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Abstract—Precision agriculture is focusing on automated weed 

detection in order to improve the use of inputs and minimize the 

application of herbicides. The presented paper outlines a Vision 

Transformer (ViT) model for weed detection in crop fields, that 

tackle difficulties stemming from the resemblance of crops and 

weeds, especially in complex, diversified settings. The model was 

trained via pixel-level annotation of the images obtained using 

high-resolution UAV imagery shot over an organic carrot field 

with crop, weed, and background. Due to the nature of the 

mechanism in ViTs that includes self-attention, which allows it to 

capture long-range spatial dependencies, this approach can very 

well distinguish crop rows from inter-row weed clusters. To solve 

the problem of class imbalance and improve the generality of the 

patches, techniques of data preprocessing such as patch extraction 

and augmentation were used. The effectiveness of the proposed 

approach has been confirmed by an accuracy of 89.4% in 

classification, exceeding the efficiency of basic models such as U-

Net and FCN in practical application conditions. This proposed 

ViT-based approach is a marked improvement in crop 

management; and provides the prospect for selective weed control, 

in support of more sustainable agriculture. This model can also be 

integrated into AI-based tractors for real-time weed management 

in the field. 
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I. INTRODUCTION 

In light of such global factors as climate change, increasing 
population, and declining land fertility, protection of food 
production has become an important task [1]. Amongst various 
biotic constraints that affect crop yield and quality, weeds rank 
as some of the most formidable challenges that crop producers 
face in the field [2]. If not controlled, weeds have severe effects 
on crop yield and quality hence contributing to loss making and 
high food insecurity [3]. In the past, weed management has been 
undertaken by mechanical means such as pulling weeds out by 
hand or the widespread application of herbicides [4]; either of 
which is now considered to be unfavorable. Hand weeding is 
hard and cannot be used in large scale farming [5], while 
chemical control causes pollution and health issues [6], reduces 
bio-diversity, and results into the evolution of herbicide resistant 
weeds. Therefore, there is need to develop effective, sustainable 
as well as economic methods to tackling weed problems. 

New developments in precision agriculture especially in 
combination with technology such as remote sensing, machine 

learning and drone systems, are revolutionizing conventional 
weed control approaches [7]. Precision agriculture is the practice 
of trying to grow crops as efficiently as possible by giving 
farmers instant information about the condition of their fields so 
they can manage the resources they use in the most sustainable 
way [8]. With UAVs using high resolution and multispectral 
cameras available for field monitoring, large scale data 
acquisition coupled with detailed visualisation of crop and weed 
distribution in the agricultural environments is possible [9]. It is 
possible to use this technology to locate and identify weeds and 
subsequently manage by providing efficient spot treatment as 
opposed to weed eradication using herbicides. 

Nevertheless, identification and precise categorization of 
weeds in crop fields still pose a great challenge due to factors 
such as variability in the field, weeds growing between rows of 
crops and close resemblance in appearance of weeds and crops 
[10]. These difficulties cannot be resolved by using conventional 
image processing techniques, because such approaches rely on 
color-based or shape-based segmentation, which may not be 
sufficient for distinguishing between very similar plant species 
in different lighting and environmental conditions [11]. To 
overcome these limitations, machine learning particularly deep 
learning approaches has been used to improve weed detection 
accuracy. Convolutional neural networks (CNNs) have been 
reported to work well in this area [12], however, due to their 
constrained local connectivity, they lack the ability to capture 
the spatial dependencies and context required to correctly 
identify weeds from crops especially in high density field 
setting. 

Recently, Vision Transformers (ViTs) emerged as a 
compelling approach to surpass CNNs in image classification 
problems [13]. First introduced for natural image understanding, 
ViTs utilize the self-attention method and it provides a wide-
angle view of long-range dependencies within the image, which 
is crucial in agriculture. Unlike CNNs, ViTs can handle the 
analysis of the entire image regions rather than focusing on 
localized features needed for crop and weed differentiation [14]. 
Self-attention enables ViTs to distinguish between crop rows 
and inter-row weed clusters more accurately than in field 
conditions where crop plants and weeds appear to have similar 
textures and color patterns. 

This research introduces a new method for the automated 
detection of weeds based on a Vision Transformer model that 
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has been developed to handle the specific difficulties of 
agricultural weed categorisation in UAV imagery. The proposed 
method takes advantage of the fact that crops, as a rule, are 
planted in a geometric pattern of rows while weeds grow 
randomly across the farm field; therefore, crop regions can be 
distinguished from the clusters of weeds by their geometric 
arrangement. The method we propose here is to employ the 
Vision Transformer model on the high-resolution UAV images 
at the pixel level to accurately distinguish crops from weeds. The 
training dataset is CWFID, for each image, background, crop, 
and weed pixels are labeled in detail with the help of 
experienced farmers, which supplies the model with profound 
features for learning intricate spatial associations. 

