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Abstract—Traditional machine learning models, especially 

decision trees, face great challenges when applied to high-

dimensional and imbalanced telecommunication datasets. The 

research presented in this paper aims to enhance the 

performance of traditional Decision Tree (DT), Decision Tree 

with grid search (DT+), random forest (RF), and XGBoost 

(XGB) models. This is accomplished by augmenting them with 

robust preprocessing techniques, as well as optimizing them 

through grid search. We then evaluated how well the enhanced 

models can accurately predict customer churn and compared 

their performance metrics in detail. We utilized a dataset derived 

from the benchmark Cell2Cell dataset by applying combined 

preprocessing methods including KNN imputation, 

normalization, and resampling with SMOTE Tomek to address 

class imbalance. The findings reveal that XGBoost outperformed 

all other models with an accuracy of 0.82, demonstrating strong 

precision, recall, and F1 scores. RF also delivered robust results, 

achieving an accuracy of 0.82, benefiting from its ensemble 

nature to improve generalization and reduce overfitting. 
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I. INTRODUCTION 

The rapid evolution of the telecommunications industry 
has been marked by significant technological advancements 
and massive competition, leading to a saturated market where 
customer retention has become a critical challenge. As new 
telecom providers emerge, often offering specialized services 
at competitive prices, established firms must adopt more 
sophisticated strategies to maintain their market share. 
Customer churn has emerged as a significant concern in this 
highly competitive environment. Retaining existing customers 
is more cost-effective than acquiring new ones, but it is also 
crucial for maintaining steady revenue streams and long-term 
business growth [1]-[2]. 

Machine Learning (ML) has transformed the telecom 
industry by providing advanced tools for analyzing large 
datasets and predicting customer behavior. ML algorithms, 
particularly those focused on customer churn prediction 
(CCP), enable telecom companies to implement proactive 
retention strategies by accurately identifying at-risk customers 
[3]-[4]. However, the high dimensionality and imbalance 
inherent in telecom datasets pose significant challenges to 
traditional ML models like Decision Trees (DT). While these 
models are popular due to their simplicity and interpretability, 
they often suffer from overfitting and biased predictions when 

applied to complex, high-dimensional data [5]. The need for 
robust preprocessing techniques, such as imputation, 
normalization, and resampling, is essential to address these 
limitations and improve the predictive performance of ML 
models [6]-[7]. 

Despite advances in ML, gaps remain in optimizing churn 
prediction models for real-world applications. Current 
methodologies often struggle with imbalanced datasets, 
leading to skewed predictions that fail to capture minority 
class churners effectively. Ensemble models such as Random 
Forest (RF) and XGBoost (XGB) offer improved 
generalization and accuracy but require careful tuning of 
hyperparameters to maximize their effectiveness. Moreover, 
the lack of standardized preprocessing pipelines and scalable 
solutions limits the broader adoption of these methods in the 
telecom industry. 

This study addresses these challenges by proposing a 
systematic approach to enhance the performance of DT, RF, 
and XGB models. The research emphasizes integrating 
advanced preprocessing techniques such as KNN imputation, 
normalization, and SMOTE Tomek resampling—with 
hyperparameter optimization using grid search. This approach 
seeks to mitigate the impact of imbalanced datasets and 
improve the robustness of predictive models for CCP. 

The key objectives of this work are to: 

 Develop a DT+ model optimized through grid search to 
address the limitations of traditional DT models. 

 Compare the outcomes of DT+, RF, and XGB models 
in predicting customer churn, focusing on precision, 
accuracy, F1-score, and recall. 

 Investigate the impact of preprocessing techniques, 
including imputation, normalization, and resampling, on 
the performance of these models. 

By addressing these objectives, this research aims to 
contribute to the development of scalable, reliable, and 
interpretable models for customer churn prediction, offering 
actionable insights for the telecommunications industry to 
retain customers and reduce churn rates effectively. 

The literature review is depicted in the following section. 
Section III introduces the proposed work with enhanced 
algorithms and its pseudocode. Hyperparameter optimization 
is presented in Section IV, the performance metrics are 
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addressed in Section V. Results and discussion are in Section 
VI. Section VII gives detail about the CCP performance. The 
closing section addresses the real-world significance in 
Section VIII, with limitations, conclusion, and the future 
scope of research of this research in Section IX. 

