
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

658 | P a g e

www.ijacsa.thesai.org

YOLO-Driven Lightweight Mobile Real-Time Pest

Detection and Web-Based Monitoring for Sustainable

Agriculture

Wong Min On1, Nirase Fathima Abubacker2

BSc in Data Analytics, Asia Pacific University of Technology & Innovation, Kuala Lumpur, Malaysia1

School of Computing, Asia Pacific University, Kuala Lumpur, Malaysia2

Abstract—Nowadays, pest infestations cause significant

reductions in agricultural productivity all over the world. To

control pests, farmers often apply excessive volumes of pesticides

due to the difficulty of manually detecting the pest at an early

stage. Their overuse of pesticides has led to environmental

pollution and health risks. To address these challenges, many

novel systems have been developed to identify pests early, allowing

farmers to be alerted about the exact location where pests are

detected. However, these systems are constrained by their lack of

real-time detection capabilities, limited mobile integration, ability

to detect only a small number of pest classes, and the absence of a

web-based monitoring system. This paper introduces a pest

detection system that leverages the lightweight YOLO deep

learning framework and is integrated with a web-based

monitoring platform. The YOLO object detection architectures,

including YOLOv8n, YOLOv9t, and YOLOv10-N, were studied

and optimized for pest detection on smartphones. The models were

trained and validated using merging publicly datasets containing

29 pest classes. Among them, the YOLOv9t achieves top

performance with a mAP@0.5 value of 89.8%, precision of 87.4%,

recall of 84.4%, and an inference time of 250.6ms. The web-based

monitoring system enables dynamic real-time monitoring by

providing farmers with instant updates and actionable insights for

effective and sustainable pest management. From there, farmers

can take necessary actions immediately to mitigate pest damage,

reduce pesticide overuse, and promote sustainable agricultural

practices.

Keywords—Pest detection; YOLO; deep learning; real-time

monitoring; smartphone application; web-based platform; object

detection; pest management; pesticide reduction; sustainable

agriculture

I. INTRODUCTION

Agriculture is a key activity that provides humans with
basic needs including food, medicine, shelter, and clothing.
Recent research indicates that 35-40% of the world's land area
is used for agricultural purposes [1]. With the global population
expected to grow to approximately 9.7 billion by 2050, the
demand for agricultural output has never been higher [2].
Unfortunately, various factors continue to influence
agricultural productivity, leading to reduced yields and placing
farms at serious risk. According to the Food and Agricultural
Organization (FAO), insects, pests, illnesses, and weed
infestations are estimated to damage around 40% of agricultural
production per year [3]. The main reason behind this issue is

that the control levels of pests are not always attained due to the
absence of an accurate diagnosis at the right moment.

Today, many farmers still depend on traditional methods
that involve manual field inspections by themselves to
determine signs of infestation. In simple words, they rely on
their own knowledge and experience when faced with a pest
infestation. Due to the wide variety of crops and pests, manual
detection is challenging and error prone [4]. Aside from that,
the frequent emergence and recurrence of pests has further
hampered the effectiveness of traditional early detection
measures [5]. Also, insufficient knowledge leads the farmers to
use a variety of pesticides as their primary method for
eliminating pests in order to protect crops and increase the
quality of their yields [6]. Excessive use or misuse of pesticides
can harm the ecosystem and potentially cause long-term
diseases like cancer, respiratory infections and fetal deaths [7].
To reduce the widespread reliance on harmful pesticides,
modern technology plays a key role in detecting pests at an
early stage in agriculture.

Over the past few years, deep learning has changed the field
of machine learning with the potential in revolutionizing
numerous applications, particularly in object detection [8]. This
has opened the possibility for innovative solutions that could
tackle various agricultural challenges. Nevertheless, many
existing systems designed for pest detection in agriculture have
significant limitations. They often lack real-time processing
capabilities, have minimal mobile integration, and can detect
only a limited number of pest classes. Hence, most current
systems do not perform well under diversified agricultural
settings. Moreover, although some of these systems have
already been integrated into smartphones, they lack a web-
based monitoring system with real-time updating and tracking
features necessary for effective pest management.

To overcome these challenges, one of the most prominent
deep learning algorithms, YOLO (You Only Look Once), is
remarkable with its ability to perform quick detection with high
accuracy [9]. It is well-suited for applications that need rapid
and accurate object detection, which includes identifying pests
in agriculture. The YOLO family of algorithms has been very
successful in many studies including those in agriculture.
Among these, YOLOv8 has proven to be especially effective
with many studies demonstrating its capability to balance
detection accuracy with computational efficiency, making it a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

659 | P a g e

www.ijacsa.thesai.org

widely accepted choice [10]. However, YOLOv9 and
YOLOv10 which have been recently released in the market
have not been applied yet to the field of pest detection.
Therefore, this study involves training and evaluating these
versions including YOLOv8, YOLOv9, and YOLOv10, to
determine which model is most effective for pest detection in
agricultural settings.

The proposed implementation of a pest detection system
based on YOLO is a step into a new era in agriculture. This
paper aims to develop a pest detection system using an optimal
lightweight YOLO framework integrated with a smartphone for
real-time detection of multiple pest classes and coupled with a
web-based monitoring system. Farmers can easily monitor their
crops by positioning their smartphones in various areas of their
fields, with data being sent to a server for analysis. The web-
based system then allows farmers to observe real-time results
and receive instant recommendations for effective pest
mitigation.

The rest of the paper is arranged as follows. Section II
reviews related works in pest detection and classification.
Section III covers the materials and methods used, including the
methodology, pest image datasets, preprocessing techniques,
YOLOv8, YOLOv9, and YOLOv10 model implementations,
and the relevant evaluation metrics. Section IV describes the
experimental setup and presents the results and discussion. The
deployment of the optimal model in real-time applications for
pest detection is discussed in Section V. Section VI outlines the
limitations encountered during the study. Section VII concludes
the paper and suggests enhancements for future work.

II. SIMILAR WORK

Recent advancements in deep learning and mobile
technologies have significantly influenced the development of
real-time image-based pest detection systems in agriculture
[11]. Many studies have explored different CNN architectures
for mobile devices. However, these systems often encounter
limitations including restricted pest class detection, hardware
constraints, and challenges in achieving real-time performance
[12] [13]. Various researchers have investigated object
detection techniques for identifying insect pests, each
contributing unique approaches and highlighted persistent
challenges.

For instance, Fuentes et al. integrated SSD, R-CNN, and
Faster R-CNN deep learning models with a VGG network and
residual networks to recognize nine different types of tomato
plant pests and diseases [14]. Although this approach achieved
a mean Average Precision (mAP@0.5) value of 83.06%, it was
confined to a limited number of pest classes, which limited its
application to more diversified agricultural settings. Lin et al.
employed Fast R-CNN to develop an anchor-free regional
convolutional network using an end-to-end model approach
[15]. The model is able to categorize 24 pest classes and
achieved a mAP@0.5 value of 56.4% and a recall of 85.1%.
These results surpassed the performance of traditional Fast R-
CNN in controlled environments. However, the method's
applicability in real-time, dynamic agricultural environments
remains uncertain. Another study conducted by Sabanci et al.
constructed a convolutional recurrent hybrid network to
identify wheat grain that has been affected by pests [16]. They

combined AlexNet with bidirectional short-term memory
(BiLSTM). The model achieved a remarkable cumulative
accuracy of 99.50%. While this demonstrates high precision for
specific tasks, the system’s scope was limited to wheat grain
since it can only distinguish between two types such as healthy
wheat grains and those damaged by sunn pests (SPD). Also, it
did not address broader pest detection needs across various
crops.

