%, 

mAP@0.5 at 89.8%, and mAP@0.5:0.95 at 66.7%. It was 

followed closely by the YOLOv10-N and YOLOv8n model. 

These findings indicate that although models perform excellent 

during training and validation, but their performance changes 

when they are exposed to new data. The causes for this change 

in performance might be due to slight overfitting during 

training or the complexities of the real-world image 

environments. Sample predictions made by each model on test 

data are presented in Fig. 14, Fig. 15, and Fig. 16. 

 
Fig. 11. Confusion matrix of YOLOv8n. 

 
Fig. 12. Confusion matrix of YOLOv9t. 
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Fig. 13. Confusion matrix of YOLOv10-N. 

TABLE IX. RESULTS OF YOLOV8N, YOLOV9T AND YOLOV10-N ON 

VALIDATION DATASET IN POST-TRAINING PHASE 

Models Precision Recall mAPval@0.5 

mAPval@0.5:0.95 

YOLOv8n  0.859 0.827 0.871 0.618 

YOLOv9t 0.874 0.844 0.898 0.667 

YOLOv10-

N 
0.873 0.837 0.883 0.639 

 
Fig. 14. Sample predictions made byYOLOv8n. 

5) Real-world application testing: Strong performance of 

model during training and validation does not always guarantee 

equal success in real-world situations [53]. To further evaluate 

the YOLO models, they were converted to TensorFlow Lite 

format and integrated into a smartphone application. The 

testing was performed on a smartphone configured as detailed 

in Table X. This setup was used to evaluate the average 

inference time of each model by running them 10 times on a set 

of printed pest photos placed in a plant environment. The 

purpose of this test was to assess the models' practicality for 

real-time pest detection in agricultural fields. 

 
Fig. 15. Sample predictions made byYOLOv9t. 

 
Fig. 16. Sample predictions made byYOLOv10-N. 

As shown in the Table XI, lighter models like YOLOv9t 
recorded the fastest average inference time at 250.6ms, 
followed by YOLOv8n at 320.5ms and YOLOv10-N at 
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550.7ms. These results provide strong evidence that YOLOv9t 
is the optimal model to deploy on resource-constrained devices 
for achieving real-time detection in complex scenes. 

TABLE X. ANDROID DEVICE SPECIFICATIONS 

Component Specification 

Operating System Android 

Model Xiaomi 11T Pro 

RAM 16GB 

Internal Memory 129GB 

Chipset Snapdragon 888 5G (5 nm) 

CPU 
Octa-core (1x2.84 GHz Cortex-X1 & 3x2.42 GHz 

Cortex-A78 & 4x1.80 GHz Cortex-A55) 

GPU Adreno 660 

TABLE XI. AVERAGE INFERENCE TIME FOR EACH MODEL PERFORMED IN 

ANDROID APP (CALCULATED OVER 10 RUNS) 

Model Average Inference Time (ms) 

YOLOv8n 320.5 

YOLOv9t 250.6 

YOLOv10-N 550.7 

C. Discussion 

A summary of the overall results can be seen in Table XII. 
The YOLOv9t model outperformed the other proposed models 
by achieving the highest values in key metrics such as accuracy 
and speed. Among the models tested, YOLOv9t provided the 
best balance between accuracy and speed. Therefore, it can 
accurately detect various tiny pests in real-time within 
challenging agricultural environments. 

When compared the outcome of this study with recent 
studies as shown in Table XIII, it is evident that those models 

classified fewer object classes which ranged from 1 to 24 
classes. While several studies achieved over 90% accuracy, 
their focus was often limited to specific object categories such 
as detecting leaves or identifying the presence of certain pests. 
Although the proposed model does not achieve the highest 
accuracy, it still obtains a remarkable result with 89% accuracy. 
It is closely comparable to the best-performing models while 
handling a larger and more diverse range of pest species. 

The comparison also highlights the advantages of YOLOv9t 
over previous methods. For instance, Fuentes et al. and Lin et 
al. used SSD and Fast R-CNN, but these models struggled to 
detect a wide variety of pest classes. As a result, they achieved 
lower mAP scores and were less effective in diverse 
agricultural environments. Similarly, Sabanci et al.'s model 
demonstrated impressive precision. However, it was limited to 
binary classification for specific crops. This limitation 
restricted its overall versatility. Koklu et al. and Zhong et al. 
also made progress in tasks like leaf classification and insect 
recognition, but their models faced challenges due to a smaller 
number of pest classes and hardware limitations. 