II. LITERATURE REVIEW 

CCP has become an important area of concern in the 
telecommunications industry, prompting extensive research on 
the effectiveness of various ML models. Among the most 
studied algorithms are DT, RF, and XGB, each offers unique 
strengths in enhancing predictive accuracy and model 
stability. 

The study by [8] introduced a smart hybrid scheme that 
combined clustering and classification algorithms. Their 
results demonstrated that a stacking-based ensemble model 
combining k-medoids, Gradient Boosted Tree (GBT), DT, RF, 
and Deep Learning (DL) achieved the highest accuracy of 
96%, highlighting the potential of hybrid models. 

The study in [9] explored the use of advanced machine 
learning methods, particularly focusing on RF optimized by 
Grid Search and a low-ratio undersampling strategy. Their 
findings showed that the RF-GS-LR model achieved near-
perfect accuracy on the applied datasets, underscoring the 
importance of hyperparameter optimization and sampling 
techniques in improving churn prediction models. 

The study in [10] provided a comprehensive analysis of 
integrated algorithms, including enhanced Random Forest and 
XGBoost models. 

Studies by [11] and [12] emphasized the role of big data 
platforms, ensemble methods, and attribute selection in 
enhancing the accuracy and stability of churn prediction 
models. Using techniques such as SMOTE and Edited Nearest 
Neighbor (ENN) for data balancing and ensemble procedures 
like bagging and boosting has significantly improved model 
performance. 

DT methodologies are highly regarded for their 
straightforwardness and interpretability. The research in [13] 
demonstrated that the DT models can achieve 3% higher 
accuracy than more complex models, such as random forests, 
under certain conditions. However, DT models are susceptible 
to overfitting and need to be enhanced through 
hyperparameter tuning methods such as grid search. The study 
in [9] illustrated how grid search optimization could 
significantly improve DT's accuracy and stability, especially 
when combined with controlled undersampling strategies. 

RF is an ensemble method built on multiple DTs and is 
recognized for its robustness and ability to handle large 
datasets. The study in [14] highlighted RF's high accuracy of 
95% when feature engineering techniques were applied, 
underscoring the importance of preprocessing steps [14]. In 
spite of its preferences, RF's complexity can be a restriction. 
However, studies have shown that when RF is regularized or 
combined with techniques like up-sampling and Edited 
Nearest Neighbor (ENN), it can achieve exceptionally high 
accuracies, reaching up to 99.09% [11], [15]. 

XGB, a gradient-boosting technique, has received 
widespread popularity for its outstanding usefulness in 
classification activities, particularly in churn prediction. 
Studies have revealed that XGB outperformed other ensemble 
algorithms, including Adaboost and CatBoost, especially 
when coupled with grid search cross-validation for 
hyperparameter tuning. XGB's capacity to handle sparse data 
and mitigate overfitting makes it highly effective for complex 
datasets [16]-[17]. The study in [18] further validated XGB's 
efficacy, achieving a 97% accuracy rate on the Cell2Cell 
dataset. 

Integrating decision trees, random forests, and XGBoost 
algorithms alongside advanced optimization techniques like 
Grid search provides a comprehensive and robust approach to 
churn prediction. Studies by [19] emphasized the 
advancements in predictive power achieved through the 
combination of feature engineering, ensemble methods, and 
hyperparameter optimization, which significantly improved 
the accuracy, stability, and generalization across diverse 
telecom datasets. 

Despite the advancements in CCP models, there are still 
several gaps that need to be addressed. Traditional decision 
tree models, while effective, are prone to overfitting and 
require optimization techniques like grid search to achieve 
optimal performance. Existing literature has shown 
improvements through these techniques, but further 
exploration is needed to address limitations in model 
interpretability and scalability [9], [13]. Random forest 
models, though robust, present challenges in terms of 
complexity and computational cost [11], [14]. The reliance on 
feature engineering to achieve high accuracy suggests the need 
for more efficient methods to handle raw data effectively. 
Additionally, although XGBoost shows superior performance, 
its susceptibility to overfitting and the need for extensive 
hyperparameter tuning suggest opportunities for further 
research on more generalized models. Furthermore, while 
recognized as crucial, hyperparameter optimization and 
sampling techniques require deeper investigation to develop 
standardized methodologies that can be applied to different 
datasets and industries [16]-[17]. 

III. PROPOSED WORK 

This section depicts the study details, pre-processing, and 
methodologies employed. 