In another effort, Koklu et al. devised a deep feature
extraction method based on CNN-SVM [17]. The researchers
classified five distinct species of grapevine leaves and achieved
an accuracy of 97.60%. Although effective for leaf
classification, this method has yet to be tested in the more
complex domain of insect pest detection. Another notable
example is that Li et al. created a real-time system for
identifying pests and plant disease through the implementation
of Faster R-CNN [18]. Their approach effectively detected
unseen rice diseases in video footage but focused primarily on
disease rather than insect pest detection.

Additionally, a visual flying insect detection system based
on the YOLO architecture was introduced by Zhong et al. using
a Raspberry Pi [19]. A cumulative accuracy of 92.50% and a
classification accuracy of 90.18% are both achieved by the
system. Although this system showed promise in identifying
flying insects, the limited processing power of Raspberry Pi
constrained its application in more computationally intensive
tasks. In addition, Arunabha M. Roy and Jayabrata Bhaduri
introduced an enhanced version of YOLOv4, called Dense-
YOLOv4, by incorporating DenseNet into its backbone to
improve the feature transfer and reuse [20]. This model
achieved an impressive mAP@0.5 value of 96.20% in
identifying various phases of mango growth within a
complicated orchard setting. However, its heavy computational
demands pose challenges for deployment on mobile devices.
Although it achieved an impressive recognition rate of 99.3%
within an average processing time of 44 milliseconds, but these
models were only specialized for a single type of crop, which
limits their broader applicability.

In recent years, the YOLO algorithm family has evolved
significantly to enhance real time object detection for
lightweight and mobile friendly applications. For example, a
YOLOv5-S model was developed by Thanh-Nghi Doan for
real-time insect detection and was integrated into resource-
constrained mobile devices [21]. The model performance was
reported up to 70.5% classification accuracy on the Insect10
dataset and 42.9% on the IP102 larger dataset. These results
prove that the model performs reasonably well on smaller
dataset but struggles to achieve the accuracy required for
effective agricultural pest detection as the size and complexity
of the pest dataset increases.

Moreover, an updated version, YOLOv8, is widely adopted
due to its faster and more accurate performance in real-time
object detection tasks. Additionally, its architecture allows for
easy refinement and customization to adapt to specific tasks.
For example, Yin Jian Jun enhanced the YOLOv8 model by
refining its feature extraction algorithm and reducing the
number of parameters count to a achieve lightweight model
design [22]. Through the refined training techniques, the model

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

660 | P a g e

www.ijacsa.thesai.org

achieved a remarkable mAP@0.5 value of 97.3%. for detecting
eight different species of rice pest. Although YOLOv8 has now
been widely applied in many studies, it was usually applied to
detect only a few pest species, hence making its application
disadvantageous in more complicated agricultural settings.

Recently, the latest works in the YOLO series, such as
YOLOv9 and YOLOv10, have come up to introduce more
features that bring greater performance at lesser computational
overhead. YOLOv9 is upgraded with enhancements like
Generalized Efficient Layer Aggregation Network (GELAN)
and Programmable Gradient Information (PGI), which are at
the root of improved detection performance [23]. On the other
hand, YOLOv10 has been developed by the Tsinghua
University researchers with the aid of the Ultralytics Python
package, introducing an innovative technique to real-time
detection by solving post-processing issues and model
architecture shortcomings that were present in previous YOLO
versions [24]. By omitting non-maximum suppression (NMS)
and refining several aspects of the model architecture,
YOLOv10 achieves cutting edge results at a substantially lower
computational cost. However, despite these advancements, the
practical application of both YOLOv9 and YOLOv10 in
detecting agricultural pests is yet to be applied.

Although these studies have made remarkable progress,
numerous challenges are still unsolved. First, the majority of
these current models can only detect a few numbers of pest or
object classes. This limits the application of these methods in
different agricultural scenarios. Also, since their datasets are
small with fewer classes, their data preprocessing techniques
such as data augmentation and clean processes are often simpler
and overlooked. This deficiency can hinder accurate detection
as the size and variety of classes increase. Third, the real-time
deployment of these models in a mobile device is generally
hindered by hardware limitations. In many cases, the real-time
detection capabilities are frequently restricted by the
computational demands of deep learning models [25].
Therefore, there is a great need for a lightweight model in terms
of overcoming these weaknesses. Although some have been
developed and integrated with smartphones, such systems are
not capable of providing real-time updates and comprehensive
pest detection across multiple classes. Additionally, they also
lack a web-based platform responsible for pest data monitoring
and analysis.

To address the limitations identified in existing studies, this
paper aims to develop a pest detection system using a
lightweight and optimized YOLO deep learning framework,
integrated into mobile devices and complemented with a web-
based monitoring system.

The main contributions of this paper are as outlined below:

 Employing advanced data augmentation techniques,
including hue adjustment, horizontal flipping, and
scaling, to significantly increase dataset diversity and
enhance the model's ability to classify pests in complex

agricultural conditions.

 Introducing a lightweight YOLO-based deep learning
model that is optimized to detect a broader range of pest
classes compared to previous studies, balancing accuracy
and efficiency for real-time smartphone applications in
diverse agricultural settings.

 Integrating the optimized model with smartphone
technology for real time detection of multiple pest
classes, making advanced pest detection tools more
accessible and user-friendly.

 Creating an interactive web-based monitoring platform
that offers dynamic real-time updates of pest detection
and provides sustainable recommendations for effective
pest management strategies.

III. MATERIALS AND METHODS

A. Methodology

The proposed methodology follows a structured approach
to develop an effective pest detection model for agricultural
applications as shown in Fig. 1. At the beginning, the
researchers collected multiple pest image datasets and merged
them to form a unified dataset through several preprocessing
processes such as data standardization. Data standardization is
a technique to ensure that datasets are in a consistent and
standardized format for configuring the YOLO format.
Secondly, the researchers preprocessed the dataset by
employing data augmentation techniques including hue
adjustments, image translation, horizontal flipping and scaling
to expand the training dataset for enhancing its variability. This
step aims to prepare a dataset that can be used to train a robust
detection model capable of generalizing across diverse
agricultural scenarios. Following this, the images were
annotated with bounding boxes to label pest instances
accurately. After that, the researchers split the dataset by
allocating 80% of the dataset for the model training and 20%
for the model validation. Researchers then proceeded to train
various YOLO object detection models with the pest training
dataset. The trained models were fine-tuned to optimize their
performance across different YOLO versions. Then,
researchers validated and evaluated the performance of each
base and fine-tuned model by using the shared validation
dataset. During validation, new pest images that were not
previously used for training or fine-tuning were introduced to
assess the models' effectiveness with unseen data. The
researchers also integrated each model into the smartphone
application for measuring their real-time performance to assess
its capabilities in a practical setting. By comparing the results,
the optimal model was identified for practical field adaptation.
This model was then deployed within a smartphone application
to enable real-time pest detection in agricultural environments.
Finally, a web-based monitoring system was developed to
provide dynamic and real-time updates on pest detection. This
allows users like farmers to monitor captured pest data and
receive actionable insights for effective pest management.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

661 | P a g e

www.ijacsa.thesai.org

Fig. 1. Proposed methodology to develop the pest detection system.