Using the efficiency of image preprocessing including patch 
extraction and data augmentation and the feature of long-range 
dependencies analysis of ViT model we expect to receive high 
classification accuracy and good scalability in field conditions. 
This study advances understanding of weed biology and the 
potential for selective, efficient weed control by identifying 
specific proteins that allow for accurate discrimination of 
different weed species. Consequently, the study responds to 
important research questions in PA and opens up opportunities 
toward building more sustainable and less hazardous crop 
growing systems. 

The remainder of this paper is organized as follows: Section 
II discusses related work, which presents an idea of this research 
area and the inclusive techniques for weed detection and its 
merit and demerit. Section III outlines the research approach of 
this study, which covers ViT architecture, datasets, data 
preprocessing, and evaluation of crop and weed classification. 
Section IV explains the findings that include the assessment of 
the ViT model and a comparison with other conventional models 
like U-Net and FCNs. Section V offers a discussion of the 
findings, issues on model stability and possible applications of 
the developed models to precision agriculture. Last, Section VI 
provides a conclusion to the study by offering an overview of 
the major conclusions, the main research contributions, and an 
indication of the areas where future studies and enhancements 
may be made. 

II. RELATED WORK 

There are different approaches for weed detection mentioned 
in the literature for the use of different image acquisition 
systems. The first one is carried out by separating vegetation 
from the background as soil and residues to separate crops from 
the weeds. The common segmentation process handily uses the 
color Methods [15] and Multispectral data in order to segment 
vegetation from background using fixed indices which make 
vegetation segmentation possible. Nonetheless, differentiating 
between weeds and crops using spectral data prove difficult 
since the two are spectrally similar. Therefore, approaches 
focusing on the region level, which utilizes spatial pixel 
configurations, are mostly used [16]. 

The detection of weeds in agriculture has improved over the 
years with the help of color-based segmentation algorithm. Hue 
based indices like the Excess green Index (ExG) are used widely 
to sharpen vegetation features in imagery, isolating plants from 
their surroundings. This approach is especially valuable when 
dealing with multispectral data since, as it was mentioned, ExG 

uses the green component most to enhance vegetation. This 
method has been found to be computationally efficient for the 
initial step of separating crops from weeds in agricultural 
scenarios and laid down a base for further analysis and 
classifying more steps [17]. Another level of enhancement of 
weed detection is obtained by integrating Excess Green with 
Otsu’s thresholding technique which segment images at the 
optimum threshold intensity values. The integration method is 
passes in minimizing the background noise while maximizing 
vegetation details. Together with the double Hough transform, 
this method improves the identification of crop lines in images 
with perspective distortion by recognizing and reorienting the 
lines in a complex environment in agriculture. They are 
particularly useful in the images of the same scene taken under 
varying lighting conditions since they increase the resistance 
when classifying crops from weeds [18]. 

TABLE I.  PREVIOUS WEED DETECTION METHODS 

Method Description Reference 

Color-Based 

Segmentation 

Separates vegetation from background 
using color indices such as Excess Green 

(ExG) and fixed indices in multispectral 

data. 

[17] 

ExG and Otsu’s 

Thresholding 

Combines Excess Green and Otsu’s 

thresholding to eliminate background, 

then uses double Hough transform to 
identify crop lines in perspective images. 

[18] 

Object-Based 

Image Analysis 

(OBIA) 

Uses UAV imagery and multiscale 

algorithms to segment crop rows from 
weeds, creating homogeneous objects for 

analysis. 

[19] 

2D Gabor 

Filters with 
ANN 

Uses 2D Gabor filters to capture texture 

features and an artificial neural network 
(ANN) classifier for weed detection. 

[20] 

Morphological 

Characteristics 

Utilizes morphological features to 

distinguish weeds in maize fields, using 

neural networks and support vector 

machines (SVMs) with shape-based 

features. 

[21] 

Edge 
Frequencies & 

Vein Density 

Differentiates weeds from crops by 
analyzing edge frequencies and vein 

density differences in the leaves. 

[22] 

Otsu 

Thresholding & 

K-means/SVM 

Applies Otsu thresholding for 
background removal and uses k-means 

clustering and SVM classifier for crop-

weed classification, successful in 
sunflower fields. 

[12] 

Wavelet 
Transform & 

Neural Network 

Uses wavelets to capture texture details 

and a neural network for classification, 

effective for recognizing various weed 
types in sugar beet fields. 

[23] 

SVM, ANN, & 

Random Forests 

in OBIA 

Employs machine learning models like 

SVMs, ANNs, and Random Forests 
within the OBIA framework, especially 

for weeds in maize fields. 

[24] 

Convolutional 

Neural 
Networks 

(CNNs) 

Uses CNN architectures, including 
AlexNet, for weed detection in crops such 

as water hyacinth and serrated tussock. 