The study used the comprehensive dataset Cell2Cell, 
which contains client behavior attributes such as personal 
information, utilization patterns, client interactions, 
demographic details, billing data, and value-added services. 
These properties provide a solid foundation for developing 
and validating machine learning models [8], [20]. 

The research process, illustrated in Fig. 1, is structured into 
distinct phases, beginning with data preprocessing, which is 
crucial to ensuring the accuracy and reliability of the models. 
KNN Imputation (Mean/Median) addresses lost values within 
the dataset. This is followed by normalization utilizing 
MMADN Min-Max Scaling, and class imbalance is managed 
with SMOTE Tomek [20]. 
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The preprocessed dataset is then split into training and 
testing parts in an 80-20 ratio, facilitating a robust evaluation 
of the models' performance. The DT and DT+ models serve as 
the baseline, with DT+ incorporating enhancements such as 
optimized hyperparameters identified through grid search 
techniques. RF, known for its ensemble approach, is also 
applied to improve the prediction accuracy and generalization 
further. Finally, XGBoost, renowned for its efficiency and 
scalability, is utilized, leveraging grid search for 
hyperparameter tuning. 

The models were implemented on Google Colab, 
leveraging its computing resources for efficient processing. 
The analysis underscores the importance of systematic 
preprocessing and model enhancement in achieving high 
accuracy in churn prediction. By comparing the performance 
metrics of the DT, DT+, RF, and XGB models, this study 
provides empirical evidence for the effectiveness of advanced 
classification algorithms in CCP. 

The preprocessing phase is essential to ensuring accurate 
predictions for customer churn models. Missing data is 
addressed using KNN imputation and median/Mean 
imputation techniques, preserving the dataset integrity and 
reducing bias [20]-[21]. Normalization follows, employing a 
combination of MMADN and Min-Max Scaling, which 
standardizes features while managing outliers effectively [22], 
[23], [24], [25]. To address the class imbalance, the SMOTE 
Tomek was utilized [18], [20], [25]. These preprocessing steps 
ensure that the data is optimally prepared for applying the DT, 
DT+, RF, and XGB models, leading to improved prediction 
accuracy and model robustness. 

The proposed approach involves analyzing customer churn 
using the following four different algorithms: 

 Traditional Decision Tree (DT) 

 Decision Tree with Grid Search (DT+) 

 Random Forest (RF) 

 XGBoost (XGB) 

A. Traditional Decision Tree (DT) 

The Traditional Decision Tree model is valued for its 
effortlessness and intuitive interpretability. It works by 
recursively partitioning the dataset based on feature values, 
creating a tree-like structure where nodes represent decision 
rules and leaves denote class labels. This model excels at 
handling non-linear relationships, making it a popular choice 
for classification tasks. Nevertheless, DTs are inclined to 
overfit, particularly with complex or noisy data, necessitating 
careful tuning of parameters like max_depth, 
min_samples_split, and min_samples_leaf to enhance 
generalization. 

B. Decision Tree with Grid Search (DT+) 

The Decision Tree with grid search model refines the 
traditional Decision Tree by incorporating advanced 
techniques to mitigate overfitting and improve predictive 
accuracy. DT+ is designed to balance model complexity and 
interpretability, making it particularly suitable for applications 
where both robust performance and transparency in decision-

making are crucial. By optimizing hyperparameters, DT+ 
effectively captures meaningful patterns from data, addressing 
the limitations of the traditional DT model. 

DT+ leverages a few essential parameters to boost 
performance: 

 Max_depth: Restricts the tree's depth, averting the 
model from getting too complicated and prone to 
overfitting 

 Min_samples_split: Defines the minimum number of 
samples required to split a node, reducing the risk of 
creating insignificant splits. 

 Criterion: The choice of Gini impurity or entropy when 
splitting a node directly affects the quality of the 
formed decision boundary. 

 Pruning Techniques: These are applied post-training to 
remove branches that do not provide significant power 
in classifying the target variable, further reducing 
overfitting. 

The implementation of DT+ begins with training an initial 
Decision Tree model using default parameters to establish a 
baseline. This model is then evaluated using accuracy metrics, 
a classification report, and a confusion matrix. To enhance the 
traditional DT model, grid search performs hyperparameter 
tuning to identify the best parameter settings from a 
predefined distribution. The tuned model is then evaluated on 
the test set, with pruning techniques applied to ensure that the 
model is not only accurate but also generalizable. This 
systematic approach ensures that the DT+ model outperforms 
the standard DT by avoiding overfitting and improving 
decision-making transparency. 