In contrast, the proposed YOLOv9t model stands out by 
successfully detecting 29 different pest classes with an accuracy 
of 89.8% and an inference time of just 250.6ms. Its lightweight 
architecture and scalability make it well-suited for real-time 
applications across a range of agricultural settings. 
Furthermore, the conversion of the YOLOv9t model to 
TensorFlow Lite (TFLite) and its integration into a mobile 
application significantly enhance its deployment capabilities on 
resource-constrained devices. The TFLite model allows for 
faster and more efficient inference, enabling real-time pest 
detection directly on smartphones. This integration ensures that 
pest management can be carried out in the field, improving 
efficiency for farmers and agricultural workers. This model’s 
ability to overcome the limitations of earlier approaches 
highlights its practical advantages for pest management in real-
world agricultural environment. 

TABLE XII. OVERALL PERFORMANCE COMPARISON OF YOLOV8N, YOLOV9T AND YOLOV10-N USED IN THE EXPERIMENTAL STUDY 

Models Precision Recall mAPval@0.5 mAPval@0.5:0.95 Average Inference Time (ms) 

YOLOv8n 0.859 0.827 0.871 0.618 320.5 

YOLOv9t 0.874 0.844 0.898 0.667 250.6 

YOLOv10-N 0.873 0.837 0.883 0.639 550.7 

TABLE XIII. COMPARISON OF PEST DETECTION MODEL WITH PREVIOUS STUDIES 

Author & 

Reference Model 

Pest 

Classes 

Accuracy 

(%) 

Key Insights 

Fuentes et al. [14] 

SSD, R-CNN, Faster 

R-CNN 9 83.06 
Limited pest classes; lacks real-time performance. 

Lin et al. [15] Fast R-CNN 24 56.4 
High recall but poor mAP, unsuitable for real-time dynamic environments. 

Sabanci et al. [16] AlexNet + BiLSTM 2 99.5 
Extremely high precision but limited to specific crops and pests. 

Koklu et al. [17] CNN-SVM 5 97.6 

Effective for leaf classification; untested for insect pest detection or broader 

applications. 

Zhong et al. [19] YOLO + Raspberry Pi  1 90.18 
High accuracy but lacks scalability for detecting diverse pest classes. 

Thanh-Nghi Doan 

[21] YOLOv5-S 10; 102 70.5; 42.9 

Performs well on small datasets; struggles with complex datasets due to limited 

scalability. 
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Author & 

Reference Model 

Pest 

Classes 

Accuracy 

(%) 

Key Insights 

Yin Jian Jun [22] YOLOv8 8 97.3 
High accuracy but lacks scalability for detecting diverse pest classes. 

Proposed 
YOLOv8n YOLOv8n 29 87.1 

Provides balance between computational efficiency and detection performance; 

lower accuracy than YOLOv9t. 

Proposed 
YOLOv9t  YOLOv9t 29 89.8 

Achieves high accuracy and scalability; balances speed and accuracy 

effectively. 

Proposed 

YOLOv10-N  YOLOv10-N 29 88.3 

Higher computational complexity; excels in detecting complex patterns but 

slower inference speed. 

V. APPLICATION 

 

Fig. 17. Overview of the proposed lightweight mobile pest detection system with real-time monitoring. 

A. Deployment 

The YOLOv9t model was selected for deployment in the 
smartphone pest detection application due to its strong 
performance compared to other versions. The application 
detects pests in real-time but is programmed with a 10-second 
delay before sending the data to Firebase. This delay ensures 
that the pest remains on the plant and is not just passing by. 
Users can specify the crop area where the monitoring is taking 
place. Once the application detects one or more pests for 10 
seconds, it sends the detection result to the Firebase server 
where it integrates a web-based monitoring system. This setup 
allows the user to track which particular area of the crop is 
getting infected. By providing this information, users can 
evaluate the situation and take immediate action if necessary. 
An overview of the pest detection system is shown in Fig. 17. 

B. Example of Successful Pest Detection by YOLOv9t 

Fig. 18 below shows the predictions made by the YOLOv9t 
model integrated into a smartphone application for detecting 
pests in real-time. It performs well in correctly identifying 
various pests in a simulated plant environment. 