Applied in UAV-based imagery and 
mobile robot systems. 

[25] 

Spatial & 
Spectral 

Domain 

Features 

Integrates Hough transform for spatial 

features with multispectral data for 

spectral features, combined with SVM 
for crop-weed classification in four-band 

imagery. 

[26] 
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Another complex technique is Object-Based Image Analysis 
(OBIA), which divides images into areas of the same character 
instead of single pixels, within the use of multistate algorithms. 
When applied to UAV imagery, OBIA provides a better defined 
and can be easily automated procedure to distinguish crops from 
weeds. This approach is useful in vast areas where exact 
methods like pixel based approach turn out to be more 
computational. Thanks to OBIA, grouping similar pixels into 
coherent objects, researchers are able to distinguish the pattern 
of weed distribution across the crop rows, which enhances weed 
control strategies [19]. The combination of texture analysis in 
the form of 2D Gabor filters with Artificial Neural Networks 
(ANNs) introduces a promising solution to the problem of weed 
detection due to the utilization of frequency and orientation 
within images. The enhanced textural features that are 
fundamental to crops and weeds are well captured by Gabor 
filters. ANNs then sort these features, and the model has a high 
level of accurate weed detection in crops with textural features. 
This method offers considerable reliability to precision 
agriculture, above all in areas of uniform textural characteristics 
where texture differential is significant [20]. 

Shape based features of Morphological characteristics are 
another factor that builds another level of discrimination in case 
of weed identification. Methods that apply such factors as shape, 
size, and structure of the leaves using neural networks and 
Support Vector Machines (SVMs) are preferable in structured 
crops such as maize. Morphological features are unique 
depending on the type of crop or the weed in question, and 
therefore helpful where the shape differences are quite profound. 
Such a strategy can be especially valuable for detecting specific 
weed types that differ from crops morphologically [21]. Another 
notable feature which is used in classification of weeds is the 
patterns that appear on the leaves ‘veins. Vein density methods 
and edge frequency methods help to distinguish crops and weeds 
because crops and weeds essentially have different vascular 
networks within the veins of their leaves naturally. This 
technique is most successful in the controlled environments 
where crops and the weeds differences in vein densities are 
clearly noticeable. Due to this focus on these several anatomical 
dissimilarities, this approach is suitable for high precision 
detections in small-scale or research production agriculture 
setting [22]. 

Furthermore, using thresholding Otsu together with 
clustering and classification method such as K-means and SVM 
makes a strong way of detecting weeds in areas such as 
sunflower crops. Otsu’s thresholding erases the background 
noises while k-means clusters all the pixels having a nearly 
similar intensity, which is then sophisticatedly classified by the 
SVM in order to separate weeds correctly. Thus, this work 
follows gradual layering of steps that help increase the weed 
detection accuracy, and that are tested effective even in high 
noise images [12]. When used alongside neural networks, the 
wavelet transform is a useful method of weed detection through 
texture analysis. Wavelets analyze small local details of the 
image and since neural networks can provide high accuracy 
when determining the difference between the weeds. This 
technique has been particularly effective in sugar beet fields 
where due to the multi specie flora the different weeds can be 

identified using the features obtained by the wavelet analysis of 
the images [23]. 

Currently, the use of OBIA has included some common 
machine learning models, such as SVMs, ANNs, and Random 
Forests. This approach especially for maize fields incorporates 
an object-based image analysis with machine learning concept 
leading to higher accurate detection in large-scale agriculture. 
Thus, the classifiers within and across the imagery segments 
enhance the models to increase classification results in high 
complexity areas where the mere pixel-based approach could 
not limit the classification process [24].  Convolutional Neural 
Networks (CNNs) are that key technology which helps weed 
detection using high-dimensional data and pattern extraction. 
The state of the art CNNs, such as the AlexNet, has been 
implemented in the classification of weed crops such as water 
hyacinth and serrated tussock. These models are particularly 
suitable for UAV and mobile robotic systems where high 
versatility of weeds and constant ability to perform well in 
different conditions is needed. The feature extraction capacity of 
CNNs makes them useful in agricultural systems particularly 
where big data samples can be used in training and model 
refinement [25]. 

Last of all, advanced techniques that combine spatial and 
spectral characteristics of the analysed images, including Hough 
transform method with the use of multispectral imaging and 
support vector machines, can be pointed to as an enhanced 
method for crops and weeds differentiation. This approach takes 
advantage of spatial characteristics and spectral variation of four 
bands in imagery for precise analysis in precision agriculture. 
This method involves combining of spectral data with spatial 
transformation to result in high classification accuracy 
particularly in fields where spectral and spatial discrimination is 
well defined [26]. 