Despite its enhancements, DT+ faces several challenges: 

 Overfitting: Although it can be mitigated via pruning 
and parameter tuning, the risk of overfitting still exists, 
especially when the tree becomes too complex. 

 Sensitivity to Data Variability: Like the traditional DT, 
DT+ can be sensitive to small changes in the dataset, 
which might lead to significant variations in the tree 
structure. 

 Computational Complexity: Including advanced 
techniques such as hyperparameter tuning and pruning 
increases the computational burden, particularly with 
large datasets and extensive parameter grids. 

The Pseudocode for the DT+ model development is: 

Input: dataset.csv, Output: Model evaluation metrics, plots, 
comparison CSV. 

 Import Libraries 

 Load Dataset 

 Data Preparation 

 Initial Model Training with Default Parameters 

 Hyperparameter Tuning using Grid search 
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 Comparison of Parameters and Accuracy 

 Visualization Based on Performance Metrics 

C. Random Forest (RF) 

The Random Forest algorithm addresses single Decision 
Trees' limitations, particularly their susceptibility to 
overfitting. It is an ensemble learning strategy that boosts 
classification performance by consolidating the predictions of 
a number of Decision Trees, each trained on distinct portions 
of the data and attributes. This ensemble approach improves 
generalization, stability, and accuracy, making RF a powerful 
tool for complex classification tasks such as CCP. RF's ability 
to handle large datasets with high dimensionality and provide 
feature importance estimation further strengthens its 
applicability in various domains. 

RF relies on several key parameters to optimize its 
performance: 

 n_estimators: Determine the no. of decision trees in the 
ensemble. Increasing this number generally improves 
accuracy but increases computational costs. 

 max_attribute: Determine the maximum no. of 
attributes considered for partitioning at every node, 
which provides randomness & diversity amongst the 
trees, boosting the model's robustness. 

 Tree-Specific Parameters: These include parameters 
like max_depth, min_samples_split, and criterion, 
similar to those in Decision Trees but applied 
collectively across all trees in the ensemble. 

The development of RF starts with creating an ensemble of 
decision trees. Every tree is trained on a bootstrap example of 
the data, with a random portion of attributes chosen for every 
partition. The last prediction is obtained by aggregating the 
predictions from all trees, regularly by means of majority 
voting. Hyperparameters such as the no. of trees 
(n_estimators), maximum features (max_features), and tree-
specific parameters are fine-tuned to optimize the model's 
performance. Grid search allows for efficient hyperparameter 
tuning, ensuring that the model generalizes well to unseen 
data. 

RF offers several advantages over single-decision trees. 
One of its main merits is enhanced generalization. By 
averaging the predictions of numerous trees, RF diminishes 
the risk of overfitting, which typically enhances execution on 
novel data. In addition, the strength of RF comes from the 
diversity amongst its constituent trees, making it less sensitive 
to noise & variability in the data. Another advantage is its 
ability to provide estimates of feature importance, which can 
be valuable for interpreting the model's decisions. 

However, RF also has its drawbacks. The ensemble nature 
of RF demands significantly more computational resources 
than single Decision Trees, thus increasing the computational 
complexity. Moreover, while RF's accuracy is superior, its 
predictions are less interpretable due to the complexity 
involved in aggregating the outputs of multiple trees. Reduced 
comprehensibility hinders comprehension of how the model 
arrived at its conclusions. 

D. XGBoost (XGB) 

XGBoost (Extreme Gradient Boosting) is employed in 
CCP to leverage its superior performance in handling complex 
data interactions and minimizing errors through iterative 
refinement. Differentiated from conventional ensemble 
strategies, XGBoost develops trees sequentially, with each 
novel tree rectifying the errors caused by the past ones [10], 
[16]. This iterative strategy, integrated with gradient descent 
optimization, permits XGBoost to accomplish large accuracy 
& strength in classification issues. Its ability to incorporate 
regularization techniques makes it particularly effective in 
preventing overfitting [17], [19]. 

XGBoost's performance is susceptible to its 
hyperparameters, and tuning these parameters is crucial to 
prevent overfitting and ensure robust performance. Grid 
search efficiently explores a wide range of hyperparameter 
combinations, allowing for a thorough yet computationally 
feasible optimization process [16]-[17]. 