B. Data Collection

To train and evaluate the pest detection model, the
researchers utilized two publicly available datasets from
Roboflow platform as a source in the experimental study:
YOLOIP1 dataset and Pest_Dataset_3 [26] [27]. Since both
datasets are different in terms of the structures and class
distribution, the datasets were subjected to a data
standardization process to ensure uniformity. Both datasets
were reorganized to have consistent directory structures, file
naming conventions, and annotation formats. After
standardization, the researchers removed the redundant classes
to avoid confusion due to the similar morphological features.
For example, classes like “white margined moth” and
“margined moth” which differed only slightly in color were
removed. The researchers then merged the datasets manually
by selecting the most relevant pest classes that are frequently
encountered in agricultural scenarios for accurate detection.
The final merged dataset comprised 29 pest classes. Each class
contains a significant number of images as detailed in Table I.
However, the merged dataset contained fewer images than the
expected threshold of a total of 10k images. Therefore, data
augmentation techniques were employed in the next step to
expand the dataset’s size.

TABLE I. FINAL CLASS DISTRIBUTION OF THE MERGED DATASET

Index Pest Class Total Count

0 Alfafa plant bug 99

1 Ampelophaga 126

2 Aphids 886

3 Beet spot flies 79

4 Flea beetle 414

5 Grain spreader thrips 118

6 Grub worm 522

7 Icerya-purchasi-Maskell 73

8 Limacodidae 95

9 Lycorma delicatula 111

10 Lygus 318

11 Mole cricket 888

12 Oides decempunctata 77

13 Paddy stem maggot 94

Index Pest Class Total Count

14 Peach moth 223

15 Pieries canidia 147

16 Plant hopper 856

17 Protaetia 180

18 Red spider 245

19 Rice gall midge 244

20 Rice leaf caterpillar 235

21 Rice leaf roller 233

22 Rice leafhopper 242

23 Rice shell pest 115

24 Rice stemfly 108

25 Weevil 650

26 Wireworm 464

27 Xylotrechus 68

28 Yellow rice borer 591

Total number of images 8,501

C. Data Augmentation

To improve the generalization capabilities of models,
several data augmentation techniques were applied to the
dataset. Firstly, the researchers adjusted the hue, saturation and
value (HSV) of images to randomly alter the color intensity and
brightness in a manner to mimic different environmental
conditions. Secondly, the researchers shifted the images along
the x and y axes through image translation. This step is to
provide different angles of the same image. They also applied
horizontal flipping to mirror the images for creating variations
in how objects are oriented. Finally, they resized images while
keeping their aspect ratios through image scaling process to
ensure the model remains robust and can handle differences in
object size effectively. Fig. 2 illustrates examples of the
augmented images.

After completing the data augmentation process, the final
dataset was prepared with sufficient images and met the
expected requirements to have at least 10,000 images for
training the robust model. The details of the dataset after
augmentation are presented in Table II.

Fig. 2. Samples of augmented pest images.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

662 | P a g e

www.ijacsa.thesai.org

TABLE II. DETAILS OF DATASET

Dataset Aspect Number

Number of classes 29

Number of images 14,147

Number of instances (objects labeled within the images) 17,856

D. Data Annotation

After data augmentation, the researchers carefully reviewed
the images to ensure that each one was annotated and assigned
with a pest class ID correctly. A deep learning model such as
YOLO model learn features from the labeled images [28].
Therefore, the correctness of feature labeling will greatly
influence the performance of training model especially
considering the similarities between many pest species. If any
discrepancies were found such as incorrect class labels or
annotations, the researchers made corrections to those
particular images using the Roboflow platform. The annotation
process involved normalizing the coordinates between 0 and 1
to accommodate varying image sizes. After this process, the
annotations across the entire dataset were consistent and
accurate. Each annotation was recorded in a text file containing
the following details for each bounding box as shown in Eq. (1).
A sample of a pest image with the correct annotation bounding
box is shown in Fig. 3.

(𝑖𝑑𝑐𝑙𝑎𝑠𝑠, 𝑥𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑦𝑐𝑒𝑛𝑡𝑟𝑒 , 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) 

Fig. 3. Visualization of labeled images.

E. Data Splitting

Before training the YOLO model, the researchers split the
dataset into training and validation sets with an 8:2 ratio. This
step is to ensure that the model is trained on a diverse and
representative set of images while also being evaluated on a
separate validation set. The summary of final dataset aspects is
shown in Table III. It is well prepared for the next stages of
model training and evaluation.

TABLE III. SUMMARY OF FINAL DATASET ASPECTS

Dataset Aspect Details

Number of classes 29

Image Size 640x640 pixels

Training Images and Label Files 10,097

Validation Images and Label Files 4,050

Total Instances in Training 12,658

Total Instances in Validation 5,198

F. Overview of YOLO Model

The YOLO algorithm, which stands for “You Only Look
Once” was first introduced by Joesph Redmon et al. in 2015

[29]. It is renowned for its efficiency in object detection since
it can identify objects and their positions by examining the
entire image only once. As seen in Fig. 4 below, the YOLO
algorithm divides the image into N grids, each of which
contains an equal-sized S × S region. Each grid is responsible
for detecting and locating the object within it.

Unlike the conventional methods that employ two-stage
object detectors, YOLO treats object detection as a regression
problem [30]. It predicts bounding boxes around the objects and
their corresponding class probabilities straight from the feature
maps in a single pass. This means that YOLO can recognize
objects in an image faster than the two-stage detector.
Therefore, the YOLO algorithm is considered as a one-stage
detector that prioritizes speed and is thus ideal for real-time
object detection.

Fig. 4. Illustration of the YOLO framework for object detection [31].

1) YOLOv8: YOLOv8 is the most popular and widely used

model in the whole You Only Look Once (YOLO) series. It

signifies a notable development in the domain of object

detection with its remarkable enhancements in both speed and

accuracy through extensive architectural optimization and

innovation. The architecture of YOLOv8 is depicted in Fig. 5.

The YOLOv8 model considers the multi-scale attributes of

objects by using three detection layers at different scales to

handle objects that come in different sizes [32]. This method

allows the model to efficiently manage objects of varying sizes

and proportions.

In its architectural design, there are three main components
including Backbone, Neck and Head [33]. The Backbone is
used for extracting multi-scale features to ensure the model can
perceive inputs across different scales. It includes modules such
as Conv, C2f, and SPPF (Spatial Pyramid Pooling-Fast). In the
Neck section, YOLOv8 combines features without enforcing
standardized channel dimensions by integrating a path
aggregation network and a feature pyramid network [34] [35].
This method reduces both the number of parameters and the
overall tensor size. To simplify anchor box operations and
prevent displacement issues, YOLOv8 adopts a decoupled head
method to separate the detection and classification head [36].
The Head component is responsible for tasks such as bounding
box regression, target classification and confidence assessment
in the prediction layers. It ultimately delivers precise detection
results through the use of non-maximum suppression.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

663 | P a g e

www.ijacsa.thesai.org

To support diverse computational requirements, YOLOv8
is available in five versions as detailed in Table IV [37]. Each
model comes with different parameter counts and resource
consumption due to differences in width and depth parameters.
The higher the scale of the model is, the higher the detection
performance is as the parameter count and resource
consumption rise. The MS COCO dataset is frequently used for
benchmarking object detection models. By comparing the
performance between models on the MS COCO dataset, the
researchers selected YOLOv8n as their baseline model for this
study because of its relatively low parameter count and resource
efficiency. FLOPs (Floating Point Operations per Second) are
listed in Table IV to indicate the computational complexity of
each model.