III. PROPOSED METHODOLOGY 

In modern agriculture, most crops are planted in organized 
rows with defined spaces, depending on the crop type. 
Vegetation that grows outside these rows is generally identified 
as weeds, known as inter-row weeds. Leveraging this spatial 
organization, several studies have implemented weed detection 
methods based on the geometric properties of crop rows. A key 
benefit of these methods is that they are largely unsupervised, 
reducing the need for manual training data. Building on this, our 
approach first identifies crop rows, then labels inter-row 
vegetation as weeds to create a training database. We 
categorized this data into two classes, crop and weed, and used 
it to train a Vision Transformer (ViT) model to detect and 
classify crops and weeds from UAV imagery. Fig. 1 provides an 
overview of the main steps in the proposed method, with 
detailed descriptions following. 

Crop/Weed Field Image Dataset (CWFID) is one of the vital 
resources for demonstrating the models of machine learning for 
classification of crops from weeds. The data in this paper was 
obtained from an organic carrot field in Northern Germany with 
the help of an autonomous field robot called Bonirob which has 
a high-resolution multi-spectral camera. Collected during the 
vegetation phase of the crops, the images offer a real-world 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

73 | P a g e  

www.ijacsa.thesai.org 

representation of crop and weed status in the fields, which is 
useful for precision agriculture studies with detailed descriptions 
of both crops and weeds present in the image. The dataset 
comprises 60 high-resolution images with the size of 1296 x 966 
pixels. The fine details present in the presented images make it 
possible for models to differentiate vegetation features, and also 
differentiate between plants that are growing closely together. 
Each image in the dataset is fully annotated at the pixel level by 
agricultural experts, classifying each pixel into one of three 
categories: The three categories of organisms identified in the 
study area include Background (Soil), Crops (Carrot Plants) and 
Weeds. 

 
Fig. 1. Proposed architecture flow. 

The expert annotations of the CWFID dataset allow for the 
identification of crops and weeds in a highly accurate, even in 
the most complicated agricultural environment. Every class in 
the case of the given dataset is a category of content that helps 
in differentiating between plants and soil. The three annotated 
classes are described in detail below: 

1) Background (Soil): This class consists all the bare 

grounds particularly the soil that is inter and intra-row of crops. 

These background regions makes it easier to define whether an 

object is crop or weed since they creates a contrast. The pixel 

distribution across the three classes is as follows and has been 

presented in Table II to indicate the class imbalance problem 

similar to that of realistic problem. 

2) Crops (Carrot Plants): This class is made up of areas 

with carrot plant bodies, which are usually aligned in an orderly 

manner. They contribute to the improvement of the 

effectiveness of the classification between crop and non-crop 

areas due to the crop rows formed. The carrot plants were in 

different stages of maturity which provided a variety that helps 

the models understand different crop morphologies. 

3) Weeds: In this dataset, weeds comprise intra-row weeds, 

which are those established within the crop rows, and inter-row 

weeds, which are those established between the crop rows. 

Classification models are further complicated by the presence 

of intra-row weeds since they are similar in size and color to 

crops. The presence of a large number of different weeds 

improves the applicability of the dataset for developing reliable 

machine learning models capable of distinguishing between 

crops and different weed types. 

Because of the high-resolution images and corresponding 
detailed annotation, the CWFID dataset is more suitable for 
precision agriculture in which precise weed maps are required at 
the pixel level. The dataset offers several unique challenges: 

1) Class imbalance: The fact that there are more 

background and crop pixels than weed pixels is a more realistic 

representation of the field environment to encourage the use of 

methods such as data enhancement and class balancing. 

2) Intra-row and inter-row weeds: Moreover, the 

combination of both inter-row and intra-row weeds poses a 

difficult classification problem for the models, where the 

presence of weeds in between crop rows is also considered. 

3) Varied lighting and vegetation density: The dataset 

comprises images taken under varying light conditions and at 

different vegetation cover densities making it more challenging 

to classify while improving model resilience. 

The CWFID dataset is freely accessible from GitHub and 
can be used by researchers interested in crop and weed 
classification for agricultural applications. The specific use of 
this dataset is to contribute to the generation of models for 
improving precision agriculture, especially in the case of weed 
detection and control within crop fields. 

A. Data Preprocessing 

To train effectively and to generalise the crop-weed 
classification model, some modifications were made on the 
CWFID dataset during data preprocessing. These steps were 
taken in an effort to bring the format of the data fed into the 
classifier more to a unified level, also to equalize the ratio of the 
classes and increase the variety of training samples (Table I). 

1) Image resizing: When analyzing the CWFID dataset, it 

was found that each of the original images has a size of 1,296 x 

966 pixels, and thus requires downscaling for input into the 

most of the deep learning models. To keep it manageable for 

the model, all of the images were also scaled to a size that would 

fit the input size of the chosen model. This resizing made all the 

inputs have equal dimensions thus making the model to 

undergo training without the need for further resizing during 

training. The option of resizing was applied more 

conservatively, allowing the image to maintain as much of its 

quality as possible, and at the same time, decreasing the amount 

of computations needed. 