XGBoost's performance is highly dependent on several 
key parameters: 

 Learning Ratio: Controls the commitment of each tree 
to the last model. A lower learning rate requires more 
boosting rounds but can lead to a better generalization. 

 Greatest Depth (max_depth): Constrains the depth of 
each tree, adjusting model complexity with overfitting 
risk. 

 No. of Boosting Rounds (n_estimators): Determines the 
no. of trees to be included successively. More trees can 
capture more patterns, but this may increase the risk of 
overfitting. 

Implementing XGBoost begins with importing the 
necessary libraries. The data is split into training and testing 
parts, similar to the process used for RF. A parameter grid is 
set, and Grid search is utilized to seek the ideal 
hyperparameters efficiently. This approach ensures that the 
model achieves the best possible performance while avoiding 
overfitting. The best model identified through Grid search is 
then trained on the full training set and evaluated on the test 
set to validate its accuracy and generalization capabilities. 

While XGBoost offers several advantages, including 
superior accuracy and the ability to handle missing data, it 
also presents challenges: 

 Computational Complexity: XGBoost's iterative 
approach and need for extensive hyperparameter tuning 
can increase computational costs. 

 Overfitting: Despite its regularization techniques, 
XGBoost can still overfit, particularly on small or noisy 
datasets, if not properly tuned. 

 Interpretability: The complexity of the model can make 
it challenging to interpret, especially when compared to 
simpler models like decision trees. 

The detailed Pseudocode for the XGB model development 
has been described below. 
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Input: dataset.csv, Output: Model evaluation metrics, plots 

 Import Libraries 

 Load Dataset 

 Data Preparation 

 Split Data 

 Hyperparameter Tuning with Grid search 

 Train the Best Model 

 Evaluate the Model 

 Visualization Based on Performance Metrics 

IV. HYPERPARAMETER OPTIMIZATION 

Hyperparameter tuning was conducted using grid search to 
optimize the performance of the predictive models. This 
process systematically evaluated a range of hyperparameter 
combinations to identify the best configuration for each 
model. The optimal hyperparameters for the DT+, RF, and 
XGBoost models are summarized below. 

A. Improved Decision Tree (DT+) 

The DT+ model, an optimized version of the traditional 
Decision Tree, was tuned to improve its performance by 
leveraging grid search. The best-performing hyperparameter 
combination for DT+ included: 

 class_weight: {0: 1, 1: 5} 

 criterion: entropy 

 max_depth: 70 

 max_features: None 

 min_samples_leaf: 1 

 min_samples_split: 2 

 splitter: random 

This configuration balanced the dataset effectively, 
reducing overfitting and improving decision-making across 
deep trees. 

B. Random Forest (RF) 

The Random Forest model, an ensemble technique, was 
optimized to maximize generalization and reduce variance. 
The best hyperparameter combination for RF was: 

 bootstrap: False 

 class_weight: {0: 1, 1: 2} 

 criterion: gini 

 max_depth: None 

 max_features: log2 

 min_samples_leaf: 1 

 min_samples_split: 2 

 n_estimators: 120 

This configuration emphasized utilizing a larger number of 
estimators while balancing the dataset using class_weight, 
enhancing the model’s robustness. 

C. XGBoost (XGB) 

The XGBoost model demonstrated its strength in handling 
high-dimensional and imbalanced datasets with the following 
optimized hyperparameters: 

 learning_rate: 0.05 

 max_depth: 50 

 n_estimators: 100 

 subsample: 0.8 

This combination provided a balance between the learning 
rate and the depth of the trees, enabling the model to refine 
predictions iteratively while avoiding overfitting. 

D. Impact of Hyperparameter Optimization 

The tuning process significantly contributed to the 
improved performance of the models, as demonstrated in the 
results: 

 DT+: Showed notable consistency in metrics, 
particularly recall, due to balanced class weights and 
randomized splitting criteria. 

 RF: Achieved strong generalization with an accuracy of 
0.82 and a ROC-AUC of 0.87, leveraging its optimal 
tree-based ensemble design. 

 XGB: Delivered the best overall performance with an 
ROC-AUC of 0.88, benefiting from gradient boosting 
and iterative error correction. 

These hyperparameter combinations underscore the 
importance of systematic optimization in achieving reliable 
and accurate predictions for CCP. 

V. PERFORMANCE METRICS 

To evaluate the predictive accuracy of our models in churn 
prediction, we utilize key metrics from the confusion matrix, 
which categorizes predictions into four essential types: true 
positives, true negatives, wrong positives, and wrong 
negatives. These metrics are critical for assessing the 
effectiveness of our classification algorithms [22], [23], [24], 
[25]. 