Fig. 5. Model architecture of YOLOv8 [38].

TABLE IV. YOLOV8 VARIANT COMPARISON

Model
Params

(M)

FLOPs

(B)

YOLOv8n 3.2 8.7

YOLOv8s 11.2 28.6

YOLOv8m 25.9 78.9

YOLOv8l 43.7 165.2

YOLOv8x 68.2 257.8

2) YOLOv9: YOLOv9 is the most recent addition to the

YOLO versions in 2024. It introduces two major innovations

such as the Programmable Gradient Information (PGI) and the

Generalized Efficient Layer Aggregation Network (GELAN).

The PGI framework tackles the challenges of information

bottlenecks in deep neural networks and makes supervision

mechanisms compatible with lightweight architecture [39]. By

leveraging PGI, substantial accuracy improvements can be

achieved in both complex and lightweight architectures. This is

due to the fact that PGI mandates reliable gradient information

during training, which in turn enhances the architecture’s

ability to learn and make predictions.
The GELAN architecture was designed with a purpose of

improving the performance of objection detection tasks by
lightweight and high efficiency footprint [40]. Because of its
strong performance across different depth configurations and
computational blocks, it is well-suited for deployment on
various inference devices including devices that are resource
constrained. In simple words, PGI and GELAN solved the
issues related to computational efficiency and information loss.
By integrating both GELAN and PGI frameworks, YOLOv9
represents a substantial advancement in lightweight object
detection.

Table V presents five YOLOv9 variants along with their
parameter count and FLOPs as assessed on the MS COCO
Dataset [41]. YOLOv9t was chosen as another baseline model
for this study due to its lowest parameter count and
computational demand.

TABLE V. YOLOV9 VARIANT COMPARISON

Model
Params

(M)

FLOPs

(B)

YOLOv9t 2.0 7.7

YOLOv9s 7.2 26.7

YOLOv9m 20.1 76.8

YOLOv9c 25.5 102.8

YOLOv9e 58.1 192.5

3) YOLOv10: In 2024, another groundbreaking

development emerged with the introduction of YOLOv10. This

version further expands the boundaries of real-time object

detection by resolving its inherent difficulties. It sets a new

benchmark by completely eliminating non-maximum

suppression (NMS) during post-processing, thereby enhancing

inference speed [42]. The model introduces a novel dual-label

assignment system to maintain an optimal balance between

accuracy and speed. By integrating one-to-one and one-to-

many label assignments, YOLOv10 benefits from rich

supervisory signals during its training, ensuring computational

efficiency while acquiring important detection features without

any post-preprocessing NMS [43].

Furthermore, the enhancements in YOLOv10's architecture
involve the implementation of spatial-channel decoupled down
sampling, lightweight classification heads, and rank-guided
block design [42]. Each of these additions lowers the
computational requirements and the number of parameters.
These enhancements enhance both the efficiency and
scalability of the model over a wide range of devices from
powerful servers to edge devices with limited processing power
and storage capacity. The performance of both the lightweight
and heavyweight versions of YOLOv10 model on the COCO
dataset is compared in Table VI [44]. YOLOv10-N with the
least parameters and computational resource is selected for this
study as the baseline model for YOLOv10.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

664 | P a g e

www.ijacsa.thesai.org

TABLE VI. YOLOV10 VARIANT COMPARISON

Model
Params

(M)

FLOPs

(G)

YOLOv10-N 2.3 6.7

YOLOv10-S 7.2 21.6

YOLOv10-M 15.4 59.1

YOLOv10-B 19.1 92.0

YOLOv10-L 24.4 120.3

YOLOv10-X 29.5 160.4

G. Evaluation Metrics

In object recognition methods, the detection result and
classifier performance are the two key indices used to evaluate
models [45]. Mean Average Precision (mAP) is a widely used
metric for evaluating the overall performance of object
detection systems [46]. The mAP score is derived by comparing
the predicted bounding boxes with the ground truth boxes.
Higher mAP score indicates more accurate model detections.
This metric is calculated using several sub-metrics: Precision,
Recall, Intersection over Union (IoU), and data from the
Confusion Matrix.

To evaluate the detection result, Intersection over Union
(IoU) metric is employed. IoU measures the ratio of the
intersection to the union of predicted and ground truth bounding
boxes [47]. It indicates how closely the predicted bounding box
matches the ground truth. When the IoU value exceeds a
threshold of 0.5, the detection is regarded as a True Positive
(TP). Conversely, if the IoU value falls below 0.5, the detection
is considered a False Positive (FP). A False Negative (FN)
occurs when the model fails to detect an object that exists in the
ground truth. A True Negative (TN) refers to the model
correctly identifying that no object exists in a region where
there is indeed no object. The concept of IoU is illustrated in
Fig. 6, where the rectangles R1 and R2 serve as bounding
frames for the object's ground truth and prediction.

Fig. 6. Concept of Intersection over Union (IoU).

For accessing the performance of the classifier, a Confusion
Matrix is used. It categorizes the model's predictions into four
attributes [48]:

 True Positives (TP): The model correctly identifies and
matches a label with the ground truth data.

 True Negatives (TN): The model correctly identifies that
a label is absent when it is indeed not present in the
ground truth data.

 False Positives (FP): The model incorrectly predicts a
label that is not actually present in the ground truth data.

 False Negatives (FN): The model fails to detect a label
that is present in the ground truth data.

Using the IoU value along with the Confusion Matrix
outputs (TP, TN, FP, and FN), key performance metrics such as
Precision, Recall, and mAP are calculated. All these metrics are
used to assess the overall performance of object detection
models by calculating them using Formulas (1) to (3).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘
𝑘=𝑛
𝑘=1   

APk = the average precision of class k, and n = number of
classes

IV. RESULT AND DISCUSSIONS

A. Experimental Setup and Training

In this study, the training and evaluation of the selected
YOLO models like YOLOv8n, YOLOv9t and YOLOv10-N
were conducted on Google Colab using Nvidia L4 GPU with
24 GB of RAM. The dataset which had already been
preprocessed and split into 80:20 ration in previous phase was
used to ensure consistent and high-quality input for model
training. Each YOLO model was trained on the training set
which consists of 10,097 pest images while their performances
were evaluated on the validation set containing 4,050 images.

To ensure a fair comparison, all YOLO models were trained
using the same hyperparameters. The model was created using
Pytorch and runs for 150 epochs to train with a batch size of 16,
learning rates of 0.001 and default dropout rates provided by
the YOLO framework. Adam optimizer which is known as
“Adaptive Moment Estimation” was used as the optimization
algorithm. After training the model, a fine-tuning process was
conducted using a grid search method to optimize each model.
Grid search method tuned the model by testing out all
combinations of critical parameters [49]. This fine-tuning
process ran for 10 additional epochs to refine the models’
performance.

During training, the YOLO models will automatically
perform in-training evaluations at the end of each epoch using
the validation set. The metrics reflect the ongoing learning
process and may result in slightly higher performance or
overfitting due to continuous weight adjustments [50]. Once
training is completed, the reseachers conducted a post-training
evaluation to access the model’s generalization ability by using
the same validation set in a static environment with fixed
weights.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

665 | P a g e

www.ijacsa.thesai.org

The experimental configuration for training and testing
these models is detailed in Table VII.