2) Patch extraction: To prepare the data for pixel level 

classification, each resized image was then split into fixed size 

patches of 8×8 pixels. Patch extraction serves several purposes: 

a) Localized feature capture: Since a large image is 

divided into small segments of patches, C&Ps can identify crop 
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and weed characteristics confined or restricted to particular 

regions. 

b) Class representation: Each patch was made around 

regions marked as crop or weed and both of them were equally 

represented in the training set. 

c) Memory efficiency: Smaller patches also mean that 

Memory is used, which is a great advantage since more patches 

mean more data for the AI model to train on, especially and 

particularly when using humongous data sets. 

In general, patches consisting only of background pixels 
were often removed in order to focus on crop and weed area. 
They also diminished unnecessary data and at the same time 
enhanced the specificity of the data set with regard to crops and 
weeds differentiation. If a patch contained both crop and weed 
pixels it was classified into a patch class with the highest pixel 
count in a particular patch in order to of class labeling. 

3) Data augmentation: Since there are significantly fewer 

weed pixels than crop pixels in the CWFID dataset, data 

augmentation was used to increase the number of weed samples 

and, therefore, improve the model’s performance. 

Augmentation techniques were applied uniformly across both 

classes to expose the model to a variety of conditions, as 

detailed below: 

a) Rotation: Each patch was rotated at 90°, 180°, and 

270° rotations. This rotation not only amplified the dataset up 

to four folds but also let the model learn about the rotational 

variability needed for recognizing weeds and crops in multiple 

angles. 

b) Contrast adjustments: To mimic different lighting 

scenarios that could be met in practice, the contrast of a patches 

was altered randomly. Crop, weed, and background boundaries 

were highlighted through higher contrast settings; lower 

contrast mirroring conditions such as low light or shadow. This 

adjustment improved the ability of the model to be sensitive to 

variations in the levels of illumination in the environment. 

c) Gaussian smoothing: Specifically, Gaussian 

smoothing, or blurring, was applied only to minimize the noise 

in the image and enhance the main characteristics of each patch. 

High frequency components and significant intensity variations 

were removed through applying a Gaussian filter, and this 

enabled the model to detect general features. This technique 

also assisted in lowering the impact of noise and enhanced 

generalization in some instances. 

4) Balanced dataset composition: To reduce the class 

imbalance, dataset was augmented in such a way that both crops 

and weeds had almost equal representation. Augmented weed 

patches were particularly helpful in countering this in data 

collection because crop areas are generally more abundant. To 

this end, the findings demonstrated that it is possible to get a 

near balanced distribution between the two classes and this 

made the model to perform well in making discriminations 

between the two classes without favoring the larger class. 

Through this detailed data preprocessing step, the CWFID 

dataset was well-prepared for training the Vision Transformer 

model, which then captured important aspects of both crops and 

weeds and succeed under different field conditions. 

TABLE II.  SUMMARY OF DATA PREPROCESSING TECHNIQUES USED 

Preprocessing 

Step 
Description Purpose 

Image Resizing 
Standardized input size for 

all images 

Ensures consistency and 

reduces memory usage 

Patch Extraction 
64 × 64 pixel patches 
centered on crop or weed 

regions 

Localizes features and 

increases efficiency 

Rotation 
Rotations at 90°, 180°, and 
270° angles 

Increases data size and 
rotation invariance 

Contrast 

Adjustments 

Simulates lighting 

variations by adjusting 
contrast 

Improves robustness to 

different lighting 

Gaussian 

Smoothing 

Applies a Gaussian blur to 

reduce noise and enhance 

primary features 

Focuses model on main 

features, reduces noise 

B. Model Training 

The prepared CWFID dataset was used to train a Vision 
Transformer model because of its efficiencies in capturing the 
spatial relationships within the image data. In contrast to the 
standard convolutional models, the ViT model adapts a self-
attention mechanism, enabling the model to acquire contextual 
data from larger regions of each picture, which makes it suitable 
for learning subtle distinctions between crops and weeds. To 
evaluate the model’s performance effectively, the dataset was 
split into separate training and testing sets. Eighty percent (80%) 
of the images were allocated to the training set, with the 
remaining 20% reserved for testing. This split ratio was chosen 
to ensure that the model could learn robustly from a substantial 
amount of data while still providing a sufficient amount of 
unseen data for accurate performance evaluation. 