 F-measure: Balances precision and recall by calculating 
their harmonic mean, offering a single metric to 
evaluate overall model performance. 

 Precision: Valuates the accuracy of figuring out the 
extent of true positives with regard to all discovered 
churners. 

 Recall: Measures the model's ability to correctly 
identify actual churners by calculating the proportion of 
true positives out of all actual churners. 

 Accuracy: Reflects the overall correctness of the model 
by measuring the ratio of correct predictions to total 
predictions. 
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VI. RESULTS AND DISCUSSION 

This section compares the DT, DT+, RF, and XGB models 
to assess their effectiveness in predicting customer churn in 
the telecommunications industry. The performance of each 
model is evaluated based on accuracy, precision, recall, F1-
score, and ROC-AUC to provide a clear understanding of their 
relative strengths. 

The effectiveness of the classification models was assessed 
using the prepared Cell2Cell dataset. Preprocessing steps 
included imputation, normalization, and resampling 
techniques, ensuring the dataset was adequately prepared for 
model evaluation. As shown in Table I, ensemble methods 
(RF and XGB) significantly outperformed single-tree models 
(DT and DT+). 

TABLE I. THE PERFORMANCE OF UTILIZED MODELS 

Models Accuracy  Precision Recall F1-Score ROC 

DT 0.77 0.78 0.77 0.77 0.74 

DT+ 0.77 0.77 0.77 0.77 0.73 

RF 0.82 0.83 0.82 0.81 0.87 

XGB 0.82 0.82 0.82 0.81 0.88 

 DT Model: The DT model reported moderate 
performance with an accuracy of 0.77, precision of 
0.78, recall and F1-score of 0.77, and ROC-AUC of 
0.74. These metrics highlight the baseline capability of 
a traditional decision tree structure. 

 DT+ Model: With grid search hyperparameter 
optimization, the DT+ model achieved similar results, 
with accuracy, precision, and recall, an F1-score of 0.77 
each, and a ROC-AUC of 0.73. The enhancements 
ensured consistent performance but did not significantly 
outperform the traditional DT. 

 RF Model: The RF model demonstrated substantial 
improvement across all metrics. It achieved an accuracy 
of 0.82, precision of 0.83, recall of 0.82, and F1-score 
of 0.81. Its ensemble approach effectively leveraged 
imputed data and the SMOTE Tomek resampling 
method, resulting in a high ROC-AUC value of 0.87. 

 XGBoost Model: XGBoost delivered the highest 
overall performance, achieving an accuracy of 0.82, 
precision, recall, and F1-score of 0.82 each, and a ROC-
AUC of 0.88. The advanced optimization of gradient 
boosting and integration of regularization features 
contributed significantly to this outcome. 

Fig. 2 to 7 provide classification reports and confusion 
matrices for the DT+, RF, and XGBoost models, illustrating 
their predictive performance. 

The results highlight the advantages of ensemble methods 
like RF and XGBoost over single-tree models in churn 
prediction. The XGBoost model's superior performance can be 
attributed to its gradient-boosting framework, which 
iteratively refines predictions, effectively capturing complex 
patterns in the data. This aligns with findings from prior 

studies that emphasize the efficacy of gradient-boosting 
techniques for high-dimensional datasets. The RF model's 
robust results further underscore the value of ensemble 
techniques in enhancing generalization and reducing 
overfitting. The use of SMOTE Tomek in preprocessing was 
critical in addressing the class imbalance, as evident in the 
improved recall and precision scores for both RF and 
XGBoost. However, the limited impact of this technique on 
DT and DT+ indicates that more sophisticated models are 
better equipped to exploit balanced datasets. 

 
Fig. 1. CCP performance of ML models. 

 
Fig. 2. Classification report for DT+. 

 

Fig. 3. Classification report for RF. 

 

Fig. 4. Classification report for XGB. 
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Fig. 5. Confusion matrix for DT+. 

 
Fig. 6. Confusion matrix for RF. 

 
Fig. 7. Confusion matrix for XGB. 