TABLE VII. EXPERIMENTAL CONFIGURATION

Configuration Params (M)

Platform Google Colab

CPU 2.0 Intel Xeon (R) CPU @ 2.20GHz × 12

GPU Nvidia L4 (24 GB RAM)

Accelerated Environment Nvidia L4 CUDA 12.2

Operating System Ubuntu 22.04.3 LTS

CUDA Version 12.2

PyTorch GPU Availability True

PyTorch CUDA Version 12.4

B. Experimental Results

1) Training loss: Training loss is the first focus of this

analysis. It encompasses multiple components including

classification loss (cls_loss), distribution focal loss (dfl_loss)

and bounding box loss (box_loss). Each component of the

training loss tracks the degree of error in the model’s outputs.

It provides insights into how well the models fit the data and

aids in determining the best weights [51]. As shown in Fig. 7 to

Fig. 9, all training loss curves demonstrate a clear downward

trend throughout the training process. This means that the

proposed models excel at learning early and detecting pests

during the training time. As the networks undergo further

epochs, the classification loss declines slowly. The models

converged after 140 epochs. This enabled researchers to

conclude that 150 epochs was a good parameter for building the

model.

Fig. 7. Classification loss graph.

As can be seen in Fig. 7 to Fig. 9, YOLOv8n and YOLOv9t
architecture have achieved similar and lower training losses
when compared to the YOLOv10-N. This observation could be
attributed to the increased complexity of YOLOv10-N
architecture. YOLOv10-N learns more intricate patterns from
the data to handle the object detection tasks. However, this
statement does not imply that other models are inadequate.
Further analysis is required to determine a balanced approach

where the model performs well on both training data and real-
world data.

Fig. 8. Distribution focal loss graph.

Fig. 9. Bounding box loss graph.

2) Performance evaluation: To further evaluate the

models’ performance, the researchers compared the baseline

and fine-tuned versions of YOLOv8n, YOLOv9t, and

YOLOv10-N using the statistical indicators which includes

precision, recall, mAP@ 0.5 and mAP@ 0.5:0.95. The results

of models are presented in Table VIII and illustrated in Fig. 10.

All fine-tuned models demonstrate improvements across all the

key metrics. As depicted by the graph below, the YOLOv8n

model does not top in any of these metrics but shows

improvement over its baseline. In fact, it has actually achieved

quite good results when not compared with other versions.

Moving to the YOLOv9t model, the fine-tuned version attained

the highest precision of 94.2% and the best value for recall of

91.4%. This points to a high effectiveness of the YOLOv9t

model in doing accurate pest identifications. Meanwhile, the

fined-tuned version of YOLOv10-N model achieved the

highest mAP@0.5 at 96.7% and mAP@0.5:0.95 at 77.1%. This

means that the YOLOv10-N model performs exceptionally well

in detecting pests across various IoU thresholds. It is

particularly robust for handling complex detection tasks. From

this point onward, all references to the YOLO models will

pertain to their fine-tuned versions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

666 | P a g e

www.ijacsa.thesai.org

TABLE VIII. RESULTS OF YOLOV8N, YOLOV9T AND YOLOV10-N ON VALIDATION DATASET DURING TRAINING

Models Precision Recall mAPval@0.5 mAPval@0.5:0.95

YOLOv8n Baseline 0.853 0.847 0.881 0.629

YOLOv9t Baseline 0.85 0.823 0.874 0.637

YOLOv10-N Baseline 0.884 0.829 0.884 0.643

YOLOv8n Fine-tuned 0.932 0.891 0.951 0.733

YOLOv9t Fine-tuned 0.942 0.914 0.962 0.751

YOLOv10-N Fine-tuned 0.94 0.93 0.967 0.771

Fig. 10. Comparison of YOLOv8n, YOLOv9t, and YOLOv10-N on

validation data during training.

3) Confusion matrix analysis: To better demonstrate the

results, confusion metrices were employed to evaluate and

visualize the performance of the trained YOLO models. A

confusion matrix describes the actual and predicted object

classification of a classification system [52]. The significance

of the prediction results is indicated by the diagonal line in the

central of the confusion matrix. The horizontal line shows false

negatives, whereas the vertical line shows false positives. The

darker the blue in the matrix, the higher the count of correct

classifications. Based on the confusion matrices presented in

Fig. 11 to Fig. 13, all YOLO models have done quite well with

high accuracy values among their predictions.

4) Post-Training evaluation: The previous validation

results were all generated automatically by YOLO itself during

training. These in-training metrics tend to be higher due to the

dynamic adjustments the models make during the learning

process such as ongoing weights and gradient updates.

Therefore, the researchers reassessed the models using the same

validation set containing 4050 images in a post-training static

environment where the weights and parameters of each model

were fixed. The results are presented in Table IX. It reveals that

the YOLOv9t model emerged as the top performer with the

highest scores in Precision at 87.4%, Recall at 84.4%,

mAP@0.5 at 89.8%, and mAP@0.5:0.95 at 66.7%. It was

followed closely by the YOLOv10-N and YOLOv8n model.

These findings indicate that although models perform excellent

during training and validation, but their performance changes

when they are exposed to new data. The causes for this change

in performance might be due to slight overfitting during

training or the complexities of the real-world image

environments. Sample predictions made by each model on test

data are presented in Fig. 14, Fig. 15, and Fig. 16.

Fig. 11. Confusion matrix of YOLOv8n.

Fig. 12. Confusion matrix of YOLOv9t.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

667 | P a g e

www.ijacsa.thesai.org

Fig. 13. Confusion matrix of YOLOv10-N.

TABLE IX. RESULTS OF YOLOV8N, YOLOV9T AND YOLOV10-N ON

VALIDATION DATASET IN POST-TRAINING PHASE

Models Precision Recall mAPval@0.5

mAPval@0.5:0.95

YOLOv8n 0.859 0.827 0.871 0.618

YOLOv9t 0.874 0.844 0.898 0.667

YOLOv10-

N
0.873 0.837 0.883 0.639

Fig. 14. Sample predictions made byYOLOv8n.

5) Real-world application testing: Strong performance of

model during training and validation does not always guarantee

equal success in real-world situations [53]. To further evaluate

the YOLO models, they were converted to TensorFlow Lite

format and integrated into a smartphone application. The

testing was performed on a smartphone configured as detailed

in Table X. This setup was used to evaluate the average

inference time of each model by running them 10 times on a set

of printed pest photos placed in a plant environment. The

purpose of this test was to assess the models' practicality for

real-time pest detection in agricultural fields.

Fig. 15. Sample predictions made byYOLOv9t.

Fig. 16. Sample predictions made byYOLOv10-N.

As shown in the Table XI, lighter models like YOLOv9t
recorded the fastest average inference time at 250.6ms,
followed by YOLOv8n at 320.5ms and YOLOv10-N at

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

668 | P a g e

www.ijacsa.thesai.org

550.7ms. These results provide strong evidence that YOLOv9t
is the optimal model to deploy on resource-constrained devices
for achieving real-time detection in complex scenes.