Care was taken to maintain a balanced distribution of crop 
and weed samples within both sets, allowing the model to be 
tested on images that represent the diversity and complexity of 
real-world conditions captured within the CWFID dataset. This 
split provided the model with an appropriate balance between 
learning general features during training and evaluating its 
effectiveness in generalization during testing. To optimize the 
ViT model for the crop-weed classification task, a set of training 
parameters was carefully selected based on preliminary testing 
and validation: 

1) Optimizer and learning rate: The function used for 

optimization was presented by the stochastic gradient descent 

(SGD) with the learning rate equal to 0.001. It was chosen due 

to its performances in dealing with large number of sample 

inputs and the fact that it can converge significantly when 

trained with appropriate learning rate. The learning rate of 

0.001 was found to give a stable and systematic training 

improvement to the model without oscillating training or 

causing a convergence problem.
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Algorithm: Vision Transformer (ViT) for Crop and 

Weed Classification 

Input: 

 Image dataset D with labeled crop, weed, and 

background images 

 Pre-trained Vision Transformer model ViT 

 Training parameters: batch size, learning rate, number of 

epochs 

Output: 

 Classified images with crops and weeds distinguished 

Initialization 

1. Load images from dataset D and associated labels (crop, 

weed, background). 1.2 Apply data transformations to 

each image:  

 Resize to 224×224= times (ViT input size).  

 Apply random horizontal flip, rotation, and 

normalization. 

2. Define a custom dataset class CropWeedDataset for 

loading images and labels.  

3. Initialize DataLoader for training and validation datasets 

with the transformed images. 

4. Initialize the Vision Transformer model ViT with a 

classification head suitable for the number of classes  

5. Set the loss function as Cross-Entropy Loss 

6. For each epoch in the specified number of epochs: - Set 

the model to training mode. 

7. Perform backpropagation and update model weights 

8. Perform a forward pass through the model. - Compare 

predictions to actual labels to calculate accuracy. 
 

2) Batch size: The batch size of 16 was chosen, as such size 

is more efficient in terms of memory and computation speed. 

This size ensured the model could handle a reasonable amount 

of data per every step, the training and convergence process was 

much smoother and quicker compared to the larger batch sizes, 

but the memory issues that can come with large batch sizes were 

also avoided. 

3) Epochs: In initial experiments, it was defined that the 

number of epochs should be 50. This decision was made based 

on observing the loss and accuracy plots during trial runs of the 

model several times and noted that 50 epoch was sufficient for 

the model to learn the features required to distinguish crops 

from weeds without over-fitting to the training data. Of note, 

early stopping and validation checks were used to stop training 

if the model was overfitted or if the training process stagnated, 

for purposes of time and computational efficiency. 

a) Training process: During training, the ViT model took 

in each 64 × 64 pixel patch derived from the CWFID dataset. 

The self-attention within the ViT structure allowed the model 

to learn spatial relationships among these patches thus 

distinguishing between crop and weed patterns well. 

Maintaining constant observance of the training and validation 

loss made it possible to check if the model is overfitting or 

underfitting. When this training setup was complemented with 

the well-prepared dataset and the augmentation strategies, the 

ViT model was able to generalize well. Upon the completion of 

training, the model was able to learn different patterns and 

spatial relationship of crops and weeds for a robust 

classification during the test. Fig. 2 shows ViT architecture.  

 

Fig. 2. ViT Architecture. 

IV. EXPERIMENTAL SETUP 

For this study, a systematic experimental framework was 
developed to assess the ViT approach for crops–weeds 
discrimination based on the CWFID dataset. This setup entailed 
setting not only the hardware but also the software environment 
to address the requirements of processing high-resolution UAV 
imagery and running deep learning models such that we would 
obtain reproduceable results. 

The experiments were performed on a high-performance 
computing system consisting of an Intel Xeon E5-2678 v3 
processor (2.5GHz), and an NVIDIA GeForce GTX 1080 Ti 
GPU with 11 GB VRAM. This combination of CPU and GPU 
allow to process large image datasets effectively and speedup 
model training. In the framework of the proposed system, it 
utilized 64GB of DDR4 RAM which make use of the in-memory 
data processing, especially helpful when dealing with a 
significant volume of augmented samples. A 1TB SSD was used 
to store the dataset and the intermediate outputs so that during 
training and evaluation phase, there was low latency and fast 
data access. 

Regarding the software environment the experiments were 
performed on Ubuntu 20.04 LTS operating system because of 
its ability to support deep learning frameworks and successfully 
manage computationally intensive tasks. PyTorch 1.9.0 has been 
the major library used to train the ViT model since it offers 
flexibility to implement transformer models. Furthermore, basic 
Python libraries including OpenCV for image processing, 
NumPy for numerical computation and scikit-learn for assessing 
the performance of the offered models were also installed into 
the environment. The transformation of the images was made 
possible by using the Albumentations library towards the 
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enhancement of the data augmentation processes so as to 
enhance sample variability. 