While the DT and DT+ models offered a balanced trade-
off between recall and precision, their performance was 
constrained by inherent algorithmic limitations, such as 
susceptibility to overfitting. Grid search optimization for DT+ 
improved consistency but did not elevate its metrics 
significantly above those of the traditional DT model. The 
imputation and normalization steps proved vital, as they 
contributed to the balanced recall values across all models, 
ensuring accurate identification of churners. However, the 
reliance on advanced optimization techniques, such as those 
employed in XGBoost, demonstrates the need for robust 
preprocessing and model design to maximize predictive 
accuracy. Future work could explore alternative preprocessing 

strategies or combine these methods with deep learning 
models to achieve further improvements. 

VII. CCP PERFORMANCE COMPARISON WITH EXISTING CCP 

METHODS USING THE CELL2CELL DATASET 

The Cell2Cell dataset has been extensively used in the 
telecommunications sector to develop and evaluate customer 
churn prediction (CCP) models. Various studies have explored 
various approaches, from traditional machine learning 
techniques to advanced deep learning frameworks, achieving 
diverse outcomes based on the methodologies and 
preprocessing techniques employed. The study in [26] applied 
a Deep-BP-ANN model combined with Lasso Regression and 
Variance Thresholding, achieving an accuracy of 79.38%. 
Their results outperformed traditional XGBoost and Logistic 
Regression models, demonstrating the potential of deep 
learning for churn prediction in imbalanced datasets. The 
study in [8] developed a hybrid ensemble approach combining 
clustering and classification algorithms, including k-medoids, 
Gradient-Boosted Trees (GBT), Decision Trees (DT), and 
Deep Learning (DL). This method achieved an accuracy of 
93.6%, highlighting the effectiveness of integrating clustering 
techniques to manage class imbalance. The study in [19] 
explored decision forest models enhanced with weighted soft 
voting. Their approach achieved an accuracy of 96.57%, 
showcasing the advantages of ensemble methods in improving 
prediction accuracy and robustness by effectively identifying 
churn patterns. 

Table II summarizes the performance metrics reported in 
these studies, providing a benchmark for assessing the 
efficacy of different CCP methodologies. 

TABLE II. PERFORMANCE METRICS COMPARISON FROM EXISTING 

STUDIES 

Method Accuracy  Precision  Recall  
F1-

Score  
AUC  

Deep-BP-ANN 

[26]  

79.38 74.50 89.32 81.24 79.38 

Hybrid.Ensemble 

[8] 

93.6 79.10 67.45 72.81 93.6 

Decision Forest 

[19] 

96.57 96.57 85.45 83.72 96.57 

Our study, which uses the Cell2Cell dataset with advanced 
preprocessing techniques, aligns with findings from these 
prior works while offering unique contributions. 
Preprocessing steps like KNN imputation, normalization, and 
SMOTE Tomek resampling effectively addressed class 
imbalance, enhancing model performance. Ensemble models 
such as RF and XGBoost achieved high accuracy (0.82), as 
highlighted in Table I, which compares the metrics of the 
models used in this study and key observations are as follows: 

 Performance Context: Our study's ensemble approaches 
(RF and XGBoost) achieved competitive accuracy 
scores compared to more straightforward machine 
learning frameworks like DT and DT+. While slightly 
below the performance of Decision Forest reported by 
[19], the balance between interpretability and accuracy 
makes these models practical for real-world use. 
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 Preprocessing Impact: SMOTE Tomek and 
normalization proved essential in balancing class 
distribution, improving recall and precision across 
models. This approach parallels the findings of Liu et 
al. [8], who leveraged clustering techniques for similar 
benefits. 

 Scalability and Practicality: Unlike computationally 
intensive deep learning models, XGBoost and RF offer 
a cost-effective solution for telecom companies. Their 
high accuracy and efficient preprocessing make them 
suitable for deployment in dynamic environments 
where real-time churn prediction is critical. 

VIII. REAL WORLD SIGNIFICANCE 

The findings of this study have critical implications for 
addressing real-world challenges in the telecommunications 
industry, where customer churn remains a significant concern. 
By leveraging predictive models like XGBoost, telecom 
companies can transition from reactive to proactive churn 
management strategies, leading to tangible business benefits. 

Customer churn directly impacts revenue and operational 
efficiency in saturated markets where acquiring new 
customers is significantly costlier than retaining existing ones. 
The predictive models evaluated in this study, particularly 
XGBoost and RF, provide robust tools for identifying high-
risk customers. These insights empower telecom companies to 
design targeted retention strategies, such as personalized 
offers, improved customer service, or loyalty programs, 
mitigating churn effectively. 