TABLE X. ANDROID DEVICE SPECIFICATIONS

Component Specification

Operating System Android

Model Xiaomi 11T Pro

RAM 16GB

Internal Memory 129GB

Chipset Snapdragon 888 5G (5 nm)

CPU
Octa-core (1x2.84 GHz Cortex-X1 & 3x2.42 GHz

Cortex-A78 & 4x1.80 GHz Cortex-A55)

GPU Adreno 660

TABLE XI. AVERAGE INFERENCE TIME FOR EACH MODEL PERFORMED IN

ANDROID APP (CALCULATED OVER 10 RUNS)

Model Average Inference Time (ms)

YOLOv8n 320.5

YOLOv9t 250.6

YOLOv10-N 550.7

C. Discussion

A summary of the overall results can be seen in Table XII.
The YOLOv9t model outperformed the other proposed models
by achieving the highest values in key metrics such as accuracy
and speed. Among the models tested, YOLOv9t provided the
best balance between accuracy and speed. Therefore, it can
accurately detect various tiny pests in real-time within
challenging agricultural environments.

When compared the outcome of this study with recent
studies as shown in Table XIII, it is evident that those models

classified fewer object classes which ranged from 1 to 24
classes. While several studies achieved over 90% accuracy,
their focus was often limited to specific object categories such
as detecting leaves or identifying the presence of certain pests.
Although the proposed model does not achieve the highest
accuracy, it still obtains a remarkable result with 89% accuracy.
It is closely comparable to the best-performing models while
handling a larger and more diverse range of pest species.

The comparison also highlights the advantages of YOLOv9t
over previous methods. For instance, Fuentes et al. and Lin et
al. used SSD and Fast R-CNN, but these models struggled to
detect a wide variety of pest classes. As a result, they achieved
lower mAP scores and were less effective in diverse
agricultural environments. Similarly, Sabanci et al.'s model
demonstrated impressive precision. However, it was limited to
binary classification for specific crops. This limitation
restricted its overall versatility. Koklu et al. and Zhong et al.
also made progress in tasks like leaf classification and insect
recognition, but their models faced challenges due to a smaller
number of pest classes and hardware limitations.

In contrast, the proposed YOLOv9t model stands out by
successfully detecting 29 different pest classes with an accuracy
of 89.8% and an inference time of just 250.6ms. Its lightweight
architecture and scalability make it well-suited for real-time
applications across a range of agricultural settings.
Furthermore, the conversion of the YOLOv9t model to
TensorFlow Lite (TFLite) and its integration into a mobile
application significantly enhance its deployment capabilities on
resource-constrained devices. The TFLite model allows for
faster and more efficient inference, enabling real-time pest
detection directly on smartphones. This integration ensures that
pest management can be carried out in the field, improving
efficiency for farmers and agricultural workers. This model’s
ability to overcome the limitations of earlier approaches
highlights its practical advantages for pest management in real-
world agricultural environment.

TABLE XII. OVERALL PERFORMANCE COMPARISON OF YOLOV8N, YOLOV9T AND YOLOV10-N USED IN THE EXPERIMENTAL STUDY

Models Precision Recall mAPval@0.5 mAPval@0.5:0.95 Average Inference Time (ms)

YOLOv8n 0.859 0.827 0.871 0.618 320.5

YOLOv9t 0.874 0.844 0.898 0.667 250.6

YOLOv10-N 0.873 0.837 0.883 0.639 550.7

TABLE XIII. COMPARISON OF PEST DETECTION MODEL WITH PREVIOUS STUDIES

Author &

Reference Model

Pest

Classes

Accuracy

(%)

Key Insights

Fuentes et al. [14]

SSD, R-CNN, Faster

R-CNN 9 83.06
Limited pest classes; lacks real-time performance.

Lin et al. [15] Fast R-CNN 24 56.4
High recall but poor mAP, unsuitable for real-time dynamic environments.

Sabanci et al. [16] AlexNet + BiLSTM 2 99.5
Extremely high precision but limited to specific crops and pests.

Koklu et al. [17] CNN-SVM 5 97.6

Effective for leaf classification; untested for insect pest detection or broader

applications.

Zhong et al. [19] YOLO + Raspberry Pi 1 90.18
High accuracy but lacks scalability for detecting diverse pest classes.

Thanh-Nghi Doan

[21] YOLOv5-S 10; 102 70.5; 42.9

Performs well on small datasets; struggles with complex datasets due to limited

scalability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

669 | P a g e

www.ijacsa.thesai.org

Author &

Reference Model

Pest

Classes

Accuracy

(%)

Key Insights

Yin Jian Jun [22] YOLOv8 8 97.3
High accuracy but lacks scalability for detecting diverse pest classes.

Proposed
YOLOv8n YOLOv8n 29 87.1

Provides balance between computational efficiency and detection performance;

lower accuracy than YOLOv9t.

Proposed
YOLOv9t YOLOv9t 29 89.8

Achieves high accuracy and scalability; balances speed and accuracy

effectively.

Proposed

YOLOv10-N YOLOv10-N 29 88.3

Higher computational complexity; excels in detecting complex patterns but

slower inference speed.

V. APPLICATION

Fig. 17. Overview of the proposed lightweight mobile pest detection system with real-time monitoring.

A. Deployment

The YOLOv9t model was selected for deployment in the
smartphone pest detection application due to its strong
performance compared to other versions. The application
detects pests in real-time but is programmed with a 10-second
delay before sending the data to Firebase. This delay ensures
that the pest remains on the plant and is not just passing by.
Users can specify the crop area where the monitoring is taking
place. Once the application detects one or more pests for 10
seconds, it sends the detection result to the Firebase server
where it integrates a web-based monitoring system. This setup
allows the user to track which particular area of the crop is
getting infected. By providing this information, users can
evaluate the situation and take immediate action if necessary.
An overview of the pest detection system is shown in Fig. 17.

B. Example of Successful Pest Detection by YOLOv9t

Fig. 18 below shows the predictions made by the YOLOv9t
model integrated into a smartphone application for detecting
pests in real-time. It performs well in correctly identifying
various pests in a simulated plant environment.

Fig. 18. Correct real-time predictions of pests using the YOLOv9t model

integrated into a smartphone application in a simulated plant environment.

By using the app, users can also upload pest images for
detection. They can retrieve detailed information about that
uploaded pest, including a description and recommendations
for managing the pest. If the pest is not detectable by the model,
user can even upload the image to Firebase for experts to further
refine the capabilities of model in detecting new pests in future.
The web-based monitoring system complements the app by
providing real-time detection logs, pest summary details,
analytics dashboard, and access to detailed pest information for
recommended strategies. Fig. 19 to Fig. 24 illustrate these
additional features of the pest detection system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

670 | P a g e

www.ijacsa.thesai.org

Fig. 19. Upload pest image feature.

Fig. 20. Retrieved detailed information about the uploaded pest.

Fig. 21. Web-based monitoring system displaying pest population trends.

Fig. 22. Web-based monitoring system’s pest analytics dashboard.

Fig. 23. Pest detection logs in the web-based monitoring system.

Fig. 24. Example of detailed pest information for one particular pest provided

by the web-based monitoring system.

VI. LIMITATIONS AND POTENTIAL IMPROVEMENTS

In this study, several limitations were identified that affect
the detection performance of the integrated model within the
application. One notable issue is when the pests overlap or
move rapidly in the real-world condition. This makes the model
difficult to detect pests and differentiate between them. As
shown in Fig. 25, the integrated model successfully detects the
aphids but fails to identify the mole cricket underneath. This
results in false negative detection. Another challenge is that the
model mistakes a leaf for aphids due to their similar color and
shape. This misidentification affects the accuracy of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

671 | P a g e

www.ijacsa.thesai.org

detection especially when the environment closely resembles
the pests. These limitations underscore the need for further
refinement of models to improve detection accuracy in complex
environments in future study.