 
Fig. 18. Correct real-time predictions of pests using the YOLOv9t model 

integrated into a smartphone application in a simulated plant environment. 

By using the app, users can also upload pest images for 
detection. They can retrieve detailed information about that 
uploaded pest, including a description and recommendations 
for managing the pest. If the pest is not detectable by the model, 
user can even upload the image to Firebase for experts to further 
refine the capabilities of model in detecting new pests in future. 
The web-based monitoring system complements the app by 
providing real-time detection logs, pest summary details, 
analytics dashboard, and access to detailed pest information for 
recommended strategies. Fig. 19 to Fig. 24 illustrate these 
additional features of the pest detection system. 
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Fig. 19. Upload pest image feature. 

 

Fig. 20. Retrieved detailed information about the uploaded pest. 

 
Fig. 21. Web-based monitoring system displaying pest population trends. 

 
Fig. 22. Web-based monitoring system’s pest analytics dashboard. 

 
Fig. 23. Pest detection logs in the web-based monitoring system. 

 
Fig. 24. Example of detailed pest information for one particular pest provided 

by the web-based monitoring system. 

VI. LIMITATIONS AND POTENTIAL IMPROVEMENTS 

In this study, several limitations were identified that affect 
the detection performance of the integrated model within the 
application. One notable issue is when the pests overlap or 
move rapidly in the real-world condition. This makes the model 
difficult to detect pests and differentiate between them. As 
shown in Fig. 25, the integrated model successfully detects the 
aphids but fails to identify the mole cricket underneath. This 
results in false negative detection. Another challenge is that the 
model mistakes a leaf for aphids due to their similar color and 
shape. This misidentification affects the accuracy of the 
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detection especially when the environment closely resembles 
the pests. These limitations underscore the need for further 
refinement of models to improve detection accuracy in complex 
environments in future study. 

To address these issues, incorporating object tracking and 
motion filtering techniques could be beneficial. By using these 
methods, the model could track and identify pests even when 
they overlap or move rapidly. Expanding the dataset to include 
more diverse pest images and backgrounds could also help the 
model generalize better to handle a broader range of real-world 
conditions. 

 
Fig. 25. The integrated YOLOv9t model detecting aphids but missing the 

mole cricket and misidentifying a leaf as aphids. 

VII. CONCLUSION 

This paper presented the development of a YOLO-based 
pest detection system integrated with a smartphone for real-
time detection of multiple pest classes along with a dynamic 
web-based monitoring system for sustainable agriculture. The 
proposed system employs the YOLOv9t model due to its ability 
to strike a balance between computational resources, detection 
accuracy and speed. It has been shown to outperform similar 
systems by detecting a wider range of pests with fewer 
computational resources while achieving similar high detection 
accuracy. 

The improved results can be attributed to the lightweight 
architecture of the proposed YOLOv9t model. It ensures faster 
inference times for detecting different kinds of pests on mobile 
devices without compromising accuracy. The numerical results 
show that the proposed YOLOv9t model achieved a remarkable 

accuracy with an mAP@0.5 of 89.8%, an mAP@0.5:0.95 of 
66.7%, a Precision of 87.4%, a Recall of 84.4%, and an 
inference time of 250.6 ms. Also, the system enables farmers to 
monitor their crops by receiving instant updates through the 
web-based platform in real time. This combination allows for 
better pest management by providing detailed insights into pest 
activity across different fields. This approach offers notable 
advantages in terms of features, computational efficiency, 
practical implementation, and real-time detection speed. 

While some detection inaccuracies might still occur when 
pests are overlapping or when there are similar backgrounds, 
shapes, and colors, future improvements will focus on 
addressing these challenges.  The researchers plan to expand 
the dataset by including a wider variety of pest images taken 
from more diverse and complex environments. This will help 
the model better generalize to different real-world scenarios 
especially those with varying lighting conditions, backgrounds, 
and angles. Additionally, the researchers also plan to 
incorporate object tracking and motion filtering techniques to 
enable the model for tracking the pests more accurately even in 
situations where they overlap or move rapidly. These 
enhancements will improve the performance of the pest 
detection model in complex agricultural environments by 
ensuring higher detection accuracy and robustness in diverse 
pest management applications. 
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