The predictive algorithms demonstrated in this study can 
be seamlessly integrated into Customer Relationship 
Management (CRM) systems. For instance, by embedding 
XGBoost into customer analytics platforms, companies can 
automate churn predictions and deliver actionable insights in 
real-time. The models' ability to handle high-dimensional data 
and imbalanced classes also ensures scalability, making them 
suitable for large, complex telecom datasets. 

Proactive churn management driven by these models could 
result in measurable outcomes, including: 

 Cost Savings: Reducing churn by even a small 
percentage can save millions in customer acquisition 
costs. 

 Revenue Enhancement: Retaining high-value customers 
boosts recurring revenue and long-term profitability. 

 Operational Efficiency: Automating churn prediction 
reduces manual analysis, freeing resources for strategic 
initiatives. 

The study also addresses broader industry challenges, such 
as fostering customer loyalty in a competitive landscape. 
Predictive models not only assist in retaining existing 
customers but also enhance customer experience by 
anticipating needs and preferences. These advancements align 
with the strategic goals of telecom firms to sustain growth and 
remain competitive. The practical relevance of this research 
extends beyond theoretical improvements, offering telecom 
companies a pathway to adopt data-driven strategies for churn 

management. By implementing these models, businesses can 
achieve financial benefits and strengthen customer 
relationships, driving sustainable growth in a dynamic market 
environment. 

IX. CONCLUSION AND FUTURE WORK 

This study comprehensively analyzed customer churn 
prediction (CCP) using a Decision Tree (DT). The Decision 
Tree improved with grid search (DT+), Random Forest (RF), 
and XGBoost (XGB) algorithms applied to the preprocessed 
Cell2Cell dataset. Among these models, XGBoost emerged as 
the most effective, achieving strong precision, recall, and F1 
scores with an accuracy of 0.82. Its advanced optimization 
techniques, such as gradient boosting and error correction, 
maximized the benefits of preprocessing methods, 
demonstrating its superiority in handling complex and high-
dimensional datasets. The RF model also delivered robust 
performance, achieving an accuracy of 0.82 while effectively 
balancing precision and recall. Its ensemble nature 
successfully mitigated overfitting and enhanced 
generalization. In contrast, the DT+ model, despite its 
improvements through grid search, faced limitations in 
reaching comparable performance, underscoring the inherent 
constraints of decision tree-based models. 

This research contributes to the field by integrating robust 
preprocessing techniques, such as KNN imputation, 
normalization, and SMOTE Tomek resampling, with grid 
search optimization. These methodologies collectively address 
critical challenges posed by imbalanced and high-dimensional 
telecom datasets, providing a scalable and systematic 
framework for CCP. By evaluating the comparative 
performance of DT, RF, and XGBoost models, the study 
underscores the value of ensemble methods and advanced 
hyperparameter tuning in achieving accurate and reliable 
predictions. Furthermore, the findings validate the significance 
of preprocessing as a cornerstone for effective churn 
prediction, offering insights into how these techniques 
enhance model robustness. 

While this study provides valuable insights, certain 
limitations should be acknowledged. The analysis is 
constrained to the Cell2Cell dataset, which, while 
comprehensive, may not fully represent the diversity of 
customer behaviors in other industries or regions. 
Additionally, the models used in this study rely heavily on 
preprocessing and hyperparameter tuning, which may increase 
computational costs for large-scale datasets. Although 
effective, the interpretability of ensemble methods like 
XGBoost can be challenging, potentially limiting their 
application in contexts requiring high transparency. 

Future research could explore incorporating deep learning 
models like neural networks that integrate different classifiers 
for enhanced predictive power. Investigating advanced feature 
engineering techniques, such as automated feature selection 
and interaction effects, could further improve model 
performance. Additionally, extending this research to other 
industries, such as finance or retail, with diverse customer 
behaviors would help validate the generalizability of the 
proposed methods. Exploring real-time churn prediction 
systems and using external data sources, such as social media 
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or customer feedback, could also offer new avenues for 
development. 

The study’s findings hold significant practical implications 
for the telecommunications industry. By providing actionable 
insights into the design and optimization of predictive models, 
this research supports proactive customer retention strategies, 
enabling telecom companies to reduce churn rates and 
enhance profitability. Moreover, the methodologies presented 
in this work contribute to advancing the knowledge base in 
CCP, offering scalable and interpretable solutions for 
addressing the challenges of imbalanced and high-dimensional 
datasets. 
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