To address these issues, incorporating object tracking and
motion filtering techniques could be beneficial. By using these
methods, the model could track and identify pests even when
they overlap or move rapidly. Expanding the dataset to include
more diverse pest images and backgrounds could also help the
model generalize better to handle a broader range of real-world
conditions.

Fig. 25. The integrated YOLOv9t model detecting aphids but missing the

mole cricket and misidentifying a leaf as aphids.

VII. CONCLUSION

This paper presented the development of a YOLO-based
pest detection system integrated with a smartphone for real-
time detection of multiple pest classes along with a dynamic
web-based monitoring system for sustainable agriculture. The
proposed system employs the YOLOv9t model due to its ability
to strike a balance between computational resources, detection
accuracy and speed. It has been shown to outperform similar
systems by detecting a wider range of pests with fewer
computational resources while achieving similar high detection
accuracy.

The improved results can be attributed to the lightweight
architecture of the proposed YOLOv9t model. It ensures faster
inference times for detecting different kinds of pests on mobile
devices without compromising accuracy. The numerical results
show that the proposed YOLOv9t model achieved a remarkable

accuracy with an mAP@0.5 of 89.8%, an mAP@0.5:0.95 of
66.7%, a Precision of 87.4%, a Recall of 84.4%, and an
inference time of 250.6 ms. Also, the system enables farmers to
monitor their crops by receiving instant updates through the
web-based platform in real time. This combination allows for
better pest management by providing detailed insights into pest
activity across different fields. This approach offers notable
advantages in terms of features, computational efficiency,
practical implementation, and real-time detection speed.

While some detection inaccuracies might still occur when
pests are overlapping or when there are similar backgrounds,
shapes, and colors, future improvements will focus on
addressing these challenges. The researchers plan to expand
the dataset by including a wider variety of pest images taken
from more diverse and complex environments. This will help
the model better generalize to different real-world scenarios
especially those with varying lighting conditions, backgrounds,
and angles. Additionally, the researchers also plan to
incorporate object tracking and motion filtering techniques to
enable the model for tracking the pests more accurately even in
situations where they overlap or move rapidly. These
enhancements will improve the performance of the pest
detection model in complex agricultural environments by
ensuring higher detection accuracy and robustness in diverse
pest management applications.

REFERENCES

[1] A. Balkrishna, G. Sharma, N. Sharma, P. Kumar, R. Mittal and R.
Parveen, "Global perspective of agriculture systems: from ancient times
to the modern era," In Sustainable Agriculture for Food Security, pp. 3-
45, 2021.

[2] D. Gu, K. Andreev and M. Dupre, "Major trends in population growth
around the world," China CDC weekly, vol. 3, no. 28, p. 604, 2021.

[3] FAO, "About FAO's work on plant Production and Protection," [Online].
Available: https://www.fao.org/plant-production-protection/about/en.
[Accessed 20 July 2024].

[4] T. Domingues, T. Brandão and J. Ferreira, "Machine learning for
detection and prediction of crop diseases and pests: A comprehensive
survey," Agriculture, vol. 12, no. 9, p. 1350, 2022.

[5] M. John, I. Bankole, O. Ajayi-Moses, T. Ijila, O. Jeje and P. Lalit,
"Relevance of advanced plant disease detection techniques in disease and
Pest Management for Ensuring Food Security and Their Implication: A
review," American Journal of Plant Sciences, vol. 14, no. 11, pp. 1260-
1295, 2023.

[6] P. Mkenda, P. Ndakidemi, P. Stevenson, S. Arnold, I. Darbyshire, S.
Belmain, J. Priebe, A. Johnson, J. Tumbo and G. Gurr, "Knowledge gaps
among smallholder farmers hinder adoption of conservation biological
control," Biocontrol Science and Technology, vol. 30, no. 3, pp. 256-277,
2020.

[7] M. Gulzar, R. Maqsood, H. Abbas, M. Manzoor, M. Suleman, H. Bajwa,
A. Hamza, S. Yar, M. Zain, A. Wadood and N. Aslam, "Use of
Insecticides and their impact on viral diseases in Humans, Animals and
Environment," Hosts and Viruses, vol. 11, pp. 64-77, 2024.

[8] N. Manakitsa, G. Maraslidis, L. Moysis and G. Fragulis, "A review of
machine learning and deep learning for object detection, semantic
segmentation, and human action recognition in machine and robotic
vision," Technologies, vol. 12, no. 2, p. 15, 2024.

[9] A. Nazir and M. Wani, "You only look once-object detection models: a
review," in 2023 10th International Conference on Computing for
Sustainable Global Development (INDIACom), 2023.

[10] M. Sohan, T. Sai Ram, R. Reddy and C. Venkata, "A review on yolov8
and its advancements," in International Conference on Data Intelligence
and Cognitive Informatics, 2024.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

672 | P a g e

www.ijacsa.thesai.org

[11] C. Ren, D. Kim and D. Jeong, "A survey of deep learning in agriculture:
Techniques and their applications.," Journal of Information Processing
Systems, vol. 16, no. 5, pp. 1015-1033, 2020.

[12] W. Changji, C. Hongrui, M. Zhenyu, Z. Tian, Y. Ce, S. Hengqiang and C.
Hongbing, "Pest-YOLO: A model for large-scale multi-class dense and
tiny pest detection and counting," Frontiers in Plant Science, vol. 13, p.
973985, 2022.

[13] Y. Zhang and C. Lv, "TinySegformer: A lightweight visual segmentation
model for real-time agricultural pest detection," Computers and
Electronics in Agriculture, vol. 218, p. 108740, 2024.

[14] A. Fuentes, S. Yoon, S. Kim and D. Park, "A robust deep-learning-based
detector for real-time tomato plant diseases and pests recognition,"
Sensors, vol. 17, no. 9, p. 2022, 2017.

[15] L. Jiao, S. Dong, S. Zhang, C. Xie and H. Wang, "AF-RCNN: An anchor-
free convolutional neural network for multi-categories agricultural pest
detection," Computers and Electronics in Agriculture, vol. 174, p. 105522,
2020.

[16] K. Sabanci, M. Aslan, E. Ropelewska, M. Unlersen and A. Durdu, "A
novel convolutional-recurrent hybrid network for sunn pest–damaged
wheat grain detection," Food analytical methods, vol. 15, no. 6, pp. 1748-
1760, 2022.

[17] M. Koklu, M. Unlersen, I. Ozkan, M. Aslan and K. Sabanci, "A CNN-
SVM study based on selected deep features for grapevine leaves
classification," Measurement, vol. 188, p. 110425, 2022.

[18] L. Dengshan, W. Rujing, X. Chengjun, L. Liu, Z. Jie, L. Rui and W.
Fangyuan, "A Recognition Method for Rice Plant Diseases and Pests
Video Detection Based on Deep Convolutional Neural Network,"
Sensors, vol. 20, no. 3, p. 578, 2020.

[19] Y. Zhong, J. Gao, Q. Lei and Y. Zhou., "A vision-based counting and
recognition system for flying insects in intelligent agriculture," Sensors,
vol. 18, no. 5, p. 1489, 2018.

[20] A. M. Roy and J. Bhaduri., "Real-time growth stage detection model for
high degree of occultation using DenseNet-fused YOLOv4," Computers
and Electronics in Agriculture, vol. 193, p. 106694, 2022.

[21] T.-N. Doan, "An efficient system for real-time mobile smart device-based
insect detection," International Journal of Advanced Computer Science
and Applications, vol. 13, no. 6, 2022.