The dataset preparation for the current study followed the 
preprocessing steps as outlined in the methodology. The 
CWFID dataset was further split into a training set and a testing 
set out of which 80% was used for training and the rest was used 
for testing The training and testing datasets contained equal 
numbers of crop and weed samples. This division allowed for 
providing the model with enough samples for learning the 
general features at the same time preserving a separate part for 
the model accuracy assessment of the new, previous samples. 
Every single high-resolution image was partitioned into 64 × 64 
pixel window patches that were centered on crop or weed 
annotations. This patch extraction enabled the decoupling of 
complex features with this model to learn localized features 
while data augmentation including rotation, contrast adjustment 
and Gaussian smoothing were used to increase the variation in 
lighting, orientation and appearance of crops and weeds 
samples. 

Some of the parameters of the ViT model were set 
specifically for the purpose of crop and weed classification. Its 
architecture was based on the self-attention mechanism and was 
selected due to its capability to define spatial dependencies 
within the patches of images successfully. The model was 
trained with following specifications: batch size = 16, learning 
rate = 0.001 and the optimizer used for training is stochastic 
gradient descent. The total training process comprised 50 
epochs, if validation loss stopped increasing or began to rise, 
early stopping was used to stop training. The cross entropy loss 
was adopted as the main loss function, which provides flexibility 
in multi-class crop, weed, and background classification. 

To assess the performance of the developed models, a 
variety of evaluation measures was used. The accuracy for each 
of the classes, namely the crop, weed and background were 
determined in order to compare the performance of the models. 
With accuracy and quantity, measures of precision and recall 
were useful in determining the strengths of the model in 
differentiating crops from weeds and an F1 score was useful as 
it balances both false positives and negatives. Further, to avoid 
or reduce such biases confusion matrices were produced that 
give a clear distinction of the model on class to class basis. 

V. RESULTS 

In the results section, the performance of the Vision 
Transformer (ViT) model on crops, weeds, and background 
elements of the CWFID dataset is described in detail. 
Essentially, percentage accuracy, precision, recall and F1 scores 
were determined and more detailed analysis was done using the 
confusion matrix. The model was trained using 80 / 20 train-test 
split which helped evaluate the model on the new data it has 
never seen. 

A. Accuracy Assessment 

On the test set it was possible to obtain an overall accuracy 
of the ViT model equal to 89.4% showing that it can effectively 
distinguish crop, weed and background pixels. This high level 
of accuracy indicate that the ViT model is able to extract the 
unique features of each class even in the complicated 

agricultural environments where crops resemble weeds. The 
degree of accuracy shown in this paper proves that ViT model 
can be used in practical applications, specifically in the field of 
precision agriculture where precise identification of crops and 
weeds can lead to improvement in crop management and 
decrease in the amount of applied herbicide. 

B.  Class-Specific Performance 

Class-specific precision, recall, and F1 scores were 
calculated to evaluate the model’s effectiveness across different 
classes: crops, weeds, and background. These metrics are as 
follows and are summarised in Table III for easy comparison of 
the strengths and weaknesses of the model with respect to each 
class. Fig. 3 shows various models performance results. 

 
Fig. 3. Various models performance results. 

TABLE III.  SPECIFIC PERFORMANCE METRICS OF VIT MODEL 

Class Precision (%) Recall (%) F1 Score (%) 

Crops 91.2 85.7 88.4 

Weeds 87.5 80.3 83.7 

Background 93.1 96.4 94.7 

For the crop detection, the model obtained an accuracy of 
91.2% and recall of 85.7% and thus an F1 score of 88.4%. This 
is, however, high, although there could be confusion with weeds 
particularly in the inter-row area. Varying results were achieved 
for the recognition of weeds, with 87.5% accuracy, 80.3% recall, 
and thus an F1 of 83.7%. The slightly lower recall for weeds 
shows that weed detection is more difficult especially for intra 
row weeds which are more similar in appearance to the crops. In 
the evaluation of the model for background region, the precision 
achieved was 93.1%, with a recall of 96.4% and F1 score 94.7%. 
This high performance on the background further enhances the 
performance of the model in differentiating the non-vegetation 
areas, thus minimizing chances of wrongly classifying crops as 
weeds. 

C. Confusion Matrix Analysis 

The confusion matrix extends the assessment of the model’s 
classification correctness by showing where the errors were 
made. In Table IV the true positive, the false positive, and the 
false negative are shown for each class. 
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The confusion matrix (Fig. 4) also shows that the major 
misclassification problem was between the crop and weed 
classes where crop pixels amounted to 168 were misclassified as 
weeds while weed pixels of 128 were classified as crops. This 
pattern indicates that the yarn becomes problematic in 
distinguishing between crops and weeds mainly within areas of 
high plant density. This is especially problematic in intra-row 
spaces where weeds and crops may have similar architectures 
and reflectance properties hence compounding the challenge of 
modeling the two. On the other hand, the background class was 
accurately classified with few errors which actually shows that 
the model is good in separating vegetative from the non-
vegetative land cover like the soiler bare ground. 