[22] J. Yin, P. Huang, D. Xiao and B. Zhang, "A Lightweight Rice Pest
Detection Algorithm Using Improved Attention Mechanism and
YOLOv8," Agriculture, vol. 14, no. 7, p. 1052, 2024.

[23] M. Hussain and R. Khanam, "In-depth review of yolov1 to yolov10
variants for enhanced photovoltaic defect detection," In Solar, vol. 4, no.
3, pp. 351-386, 2024.

[24] C.-Y. Wang and H.-Y. M. Liao, "YOLOv1 to YOLOv10: The fastest and
most accurate real-time object detection systems," arXiv preprint, p.
arXiv:2408.09332, 2024.

[25] C. Chen, P. Zhang, H. Zhang, J. Dai, Y. Yi, H. Zhang and Y. Zhang.,
"Deep learning on computational‐resource‐limited platforms: A survey,"
Mobile Information Systems, vol. 1, p. 8454327, 2020.

[26] Roboflow. Available online:
https://universe.roboflow.com/ip102110000/yoloip1/dataset/1.
[Accessed 12 June 2024].

[27] Roboflow. [Online]. Available:
https://universe.roboflow.com/oubio/pest-dataset-naoyq/dataset/3.
[Accessed 12 June 2024].

[28] U. Sirisha, S. P. Praveen, P. N. Srinivasu, P. Barsocchi and A. K. Bhoi,
"Statistical analysis of design aspects of various YOLO-based deep
learning models for object detection," International Journal of
Computational Intelligence Systems, vol. 1, no. 126, p. 16, 2023

[29] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once:
Unified, real-time object detection," in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[30] T. Diwan, G. Anirudh and J. V. Tembhurne, "Challenges, architectural
successors, datasets and applications," multimedia Tools and
Applications, vol. 82, no. 6, pp. 9243-9275, 2023

[31] N. Kumar, Nagarathna and F. Flammini, "YOLO-based light-weight deep
learning models for insect detection system with field adaption,"
Agriculture, vol. 13, no. 3, p. 741, 2023

[32] L. Liu, P. Li, D. Wang and S. Zhu, "A wind turbine damage detection
algorithm designed based on YOLOv8," Applied Soft Computing, vol.
154, p. 111364, 2024.

[33] J. Terven, D. Córdova-Esparza and J. Romero-González, "A
comprehensive review of yolo architectures in computer vision: From
yolov1 to yolov8 and yolo-nas," Machine Learning and Knowledge
Extraction, vol. 5, no. 4, pp. 1680-1716, 2023.

[34] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie,
"Feature Pyramid Networks for Object Detection," arXiv,
arXiv:1612.03144, 2017.

[35] S. Liu, L. Qi, H. Qin, J. Shi and J. Jia, "Path Aggregation Network for
Instance Segmentation," arXiv, arXiv:1803.01534, 2018.

[36] T. Wu and Y. Dong, "YOLO-SE: Improved YOLOv8 for remote sensing
object detection and recognition," Applied Sciences, vol. 13, no. 24, p.
12977, 2023.

[37] M. Noyce, G. Jocher, R. Munawar and Laughing-Q, "COCO Dataset,"
Ultralytics YOLO, November 2023. [Online]. Available:
https://docs.ultralytics.com/datasets/detect/coco/. [Accessed 15 August
2024].

[38] T. Luo, S. Rao, W. Ma, Q. Song, Z. Cao, H. Zhang, J. Xie, X. Wen, W.
Gao, Q. Chen, J. Yun and D. Wu, "Individual Tree Spatial Positioning and
Crown Volume Calculation Using UAV-RGB Imagery and LiDAR
Data," Forests, vol. 15, no. 8, p. 1375, 2024.

[39] C.-Y. Wang, I.-H. Yeh and H.-Y. M. Liao, "Yolov9: Learning what you
want to learn using programmable gradient information," arXiv preprint,
arXiv:2402.13616, 2024.

[40] W. Xu, D. Zhu, R. Deng, K. Yung and A. W. Ip., "Violence-YOLO:
Enhanced GELAN Algorithm for Violence Detection," Applied Sciences,
vol. 14, no. 15, p. 6712, 2024.

[41] M. Noyce, R. Munawar, G. Jocher, B. Q and L. Q, "YOLOv9: A Leap
Forward in Object Detection Technology," Ultralytics YOLO, March
2024. [Online]. Available:
ttps://docs.ultralytics.com/models/yolov9/#what-are-the-advantages-of-
using-ultralytics-yolov9-for-lightweight-models. [Accessed 15 August
2024]

[42] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han and G. Ding.,
"Yolov10: Real-time end-to-end object detection," arXiv preprint, p.
arXiv:2405.14458, 2024.

[43] S. Geetha, Athulya, M. A. R. Alif, M. Hussain and P. Allen, "Comparative
Analysis of YOLOv8 and YOLOv10 in Vehicle Detection: Performance
Metrics and Model Efficacy," Vehicles, vol. 6, no. 3, pp. 1364-1382,
2024.

[44] M. Noyce, R. Munawar, G. Jocher, H. Haffari, Z. X. Wei, A. Vina and B.
Q, "YOLOv10: Real-Time End-to-End Object Detection," Ultralytics
YOLO, June 2024. [Online]. Available:
https://docs.ultralytics.com/models/yolov10/. [Accessed 15 August
2024].

[45] L.-D. Quach, K. N. Quoc, A. N. Quynh and H. T. Ngoc, "Evaluating the
eEffectiveness of YOLO models in different sized object detection and
feature-based classification of small objects," Journal of Advances in
Information Technology, vol. 14, no. 5, pp. 907-917, 2023.

[46] R. Kaur and S. Singh, "A comprehensive review of object detection with
deep learning," Digital Signal Processing, vol. 132, p. 103812, 2023.

[47] J. Stodt, C. Reich and N. Clarke, "Unified intersection over union for
explainable artificial intelligence," in Intelligent Systems Conference,
IntelliSys 2023, Amsterdam, 2024.

[48] A. Tharwat, "Classification assessment methods," Applied computing and
informatics, vol. 17, no. 1, pp. 168-192, 2021.

[49] D. A. Anggoro and S. S. Mukti, "Performance Comparison of Grid Search
and Random Search Methods for Hyperparameter Tuning in Extreme
Gradient Boosting Algorithm to Predict Chronic Kidney Failure,"
International Journal of Intelligent Engineering & Systems, vol. 14, no. 6,
2021.

[50] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie and L. Farhan,
"Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions," Journal of big Data, vol. 8, pp. 1-74, 2021

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 12, 2024

673 | P a g e

www.ijacsa.thesai.org

[51] D. Bergmann and C. Stryker, "What is a loss function?," IBM, 12 July
2024. [Online]. Available: https://www.ibm.com/think/topics/loss-
function#:~:text=The%20term%20%E2%80%9Closs%20function%2C
%E2%80%9D,intelligence%20(AI)%20model's%20outputs.. [Accessed
17 August 2024]

[52] R. Raj and A. Kos, "An improved human activity recognition technique
based on convolutional neural network," Scientific Reports, vol. 13, no.
1, p. 22581, 2023

[53] C.W. Hoe, M. Raheem, and N.F. Abubacker, "News Aggregation and
Summarisation," Journal of Applied Technology and Innovation, vol. 8,
no. 4, p. 51, 2024.