TABLE IV.  CONFUSION MATRIX FOR VIT MODEL PREDICTIONS ON TEST 

SET 

 
Predicted 

Crop 

Predicted 

Weed 

Predicted 

Background 

Actual Crop 1,221 128 13 

Actual Weed 168 1,345 72 

Actual 

Background 
7 12 1,249 

 
Fig. 4. Confusion matrix. 

D. Comparison with Other Models 

The ViT model was compared with traditional models such 
as U-Net, SegNet, and Fully Convolutional Network (FCN). 
Accuracy, precision, recall and F1 scores of all models are 
summarized in the Table V, where it can be concluded that the 
ViT model is more accurate. By comparing the proposed Vision 
Transformer (ViT) model with those of U-Net, SegNet, and 
Fully Convolutional Network (FCN), its higher accuracy has 
established it to be capable of handling the difficult 
environments within agriculture, especially the growth within 
the intra-row weed. 

In such environments, where weeds are below or adjacent to 
crops and may be morphologically similar to crops, many of the 
CNN-based models are ineffective. This is due to the fact that, 
convolutional layers are inherently limited by its local receptive 
field, meaning that traditional model might be unable to capture 
those high-level, global features requiring the understanding of 
the whole image and its relationship to all other images, which 

in turn affects its accuracy in situations where high level of 
discriminative dissimilarities exists. 

The self-attention mechanism of the ViT model has an 
advantage because it processes images in their entirety and 
identifies long-range spatial relations that may be neglected by 
CNN-based architectures. Such an approach is most beneficial 
for intra-row weed identification, in which local resemblance in 
texture and color between crops and weeds often leads to 
confusion in other models. This paper also shows that self-
attention mechanism in ViT that allows the model to pay 
attention to relevant features in large regions of the images leads 
to better recall and precision, important for weed classification 
where precise distinction between crop and weed pixels is 
necessary (see Fig. 5, 6 and 7). 

 
Fig. 5. Accuracy comparisions of models. 

 
Fig. 6. F1-Score comparisions of models. 

 
Fig. 7. Precision comparisions of models. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

78 | P a g e  

www.ijacsa.thesai.org 

TABLE V.  PERFORMANCE COMPARISON OF VIT MODEL WITH 

TRADITIONAL MODELS 

Model Accuracy (%) Precision (%) Recall (%) 
F1 Score 

(%) 

ViT 89.4 87.5 80.3 83.7 

U-Net 85.1 84.2 76.5 80.2 

SegNet 78.3 75.8 71.4 73.5 

FCN 83.9 81.1 74.8 77.8 

Furthermore, the improved performance in ViT can again be 
attributed to how generalization is done properly to the field 
conditions. The high accuracy and precision in signifying weeds 
and crop images justify the flexibility of the proposed model in 
different lighting backgrounds, soil, and crop placement. This 
generalization is especially helpful when working with practical 
field applications of the model as weather, lighting, and growth 
stages may affect the models’ performance. A noteworthy 
comparison with U-Net further emphasizes ViT's advantage: 
that although U-Net also yields a good performance, the reliance 
on convolutional layers again hinders the ability to capture 
global context and therefore yields lower recall for weed 
detection. The results indicate that the trained U-Net is more 
sensitive to vagaries in closely planted weeds and crops, issues 
that are worsened by field conditions. However, these 
difficulties are not present in ViT’s design, which implies that 
potential agricultural applications of transformer-based models 
might be more scalable and versatile where extensive field 
analysis is required. 

VI. CONCLUSION 

The current paper shows that Vision Transformers (ViTs) 
can be used in precision agriculture for the detection of weeds in 
crop fields. This accuracy was established through pixel-level 
classification adopted from high-resolution UAV imagery as 
compared to traditional models such as U-Net and FCN where 
the ViT model obtained 89.4% accuracy. The high accuracy is 
an indication of ViT’s ability to establish dependencies and 
spatial arrangement in large agricultural scenes, which are hard 
for traditional CNNs to achieve. The study achieved the 
following goals of the research: The class imbalance was solved 
by applying a combination of two oversampling techniques 
which improved the classification results. Employing patch 
extraction and data augmentation enabled the ViT model to 
accurately distinguish crop, weed and background regions. The 
approach also showed robustness under different conditions 
improving the likelihood of its application in realistic 
agricultural settings. 

This research goes a long way in the promotion of 
sustainable agriculture by providing a potential method for 
selective weed management that does not require much use of 
the weed controlling herbicide. The current study could be 
extended in the future by examining other environmental factors 
or using the model in other crop types, and different field 
conditions to assess the model’s universality. Finally, the model 
derived from ViT holds the potential to contribute toward 
precise, effective and sustainable farming. 

This research also opens up possibilities for integration with 
AI-based tractors, enabling real-time weed detection and 
management directly in the field. Such applications could 

revolutionize automated precision agriculture, allowing for 
targeted weed control while minimizing herbicide usage. With 
further development, this approach could support the 
advancement of intelligent, autonomous farming machinery. 
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